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Abstract. A netchart is basically a Petri net whose places are located at some
process and whose transitions are labeled by message sequence charts (MSCs).
Two recent papers showed independently that any globally-cooperative high-level
MSC corresponds to the behaviors of some communicating finite-state machine
— or equivalently a netchart. These difficult results rely either on Thomas’ graph
acceptors or Zielonka’s construction of asynchronous automata. In this paper we
give a direct and self-contained synthesis of netcharts from globally-cooperative
high-level MSCs by means of a simpler unfolding procedure.

1 Introduction

Message Sequence Charts (MSCs) are a popular model often used for the documenta-
tion of telecommunication protocols. They profit by a standardized visual and textual
presentation (ITU-T recommendation Z.120 [12]) and are related to other formalisms
such as sequence diagrams of UML. An MSC gives a graphical description of communi-
cations between processes. It usually abstracts away from the values of variables and the
actual contents of messages. Yet this formalism can be used at an early stage of design
to detect errors in the specification [11]. In this direction, several studies have already
brought up methods and complexity results for the model-checking and implementation
of MSCs viewed as a specification language [1, 2, 3, 5, 6, 8, 9, 10, 15, 16, 17, 18].

Collections of MSCs are often specified by means of high-level MSCs (HMSCs).
The latter can be seen as directed graphs labeled by component MSCs. However such
specifications may be unrealistic because this formalism allows to specify sets of MSCs
that correspond to no communicating finite-state machine. Furthermore it is undecid-
able whether a HMSC describes an implementable language. In [17], Mukund et al. in-
troduced a new formalism for specifying collections of MSCs: Netcharts can be seen as
HMSCs with some distributed control whereas HMSCs require implicitly some global
control over processes in the system. Basically a netchart is a Petri net whose places are
labeled by processes and whose transitions are labeled by MSCs. This new approach
benefits from a graphical description, a formal semantics, and an appropriate expres-
sive power: As opposed to HMSCs, netcharts describe precisely all implementable
languages and it is actually easy to derive an equivalent communicating finite-state
machine from a netchart. It follows that it is undecidable whether a HMSC is equiva-
lent to some netchart.

Many model-checking problems are undecidable with general HMSCs. For this rea-
son subclasses of HMSCs have been investigated in the literature, in particular globally-
cooperative HMSCs [8]. Logical and algebraic characterizations of these HMSCs were

� Supported by the ANR project SOAPDC.

S. Donatelli and P.S. Thiagarajan (Eds.): ICATPN 2006, LNCS 4024, pp. 84–104, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



The Synthesis Problem of Netcharts 85

established in [16] and various related verification techniques are now available [9].
Recently two papers showed that globally-cooperative HMSCs describe implementable
languages [5, 9]. These works extend a seminal result by Henriksen et al. who showed
that all regular sets of MSCs are implementable [10]. In [5] Bollig and Leucker ap-
ply the theory of graph acceptors [21] to prove that any set of MSCs definable in ex-
istential MSO logic is implementable. In [9] Genest et al. apply Zielonka’s theorem
[22] to prove that any existentially-bounded recognizable set of compositional MSCs
is implementable. Both studies are rather difficult and quite technical. In the particular
case of finitely generated and recognizable sets of MSCs [16], both results imply that
any globally-cooperative HMSC describes an implementable set of MSCs, i.e. it cor-
responds to some netchart. The aim of this paper is to present a direct, self-contained,
and simpler implementation technique to transform a globally-cooperative HMSC into
an equivalent netchart. The translation from netcharts into communicating finite-state
machines is rather simple to define but quite tedious to handle in detailed proofs. We
adopt in this paper the formalism of netcharts in order to simplify the presentation of
our construction. Besides netcharts were at the origine of our first intuitions.

The paper is organized as follows. In Section 1 we recall the basic definitions of
MSCs, Petri nets, and netcharts. Next Section 2 presents the semantics of a netchart as
the set of MSCs that correspond to the behaviors of some underlying Petri net. Sec-
tion 3 introduces the notion of HMSC regarded as an automaton labeled by MSCs.
We define there a simple but naive transformation of HMSCs into netcharts. In some
cases this transformation leads to a netchart whose behaviors differ from those of the
given HMSC. Our strategy is motivated by an example that shows that it is sufficient to
unfold the given HMSC in order to ensure that the naive transformation into netcharts
preserves the semantics. Section 4 presents in details our unfolding algorithm of globally-
cooperative HMSCs together with some simple but crucial properties of the resulting
structure. Finally Section 5 explains why the naive transformation preserves the behav-
iors when it is applied to the unfolding of any globally-cooperative HMSC.

Our unfolding algorithm proceeds inductively on the number of communication
types involved in the given HMSC by defining a family of globally-cooperative HMSCs
called triangles and boxes. A triangle corresponds intuitively to a partial unfolding that
represents only part of the behaviors starting from a given node of the HMSC. The role
of boxes is to complete triangles by connecting copies of triangles with missing edges.

Admittedly this unfolding resembles an algorithm designed recently in [4] in the
framework of Mazurkiewicz traces [7] to build asynchronous automata of polynomial
size in terms of the number of states from asynchronous systems. However it is of-
ten quite difficult to transfer results or techniques from Mazurkiewicz trace theory to
the framework of MSCs (see e.g. [2, 9, 10]) because communication no longer means
synchronisation. The unfolding procedure presented here differs from the one used in
[4] in several aspects: The induction proceeds over communication types, not compo-
nent basic MSCs; the termination of the construction of boxes relies essentially on the
hypothesis that loops of globally-cooperative HMSCs have a connected communica-
tion graph whereas [4] unfolds asynchronous systems with possible unconnected loops
and termination is there obvious; last but not least, the present unfolding algorithm is
exponential in the number of nodes of the given HMSC.
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Fig. 2. Non-FIFO MSC

2 Background

Message sequence charts (MSCs) are defined by several recommendations that indicate
how one should represent them graphically [12]. Examples of MSCs are given in Fig-
ures 1 and 2 in which time flows top-down. In this paper we regard MSCs as particular
labeled partial orders (or pomsets) following a traditional trend of modeling concurrent
executions [7, 13, 20].

A pomset over an alphabet Σ is a triple t = (E, �, ξ) where (E, �) is a finite partial
order and ξ is a mapping from E to Σ. A pomset can be seen as an abstraction of an
execution of a concurrent system. In this view, the elements e of E are events and their
label ξ(e) describes the basic action of the system that is performed by the event e ∈ E.
Furthermore, the order � describes the causal dependence between events.

An order extension of a pomset t = (E, �, ξ) is a pomset t′ = (E, �′, ξ) such
that �⊆�′. A linear extension of t is an order extension that is linearly ordered. It
corresponds to a sequential view of the concurrent execution t. Linear extensions of
a pomset t over Σ can naturally be regarded as words over Σ. By LE(t) ⊆ Σ�, we
denote the set of linear extensions of a pomset t over Σ.

2.1 Basic Message Sequence Charts

We present here a formal definition of basic MSCs. The latter appear as particular pom-
sets over some alphabet ΣΛ

I that we introduce first. Let I be a finite set of processes
(also called instances) and Λ be a finite set of messages. For any instance i ∈ I, the al-
phabet ΣΛ

i = ΣΛ
!,i∪ΣΛ

?,i is the disjoint union of the set of send actions ΣΛ
!,i = {i!xj | j ∈

I \ {i}, x ∈ Λ} and the set of receive actions ΣΛ
?,i = {i?xj | j ∈ I \ {i}, x ∈ Λ}. The

alphabets ΣΛ
i are disjoint and we put ΣΛ

I =
⋃

i∈I ΣΛ
i . Given an action a ∈ ΣΛ

I , we
denote by Ins(a) the unique instance i such that a ∈ ΣΛ

i , that is the particular instance
on which each occurrence of action a takes place.

For any pomset (E, �, ξ) over ΣΛ
I we denote by Ins(e) the instance on which the

event e occurs: Ins(e) = Ins(ξ(e)). We say that f covers e and we write e−≺f if e ≺ f
and e ≺ g � f implies g = f . We say that two events e and f are two matching events
and we write e � f if e is the n-th send event i!xj and f is the n-th receive event j?xi:
In other words, we put e � f if there are two instances i and j and some message
x ∈ Λ such that ξ(e) = i!xj, ξ(f) = j?xi and Card{e′ ∈ E | ξ(e′) = i!xj ∧ e′ � e} =
Card{f ′ ∈ E | ξ(f ′) = j?xi ∧ f ′ � f}.
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DEFINITION 2.1. A basic message sequence chart (MSC) over the set of messages Λ
is a pomset M = (E, �, ξ) over ΣΛ

I that fulfills the four following conditions:

M1: ∀e, f ∈ E: Ins(e) = Ins(f) ⇒ (e � f ∨ f � e)
M2: ∀e, f ∈ E: e � f ⇒ e � f
M3: ∀e, f ∈ E: [e−≺f ∧ Ins(e) 
= Ins(f)] ⇒ e � f
M4: ∀i, j ∈ I, ∀x ∈ Λ, |M |i!xj = |M |j?xi.

By M1, events occurring on the same instance are linearly ordered: Hence non-determi-
nistic choice cannot be described within an MSC. Property M2 formalizes simply that
the reception of any message will occur after the corresponding send event. By M3,
causality in M consists only in the linear dependency over each instance and the order-
ing of pairs of corresponding send and receive events. Finally, Condition M4 requires
each send event matches some receive event: The matching relation � builds a one-to-
one correspondence between send events and receive events. We let bMSC denote the
set of all basic MSCs. Note here that if two basic MSCs share some linear extension
then they are equal. We denote by Ins(M) the set of active instances of a basic MSC
M : Ins(M) = {i ∈ I | ∃e ∈ E, Ins(e) = i}.

In Figure 2, the basic MSC exhibits some overtaking of message y above two mes-
sages x. A basic MSC is called FIFO if it shows no overtaking, that is, the messages
from one instance to another are delivered in the order they are sent (Fig. 1). Non-FIFO
basic MSCs allow for scenarios that use several channels (or message types) between
pairs of processes (Fig. 2).

For convenience we shall use at some point the notion of MSC with ε-actions. For
each instance i ∈ I we define a new symbol εi and we put Ins(εi) = i. Then a basic
MSC with ε-actions is simply a pomset over the extended alphabet ΣΛ

I ∪ {εi | i ∈ I}
which satisfies the conditions M1 to M4.

2.2 Petri Nets

Let us now recall the definition of a Petri net and some usual notations. A Petri net is
a triple P = (P, T, F ) where P is a set of places, T is a set of transitions such that
P ∩ T = ∅, and F ⊆ (P × T )∪ (T × P ) is a flow relation. We shall use the following
usual notations. For all x ∈ P ∪ T , we put •x = {y ∈ P ∪ T | (y, x) ∈ F} and
x• = {y ∈ P ∪ T | (x, y) ∈ F}. Clearly, for all transitions t, •t and t• are sets of
places, and conversely for all places p ∈ P , •p and p• are both sets of transitions. A
marking m of P is a multiset of places m ∈ N

P . A transition t is enabled at m ∈ N
P if

m(p) � 1 for all p ∈ •t. In this case, we write m [t〉 m′ where the marking m′ is defined
by m′(p) = m(p)− 1 if p ∈ •t \ t•, m′(p) = m(p)+1 if p ∈ t• \ •t, and m′(p) = m(p)
otherwise.

In this paper, we consider Petri nets provided with an initial marking min and a finite
set of final markings F. An execution sequence from m to m′ is a word u = t1...tn ∈ T �

such that there are markings m0,..., mn satisfying m0 = m, mn = m′, and mk−1 [ tk〉 mk

for all naturals k ∈ [1, n]. Then the sequence s = m0 [ t1〉 m1...mn−1 [ tn〉 mn is called
the firing sequence of u from m to m′ and is denoted by s = m [u〉 m′. If m = min and
m′ ∈ F then the execution sequence u is called complete. The language L(P) consists
of all complete execution sequences of P.
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Fig. 3. A netchart N and a corresponding MSC

2.3 Netcharts

{A netchart is basically a Petri net whose places are labeled by instances and whose
transitions are labeled by FIFO basic MSCs. Similarly to Petri nets, netcharts admit an
intuitive visual representation: Examples of netcharts are given in Fig. 3, 7, 9 and 11.

DEFINITION 2.2. A netchart over Λ consists of a Petri net (P, T, F, min, F) and two
mappings Ins : P → I and M : T → bMSC such that Ins associates each place
p ∈ P with some instance Ins(p) and M associates each transition t ∈ T with a FIFO
basic MSC M(t) over the set of messages Λ. Three conditions are required for such a
structure to be a netchart:

N1: For each instance i ∈ I, there is a single token within places located on instance
i, i.e.

∑
Ins(p)=i min(p) = 1.

N2: For each transition t ∈ T and each instance i ∈ I there is at most one place
p ∈ t• such that Ins(p) = i.

N3: For each transition t ∈ T and each instance i ∈ I there is at most one place
p ∈ •t such that Ins(p) = i.

A netchart is called prime if for all t ∈ T we have Ins(•t) = Ins(t•) = Ins(M(t)).

By N1 the initial marking of a netchart is safe; furthermore each instance is associ-
ated with a unique initial place. Intuitively this observation extends to the semantics of
netcharts: In each reachable marking a token denotes the current local state of each in-
stance. Axiom N2 stipulates that an instance occurs at most once in the postcondition of
any transition. This condition ensures that the local state of each instance corresponds
to a single token. Axiom N3 requires that at most one place located on instance i is a
precondition of a given transition. The semantics detailed below will show that transi-
tions that do not satisfy this requirement cannot take part entirely in the behaviors of
the netchart: We could remove N3 without affecting the expressive power of netcharts.

Prime netcharts are those introduced in [17]. This additional requirement ensures
in particular that •t ∪ t• is empty as soon as M(t) is the empty MSC. In the next
section we make use of basic MSCs with ε-actions to extend the semantics of prime
netcharts studied in [17, 3] to the relaxed setting adopted here. Noteworthy any netchart



The Synthesis Problem of Netcharts 89

can easily be transformed into an equivalent prime one: Consequently the expressive
power of these extended netcharts is the same as the prime ones. This remark simplifies
the presention of our result and allows us to apply to the present setting some of the
results from [3].

3 Semantics of Netcharts

In this section we fix a netchart N = ((P, T, F, min, F), Ins,M) over the set of mes-
sages Λ and define formally its behaviors. The semantics of N consists of FIFO basic
MSCs over Λ (Fig. 3). The latter are derived from the FIFO basic MSCs that correspond
to the complete execution sequences of some low-level Petri net PN (Fig. 5). Actually,
the execution sequences of PN use a refined set of messages Λ◦ and the behaviors of N

are obtained by projection of messages from Λ◦ onto Λ.

3.1 From MSCs to Petri Nets

The construction of the low-level Petri net PN starts with the translation of each tran-
sition t ∈ T with component FIFO basic MSC M(t) = (E, �, ξ) into some Petri net
Pt = (Pt, Tt, Ft). This natural operation is depicted in Fig. 4.

This construction needs to regard each basic MSC (with ε-actions) M = (E, �, ξ)
as a dag (direct acyclic graph) denoted by (E,≺·, ξ). For any instance i ∈ I we let �i be
the restriction of � to events located on instance i. Then e−≺if if e occurs immediately
before f on instance i. Then the binary relation ≺· consists of all pairs of matching
events together with all pairs of covering events w.r.t. �i.

DEFINITION 3.1. The MSC dag of a basic MSC M = (E, �, ξ) with possibly ε-actions
is a labeled directed acyclic graph (E,≺·, ξ) such that we have e≺·f if e � f or e−≺if
for some instance i ∈ I.

Clearly we can recover the basic MSC from its MSC dag. The reason for this is that
−≺ ⊆ ≺· hence � is simply the reflexive and transitive closure of ≺·. That is why we
will identify a basic MSC with its corresponding MSC dag in the sequel of this paper.

We can now formalize how each component MSC M(t) = (E,≺·, ξ) is translated
into some Petri net Pt = (Pt, Tt, Ft). First we add to the basic MSC M(t) an event
labeled εi on instance i if the instance i is not active in M(t) while there exists a place
p ∈ •t such that Ins(p) = i. Note that these new events are isolated because no other
event occurs on this instance.

Now the places Pt are identified with pairs from ≺·. In particular places do not
depend on possibly added events labeled εi. On the other hand the transitions Tt are

t1i j

i!m j
i!nj

j?m i
j?ni

i!m ,t1,aj

i!n,t1,bj

j?m ,t1,ai

j?n,t1,bi

Fig. 4. From transition t1 to Petri net Pt1
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identified with some send or receive actions over the new set of messages Λ◦ = Λ ×
T × Pt or with added event labeled by εi. Formally, we put Pt = ≺· and

Tt = {i!m,t,(e,f)j, j?m,t,(e,f)i | (e, f) ∈ ≺· ∧ ξ(e) = i!mj ∧ ξ(f) = j?mi}
∪{ (εi, t) | i 
∈ Ins(M(t)) ∧ ∃p ∈ •t, Ins(p) = i}.

Note that the translation from the basic MSC M(t) into the Petri net Pt is one-to-
one: We will be able to recover the basic MSC M(t) from the Petri net Pt. For this, we
let ρ be the mapping from Tt to E such that ρ(i!m,t,(e,f)j) = e, ρ(j?m,t,(e,f)i) = f
and ρ(εi, t) = εi. To complete the definition of Pt we choose a flow relation Ft in
accordance with the causality relation ≺· of M(t): We put

Ft = {(r, (e, f)) ∈ Tt × Pt | ρ(r) = e} ∪ {((e, f), r) ∈ Pt × Tt | ρ(r) = f}.

In the next subsection the transitions of the Petri net Pt = (Pt, Tt, Ft) will be connected
to places of N by means of the following connection relation:

F ′
t = {(p, r) ∈ P × Tt | p ∈ •t ∧ •r = ∅ ∧ Ins(ρ(r)) = Ins(p)}
∪ {(r, p) ∈ Tt × P | p ∈ t• ∧ r• = ∅ ∧ Ins(ρ(r)) = Ins(p)}.

3.2 Low-Level Petri Net and Its FIFO Behaviors

Now, in order to build the low-level Petri net PN of the netchart N, we replace each
transition t ∈ T of N by its corresponding Petri net Pt as shown in Fig. 5.

The low-level Petri net PN = (PN, TN, FN, min, FN) is built as follows. First, the
set of places PN collects the places of N and the places of all Pt: PN =

⋃
t∈T Pt ∪ P .

Second, the set of transitions collects all transitions of all Pt: TN =
⋃

t∈T Tt. For latter
purposes we also define the map Comp that associates each transition a from TN with
the transition t ∈ T such that a ∈ Tt. Thus Comp(i!m,t,pj) = t, Comp(i?m,t,pj) = t,
and Comp(εi, t) = t. Now the flow relation consists of the flow relation Ft of each Pt

together with the connection relations F ′
t : FN =

⋃
t∈T Ft ∪ F ′

t . The initial marking of
P is the one of N: The new places p ∈ PN \ P are initially empty. Similarly a marking
m of PN is final if the restriction of m to the places of N is a final marking of N and if
all other places are empty: FN = {m ∈ N

P | m|P ∈ F ∧ m|PN\P = 0}.
Any complete execution sequence u ∈ L(PN) of the low-level Petri net leads from

the initial marking to some final marking for which all places from PN \ P are empty.

i!m ,t1,aj

i!n,t1,bj

j?m ,t1,ai

j?n,t1,bi

i?m ,t2,cj j!m ,t2,ci

Fig. 5. The low-level Petri net PN associated to the netchart N of Fig. 3
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Moreover u is actually a linear extension of a unique basic MSC over the set of extended
messages Λ◦ that consists of triples (m, t, p).

DEFINITION 3.2. The MSC language Lfifo(PN) consists of the FIFO basic MSCs M
such that at least one linear extension of M is a complete execution sequence of PN.

Interestingly, it can be easily shown that a basic MSC M belongs to Lfifo(PN) if and
only if all linear extensions of M are complete execution sequences of PN. Noteworthy
it can happen that a complete execution sequence of the low-level Petri net PN corre-
sponds to a non-FIFO MSC (see e.g. [17, Fig. 5] or Fig. 7). Following [17], we focus
on FIFO behaviors and neglect this kind of execution sequences in this paper.

3.3 Set of MSCs Associated to Some Netchart

Recall now that MSCs from Lfifo(PN) may contain some events labeled by εi and use
a refined set of messages Λ◦ that consists of triples (m, t, p) where m ∈ Λ, t ∈ T ,
and p ∈ Pt. We let π◦ : Λ◦ → Λ denote the labelling that associates each triple
(m, t, p) ∈ Λ◦ with the message m ∈ Λ. This labelling extends to a function that
maps actions from ΣΛ◦

I onto actions of ΣΛ
I in a natural way. Furthermore this mapping

extends in the obvious way from the FIFO basic MSCs over Λ◦ onto the FIFO basic
MSCs over Λ. Since we deal here with MSCs with possibly ε-actions, we ask in this
paper that π◦ removes all actions εi, too. The semantics of the netchart N is defined
now from the semantics of its low-level Petri net PN by means of the projection π◦.

DEFINITION 3.3. The MSC language Lfifo(N) is the set of FIFO basic MSCs obtained
from an MSC of its low-level Petri net by the projection π◦: Lfifo(N) = π◦(Lfifo(PN)).

EXAMPLE 3.4. Consider the netchart N1 depicted in Figure 7 for which the initial
marking is the single final marking. Its language Lfifo(N1) is the set of all basic MSCs
that consist only of messages a and b exchanged from i to j in a FIFO manner. The
MSC M on the right-hand side of this figure illustrates a complete execution sequence
of the low-level Petri net of N that does not correspond to some FIFO basic MSC.

The main property of prime netcharts from [17] is that their MSC language can be
implemented in polynomial time as the behaviors of some communicating finite-state
machine. Clearly this observation extends easily to the netcharts adopted in this paper.

A B

Fig. 6. G1

i j

i j

i!aj j?ai

i j

j?bii!bj

i j

i!aj
j?aii!bj
j?bi

msc M

Fig. 7. Netchart N1 and some non-FIFO behavior M �∈ Lfifo(N)
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4 Netcharts vs. High-Level Message Sequence Charts

In this section we recall the equivalent notions of high-level MSCs (HMSCs) and MSC-
graphs (MSGs). We recall also some decidability results about the respective expressive
power of MSGs and netcharts. By means of three examples we introduce a naive transla-
tion of MSGs into netcharts and motivate the seek for an unfolding procedure to ensure
a correct implementation of globally-cooperative MSGs as netcharts.

4.1 HMSCs and MSGs

Let us now recall how one can build high-level MSCs from basic MSCs. First, the asyn-
chronous concatenation of two basic MSCs M1 = (E1, �1, ξ1) and M2 = (E2, �2, ξ2)
is the basic MSC M1 · M2 = (E, �, ξ) where E = E1 � E2, ξ = ξ1 ∪ ξ2 and the par-
tial order � is the transitive closure of �1 ∪ �2 ∪{(e1, e2) ∈ E1 × E2 | Ins(e1) =
Ins(e2)}. This concatenation allows to compose specifications in order to describe in-
finite sets of basic MSCs: We obtain high-level message sequence charts (HMSCs) as
rational expressions or equivalently automata labeled by basic MSCs.

DEFINITION 4.1. An MSC-graph (MSG) is a structure G = (Q, ı, Σ,−→, Qf ) where
Q is a finite set of nodes with some initial node ı and some final nodes Qf ⊆ Q, Σ is a
finite subset of basic MSCs, and −→⊆ Q × Σ × Q is a set of labeled edges.

The semantics of MSGs is quite natural. The language associated with an MSG consists
of all basic MSCs that are the product of MSCs appearing along a path from the initial
node to some final node. By Kleene’s theorem, a set of basic MSCs corresponds to some
MSG iff it is rational, i.e. it can be built from finite sets by means of union, product, and
iteration.

EXAMPLE 4.2. Let A and B be the two components MSCs of the netchart N1 depicted
in Fig. 7. The language Lfifo(N1) corresponds to the HMSC (A + B)� and to the MSG
of Fig. 6.

We showed in [3] that it is undecidable whether the language Lfifo(N) of a given
netchart is rational, that is, can be described by some MSG [3, Cor. 4.4]. We showed
also that it is undecidable whether the language of some given MSG can be described
by some netchart [3, Th. 4.7].

A C

Fig. 8. G2
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i j
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i?cj

msc M

Fig. 9. Wrong implementation of (A + C)�
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4.2 Globally-Cooperative MSG

Most model-checking issues related to MSGs are undecidable in general. For this reason
subclasses of MSGs have been introduced in the past years. We are here interested
in globally-cooperative MSGs from [8]. These MSGs correspond precisely to the �-
connected HMSCs from [16] and extend the class of bounded or locally-synchronized
MSGs from [1, 18] by removing the requirement that the set of MSCs described by
these MSGs be channel-bounded [15]. These restrictions are motivated by a similar
approach in Mazurkiewicz trace theory [14, 19].

We need first to introduce the following notion. The communication graph CG(M)
of a basic MSC M = (E, �, ξ) is the directed graph (I, �→) such that (i, j) ∈�→ if there
is an event e ∈ E such that ξ(e) = i!xj for some x ∈ Λ. An instance i ∈ I is called
active if either i �→ j or j �→ i for some j. In this paper a directed graph (I, �→) is called
connected if the symmetric closure of its restriction to active instances is connected.

DEFINITION 4.3. An MSG is globally-cooperative (for short, a gc-MSG) if for all loops

q0
M1−→ q1

M2−→ ...
Mn−→ qn = q0 the product basic MSC M1 ·M2 ·...·Mn has a connected

communication graph.

Algebraic and logical characterizations of the languages described by gc-MSGs were
established in [16]. More recently two articles showed independently that these lan-
guages are implementable by communicating finite-state machines provided that one
restricts to FIFO MSCs [5, 9]. On the other hand we have showed in [3, Th. 3.7] that
all implementable sets of MSCs can be described by netcharts. As a consequence, the
language of any gc-MSG can be described by some netchart. Note here that [5] relies on
Thomas’ graph acceptors [21] whereas [9] is based on the construction of asynchronous
cellular automata [22]. Both approaches are quite involved and have high complexity
costs. We give in this paper a direct, self-contained, and simpler construction that trans-
forms any given gc-MSG into an equivalent netchart.

4.3 Naive Implementation Technique

Our method uses a translation of MSGs into netcharts illustrated by Figures 6 to 11.

DEFINITION 4.4. Let G = (Q, ı, Σ,−→, Qf ) be an MSG. The corresponding netchart
Ĝ is the structure Ĝ = (P, T, F, min, F, Ins,M) where

– P = Q × I with Ins(q, k) = k,

– T =−→⊆ Q × Σ × Q with M(q1
M−→ q2) = M ,

– for all edges t = (q1
M−→ q2) from T and all places (q, k) ∈ P we have (q, k) ∈

•t ⇔ q = q1 and (q, k) ∈ t• ⇔ q = q2,
– min = {(ı, k) | k ∈ I} and a multiset of places m ∈ N

P is final if there exists a
final node qf ∈ Qf such that for each (q, k) ∈ Q we have m(q, k) = 1 if q = qf

and m(q, k) = 0 otherwise.

EXAMPLE 4.5. Consider first again the netchart N1 of Fig. 7 and its two component
MSCs A and B. Clearly the MSG G1 depicted on Fig. 6 accepts (A + B)�. It is easy to
check that N1 = Ĝ1 with I = {i, j}. Note here that Ĝ1 is a correct implementation of
G1 since Ĝ1 and G1 both accept (A + B)�.
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EXAMPLE 4.6. Consider now the netchart N2 of Figure 9 with its two component
MSCs A and C. Then N2 is exactly the netchart Ĝ2 associated with the MSG G2

of Fig. 8. Observe here that G2 accepts (A + C)� whereas Ĝ2 accepts some MSC
M 
∈ (A + C)� depicted on the right-hand side of Figure 9.

This example shows that the direct construction of the netchart Ĝ from some MSG G
may fail to produce a correct implementation of G. This is no surprise since we know
that there are MSGs whose languages are not implementable and it is even undecid-
able to check implementability of MSGs. That is why we shall restrict to globally-
cooperative MSGs in the next section.

Although G2 and Ĝ2 from Example 4.6 accept distinct languages we have in general
the following useful inclusion relation.

PROPOSITION 4.7. For any MSG G we have L(G) ⊆ L(Ĝ).

For each node q ∈ Q we let mq denote the marking of the low-level Petri net of the
netchart Ĝ such that mq(p) = 1 if p = (q, k) for some instance k — that is, p is a
place from the netchart Ĝ that corresponds to the node q — and mq(p) = 0 otherwise.
We say that a firing sequence s = m [u〉 m′ in the low-level Petri net of Ĝ is arched if
there are two nodes q and q′ in G such that m = mq and m′ = mq′ . Noteworthy each
complete execution sequence that leads the low-level Petri net of the netchart Ĝ from
its initial marking to some final marking corresponds to an arched firing sequence. The
next observation will be used to prove our main technical lemma.

REMARK 4.8. Let G be an MSG and mq [u〉 mq′ be an arched firing sequence of the
low-level Petri net of Ĝ. Then u is the linear extension of some basic MSC Mu. Recall
now that each transition t of the low-level Petri net of Ĝ corresponds to a transition

Comp(t) of Ĝ which is defined as an edge q1
M−→ q2 from G. If an arched firing se-

quence mq [u〉 mq′ satisfies q 
= q′ and there is some edge a such that all transitions t

that appear in u satisfy Comp(t) = a then a equals q
π◦(Mu)−→ q′.

Let j be some instance and q some node of G. The behavior of instance j within a
firing sequence of the netchart Ĝ from mq may be projected to a path from q in Q.
Intuitively the local state and the behavior of instance j along a firing sequence corre-
sponds to some token moving from places to places, all located at instance j, some of
them corresponding to a state of G. The idea here is simply to collect the sequence of
states of G visited by instance j. Formally we associate inductively each firing sequence
s = mq [u〉 m′ in the low-level Petri net of Ĝ with a path s↓j in G called the projection
of s on instance j as follows:

– If s is the empty firing sequence restricted to mq then s↓j = q;
– If s = s′ · f where f = m [a〉 m′ then

• s↓j = s′↓j · t if Ins(ρ(a)) = j, Comp(a) = t, and
∑

q′∈Q m′(q′, j) = 1;
• and s↓j = s′↓j otherwise.

4.4 Unfolding Strategy

We conclude this section by introducing our unfolding approach with the help of an
example. Let G1 = (Q1, ı1, A,−→1, F1) and G2 = (Q2, ı2, A,−→2, F2) be two MSGs
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Fig. 10. MSG G′
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Fig. 11. Correct implementation of (A + C)�

over a subset of actions A ⊆ Σ. A morphism σ : G1 → G2 from G1 to G2 is a mapping
σ : Q1 → Q2 from Q1 to Q2 such that σ(ı1) = ı2, σ(F1) ⊆ F2, and q1

a−→1 q′1
implies σ(q1)

a−→2 σ(q′1). In particular, L(G1) ⊆ L(G2). Moreover if G2 is globally-
cooperative then G1 is globally-cooperative, too. A morphism σ : G1 → G2 is called full
if the following two requirements are satisfied: σ(F1) = F2 ∩ σ(Q1) and for all nodes
q1 ∈ Q1 and all actions a ∈ A, if σ(q1)

a−→2 q′2 for some q′2 ∈ Q2 then q1
a−→1 q′1 for

some q′1 ∈ Q1 such that σ(q′1) = q′2. In that case we have L(G1) = L(G2).
Our strategy is motivated by the following example.

EXAMPLE 4.9. We continue Example 4.6 and consider the MSG G′
2 depicted in Fig-

ure 10. Clearly G′
2 accepts (A + C)� similarly to G2. Note here that there is an obvious

full morphism from G′
2 onto G2 which leads us to call informally G′

2 an unfolding of

G2. The netchart Ĝ′
2 is depicted in Fig. 11. It is not difficult to check that this netchart

accepts (A + C)�, too. Thus Ĝ′
2 is a correct implementation of G2.

This example shows that in some cases it is sufficient to unfold the MSG in order to
ensure that the simple translation into netcharts from Definition 4.4 yields a correct
implementation. In the two next sections we show that this approach is valid for any
gc-MSG.

5 Unfolding of a Globally-Cooperative MSG

In the rest of the paper we fix a globally-cooperative MSG G = (Q, ı, Σ,−→, F ) where
each MSC from Σ is FIFO. The aim of this section is to associate with G a family of
MSGs called boxes and triangles which are defined inductively. The last box built by
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this construction will be called the unfolding of G (Def. 5.1). Boxes and triangles are
associated with an initial node that may not correspond to the initial node of G. They are
associated also with a subset of MSCs A ⊆ Σ. For these reasons, for any node q ∈ Q
and any subset of actions A ⊆ Σ, we let GA,q denote the MSG (Q, q, A,−→A, F )
where −→A is the restriction of −→ to the edges labeled by MSCs in A: −→A=−→
∩(Q × A × Q).

We shall proceed inductively on directed graphs over I. For each directed graph
T ⊆ I2 we let ΣT ⊆ Σ denote the subset of basic MSCs from Σ whose communication
graph is included in T . For convenience we put GT,q = GΣT ,q. We shall define the box
�T,q for all nodes q ∈ Q and all subgraphs T ⊆ I2. The box �T,q is a pair (BT,q , βT,q)
where BT,q is an MSG over T and βT,q : BT,q → GT,q is a morphism. Similarly,
we shall define the triangle �T,q for all nodes q and all non-empty subgraphs T . The
triangle �T,q is a pair (TT,q, τT,q) where TT,q is an MSG over ΣT and τT,q : TT,q →
GT,q is a morphism. Since G is globally-cooperative (Def. 4.3), all boxes BT,q and all
triangles TT,q are globally-cooperative, too.

The height of a box �T,q or a triangle �T,q is the cardinality of T . Boxes and tri-
angles are defined inductively on the height. We first define the box �∅,q for all nodes
q ∈ Q. Then triangles of height h are built upon boxes of height g < h and boxes of
height h are built upon triangles of height h. More precisely each box �T,q is made
of copies of triangles �T,q′ . The precise construction of �T,q will depend on the con-
nectivity of the directed graph T . Moreover we shall make use of the hypothesis that
G is globally-cooperative when defining the construction of the �T,q associated with a
non-connected graph T .

This family of boxes and triangles will lead us to the definition of the unfolding of
G which is simply the box BT,q with T = I2 and q = ı.

DEFINITION 5.1. The unfolding GUnf of G = (Q, ı, Σ,−→, F ) is the box BI2,ı.

Along the definition of boxes we will observe that each morphism βT,q : BT,q → GT,q

is full. This is precisely the main property of boxes as opposed to triangles.
The base case of the induction deals with boxes of height 0. For all nodes q ∈ Q,

the box �∅,q consists of the morphism β∅,q : {q} → Q that maps q to itself together
with the MSG B∅,q = ({q}, q, ∅, ∅, F∅,q) where F∅,q = {q} if q ∈ F and F∅,q = ∅
otherwise. More generally a node of a box or a triangle is final if it is associated with a
final node of G.

5.1 Building Triangles from Boxes

Triangles are made of boxes of lower height. Boxes are inserted into a triangle induc-
tively along a tree-like structure and several copies of the same box may appear within
a triangle. We need to keep track of this structure in order to prove properties of trian-
gles (and boxes) inductively. This requires to distinguish between nodes inserted within
different copies of different boxes or different copies of the same box. To achieve this,
each node of a triangle is equipped with a rank k ∈ N such that all nodes with the
same rank come from the same copy of the same box. For these reasons, a node of a
triangle �T◦,q◦ = (TT◦,q◦ , τT◦,q◦) is encoded as a quadruple v = (w, T, q, k) such that
w is a node from the box �T,q with T � T ◦; moreover v is added within the k-th box
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inserted into the triangle in construction. By convention the node v maps to the node
τT◦,q◦(v) = βT,q(w) ∈ Q, i.e. the insertion of boxes preserves the correspondence to
the nodes of G. Thus the morphism τT◦,q◦ of a triangle �T◦,q◦ is encoded in the data
structure of its nodes. We denote by B′ = MARK(B, T, q, k) the generic process that
creates a copy B′ of an MSG B by replacing each node w of B by v = (w, T, q, k).

The construction of the triangle �T◦,q◦ starts with using this marking procedure and
building a copy MARK(�∅,q◦ , ∅, q◦, 1) of the base box �∅,q◦ which gets rank k = 1
and whose marked initial node (ı�,∅,q◦ , ∅, q◦, 1) becomes the initial node of �T◦,q◦ .
Along the construction of this triangle, an integer variable k counts the number of boxes
already inserted in the triangle to make sure that all copies inserted get distinct ranks.
The construction of the triangle �T◦,q◦ proceeds by successive insertions of copies of
boxes according to the single following rule.

A new copy of the box �T ′,q′ is inserted into the triangle �T◦,q◦ in construc-
tion if there exists a node v = (w, T, q, l) in the triangle in construction and a
basic MSC M ∈ ΣT◦ such that

T1: βT,q(w) M−→ q′ in the MSG GT◦,q◦ ;
T2: T � T ′

� T ◦ and T ′ = T ∪ CG(M);
T3: no edge labeled by M relates so far v to the initial node of some copy of

�T ′,q′ in the triangle in construction.
In that case an edge labeled by M is added in the triangle in construction from
v to the initial node of the new copy of the box �T ′,q′ .

Note here that Condition T2 ensures that inserted boxes have height at most |T ◦|−1.
By construction all copies of boxes inserted in a triangle are related in a tree-like struc-
ture built along the application of the above rule. It is easy to implement the construction
of a triangle from boxes as specified by the insertion rule above by means of a list of
inserted boxes whose possible successors have not been investigated, in a depth-first-
search or breadth-first-search way. Note here that if a new copy of the box �T ′,q′ is
inserted and connected from v = (w, T, q, l) then T � T ′ thus the communication
graph T grows along the branches of this tree-structure. This shows that this insertion
process eventually stops and the resulting tree has depth at most |T |. Moreover, since
we start from the empty box and edges in boxes �T,q carry basic MSCs from ΣT , we
get the next key property.

LEMMA 5.2. If a word u ∈ Σ� leads in the triangle �T◦,q◦ from its initial node to
some node v = (w, T, q, l) then the communication graph of u is precisely T .

Note also that it is easy to check that the mapping τT◦,q◦ induced by the data structure
builds a morphism from �T◦,q◦ to GT◦,q◦ . However this morphism may not be full in
some cases. The role of boxes is precisely to take care of this drawback with the help
of the next notion.

DEFINITION 5.3. Let T ◦ ⊆ I2 be a subgraph of I2 and q◦, q′ be two nodes of G.
The set of missing edges MISSING(T ◦, q◦, q′) consists of all pairs (v, M) where v =
(w, T, q, l) is a node of �T◦,q◦ and M is a basic MSC such that

– βT,q(w) M−→ q′ in the MSG GT◦,q◦ ;
– T � T ∪ CG(M) = T ◦.
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Note here that the insertion rule T2 for triangles forbids to insert a box BT◦,q and to
add an edge labeled by M from node v. This missing edge will be added into boxes of
height |T ◦| in order to get a full morphism.

5.2 Building Boxes from Triangles

Boxes �T◦,q◦ are made of triangles �T◦,q associated with the same directed graph
T ◦. Again several copies of the same triangle are often necessary to build a box and
the structure relating these triangles plays a crucial role. For this reason we adopt a
similar data structure: A node w of a box �T◦,q◦ is a quadruple (v, T ◦, q, k) where
v is a node of the triangle �T◦,q and k ∈ N. The rank k will allow us to distinguish
between different copies of the same triangle. The construction of boxes uses here again
an integer variable k that counts the number of triangles already inserted in the box in
construction to make sure that all copies inserted get distinct ranks. On the other hand
the parameter T is useless here but we keep it to get a uniform data structure.

As announced in the introduction of this section the construction of the box �T◦,q◦

depends on the connectivity of T ◦. Recall that an instance i ∈ I is active in the directed
graph T ◦ ⊆ I2 if there is an edge (i, j) ∈ T ◦ or an edge (j, i) ∈ T ◦ for some instance
j 
= i. Moreover a directed graph T ◦ ⊆ I2 is connected if the symmetric closure of its
restriction to its active instances is connected.

We assume first that T ◦ ⊆ I2 is a non-connected directed graph and define the
box �T◦,q◦ . The definition of boxes with a connected directed graph is postponed to
the next subsection. The construction of the box �T◦,q◦ starts with building a copy
MARK(�T◦,q◦ , T ◦, q◦, 1) of the triangle �T◦,q◦ which gets rank k = 1 and whose
marked initial node (ı�,T◦,q◦ , ∅, q◦, 1) becomes the initial node of �T◦,q◦ . The con-
struction of the box �T◦,q◦ proceeds then by successive insertions of copies of triangles
in a tree-like structure according to the following rule (which differs from [4]).

A new copy of the triangle �T◦,q′ is inserted into the box �T◦,q◦ in construc-
tion if there exists a node w = (v, T ◦, q, l) in the box in construction and a
basic MSC M ∈ ΣT◦ such that we have (v, M) ∈ MISSING(T ◦, q, q′) and no
edge labeled by M relates so far w to the initial node of some copy of �T◦,q′

in the box in construction. In that case an edge labeled by M is added in the
box from w to the initial node of the new copy of the triangle �T◦,q′ .

At each step of this procedure we have a morphism from the box in construction to
G which is encoded in the data-structure of nodes. In particular the initial node of each
triangle �T◦,q maps to node q of G.

By means of Lemma 5.2 the definition of missing edges (Def. 5.3) leads us to the
following property.

LEMMA 5.4. Within a box �T◦,q◦ associated with a non-connected graph T ◦, if a word
u ∈ Σ� leads from the initial node of a triangle to the initial node of another triangle
then the communication graph of u is precisely T ◦.

Recall now that T ◦ is not connected and G is globally-cooperative. Therefore a branch
of the tree-structure of a box in construction cannot involve twice the same triangle,
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otherwise we get a loop with communication graph T ◦ in G which contradicts the defi-
nition of a globally-cooperative MSG. It follows that this procedure stops and the depth
of the resulting tree-structure is at most |Q|. As a consequence the size of a box is
exponential in the size of the given HMSC.

5.3 Building Boxes with a Connected Graph

We come now to the definition of boxes associated with a connected directed graph.
This part is more subtle than the two previous constructions which have a tree-structure:
Both do not create new loops in the unfolding. On the contrary the construction of boxes
associated with a connected directed graph essentially deals with loops.

Let T ◦ ⊆ I2 be a connected (non-empty) directed graph. Basically the connected
box �T◦,q◦ collects all triangles �T◦,q for all nodes q ∈ Q. Each triangle is replicated a
fixed number of times and copies of triangles are connected in some very specific way.

The construction of the box �T◦,q◦ consists in two steps. First m copies of each
triangle �T◦,q are inserted in the box. Moreover the first copy of �T◦,q◦ gets rank 1
and the first copy of its initial node becomes the initial node of the box in construction.
The actual value of m will be discussed below. For simplicity’s sake we require also
that copies of the same triangle have consecutive ranks: In particular copies of �T◦,q◦

get ranks 1 to m. In a second step edges are added to connect these triangles to each
other. The idea here is to take care of the missing edges in order to get a full morphism:
For each triangle �T◦,q, for each node q′ ∈ Q, and for each missing edge (v, M) ∈
MISSING(T ◦, q, q′) we add an edge labeled by M from each copy of node v to some
copy of the initial node of triangle �T◦,q′ .

In this process of connecting triangles we require two key properties:

C1: No added edge connects two nodes from the same copy of the same
triangle: There is no added edge from node (v, T ◦, q, l) with rank l to
(ı�,T◦,q, T

◦, q, l).
C2: At most one edge connects one copy of �T◦,q to one copy of �T◦,q′ :

If we add from a copy of �T◦,q of rank l an edge (v1, T
◦, q, l) M1−→

(ı�,T◦,q′ , T ◦, q′, l′) and an edge (v2, T
◦, q, l) M2−→ (ı�,T◦,q′ , T ◦, q′, l′)

to the same copy of �T◦,q′ then v1 = v2 and M1 = M2.

Condition C1 requires simply two copies of each triangle. The number of added
edges from a fixed copy of �T◦,q to copies of �T◦,q′ is |MISSING(T ◦, q, q′)|. It fol-
lows that the two conditions above require only

m = maxq,q′∈Q |MISSING(T ◦, q, q′)| + 1

copies of each triangle. The construction of the box �T◦,q◦ starts with the insertion of m
copies of each triangle �T◦,q . Then for a fixed copy of �T◦,q and for a fixed node q′ we
add at most m edges as follows: For each missing edge (v, M) ∈ MISSING(T ◦, q, q′)
the copy of node v is connected to a distinct copy of the initial node of triangle �T◦,q′ .
In case q = q′ we make sure that v does not get connected along this process to the
initial node of the triangle it belongs to.
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From the definition of missing edges (Def. 5.3) it follows that the data-structure
defines a morphism from the box �T◦,q◦ to GT◦,q◦ . Furthermore Lemma 5.2 yields the
following useful property.

LEMMA 5.5. Within a box �T◦,q◦ associated with a connected graph T ◦, if a non-
empty word u ∈ Σ� leads from the initial node of a triangle to the initial node of a
triangle then the communication graph of u is precisely T ◦.

6 Properties of the Unfolding

6.1 Main Result

The constructions of triangles and boxes yield morphisms to GT,q that are built induc-
tively on the data-structure. These morphisms are useful in particular to check that the
construction of a box with a non-connected directed graph eventually stops because G
is globally-cooperative. We can also check by induction the following useful property.

LEMMA 6.1. The morphism βT,q from a box BT,q to GT,q is full.

Following Definition 5.1 the last box built yields the unfolding MSG GUnf together
with a full morphism βUnf : GUnf → G which ensures that L(GUnf) = L(G). By
Proposition 4.7 we have also L(GUnf) ⊆ L(ĜUnf). We will prove below that the con-
verse inclusion relation holds (Lemma 6.6) by induction on the structure of boxes and
triangles: Thus L(G) = L(ĜUnf). In that way we get our main result.

THEOREM 6.2. For any globally-cooperative MSG G the unfolding MSG GUnf leads
to a netchart ĜUnf such that L(G) = L(ĜUnf).

Thus our unfolding procedure builds an unfolded globally-cooperative MSG for which
the naive construction of a corresponding netchart yields a correct implementation of
the specification.

6.2 Properties of Arched Firing Sequences

Let T be a non-empty subgraph of I2 and q ∈ Q. Let v be a node from the triangle TT,q .
By construction of TT,q , v is a quadruple (w, T ′, q′, k′) such that w is a node from the
box �T ′,q′ and k′ ∈ N. Then we say that the box location of v is l�(v) = (T ′, q′, k′).
We define the sequence of boxes visited along a path s = v

u−→ v′ in TT,q as follows:

– If the length of s is 0 then s corresponds to node v of TT,q and L
�(s) = l�(v).

– If s is a product s = s′ · t where t is the edge v′′ a−→ v′ then two cases appear:
• If l�(v′′) = l�(v′) then L

�(s) = L
�(s′);

• If l�(v′′) 
= l�(v′) then L
�(s) = L

�(s′).l�(v′).

Due to the tree-like structure of triangles we have the following obvious property.

PROPOSITION 6.3. Let TT,q be a triangle with T a non-empty subgraph of I2. Let s be

an arched firing sequence of the low-level Petri net of T̂T,q . Then L
�(s↓k) = L

�(s↓k′)
for each instance k, k′ ∈ I.
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Similarly to triangles, we define the triangle location l�(w) of a node w in a box BT,q

and the sequence of triangles L
�(s) visited along a path s = w

u−→ w′ in BT,q . The
tree-like structure of unconnected boxes yields a property similar to Proposition 6.3.
We aim now at establishing a similar property for connected boxes (Prop. 6.5).

Let i, j be two distinct instances. For each firing sequence s = m [u〉 m′ of the low-
level Petri net of a netchart we define the projection of s on i w.r.t. (i, j) as the sequence
of messages send(s, i, j) = m1...mn such that the sequence of send actions from i to j
in u consists of i!m1j,...,i!mnj. Similarly we define the projection of s on j w.r.t. (i, j) as
the sequence of messages receive(s, i, j) = m1...mn such that the sequence of receive
actions on j from i in u consists of j?m1 i,...,j?mni. It is clear that if a firing sequence
s = m [u〉 m′ of the low-level Petri net of a netchart corresponds to a FIFO basic MSC
then send(s, i, j) = receive(s, i, j) for each pair of distinct instances i, j ∈ I. This
observation leads us to the next result.

LEMMA 6.4. Let BT,q be a box with T a non-empty connected subgraph of I2 and let
i, j be two distinct instances such that (i, j) ∈ T . Let s be an arched firing sequence
of the low-level Petri net of the netchart B̂T,q that corresponds to a FIFO basic MSC.
Then L

�(s↓i) = L
�(s↓j).

Proof. Since s is arched the first (resp. last) triangles coincide in L
�(s↓i) and L

�(s↓j).
This result follows now from the three next observations. First, let m be a message in
send(s, i, j). Due to the the definition of a low-level Petri net, the message m corre-
sponds to a unique transition t = i!mj in the low-level Petri net of the netchart B̂T,q and
moreover Comp(t) is an edge from BT,q . Thus the sequence of messages send(s, i, j)
maps in a natural way to a sequence of edges of the connected box BT,q and conse-
quently to the sequence of corresponding triangles. Second Lemma 5.5 ensures that at
least one send action from i to j occurs when the path s↓i goes through a triangle of
BT,q . Third, due to Condition C1 of the construction of connected boxes, when the path
s↓i goes out of a triangle then it enters into a distinct triangle.

These three facts imply that send(s, i, j) is enough to recover the sequence of tri-
angles L

�(s↓i) visited by i along s. A similar observation holds for the process j and
receive(s, i, j). We can now conclude easily. If s is an arched firing sequence of the
low-level Petri net of B̂T,q that corresponds to a FIFO basic MSC, then send(s, i, j) =
receive(s, i, j) hence L

�(s↓i) = L
�(s↓j).

PROPOSITION 6.5. Let BT,q be a box with T a non-empty connected subgraph of I2.

Let s = m [u〉 m′ be an arched firing sequence of the low-level Petri net of B̂T,q that
corresponds to a FIFO basic MSC Ms. Then there exists an arched firing sequence
s† = m

[
u†〉 m′ of the low-level Petri net of B̂T,q that corresponds to a FIFO basic

MSC Ms† such that
– π◦(Ms) = π◦(Ms†),
– L

�(s†↓k) = L
�(s†↓k′) for each pair of instance k, k′ ∈ I.

Proof. Consider first two active instances k and k′ of T . Lemma 6.4 ensures that
L
�(s↓k) = L

�(s↓k′) because T is connected. Now the processes that are not active
in T produce in M only ε-actions because all transitions that may take place on these
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processes in the low-level Petri net of B̂T,q are ε-events. Thus we can force them to
behave like a fixed active process k of T . The result is an MSC Ms† that differs from
M only in ε-events located on non-active processes. Consequently, π◦(Ms) = π◦(Ms†)
and L

�(s†↓k) = L
�(s†↓k′) for each non-active instance k′ of T .

6.3 Main Technical Result

LEMMA 6.6. We have L(ĜUnf) ⊆ L(GUnf).

Proof. We proceed by induction. We show for each natural n ∈ {0, 1, 2, ..., |I2|} the
property H(n) which consists of two similar sub-properties:

1. For each T ⊆ I2 with 1 � |T | � n + 1 and all nodes q ∈ Q if s = mv [u〉 mv′

is an arched firing sequence of the low-level Petri net of T̂T,q that corresponds to a
FIFO basic MSC M then π◦(M) leads in TT,q from v to v′.

2. For each T ⊆ I2 with 0 � |T | � n and all nodes q ∈ Q if s = mv [u〉 mv′ is an
arched firing sequence of the low-level Petri net of B̂T,q that corresponds to a FIFO
basic MSC M then π◦(M) leads in BT,q from v to v′.

The proof of Lemma 6.6 follows from H(n) with n = |I|2. The base case H(0) is
obvious because for each q ∈ Q and each singleton T , the box B∅,q and the triangle
TT,q consist of a single node.

Induction step of H: We assume now H(n). We show H(n + 1) for connected boxes
only, but the cases of triangles and unconnected boxes are similar. We consider some
connected subgraph T ⊆ I2 with |T | = n + 1 and some node q ∈ Q. First, we prove
by induction that for each natural d ∈ N the intermediate property P (d) holds:
P (d): Let L be a sequence of triangles of BT,q such that 1 � |L| � d. Let s =

mv [u〉 mv′ be an arched firing sequence of the low-level Petri net of B̂T,q that
corresponds to a FIFO basic MSC M . If L

�(s↓k) = L for each process k ∈ I
then π◦(M) leads in BT,q from v to v′.

The base case P (1) follows basically from the induction hypothesis H(n) because in
this case s can be viewed as an arched firing sequence of T̂T,q .

Induction step of P: We assume now that P (d) holds and we prove P (d+1). Let L.l be
a sequence of triangles with |L.l| = d + 1 and let s = mv [u〉 mv′ be an arched firing
sequence of the low-level Petri net of B̂T,q that corresponds to a FIFO basic MSC M
such that L

�(s↓k) = L.l for each process k ∈ I. Due to the structure of connected
boxes, we claim that we can find an other arched firing sequence s′ = s1 · s2 · s3 for
which s1 = mv [u1〉 mv1 , s2 = mv1 [u2〉 mv2 and s3 = mv2 [u3〉 mv′ are three arched
firing sequences such that s2 is non-empty and
S1. u1.u2.u3 corresponds to a linear extension of M ,
S2. each transition t that appears in u3 comes from an edge Comp(t) of BT,q that

occurs within the last triangle l visited along s′,
S3. each transition t that appears in u2 satisfies Comp(t) = a where a is the unique

edge (by Condition C2 of connected boxes) of BT,q that relies the two last triangles
visited along s′.



The Synthesis Problem of Netcharts 103

In particular, Condition S1 implies that L
�(s↓k) = L

�(s′↓k) for each process k ∈ I.
Conditions S2 and S3 ensure that L

�(s3↓k) = l and L
�(s1↓k) = L. Moreover, Re-

mark 4.8 shows that s1, s2 and s3 correspond respectively to some basic MSCs M1, M2

and M3. Then by Condition S1 we have M = M1 ·M2 ·M3. Therefore these three basic
MSCs are FIFO because M is FIFO. Using the induction hypothesis P (d) we deduce

that v
π◦(M1)−→ v1 and v2

π◦(M3)−→ v′ in BT,q . To conclude, we use Remark 4.8 with S3

and obtain that a is actually the edge v1
π◦(M2)−→ v2 of BT,q . As a result v

π◦(M)−→ v′ is a
path of BT,q . This conclude the proof of P (d + 1).

We return now to the proof of H(n + 1). Let s = mv [u〉 mv′ be an arched firing
sequence of the low-level Petri net of B̂T,q that corresponds to some FIFO basic MSC
M . By Proposition 6.5, there exists an arched firing sequence s† = mv

[
u†〉 mv′ of

the low-level Petri net of B̂T,q that corresponds to a FIFO basic MSC M † such that (*)
π◦(M) = π◦(M †) and L

�(s†↓i) = L
�(s†↓j) = L for each pair of instances i, j ∈ I.

Then we can apply P (|L|) together with (*) to get that v
π◦(M)−→ v′. This conclude the

proof of H(n + 1).
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