
Adding Invariants to Event Zone Automata

Peter Niebert Hongyang Qu

Laboratoire d’Informatique Fondamentale de Marseille, Université de Provence
{niebert,hongyang}@cmi.univ-mrs.fr

Abstract. Recently, a new approach to the symbolic model checking
of timed automata based on a partial order semantics was introduced,
which relies on event zones that use vectors of event occurrences instead
of clock zones that use vectors of clock values grouped in polyhedral
clock constraints. Symbolic state exploration with event zones rather
than clock zones can result in significant reductions in the number of
symbolic states explored. In this work, we show how to extend the event
zone approach to networks of automata with local state invariants, an
important feature for modeling complex timed systems. To avoid for-
malizing local states, we attach to each transition an urgency constraint,
that allows to code local state invariants. We have integrated the exten-
sion into a prototype tool with event zones and reported very promising
experimental results.

1 Introduction

Timed automata [1] are a powerful tool for the modeling and the analysis of
timed systems. They extend classical automata by clocks, continuous variables
“measuring” the flow of time. A state of a timed automaton is a combination
of its discrete control location and the clock values taken from the real domain.
While the resulting state space is infinite, clock constraints have been introduced
to reduce the state spaces to a finite set of equivalence classes, thus yielding a
finite (although often huge) symbolic state graph on which reachability and some
other verification problems can be resolved.

While the theory, algorithms [9, 10] and tools [12, 3] for timed automata rep-
resent a considerable achievement (and indeed impressing industrial applications
have been treated), the combinatorial explosion particular to this kind of model-
ing and analysis – sometimes referred to as “clock explosion” (at the same time
similar to and different from classical “state explosion”) – remains a challenge
for research and practice. Despite the theoretical limits (for a PSPACE complete
problem), great effort has been invested into the optimization of the symbolic
approach (see e.g. [8, 4, 7, 2]).

Event zone automata [11] are a partial order based approach to reduce one
source of clock explosion, interleaving semantics. Partial order methods basically
try to avoid redundant research by exploiting knowledge about the structure
of the reachability graph, in particular independence of pairs of transitions of
loosely related parts of a complex system. Such pairs a and b commute, i.e.

a state s allowing a sequence ab of transitions to state s′ also allows ba and
this sequence also leads to a state s′′ that has the same control location as s′.
However, this kind of commutation is easily lost in classical symbolic analysis
algorithms for timed automata, which represent sets of possible clock values by
symbolic states: Consider two “independent” actions a resetting clock x := 0,
and b resetting clock y := 0. Executing a first and then b means that afterwards
(time may have elapsed) x ≥ y whereas executing b first and then a implies that
afterwards x ≤ y. The result of this is that in the algorithms used in tools like
UppAal [3] and Kronos [12], ab and ba lead to incomparable symbolic states.

The event zone approach successfully avoids such zone splitting, while pre-
serving most algorithmic possibilities offered by clock zone automata. The under-
lying notion of independence is based on reading and writing of shared variables:
If for some clock x, transition a resets x and transition b has a condition on x
or if both a and b reset x, then they must be dependent.

However, being based on Mazurkiewicz trace theory and thus more action
than state oriented, [11] did not address the question of state invariants (urgency
constraints), an important modeling feature used in tools like UppAal. Unlike
transition guards that give conditions on the interval in which a transition can be
executed, state invariants are conditions attached to states (locations) that limit
the allowed stay in the state, somewhat like a residence permit : before a violation
of the invariant, a transition must be taken. Typically, allowed invariants are
conjunctions of upper bounds on clock values.

In this work, we show how to add local state invariants to the event zone
approach. A technical difficulty to overcome for this is the formalization of in-
variants: The event zone approach assumes only a single timed automaton with
structural properties (diamonds) but does not as such expose “local states”. It
was not obvious, how state based invariants could be added to that framework.
Our solution attaches urgency constraints to transitions, and then requires a
consistency between these constraints and global state invariants. The urgency
constraints allow a way of coding of local state invariants: One attach to a tran-
sition the local state invariant of its original automaton.

Then we show how to extend the framework of [11] to the timed automata
with these invariants. An auxiliary tool, a “separator action” $, in [11] is trans-
formed into a “snapshot action”: A snapshot is an artificial action that separates
past and future and at which the global state invariant must be satisfied. For all
other actions, the invariants to be satisfied are local: We only require satisfaction
of its invariant whenever a clock is reset! It turns out that this approach allows
to preserve completely the notion of independence from [11].

In this extended abstract, we concentrate on the formalization of the local
invariants and the snapshot action and show the relevant properties. Moreover,
we have extended the algorithm in [11] and added it to a new prototype tool
POEM (Partial Order Environment of Marseille) based on the code of ELSE [13]
to give an interesting (albeit not exhaustive) experimental comparison with a
recent build of UppAal (v3.6 beta 1).

2

The paper is structured as follows: In Section 2, we informally explain the
use and problems related to local state invariants. In Section 3, we formalize
timed automata with invariants attached to transitions and we introduce the
notion of a run and the language of a timed automaton. In Section 4, we develop
the notion of independence in the context of the automata introduced in Section
3 and show the main fundamental results of this paper, the consistency of the
relaxed semantics with the standard semantics. In Section 5, we give hints on how
event zone based exploration tools for timed automata with invariants actually
work. We give some experimental results and conclude in Section 6.

2 State invariants and reachability in timed automata

Many verification problems, notably safety properties, of timed automata can be
coded as (non-)reachability of a location (discrete state), and we concentrate on
such specifications in this section. This does not exclude the extension of our
ideas to more sophisticated properties like emptiness of Büchi automata.

A state invariant is a downward closed condition on the clocks, a conjunction
of constraints like “x < 5” or “y ≤ 7” or even “z ≤ 0”, stating, how long at most
the “stay” in a state is “allowed”, i.e. the stay in the state must not extend to a
moment where the invariant is violated. In a run, a transition must thus occur
before the expiry of the state invariant.

For reachability in timed automata, state invariants do not fundamentally
add expressive power! We can eliminate invariants without touching the set of
reachable states by two transformation steps:

– Strengthen the conditions of each outgoing transition by the invariant with-
out changing the possible behaviour of the automaton; likewise strengthen
the conditions so to guarantee that the invariants of the target states are
respected at entry.

– Remove the invariants from the states after having strengthened the transi-
tions. While this change may allow partial runs where the automaton stays
beyond invariant in a state, it cannot add to the reachable states.

However, the situation changes when we consider the use of invariants in
modelling networks of timed automata. Consider the following timed system in
Figure 1: A multi lane highway with cars on each lane and a rabbit who wants
to cross. The rabbit has some freedom of going slower or faster and so do the
cars. Can - with the help of the car drivers - the rabbit reach the other side of
the highway alive? To model this by a network of timed automata, we choose
to model the highway as a checker board of lanes and positions on lanes as
indicated in the picture, cars move in the horizontal direction and the rabbit
in the vertical direction. Each car and the rabbit is realised by an individual
automaton. The freedom of going slower or faster is modeled by a time interval
in which the rabbit can advance by one lane and an interval in which the car
can advance for one unit length on a discretized highway. If a car and the rabbit
are in the same field of the checker board at the same time, an accident occurs.

3

The UppAal model is indicated by showing the automaton for the rabbit and
an instance of the automata for cars.

Fig. 1. A real life race condition and its UppAal model with invariants

Without invariants, the cars or the rabbit could just stop (not take a advanc-
ing transition), in which case it is obvious that the rabbit will reach its target
safely. Hence, the invariants are essential for correct modeling in that the invari-
ants enforce a more or less synchronous progress of the cars and the rabbit, so
that everyone has to choose their speed to allow the rabbit to pass unharmed.

A näıve approach to eliminate the invariants is to apply the two step trans-
formation to automata (on-the-fly or offline) and after that have an Alur-Dill
automaton without invariants to which we could apply the algorithm shown in
[11]. However, the global invariant limits the time progress for the local clock
of each car, thus the rewriting will essentially render all transitions dependent!
This is precisely a source of combinatorial explosion in this example.

But this additional dependency is not unavoidable, the “independence” of
the cars in the example is quite obvious: They don’t interfere with each other,
they just interfere with the rabbit. In the rest of the article we show that there
is a better way of dealing with local invariants, preserving full independence.

3 Timed automata with transition invariants

In this section, we introduce basic notions of timed words, timed languages, as
well as their finite representation by timed automata [1].

For an alphabet Σ of actions denoted by a, b, c . . ., let $ /∈ Σ be a special
symbol, the snapshot action1, and let Σ$:= Σ] {$} denote the extension of Σ
by $. Σ∗ (or Σ∗

$) is the set of finite sequences a1 . . . an called words, with ε the
empty word. The length n of a word a1 . . . an is denoted by |a1 . . . an|. A timed
word is a sequence (a1, τ1) . . . (an, τn) of elements in (Σ$×R+)∗, with R+ the set
of non-negative reals, the τi’s are time stamps. For convenience, we set τ0 = 0

1 the rôle of which will become clear later.

4

to be an additional time stamp for the beginning. A timed word is normal if
τi ≤ τj for i ≤ j as in (a, 3.2)(c, 4.5)(b, 6.3) whereas (a, 3.2)(c, 2.5)(b, 6.3) is not
normal. Normal timed words represent temporally ordered sequences of events
and serve as standard semantics of timed automata in the literature.

In timed systems, events can occur only if certain time constraints are sat-
isfied. In timed automata, a finite set of real valued2 variables X, called clocks,
are used to express the time constraints between an event that resets a clock and
another event that refers to the clock value at the time of its occurrence. The
clock constraints permitted here are conjunctions of atomic clock constraints,
comparisons between a clock and a numerical constant. To preserve decidability,
constants are assumed to be positive rationals and for simplicity in N, the set
of natural numbers. For a set of clocks X, the set Φ(X) of clock constraints
φ is formally defined by the grammar φ := true|x ./ c |φ1 ∧ φ2, where x is a
clock in X, ./∈ {<,≤, >,≥} and c is a constant in N (true is for transitions
without conditions), moreover excluding the trivially false combination “< 0”.
Another way of looking at clock constraints is sets of atomic constraints that
must all be satisfied. A subset of clock constraints result from the restriction to
upper bounds C ∈ {<,≤}, so let Φupper(X) ⊆ Φ(X) be defined according to the
grammar φ := true|xC c |φ1 ∧ φ2.

A clock valuation v : X → R is a function that assigns a real number to
each clock. We denote by v + τ the clock valuation that translates all clock
x ∈ X synchronously by τ such that (v + τ)(x) = v(x) + τ . For a subset C of
clocks, v[C ← 0] denotes the clock valuation with v[C ← 0](x) = 0 if x ∈ C
and v[C ← 0](x) = v(x) if x /∈ C, i.e. the valuation where the clocks in C are
reset to 0. The satisfaction of the clock constraint φ by the clock valuation v,
i.e. the fact that all atomic constraints are satisfied when substituting v(x) for
x, is denoted by v � φ.

Definition 1. Given an alphabet Σ$ and a set of clocks X, a timed automaton
with transition invariants is a quintuple A = (Σ$, S, s0,→, Inv, F) where S is
a finite set of locations, s0 ∈ S is the initial location, F ⊆ S is the set of final
locations and → ⊆ S× [Σ$×Φ(X)×Φupper(X)× 2X]×S is a set of transitions,
Inv : S −→ Φupper(X) is an assignment of clock invariants to locations. For a

transition (s, a, φ, ψ,C, s′) ∈→, we write s
(a,φ,ψ,C)
−−−−−−−→ s′, and call a the label of

the transition, and ψ the invariant of the transition or the transition invariant.
A state (s, v) consists of a location s and a clock valuation v. The invariant

of location s is also called the state invariant. For a network of automata, the
invariant of a global state, i.e. global state invariant, is the conjunction of the
invariants of local states, i.e. local state invariants. We take local state invari-
ants, instead of global state invariants, as transition invariants in the product
automaton of the network, in order to be able to apply partial order reduction to
verification. The only exception is the snapshot action, which is a single (self-
loop) transition (s, $, true, Inv(s), ∅, s) at each s ∈ S. Here s is a global location

2 For normal timed words positive real values would suffice, see Remark 2.

5

and Inv(s) is the global state invariant. In this sense, we say that the snapshot
action verifies the global state invariant.

For a conjunction of constraints φ, let φ(x) denote the restriction of φ to
constraints concerning the clock x. For convenience, we consider only a network
of automata, which satisfy for all transitions (s, a, φ, ψ,C, s′) that

1. Inv(s)⇒ ψ, i.e. the global state invariant implies the transition invariant;
2. For all x /∈ C we have Inv(s)(x) ∧ φ(x) =⇒ Inv(s′)(x);
3. For all x /∈ C we have Inv(s′)(x) ∧ ψ(x) =⇒ Inv(s)(x).

The intuition of the invariant constraint ψ of a transition is to result from
the local state invariant of the predecessor state of one automaton in a network.
Hence, the first condition says that the global state invariant is (at least as strong
as) the conjunction of the invariants of the outgoing transitions. Indeed, it is the
case according to the definition of the global state invariant.

Remark 1. A timed automaton is action deterministic if for two transitions

s
(a,φ1,ψ1,C1)
−−−−−−−→ s1 and s

(a,φ2,ψ2,C2)
−−−−−−−→ s2, we have that φ1 = φ2, ψ1 = ψ2, C1 = C2 and

s1 = s2. Similarly, we call the timed automaton constraint consistent if actions
determine uniquely clock constraints and resets, i.e. for each pair of transitions
(s1, a, φ, ψ,C, s2) and (s′1, a, φ

′, ψ, C ′, s′2) with the same action, we have φ = φ′,
ψ = ψ′ and C = C ′. In that case, given an action a, the unique clock constraint,
invariant and reset are denoted by φa, ψa and Ca respectively. In this paper, we
will only consider timed automata that are action deterministic and constraint
consistent. This is no restriction to applications, as this can be easily achieved
by renaming (a more detailed discussion is in [11]).

Figure 2 (produced by UppAal) shows a system consisting of two automata.
Initial locations are s0 and w0, and final locations are s0, s2, s3 and w0. Clocks
are x, y, and z. States invariants are labeled in boldface, e.g., “y<=9” is the
variant for local state s1 and “y<=9 ∧ z<=4” is the global variant for (s1,w1).

s3
x<=10

s2
x<=7

s1

y<=9

s0

x<=1

y>=9 and ack==0
x:=0c

x>=6
count:=count+1,

x:=0

e

x>=4d

ack==count
ack:=0,

x:=0

b
pkt:=count, y:=0

a

w3

z<=9

w2

z<=5

w1

z<=4

w0

z>=4

i

z>=3h
ack := tmp

z>=2
y:=0

g

pkt>0
tmp := pkt,

pkt := 0,

z := 0

f

Fig. 2. The example

For our formal development, we introduce three distinct notions of sequences
of execution: paths (ignoring time constraints), runs (paths with time stamps
respecting the time constraints), normal runs (furthermore the time stamps
respect the progress of time):

6

Definition 2. A path in A is a finite sequence s0
(a1,φ1,ψ1,C1)
−−−−−−−→ s1 . . .

(an,φn,ψn,Cn)
−−−−−−−→

sn of consecutive transitions si−1

(ai,φi,ψi,Ci)
−−−−−−−→ si. The word a1 . . . an ∈ Σ∗

$ of
transition labels is called the path labeling. If an = $ (final snapshot) and sn ∈
F , the path is said to be accepted. The set of labelings of accepted paths is called
the untimed language of A and denoted L(A).

Definition 3. A run of a timed automaton is a path extended by time stamps
for the transition occurrences satisfying clock constraints and resets:

(s0, v0)
(a1,φ1,ψ1,C1),τ1
−−−−−−−−−→ (s1, v1) . . .

(an,φn,ψn,Cn),τn

−−−−−−−−−→ (sn, vn) where (a1, τ1). . .(an, τn)
is a timed word and (vi)0≤i≤n are clock valuations defined by:

1. v0(x) = 0 for all x ∈ X, τ0 = 0
2. vi−1 + (τi − τi−1) � φi ∧ ψi
3. vi−1 + (τi − τi−1) � Inv(si−1)(x) for x ∈ Ci
4. vi = (vi−1 + (τi − τi−1))[Ci ← 0].

Note that the above conditions imply for ai=$ that vi�Inv(si), since si=si−1.
The timed word (a1, τ1) . . . (an, τn) is the timed labeling of the run. The run is
accepted by A if an = $, sn ∈ F .

Definition 4. A normal run is a run such that its timed labeling (a1,τ1) . . . (an,τn)
is a normal timed word i.e. τ1 ≤ τ2 ≤ . . . ≤ τn.

Remark 2. It is straightforward to see that for normal runs the valuations always
produce positive values: Clocks are either reset to 0 or the translations v+(τi−
τi−1) increase the values since τi ≥ τi−1. In non-normal runs, this need not be
the case.

Proposition 1. In a normal accepted run it holds for all intermediate states si
that vi + (τi+1 − τi) � Inv(si), i.e. global invariants are never violated.

Proof. The proof is by induction on n−k, i.e. on the distance from the last state
in the sequence.

The basis is to prove that the proposition holds for k = 1. Since an = $,
sn = sn−1 and ψn = Inv(sn) = Inv(sn−1). The second condition implies in turn
that vn−1 + (τn − τn−1) � ψn.

For the induction step, assume that for k ≥ 1, the proposition is true, i.e.,
vn−k + (τn−k+1 − τn−k) � Inv(sn−k). For the case k = k + 1, vn−k−1 + (τn−k −
τn−k−1) � φn−k ∧ ψn−k and vn−k−1 + (τn−k − τn−k−1) � Inv(sn−k−1)(x) if
x ∈ Cn−k−1. For y /∈ Cn−k−1, vn−k−1 + (τn−k − τn−k−1) � Inv(sn−k)(y)∧ψn−k
implies vn−k−1+(τn−k−τn−k−1) � Inv(sn−k−1)(y). Therefore, vn−k−1+(τn−k−
τn−k−1) � Inv(sn−k−1), which means the proposition holds for k + 1. �

The timed language LT(A) ofA is the set of normal timed words (a1,τ1). . .(an,τn),
such that (a1, τ1) . . . (an, τn)($, τ) with τ ≥ τi is the labeling of a (normal) run
accepted by A. The path labeling a1 . . . an is said to be realizable if for some
time stamps τi the normal timed word (a1, τ1) . . . (an, τn)($, τ) (then called the

7

normal realization of a1 . . . an) is the labeling of a normal run. The language of
realizable words that are the labeling of an accepted run is denoted by LN (A).

For instance, in Figure 2 (a,0.5)(f,2.5)(g,4.6)(h,7)(i,9.3)(b,9.4)∈ LT (A) is a
normal realization of the path labeling afghib, hence afghib∈ LN (A).

4 Independence for Timed Automata

To model concurrency, we use an independence relation between actions such
that actions are independent when the order of their occurrence is irrelevant.
Formally, an independence relation I for an (action deterministic and constraint
consistent) timed automaton A = (Σ$, S, s0,→, Inv, F) is a symmetric and ir-
reflexive relation I ⊆ Σ ×Σ such that the following two properties hold for any
two a, b ∈ Σ with a I b:

(i) s
(a,φa,ψa,Ca)
−−−−−−−→ s1

(b,φb,ψb,Cb)
−−−−−−−→ s2 implies s

(b,φb,ψb,Cb)
−−−−−−−→ s′1

(a,φa,ψa,Ca)
−−−−−−−→ s2 for some

location s′1
(ii) Ca ∩ Cb = ∅ and no clock x in Cb belongs to an atomic clock constraint

x ./ c of φa ∧ψa and conversely no clock x in Ca belongs to an atomic clock
constraint x ./ c of φb ∧ ψb.

We also use the dependence relation D = Σ × Σ − I, which is reflexive and
symmetric.

We extend the independence relation to Σ$ by setting $Db for all b ∈ Σ$, i.e.
we define the snapshot to be dependent of every other action. This obviously
meets conditions (i) and (ii).

Intuitively, condition (ii) arises from the view of clocks as shared variables
in concurrent programming: An action resetting a clock is writing it whereas an
action with a clock constraint on this clock is reading it. The restriction states
that two actions are dependent if both are writing the same variable, or one is
writing a variable and the other one is reading it.

Since I = ∅ trivially meets (i) and (ii) such a relation always exists. Com-
puting a good (the larger, the better) I meeting (i) and (ii) is a matter of static
analysis and is typically done on the level of a network before constructing the
product timed automaton: Sufficient criteria for (i) may require that two transi-
tions originate from distinct components and do not have conflicts around shared
variables and do not synchronize on the same channels. For instance, (b,f) is in
the independence relation for the timed automata of Figure 2, while (b,g) in the
dependence relation.

The Mazurkiewicz trace equivalence associated to the independence relation
I is the least congruence ' over Σ∗ such that ab ' ba for any pair of independent
actions a I b. A trace [u] is the congruence class of a word u ∈ Σ∗. By definition,
two words are equivalent with respect to ' if they can be obtained from each
other by a finite number of exchanges of adjacent independent actions. E.g., acf
' afc for Figure 2, but acf 6' fac (a and f are dependent). In other words, this
permutation of actions between two equivalent words lets the relative order of
occurrences of dependent actions unchanged, formally:

8

Lemma 1. Let I be an independence relation, ' the induced Mazurkiewicz trace
equivalence and a1 . . . an ' b1 . . . bn be two equivalent words. There exists a
uniquely determined permutation π : {1, . . . , n} → {1, . . . , n} such that ai = bπ(i)

and for ai D aj we have i < j iff π(i) < π(j).
Conversely, let a1 . . . an be a word and π : {1, . . . , n} → {1, . . . , n} be a

permutation of indices such that for each pair i, j ai D aj we have i < j iff
π(i) < π(j). Then aπ(1) . . . aπ(n) ' a1 . . . an.

Proof. By induction on the number of exchanges. �

For convenience in applications to timed words, we assume π to be extended
to 0 with π(0) = 0.

The untimed language L(A) of a timed automaton A is closed under the
equivalence ' and this is the theoretical foundation of many partial order re-
duction approaches. For instance, reductions that preserve at least one repre-
sentative for each equivalence class do preserve non-emptiness of the untimed
languages. Moreover the equivalence relation extends to runs when disregarding
normality constraints:

Lemma 2. Let (a1, τ1) . . . (an, τn) be the timed labeling of a run,
π : {1, . . . , n} → {1, . . . , n} be a permutation with a1 . . . an ' aπ(1) . . . aπ(n).
Then (aπ(1), τπ(1)) . . . (aπ(n), τπ(n)) is also a timed labeling of a run.

Proof. The proof is by induction of the number of exchanges in π, it is sufficient
to consider the case of a single exchange.

Let (a1, τ1) . . . (ak, τk)(a, τk+1)(b, τk+2)(ak+3, τk+3) . . . (an, τn) be the time la-
beling where a I b and let r = (s0, v0) . . . (sn, vn) be the corresponding run.

Assume that sk
(a,φa,ψa,Ca)
−−−−−−−→ sk+1

(b,φb,ψb,Cb)
−−−−−−−→ sk+2.

We prove the existence of a unique run r′ = (s′0, v
′
0) . . . (s

′
n, v

′
n) with timed la-

beling (a1, τ1) . . . (ak, τk)(b, τk+2)(a, τk+1)(ak+3, τk+3) . . . (an, τn) such that s′i =
si for i 6= k + 1 and v′i = vi for i /∈ {k + 1, k + 2}.

By property (i) of I, sk
(b,φb,ψb,Cb)
−−−−−−−→ s′k+1

(a,φa,ψa,Ca)
−−−−−−−→ sk+2 and all other tran-

sitions are unchanged hence s′i = si for i 6= k + 1.
The sequence r′ is a run if the time valuations v′i satisfy the constraints. We

consider two cases:
(1) i ≤ k or i > k + 3. The result holds since r is a run.
(2) i = k + 1,i = k + 2 and i = k + 3.
First observe that since r is a run, we have vk+1 +(τk+2−τk+1) � φb∧ψb: By

condition (ii) of independence, no clock mentioned in φb∧ψb is reset in Ca hence
(vk+1 + (τk+2 − τk+1))(x) = vk+1(x) + (τk+2 − τk+1) = (vk + (τk+1 − τk))(x) +
(τk+2 − τk+1) = (vk + (τk+2 − τk))(x) for any clock x mentioned in φb.

Therefore vk+1 + (τk+2 − τk+1) � φb ∧ ψb iff vk + (τk+2 − τk) � φb ∧ ψb.
Second, for a clock x ∈ Cb we have vk+1 + (τk+2 − τk+1) � Inv(sk+1)(x).

Then, since due to independence we know that x /∈ Ca, again (vk+1 + (τk+2 −

τk+1))(x) = (vk + (τk+2 − τk))(x). Therefore the transition sk
(b,φb,ψb,Cb)
−−−−−−−→ s′k+1

9

is enabled at τk+2 yielding (s′k+1, v
′
k+1) � Inv(sk+1)(x). But Inv(sk+1)(x) ∧

ψa(x) =⇒ Inv(sk)(x) and ψa does not restrict x (due to independence), hence
Inv(sk+1)(x) =⇒ Inv(sk)(x) and we obtain vk + (τk+2 − τk) � Inv(sk)(x). We
therefore obtain that r′ is a run up to (s′k+1, v

′
k+1).

Similarly the transition s′k+1

(a,φa,ψa,Ca)
−−−−−−−→ sk+2 satisfies the conditions on

v′k+1 + (τk+1 − τk+2): For x /∈ Cb we have (v′k+1 + (τk+1 − τk+2))(x) = (vk +
(τk+1 − τk))(x), hence v′k+1 + (τk+1 − τk+2) � φa ∧ ψa. If, on the other hand,
x ∈ Ca, then x /∈ Cb and we see that v′k+1 + (τk+1 − τk+2) � Inv(sk)(x). But
Inv(sk)(x) ∧ φb ∧ ψb =⇒ Inv(s′k+1)(x) and since φb ∧ ψb do not constrain x
due to independence, we obtain that Inv(sk)(x) =⇒ Inv(s′k+1)(x) and hence
v′k+1 + (τk+1 − τk+2) � Inv(s′k+1)(x).

Finally, since Ca ∩Cb = ∅ we get v′k+2 = vk+2 + (τk+1 − τk+2) which implies
v′k+2 +(τk+3− τk+1) = vk+2 +(τk+3− τk+2). This guarantees that the transition
corresponding to ak+3 is still possible at τk+3 and that v′k+3 = vk+3. �

However, Lemma 2 only claims commutability of runs without taking time
progress into account. For the timed language LT (A) and consequently for
LN (A), the normality condition may exclude some representatives in a trace:

Let afcgahib and acfgahib be two equivalent paths of Figure 2. It is easy to
know that the former one is in LN (A), while the latter not because the constraint
(τ5 − τ2 ≤ 1) ∧ (2 ≤ τ4 − τ3 ≤ 4) ∧ (τ2 ≤ τ3) ∧ (τ4 ≤ τ5) cannot be satisfied by
a normal word (a,τ1)(c,τ2)(f,τ3)(g,τ4)(a,τ5)... Therefore we introduce a weaker
notion of normality:

A timed word (a1, τ1) . . . (an, τn) is I-normal iff for any two letters ai, aj
with i ≤ j and additionally ai D aj we have τi ≤ τj . In Figure 2, the timed
word (a,0.5)(c,9.5)(f,5.7)(g,9.6)(a,10.1) is I-normal. The intuition behind this
relaxation of constraints is that in practice, actions are dependent if they are
executed by the same component in a network of timed automata. This non-
decreasing condition on action occurrences models the sequential behavior of
each component. In [6], this is modeled by considering a local time for each
component. The interaction between components leads to the propagation of
time progress to other components (formally due to dependency).

In analogy to realisable words, we say that a1 . . . an is I-realisable iff it is the

labelling of a run (s0, v0)
(a1,φa1 ,Ca1),τ1
−−−−−−−−−→ (s1, v1) . . .

(an,φan ,Can),τn

−−−−−−−−−→ (sn, vn) in A
such that (a1, τ1) . . . (an, τn) is I-normal. As for LN , let LI(A) denote the set of
I-realisable words a1 . . . an such that a1 . . . an$ is the labelling of an accepted run
(i.e. sn ∈ F and in particular vn � Inv(sn)). For instance, afghb is I-realisable
in Figure 2 as time stamps 0.5, 2.5, 4.6, 7, 9.4, 9.3 satisfy clock constraints of
transitions from (s0,w0) to (s2,w0) and (a,0.5)(f,2.5)(g,4.6)(h,7)(b,9.4)(i,9.3) is
I-normal. Moreover, afghbi is also in LI(A) since (s2,w0) is final.

Obviously LN (A) ⊆ LI(A).
By definition LT (A) = ∅ if and only if LN (A) = ∅. Moreover, the following

proposition implies that LN (A) = ∅ iff LI(A) = ∅, so that we can check this
emptiness problem equivalently for either language.

10

Proposition 2. For every I-normal labelling (a1, τ1) . . . (an, τn) of a run in
an action deterministic, constraint consistent timed automaton A, there exists
(aπ(1), τπ(1)) . . . (aπ(n), τπ(n)) an equivalent normal labelling of an (equivalent)
run in A, where π is a permutation as defined in Lemma 1.

Proof. Consider the following ordering on {1, . . . , n}: i @ j iff τi < τj or τi = τj
and i < j. There is a unique permutation such that i @ j iff π(i) < π(j).
Moreover, for aiDaj and i < j, I-normality implies that τi ≤ τj and finally π(i) <
π(j), i.e. π yields an equivalent path. By Lemma 2, (aπ(1), τπ(1)) . . . (aπ(n), τπ(n))
is thus a timed labelling of some run and by the construction of @ it is a normal
timed word. �

A sorting algorithm provides an efficient way of computing a normal timed
labelling of a run from an I-normal labelling.

A key main feature of LI(A) is the closure under equivalence that is stated
in Theorem 1. In principle this allows to limit exploration of realisable clocked
words to representatives of equivalence class:

Theorem 1. (1) Let u ' v and u ∈ LI(A) then v ∈ LI(A).
(2) LI(A) = {u | ∃v ' u : v ∈ LN (A)}.

Proof. (1) Let u = a1 . . . an, v = b1 . . . bn and π be the permutation linking
a1 . . . an and b1 . . . bn according to Lemma 1. Let (a1, τ1) . . . (an, τn) an I-normal
labelling of some accepting run of A. Then (b1, τπ(1)) . . . (bn, τπ(n)) is a timed
labelling of some accepting run according to Lemma 2 and it inherits I-normality
since π preserves the order of occurrences of dependent actions.

(2) “⊇” follows from LN (A) ⊆ LI(A) (normality implies I-normality) and
reflexivity of '. “⊆” is an easy consequence of Proposition 2. �

5 Symbolic analysis for LI

The goal of this section is to show how the results of the previous section can
be used for reachability analysis. A full description would require a lot of space
and we refer the reader to [11] for an exhaustive treatment without invariants.
Instead, here we concentrate on one aspect, the constraints required to check
whether a word belongs to LI(A).

Let T = {t0, t1, . . .} be a set of time stamp variables. An atomic time con-
straint is a time constraint of the form ti−tj ≺ c, a general constraint a conjunc-
tion of atomic constraints, where ti, tj are time stamp variables in T, ≺∈ {<,≤}
and c is a constant in Z. An interpretation of a time stamp constraint ϕ is a
function v : T→R+ assigning a non-negative real number τi to each time stamp
variable ti. The satisfaction of ϕ by v is denoted v � ϕ and in that case v is a
model for ϕ. We call ϕ consistent iff it has a model otherwise inconsistent. As is
well known, consistency and a model can be determined with the Bellman-Ford
shortest path algorithm.

To express I-realizability in terms of time stamp constraints we need to
define special positions in a path. Given a path labeling a1 . . . an we define

11

lasta(a1 . . . an), the last occurrence of a, to be the maximal k such that ak = a, if
such a k exists, otherwise lasta(a1 . . . an) = 0. Similarly, we define lastx(a1 . . . an)
to be the maximal position k at which x is reset, that is x ∈ Cak

, if such a posi-
tion exists, otherwise lastx(a1 . . . an) = 0 (every clock is reset at the beginning).

With these positions we express that in a word dependent actions are ordered
according to their order of occurrence (condition (1) in the following) and that
clock constraints are satisfied (conditions (2) (3) and (4)) allowing to check I-
realizability on the level of consistency:

For a timed automaton A and a path labelling a1 . . . an let ϕa1...an
be the

associated time stamp constraint which is the conjunction of the time stamp
constraints satisfying one of four cases :

1. ti − tj ≤ 0 with i < j and ai D aj and i = lastai(a1 . . . aj−1);
2. tj − ti ≺ c with x ≺ c in φj , ψj , and i = lastx(a1 . . . aj−1)
3. ti − tj ≺ −c with x � c in φj , and i = lastx(a1 . . . aj−1)
4. tj − ti ≺ c with x ∈ Cj and x ≺ c = Inv(σ(a1 . . . aj−1))(x)

and i = lastx(a1 . . . aj−1)

Proposition 3. Let A = (Σ,S, s0,→, F) be a deterministic timed automaton
and I an independence relation. Moreover, let a1 . . . an be a path labeling of A.
The word a1 . . . an is I-realizable iff its associated time stamp constraint ϕa1...an

is consistent.

In [11], event zones were introduced as an incremental way of computing
consistency of time stamp constraints: An event zone is a triple Z = (T, ϕ, Last)
where T is a set of time stamp variables, ϕ is a time stamp constraint and
Last : X ∪ Σ→T is the last occurrence function that assigns to a clock or an
action a the time stamps that represents respectively its last reset and the last
occurrence of the action. Formally, the event zone Zu = (Tu, ϕu, Lastu) of the
path labeling u = a1 . . . an is given by Tu = {t0, . . . , tn}, where ϕu is the time
stamp constraint associated to u and Lastu(a) = ti with i = lasta(a1 . . . an) for
all action a, Lastu(x) = ti with i = lastx(a1 . . . an) for all clock x.

To obtain a symbolic automaton, we consider pairs (s, Z) with s a location
from the original timed automaton and Z an event zone, symbolic states. Tran-
sitions on symbolic states are obtained by extension (s1, Z1) ◦ a := (s2, Z2) =
(s2, (T2, ϕ2, Last2)) of a symbolic state (s1, Z1) = (s1, (T1, ϕ1, Last1) by an ac-

tion a is defined if there exists a transition s1
a,φa,ψa,Ca

−−−−−−−→ s2, such that T2 =
T1] {t} with t a fresh time stamp variable not in T1, and ϕ2 is the consistent
conjunction of ϕ1 and

– ti − t ≤ 0 for all ti = Last(b) for b such that a D b,
– t− ti ≺ c with x ≺ c in φa, ψa, and ti = Last(x),
– ti − t ≺ −c with x � c in φa and ti = Last(x),
– t− ti ≺ c with x ≺ c = Inv(s1)(x) iff x ∈ Ca,

and finally Last2 is such that Last2(α) = t for α a clock in Ca or α = a otherwise
Last2(α) = Last1(α).

12

Following the lines of [11], it is then possible to define an equivalence rela-
tion 'EZ compatible with the extension, such that if (s1, Z1) 'EZ (s2, Z2) then
(s1, Z1)�a 'EZ (s2, Z2)�a. This equivalence is essentially “same constraint up
to pointer renaming”. It turns out that the independence relation is compatible
with 'EZ , i.e. for a I b we have (s1, Z1)� a� b 'EZ (s1, Z1)� b� a, the funda-
mental reason why event zones reduce the number of symbolic states explored.
The equivalence classes are the symbolic states of the event zone automaton,
which thus itself respects the independence relation.

The interesting aspect of event zones is that they allow to abstract from
time stamps that are not referenced by Last. More precisely, the constraint of
the event zone is closed using the Floyd-Warshall algorithm and then the time
stamps not referenced by pointers can be projected away. This allows to limit
the dimensions of event zones to the number of pointers (here: clocks and the
size of the alphabet). In practice, we use an optimized set of pointers to further
reduce the dimensions, which moreover results in event zones for $ terminated
paths that never have more dimensions than the number of clocks plus one. This
corresponds to the dimension of classical clock zones.

The snapshot action $ obtains a special rôle in the state exploration with
event zones: When we reach a final state (desired property) with a symbolic
state (s, Z), we evaluate the consistency of (s, Z) � $ according to Definition
3. We also eliminate intermediate states using the snapshot action, due to the
following observation:

Lemma 3. Let (a1, τ1) . . . (am, τm)(am+1, τm+1) . . . (an, τn)($, τn) be a normal
run accepted by A, then so is (a1,τ1). . .(am,τm)($,τm)(am+1,τm+1). . .(an,τn)($,τn).
In particular, a1 . . . am$ is I-realisable.

Proof. Check definitions and use Proposition 1. �

This observation allows us to restrict our search to paths u such that u$ is
I-realisable (we do not want to check realisable). This reduction ensures that
every symbolic state we explore is also reachable by some equivalent interleaving
in classical zone automata: We never explore paths (up to commutation) that
would not be explored with standard semantics.

Algorithm 1 shows how we search for a state in F . “Waiting” is a set of paths
and symbolic states to be explored, whereas “Past” is a set of symbolic states
terminated with $ that have been explored. .C is similar to a zone inclusion test
and assures that we explore only a finite number of symbolic states, for details
see [11]. It is essential, that we do not put the same symbolic states in Past and
Waiting and that $ is never used in a symbolic state in Waiting.

6 Experiments and Conclusion

We recently finished a prototype implementation based on a previous implemen-
tation of event zones without invariants. We made two experiments to demon-
strate the performance of the event zone approach with state invariants. The

13

Algorithm 1 Generic exploration algorithm
Waiting← {((sε, Zε), ε)}, Past← ∅
while Waiting 6= ∅ do

Choose ((s, Z), w) ∈Waiting, Waiting←Waiting \ {((s, Z), w)}
for all w′ = wa with (s′, Z′) = (s, Z)� a consistent do

if (s′, Z′′) := (s′, Z′)� $ consistent then
if s′ ∈ F then return “witness(w′)” end if
if there exits no (s′, Z′′′) ∈ Past with (s′, Z′′) .C (s′, Z′′′) then

Waiting←Waiting ∪ {((s′, Z′), w′)}, Past← Past ∪ {(s′, Z′′)}
end if

end if
end for

end while
return “empty”

experiments were carried out in a machine with two 2.8GHz Xeon CPUs, 2GB
memory and Fedora core 4 Linux.

The first experiment is a timed version of dining philosophers. There are a
group of philosophers and a timestopper process3. Figure 3 shows the results
generated by our prototype and UppAal (v3.6 beta 1). The data under the title
“No partial order” were obtained by our implementation setting all transitions
dependent. They are results in principle in the same basic algorithm used by
UppAal, but our implementation is lacking abstraction techniques like [8], which
explains the largely superior results obtained by UppAal. The potential of the
reduction can thus be seen by comparing the figures with and without “partial
order” reduction. However, with reduction - despite the lack of abstractions -
even the current implementation outperforms UppAal.

Number of philosophers No partial order With partial order UppAal
time memory time memory time memory

2 0.02s 16m 0.03s 16m 0.03s 4m
3 0.11s 17m 0.05s 16m 0.04s 5m
4 21.88s 44m 0.53s 17m 0.29s 6m
5 — — 9.79s 22m 12.86s 36m
6 — — 175.10s 72m 1523.22s 730m
7 — — 2909.32s 540m — —

Fig. 3. Results of the philosophers example

The second experiment was performed on the highway example of Section 2.
The results4 are listed in Figure 4. The advantage of event zone with state
invariants against UppAal in this experiment was more explicit than the first one.

In this paper, we have shown how to add local state invariants to the event
zone approach for timed automata reachability. We thus lift the application
domain to the full class of reachability analysis that can be done with tools like

3 Due to page limit, the description of these processes was put in the appendix.
4 The number labeled “(*)” was not accurate since the swap memory was used auto-

matically by the operating system.

14

Number of lanes No partial order With partial order UppAal
time memory time memory time memory

1 0.02s 16m 0.03s 16m 0.02s 6m
2 0.03s 16m 0.03s 16m 0.02s 6m
3 0.06s 16m 0.04s 16m 0.03s 6m
4 1.98s 22m 0.30s 17m 0.23s 7m
5 548.57s 279m 1.29s 19m 20.35s 29m
6 34681.91s(*) 2301m 10.80s 36m 2946.67s 438m
7 — — 87.35s 119m — —
8 — — 554.35s 466m — —

Fig. 4. Results of the highway example

UppAal or Kronos. Moreover, we have implemented the algorithm and shown
that it can compete with state of the art timed automata tools.

References

1. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

2. G. Behrmann, P. Bouyer, E. Fleury, and K.G. Larsen. Static guard analysis in
timed automata verification. In In TACAS, volume 2619 of Lecture Notes in Com-
puter Science, pages 254–277. Springer Verlag, 2003.

3. G. Behrmann, A. David, K. G. Larsen, O. Moeller, P. Pettersson, and W. Yi.
Uppaal - present and future. In Proc. of 40th IEEE Conference on Decision and
Control. IEEE Computer Society Press, 2001.

4. G. Behrmann, K. Larsen, J. Pearson, C. Weise, W. Yi, and J. Lind-Nielsen. Effi-
cient timed reachability analysis using clock difference diagrams. In International
Conference on Computer Aided Verification, volume 1633 of Lecture Notes in Com-
puter Science, pages 341–353, 1999.

5. W. Belluomini and C. Myers. Verification of timed systems using POSETs. In
International Conference on Computer Aided Verification, pages 403–415, 1998.

6. J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi. Partial order reductions for timed
systems. In International Conference on Concurrency Theory (CONCUR), volume
1466 of Lecture Notes in Computer Science, pages 485–500. Springer Verlag, 1998.

7. C. Daws and S. Tripakis. Model checking of real-time reachability properties using
abstractions. Lecture Notes in Computer Science, 1384:pp. 313, 1998.

8. C. Daws and S. Yovine. Reducing the number of clock variables of timed automata.
In IEE Real-Time Systems Symposium, pages 73–81, December 1996.

9. T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking
for real-time systems. Information and Computation, 111:193–244, 1994.

10. K. Larsen, P. Pettersson, and W. Yi. Model-checking for real-time systems. In
Fundamentals of Computation Theory, Lecture Notes in Computer Science, pages
62–88. Springer Verlag, 1995.

11. D. Lugiez, P. Niebert, and S. Zennou. A partial order semantics approach to
the clock explosion problem of timed automata. Theoretical Computer Science,
345(1):27–59, 2005.

12. S. Yovine. Kronos: A verification tool for real-time systems. Software Tools for
Technology Transfer, 1(1):123–133, 1997.

13. S. Zennou, M. Yguel, and P. Niebert. Else: A new symbolic state generator for
timed automata. In Proceedings of the 1st International Conference FORMATS,
volume 2791 of Lecture Notes in Computer Science, pages 273–280. Springer, 2003.

15

Appendix: The timed version of dining philosophers

The automata of a philosopher and the timestopper are shown in Figure 5,
respectively. Each philosopher has five states: think, hungry, leftfork, eat and
dropthefork. The timestopper has two states: onestate and finalstate. This pro-
cess is used to stop the execution of the system when time progresses to a limit.
hungernoticed, patience, starved, eatingtime, concentrated and timelimit are
constant; foodless, myclock and time are local clocks; myindex is the process id;
afork and done are program variables.

think

foodless <= starved

hungry
foodless <= starved and

myclock <= patience

leftfork
myclock <= patience and

foodless <= starved

eat

myclock <= eatingtime

dropotherfork

myclock <= patience

myclock >= concentrated
myclock := 0

afork[myindex] == 1
afork[myindex] := 0,

myclock := 0

afork[(myindex+1)%num] == 1
afork[(myindex+1)%num] := 0,

myclock := 0, foodless := 0

myclock >= eatingtime
afork[myindex] := 1,

foodless := 0,

myclock := 0

afork[(myindex+1)%num] := 1,

myclock := 0
myclock >= patience
myclock := 0,

afork[myindex] := 1

onestate

time<=timelimit

finalstate

time<=timelimit

time==timelimit

done := 1

Fig. 5. The automata of a philosopher (left) and the timestopper (right)

16

