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Abstract. The study of complexity measures of Boolean functions led Nisan and Szegedy to state

the sensitivity conjecture in 1994, claiming a polynomial relation between degree and sensitivity. This
problem remained unsolved until 2019, when Huang proved the conjecture via an equivalent graph

theoretical reformulation due to Gotsman and Linial.

We study m-ary functions, i.e., functions f : Tn → T where T ⊆ C is a finite alphabet of cardinality
|T | = m. We extend the notions of degree deg(f) and sensitivity s(f) to m-ary functions and show

s(f) ∈ O(deg(f)2). This generalizes results of Nisan and Szegedy. Conversely, we introduce the m-ary

sensitivity conjecture, claiming a polynomial upper bound for deg(f) in terms of s(f). Analogously
to results of Gotsman and Linial, we provide a formulation of the conjecture in terms of imbalanced

partitions of Hamming graphs into low degree subgraphs. Combining this with ideas of Chung, Füredi,

Graham and Seymour, we show that for any prime p the bound in the p-ary sensitivity conjecture has
to be at least quadratic: there exist p-ary functions f of arbitrarily large degree and deg(f) ∈ Ω(s(f)2).

1. Introduction

Many computational combinatorial problems can be thought of as evaluating a Boolean function, i.e.,
a function f : {0, 1}n → {0, 1}. Hence, determining the complexity of (evaluating) a Boolean function
is one of the most fundamental algorithmic problems of Theoretical Computer Science. This framework
was proposed in the 60s [26] and first measures of complexity were studied and compared in the 80s [20]
and 90s [28]. Nowadays, Boolean functions intervene in such diverse areas as Cryptography [5], Quantum
Computing [1, 21] and Deep Learning [16,27].

A variety of complexity measures of Boolean functions has been considered in the literature, see [4]
for a survey. Already since the 90s it has been known that most deterministic measures are polynomially
equivalent except (back then) possibly the sensitivity. This led Nisan and Szegedy [28] to the sensitivity
conjecture, which claims that the sensitivity is polynomially equivalent to the other measures. A first
step is an equivalence theorem due to Gotsman and Linial [13], which translates the sensitivity conjecture
to a problem in graph theory. In 2019, Huang [17] gave a one-page proof for this statement based on
elementary linear algebra arguments. Namely, he showed that any induced subgraph on more than half
of the vertices of the n-dimensional hypercube has maximum degree at least

√
n. See [3] for an extended

summary of this story (in Spanish).
Studying Huang’s result in other families of graphs is an active area of research. His result has been

generalized to Cartesian powers of directed cycles (Tikaradze, [33]), Cartesian powers of paths (Zeng
and Hou, [36]), and other Cartesian and semistrong products of graphs (Hong, Lai and Liu, [15]). Alon
and Zheng showed that Huang’s result implies a similar result for Cayley graphs over Zn

2 [2], which was
later generalized to arbitrary abelian Cayley graphs by Potechin and Tsang [29], and to Cayley graphs
of Coxeter groups and expander graphs by Garćıa-Marco and Knauer [14]. Similar results on Kneser
graphs have been developed by Frankl and Kupavskii [12], and Chau, Ellis, Friedgut and Lifshitz [6]. On
the negative side, infinite families of Cayley graphs with low-degree induced subgraphs on many (more
than the independence number) vertices were constructed by Lehner and Verret [22], and Garćıa-Marco
and Knauer [14]. The existence of such subgraphs in Hamming graphs H(n,m) is the topic of several
recent works, see [10,14,30,32].

The study of sensitivity has also been extended beyond Boolean functions without going through
graphs. Dafni, Filmus, Lifshitz, Lindzey and Vinyals [9] consider f : X → {0, 1} on different domains
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such as the symmetric group X = Sn. They show that in this case all classical complexity measures of
Boolean functions can also be defined and are polynomially equivalent. In particular, they prove the
analogous result to the sensitivity conjecture.

Another natural generalization of Boolean functions are m-ary functions, i.e., functions f : Tn → T
where T ⊆ C is a finite set of cardinality m. For p prime, p-ary functions have been studied in relation
to combinatorial structures such as association schemes [35] and strongly regular graphs [7, 18, 25].
Moreover, they provide connections to Cryptography and Coding Theory, see [24]. Going back to the
initial motivation of Boolean functions, m-ary functions can be viewed as combinatorial problems over
a multi-valued logic.

Our results: The aim of the present paper is to study the sensitivity of m-ary functions. In Section 2
we define complexity measures of an m-ary function f , namely the sensitivity s(f), the block sensitivity
bs(f) and the degree deg(f). After this, in Section 3 we prove a polynomial upper bound for the
sensitivity of an m-ary function in terms of its degree; more precisely, we prove

Theorem 1.1. For every m-ary function f , we have s(f) ≤ 2 (m− 1)3 deg(f)2.

As in the Boolean case, the most difficult question seems to be the proof of a polynomial bound in
the other direction, prompting us to put forward the

Conjecture 1.2 (m-ary Sensitivity Conjecture). For every m there exists a constant c such that
deg(f) ∈ O(s(f)c) for every m-ary function f .

As a first step towards the conjecture, we generalize the equivalence theorem by Gotsman and
Linial [13]. This leads to a graph theoretical formulation of Conjecture 1.2 in terms of the Ham-
ming graph H(n,m), see Theorem 4.9. Even if Theorem 4.9 is more technical than the Boolean case, we
believe that it will be crucial in an eventual resolution of Conjecture 1.2. As of now, Theorem 4.9 has
two main consequences. First, we present a far generalization of a result by Chung, Füredi, Graham and
Seymour [8]. For every prime p, we present a construction proving that the polynomial upper bound
in Conjecture 1.2 has to be at least quadratic for p-ary functions.

Theorem 1.3. For every set T ⊆ C of prime cardinality |T | = p and every positive integer D, there
exists a p-ary function f : Tn → T with deg(f) > D and s(f)2/(p− 1)3 ≤ deg(f).

Second, in Section 6, based on Theorem 4.9 we obtain a natural graph theoretical strengthening
of Conjecture 1.2 in terms of imbalanced partitions of the Hamming graph H(n,m) into induced sub-
graphs of low maximum degree, see Conjecture 6.1. Already the first open case is non-trivial and
tempting, where ∆ denotes the maximum degree of a graph.

Conjecture 1.4. There exists µ > 0 such that for any partition of the Hamming graph H(n, 3) into
three (possibly empty) induced subgraphs H1, H2, H3 not all of the same order, it holds:

max{∆(H1),∆(H2),∆(H3)} ∈ Ω(nµ) .

2. Some complexity measures of m-ary functions

For the entire paper let m,n be positive integers and T ⊆ C a set of size m. For convenience, we
consider m-ary functions over T ⊆ C, i.e., maps f : Tn → T . In this section we introduce several
complexity measures of m-ary functions, which naturally extend those of Boolean functions. We begin
with the first ingredient of the sensitivity conjecture.

Definition 2.1 (Degree). A polynomial F ∈ C[x1, . . . , xn] represents an m-ary function f : Tn → T if
F (x) = f(x) for all x ∈ Tn. The degree of f is deg(f) = min{deg(F ) | F ∈ C[x1, . . . , xn] represents f},
the smallest degree of a polynomial representing f .

The following polynomial interpolation result shows a way to compute the degree of anm-ary function:

Proposition 2.2. Let T ⊆ C be a set of size m and f : Tn → T an m-ary function. There is a
unique polynomial F ∈ C[x1, . . . , xn] of degree at most m−1 in each variable representing f . Moreover,
deg(f) = deg(F ).

Proof. Let f : Tn → T be an m-ary function. By, e.g, [19, Chapter 6.6] or [31, Section 19], there is a
unique polynomial F ∈ C[x1, . . . , xn] of degree at most m−1 in each variable representing f . Let now G
be a polynomial representing f and consider the polynomial ideal I = ⟨p(x1), . . . , p(xn)⟩ ⊆ C[x1, . . . , xn]
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with p(x) =
∏

t∈T (x − t). One can reduce G modulo the ideal I to get a polynomial H of degree at
most m− 1 in each variable such that G−H ∈ I and deg(G) ≥ deg(H). Since all the polynomials in I
vanish on Tn, we have that H also represents f ; thus F = H and deg(G) ≥ deg(F ). □

It is worth pointing out that there might be several polynomials of degree deg(f) representing f .
However, only one of them can have degree at most m− 1 in each variable. For example, consider the
set T = {1, ε, ε2}, with ε a primitive third root of unity, and the 3-ary function f : T 3 → T defined
as f(a, b, c) = a2b for all a, b, c ∈ T . Clearly, the polynomial F (x, y, z) = x2y ∈ C[x, y, z] represents
f and has degree at most 2 in each variable and, by Proposition 2.2, deg(f) = deg(F ) = 3. Also the
polynomial G(x, y, z) = x2y + z3 − 1 of degree 3 represents f , but G has degree 3 in the variable z.

The other ingredient of the sensitivity conjecture is:

Definition 2.3 (Sensitivity). The local sensitivity sx(f) of an m-ary function f at a vector x ∈ Tn

is the number of elements y ∈ Tn which differ from x in exactly one entry and f(x) ̸= f(y). The
sensitivity of f is s(f) = maxx∈Tn{sx(f)}.

Consider T = {t0, . . . , tm−1} a set with m elements, f : Tn → T an m-ary function, and x =
(ti1 , . . . , tin) ∈ Tn. For every multisubset S of [n] := {1, . . . , n}, we denote by multS(j) the multiplicity
of the element j in S and by xS the vector obtained from x by replacing its j-th entry tij with
tij+multS(j) ∈ T for all 1 ≤ j ≤ n. Here the indices are taken modulo m.

For example, let T = {0, 1, 2}, n = 3, and x1 = (0, 0, 0), x2 = (1, 0, 2) ∈ T 3. If S1 = {1, 1, 2}, then
multS1

(1) = 2, multS1
(2) = 1, multS1

(3) = 0, and hence xS1
1 = (2, 1, 0) and xS1

2 = (0, 1, 2). If S2 = {1},
then xS2

1 = (1, 0, 0) and xS2
2 = (2, 0, 2).

We say that an element t belongs to a multiset A, and write t ∈ A, whenever multA(t) > 0. We say
that two multisubsets A and B of [n] are disjoint if they do not contain common elements, regardless
of their multiplicities. In the previous example, S1 = {1, 1, 2} and S2 = {1} are not disjoint, since both
contain the element 1.

Definition 2.4 (Block sensitivity). The local block sensitivity bsx(f) of an m-ary function f at x ∈
Tn is the maximum k for which there exist k pairwise disjoint multisubsets B1, . . . , Bk of [n] (the
sensitive blocks) such that f(x) ̸= f(xBi) for all i ∈ {1, . . . , k}. The block sensitivity of f is bs(f) =
maxx∈Tn{bsx(f)}.

Remark 2.5. Definitions 2.3 and 2.4 imply that 0 ≤ s(f)
m−1 ≤ bs(f) ≤ n. This is because it is possible

to change every entry of a vector x ∈ Tn in m− 1 different ways, but only one of them can contribute
to the computation of the block sensitivity (because the sensitive blocks are pairwise disjoint).

Example 2.6. Let T = {0, 1, 2}, n = 2, and f : Tn → T the 3-ary function given by

f−1(0) = {(0, 1)} ,
f−1(1) = {(0, 2), (1, 2), (2, 2)} ,
f−1(2) = {(0, 0), (1, 0), (1, 1), (2, 0), (2, 1)} .

To compute the degree of f , following Proposition 2.2, we are going to find a polynomial F ∈ C[x1, x2]
of degree at most 2 in each variable which coincides with f at every x ∈ {0, 1, 2}2. We can write F as

F (x1, x2) = a00 + a10x1 + a11x1x2 + a01x2 + a20x
2
1 + a21x

2
1x2 + a22x

2
1x

2
2 + a12x1x

2
2 + a02x

2
2 ,

with aij ∈ C. Imposing that F represents f leads us to the following system of linear equations:

a00 = 2
a00 + + a01 + + a02 = 0
a00 + + 2a01 + + 4a02 = 1
a00 + a10 + + a20 = 2
a00 + 2a10 + + 4a20 = 2
a00 + a10 + 2a11 + 2a01 + a20 + 2a21 + 4a22 + 4a12 + 4a02 = 1
a00 + 2a10 + 4a11 + 2a01 + 4a20 + 8a21 + 16a22 + 8a12 + 4a02 = 1
a00 + a10 + a11 + a01 + a20 + a21 + a22 + a12 + a02 = 2
a00 + 2a10 + 2a11 + a01 + 4a20 + 4a21 + 4a22 + 2a12 + a02 = 2 .

Solving the system we get

F (x1, x2) = 2 + 6x1x2 −
7

2
x2 − 2x2

1x2 + x2
1x

2
2 − 3x1x

2
2 +

3

2
x2
2 ,
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and hence deg(f) = 4.
By Remark 2.5 one has that s(f) ≤ 4. If we consider now x = (0, 1), then

sx(f) = |{(0, 0), (0, 2), (1, 1), (2, 1)}| = 4,

and this implies that s(f) = 4.
Finally, we compute the block sensitivity of f . By Remark 2.5, bs(f) ≤ 2. If we consider x1 = (1, 0),

then we cannot have a sensitive block consisting only of 1. Consequently, every sensitive block must
contain 2 and this yields bsx1

(f) = 1 taking for example B = {2, 2} as the sensitive block. In contrast, if
we consider x2 = (0, 1), then B1 = {1} and B2 = {2} are two disjoint sensitive blocks, and bsx2

(f) = 2.
This allows us to conclude that bs(f) = 2.

As mentioned in the introduction, the degree, the sensitivity and the block sensitivity are polynomially
equivalent for Boolean functions. Before studying such properties for m-ary functions, a comment on
the choice of the set T ⊆ C is in order. When working with Boolean functions, the set T is traditionally
T = {0, 1}, although another commonly used representation is T = {−1, 1}. Most complexity measures
of Boolean functions (including degree, sensitivity and block sensitivity) do not depend on the choice of
the two-element-set T ⊆ C. If one neglects constant factors, the same holds for general m-ary functions.

Proposition 2.7. Let T = {t0, . . . , tm−1}, T ′ = {t′0, . . . , t′m−1} ⊆ C sets of size m. If f : Tn → T is an
m-ary function, then g : (T ′)n → T ′ obtained from f by identifying ti with t′i is an m-ary function and:

• s(f) = s(g),
• bs(f) = bs(g),
• (m− 1)−2deg(f) ≤ deg(g) ≤ (m− 1)2deg(f).

Proof. It is clear that s(f) = s(g) and bs(f) = bs(g). To see the claim about the degree, let F and G be
polynomials representing f and g with deg(f) = deg(F ) and deg(g) = deg(G), respectively. Denote by
p, q ∈ C[x] the unique univariate polynomials of degree at most m−1 such that p(ti) = t′i and q(t′i) = ti
for all i. Then

F (x1, . . . , xn) = q(G(p(x1), . . . , p(xn))) for all (x1, . . . , xn) ∈ Tn,

and deg(f) = deg(F ) ≤ (m− 1)2deg(G) = (m− 1)2deg(g). Similarly, one has that

G(x1, . . . , xn) = p(F (q(x1), . . . , q(xn))) for all (x1, . . . , xn) ∈ (T ′)n,

and deg(g) = deg(G) ≤ (m− 1)2deg(F ) = (m− 1)2deg(f). □

As a consequence, when changing the set T the degree can only change by a constant factor, and hence,
for proving equivalence between complexity measures, one can consider any set T ⊆ C of cardinality m.

3. An upper bound for the sensitivity in terms of the degree

The goal of this section is to provide an upper bound for the sensitivity of an m-ary function in terms
of its degree. This is achieved in Theorem 1.1, which follows from generalizing [28, Lemma 7], a result
for Boolean functions, to the m-ary case:

Lemma 3.1. Let T = {t0, t1, . . . , tm−1} ⊆ C and let f : Tn → T be an m-ary function. Then,

(m− 1) deg(f) ≥
√

bs(f)

2
.

Proof. Denote k := bs(f) and take t = (ti1 , ti2 , . . . , tin) ∈ Tn such that bs(f) = bst(f). We assume
without loss of generality that f(t) = t0. Consider also S1, . . . , Sk a collection of pairwise disjoint
multisubsets of [n] such that f(t) ̸= f(tSi) for all i ∈ {1, . . . , k}.

We define g : {0, 1}k → {0, 1} as follows: we consider the polynomial P ∈ C[x] of degree m− 1 such
that P (t0) = 0 and P (ti) = 1 for i ∈ {1, . . . ,m− 1}. For y := (y1, . . . , yk) ∈ {0, 1}k we take the multiset
Sy := ∪yi=1Si and define

g(y) := P (f(tSy)) .

The following facts hold:

• g : {0, 1}k → {0, 1} is a Boolean function,
• g(0) = P (f(t)) = P (t0) = 0, and
• if y ∈ {0, 1}k has all its entries equal to 0 expect the i-th one, which is equal to 1, then
g(y) = P (f(tSy)) = P (f(tSi)) = 1.
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By [28, Lemma 5], we have that

(1) deg(g) ≥
√

k

2
=

√
bs(f)

2
.

Moreover, if F denotes a polynomial representing f with deg(F ) = deg(f), and ℓ1, . . . , ℓn ∈ C[x1, . . . , xk]
are the unique linear forms such that (ℓ1(y), . . . , ℓn(y)) = tSy for all y ∈ {0, 1}k, then the polynomial
G = P (F (ℓ1, . . . , ℓn)) ∈ C[x1, . . . , xk] represents g. Hence,

(2) deg(g) ≤ deg(G) ≤ deg(P ) · deg(F ) = (m− 1)deg(f).

The result follows directly from (1) and (2). □

As a direct consequence of Lemma 3.1 together with bs(f) ≥ s(f)
m−1 (see Remark 2.5), we have the

following theorem:

Theorem 1.1. For every m-ary function f , we have s(f) ≤ 2 (m− 1)3 deg(f)2.

We conjecture a polynomial relation into the other direction:

Conjecture 1.2 (m-ary Sensitivity Conjecture). For every m there exists a constant c such that
deg(f) ∈ O(s(f)c) for every m-ary function f .

As in the Boolean case, graph theory might play an important role for proving the m-ary sensitivity
conjecture. In the next section we present a generalization of the Boolean equivalence theorem by
Gotsman and Linial, which allows us to reformulate the sensitivity conjecture for m-ary functions in
graph theoretical terms.

4. The equivalence theorem for m-ary functions

All graphs we consider are simple, undirected and finite. For a graph G = (V,E) and a vertex v ∈ V ,
we denote by degG(v) the degree of v in G. We denote by ∆(G) (resp. δ(G)) the maximum (resp.
minimum) degree of G. The maximum (resp. minimum) degree of the graph without vertices is −∞
(resp. +∞).

Huang’s proof of the sensitivity conjecture for Boolean functions heavily relies on the equivalence
theorem by Gotsman and Linial [13]. In this section we present an equivalence theorem for the m-ary
case, which generalizes the Boolean one. Before presenting its statement we introduce some definitions,
notations and some preliminary results that will be used in the proof.

For convenience, from now on we consider T = Um := {1, ε, ε2, . . . , εm−1} the set of m-th roots of
unity, where ε is an m-th primitive root of unity. In the case of Boolean functions, the set {0, 1}n can be
seen as the vertex set of the n-dimensional hypercube Qn. In the context of m-ary functions, a natural
generalization is the Hamming graph H(n,m) whose vertex set is U n

m (or [0,m−1]n := {0, 1, . . . ,m−1}n)
and where two vertices are adjacent if and only if they differ in exactly one of their entries. This graph
can be seen as the n-th Cartesian power of the complete graph on m vertices Km. Some Hamming
graphs are shown in Figure 1. It is easy to see that the Hamming graph H(n,m) is (m − 1)n-regular
and the product of the entries of every vertex provides a proper m-coloring of it. We denote each set of
the resulting m-partition by Cεk for k ∈ [0,m− 1], i.e.,

Cεk =

x = (x1, . . . , xn) ∈ U n
m

∣∣∣∣∣∣
n∏

j=1

xj = εk

 .

One can associate to every m-ary function f : U n
m → Um a partition of the vertex set of H(n,m)

(where some parts might be empty) by just considering Vεk(f) := f−1(εk) for all k ∈ [0,m − 1]. If we
denote by Hεk the induced subgraph of H(n,m) with vertex set Vεk(f) for all k ∈ [0,m − 1], then for
every vertex x ∈ Vεk(f) one has that sx(f) = (m− 1)n− degH

εk
(x). Consequently,

(3) s(f) = (m− 1)n−min{δ(Hεk) | 0 ≤ k ≤ m− 1}.

Recall that the minimum degree of the empty graph is +∞.

Example 4.1. Figure 2 shows an example of three induced subgraphs H1, Hε, Hε2 whose vertices parti-
tion U 3

3 . We observe that δ(H1) = δ(Hε) = δ(Hε2) = 3. If we consider the 3-ary function f : U 3
3 → U3

such that f−1(εj) = V (Hεj ), then s(f) = 2 · 3− 3 = 3.
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(1, 1)

1

(1, ε) (1, ε2)

(ε, 1)

(ε, ε)

ε

(ε, ε2)

ε2

(ε2, ε2)(ε2, ε)

(ε2, 1)

H(2, 3)

H(3, 3)

(1, 1) (1, ε)

(1, ε2)

(1, ε3)

(ε, 1) (ε, ε)

(ε, ε2)

(ε, ε3)

(ε2, 1)

(ε2, ε)

(ε2, ε2) (ε2, ε3)

(ε3, 1)

(ε3, ε)

(ε3, ε2) (ε3, ε3)

H(2, 4)

H(3, 4)

Figure 1. Some Hamming graphs, the upper two with their proper 3 and 4-coloring, respectively

H1

Hε

Hε2

Figure 2. Three induced subgraphs of H(3, 3) whose vertices partition U3
3

Let f : U n
m → Um be an m-ary function. For every i ∈ [0,m − 1], denote by fεi the m-ary function

given by fεi(x) = f(x)
(∏n

j=1 x
i
j

)
for all x = (x1, . . . , xn) ∈ U n

m. The following result relates the vertex

partitions of H(n,m) associated to f and fε.
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Lemma 4.2. Let f : U n
m → Um be an m-ary function. For all k ∈ [0,m− 1] one has:

f−1
ε (εk) =

⋃
j ∈ [0,m−1]

(Cεj ∩ f−1(εk−j)).

Proof. For all x = (x1, . . . , xn) ∈ U n
m we have that fε(x) = f(x)·(x1 · · ·xn). Taking ε

j := x1 · · ·xn ∈ Um,
we have that x ∈ Cεj , and fε(x) = εk if and only if f(x) = εk−j ∈ Um. □

Definition 4.3. Let {Vεk | k ∈ [0,m − 1]} be a partition of U n
m into m subsets (where some of them

might be empty). We denote by {ρ(Vεk) | k ∈ [0,m− 1]} the new partition of U n
m given by

ρ(Vεk) :=
⋃

j ∈ [0,m−1]

(Cεj ∩ Vεk−j ) for all k ∈ [0,m− 1].

Figure 3 illustrates how the sets ρ(Vεk) can be visualized as a certain cyclic rotation of the vertices
of Vεk through the m-partition given by the Cεj ’s.

ρ(V1)

V1

C1

Vε
Vε2

Cε Cε2

ρ(Vε)

ρ(Vε2)

Cεm−2 Cεm−1

Vεm−1

. . .
...

...
...

...
...

. . .
...

...
...

...
...

⊕⊕ ⊕

⊕
⊕

⊕

⊕

⊕
⊕ ⊕ ⊕ ⊕

⊕
⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊗

⊗
⊗

⊗⊗⊗⊗
⊗

⊗⊗ ⊗
⊗⊗

+
+ +

+

++
+

+
+

+

+

+ ++

+
+

+++ +

+
+

+

C1 Cε Cε2 Cεm−2 Cεm−1

↓

ρ(Vεm−1)

ρ(Vε3)

ρ(Vε4)

ρ(Vεm−2)ρ(Vεm−3)

Figure 3. Vertices of ρ(Vεk) as a certain cyclic rotation of the vertices of Vεk through
the partition given by the Cεj ’s

For an m-ary function f : U n
m → Um, we consider the partition of H(n,m) with Vεk(f) = f−1(εk)

for all k ∈ [0,m− 1]. By Lemma 4.2, we have that ρ(Vεk(f))) = f−1
ε (εk) for all k ∈ [0,m− 1]. Hence,

{ρ(Vεk(f)) | k ∈ [0,m− 1]} is the partition of H(n,m) associated to fε.

Example 4.4. If we consider the 3-ary function f : U 3
3 → U3 described in Example 4.1, then Figure 4

shows the partition of H(3, 3) associated to fε. It turns out that |f−1
ε (1)| = |ρ(V (H1))| = 8, |f−1

ε (ε)| =
|ρ(V (Hε))| = 10 and |f−1

ε (ε2)| = |ρ(V (Hε2))| = 9.

Remark 4.5. Note that if we consider [0,m−1]n as the vertex set of H(n,m), then a proper m-coloring
of H(n,m) is given by

Dk =

x = (x1, . . . , xn) ∈ [0,m− 1]n

∣∣∣∣∣∣
n∑

j=1

xj ≡ k mod m

 ,

for k ∈ [0,m− 1].
Moreover, for a given m-ary function g : [0,m − 1]n → [0,m − 1] and for every i ∈ [0,m − 1], we

denote by gi the m-ary function given by g
i
(x) = g(x) + i(

∑n
j=1 xj) mod m for all x = (x1, . . . , xn) ∈

[0,m− 1]n. For each k ∈ [0,m− 1] we take Vk(g) := g−1(k) and denote

ρ(Vk(g)) =
⋃

j ∈ [0,m−1]

(
Dj ∩ V((k−j) mod m)(g)

)
.

Then, ρ(Vk(g)) = g−1
1 (k) for all k ∈ [0,m− 1].

In the proof of the equivalence theorem we use the following lemma, which explicitly describes the
constant term of the unique polynomial of degree at most m− 1 in each variable representing an m-ary
function f : U n

m → Um. This result depends on the fact that T = Um and does not hold for other choices
of T .
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→

H ′
1

H ′
ε

H ′
ε2

H1

Hε

Hε2

Figure 4. Partition associated to fε for the 3-ary function f of Example 4.1, where
H ′

i is the induced subgraph of H(3, 3) on ρ(V (Hi))

Lemma 4.6. If f : U n
m → Um is an m-ary function and F ∈ C[x1, . . . , xn] is the unique polynomial of

degree at most m−1 in each variable representing it, then F (0) = E(f), where E(f) = 1
mn

∑
x∈Un

m
f(x)

is the average value of f on U n
m.

Proof. We denote by P([n])≤(m−1) the set of all multisubsets of [n] in which every element has mul-
tiplicity at most m − 1. Since F has degree at most m − 1 in each variable, it can be written as

F (x1, . . . , xn) =
∑

I∈P([n])≤(m−1)
f̂(I)

∏
i∈I x

multI(i)
i , where f̂(I) ∈ C for all I ∈ P([n])≤(m−1), and we

have that

E(f) =
1

mn

∑
x∈Un

m

f(x) =
1

mn

∑
x∈Un

m

F (x) =

=
1

mn

∑
x∈Un

m

 ∑
I∈P([n])≤(m−1)

f̂(I)
∏
i∈I

x
multI(i)
i

 =

=
1

mn

 ∑
x∈Un

m

f̂(∅) +
∑

x∈Un
m

∑
I∈P([n])≤(m−1)

I ̸=∅

f̂(I)
∏
i∈I

x
multI(i)
i

 =

=
1

mn

mn F (0) +
∑

I∈P([n])≤(m−1)

I ̸=∅

f̂(I)
∑

x∈Un
m

∏
i∈I

x
multI(i)
i

 ,

so it is enough to prove that
∑

x∈Un
m

∏
i∈I x

multI(i)
i = 0 for every nonempty I ∈ P([n])≤(m−1).

Take I ̸= ∅, assume without loss of generality that 1 ∈ I, and take M := multI(1). Then

∑
x∈Un

m

∏
i∈I

x
multI(i)
i =

m−1∑
ℓ=0

 ∑
(εℓ,x2,...,xn)∈Un

m

εℓM
∏

i∈I\{1}

x
multI(i)
i

 =

=
∑

y=(x2,...,xn)∈Un−1
m

 ∏
i∈I\{1}

x
multI(i)
i

(m−1∑
ℓ=0

εℓM

)
= 0,

where the last equality follows from the fact that
∑m−1

ℓ=0 µℓ = 0 for every µ ∈ Um. Thus, we conclude
the result. □
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Lemma 4.7. Let f : U n
m → Um be an m-ary function and denote by F,G ∈ C[x1, . . . , xn] the unique

polynomials of degree at most m−1 in each variable representing f and fεm−1 , respectively. Then, F (0)
coincides with the coefficient of (x1 · · ·xn)

m−1 in G. In particular, deg(fεm−1) = (m− 1)n if and only
if E(f) ̸= 0.

Proof. Clearly H := (x1 · · ·xn)
m−1F is a polynomial representing fεm−1 , and hence G is the reduction

of H modulo the ideal I = ⟨xm
1 − 1, . . . , xm

n − 1⟩. The result follows from the fact that reducing a
polynomial modulo I consists of just taking all the exponents appearing in the expression modulo m.
In particular, deg(fεm−1) = (m − 1)n if and only if F (0) ̸= 0, and the latter is equivalent to E(f) ̸= 0
by Lemma 4.6. □

The next result shows how to graph theoretically construct an m-ary function f : U n
m → Um of

degree deg(f) = (m − 1)n (the maximum possible degree) with prescribed sensitivity. This result will
be particularly useful in the next section.

Proposition 4.8. Let m ≥ 2 and n, s ≥ 1. The following are equivalent:

(1) There is an m-ary function f : U n
m → Um of degree deg(f) = (m− 1)n and sensitivity s(f) = s.

(2) There are (possibly empty) induced subgraphs {Hεk | 0 ≤ k ≤ m− 1} of H(n,m) such that their

vertex sets partition V (H(n,m)),
∑m−1

k=0 |ρ(V (Hεk))| εk ̸= 0, and

(m− 1)n−min{δ(Hεk) | 0 ≤ k ≤ m− 1} = s .

Proof. For an m-ary function f : U n
m → Um, one can consider the family of induced subgraphs {Hεk | 0 ≤

k ≤ m− 1} of H(n,m) such that V (Hεk) = f−1(εk). Conversely, for any induced subgraphs {Hεk | 0 ≤
k ≤ m − 1} of H(n,m) such that their vertex sets partition V (H(n,m)), one can consider the m-ary
function f : U n

m → Um defined as f(x) = εk if and only if x ∈ V (Hεk).
In both cases, by Formula (3), we have that

s(f) = (m− 1)n−min{δ(Hεk) | 0 ≤ k ≤ m− 1}.

Also, taking g = fε we have that f = (fε)εm−1 = gεm−1 . By Lemma 4.7, it follows that deg(f) = (m−1)n

if and only if E(g) ̸= 0. Finally, by Lemma 4.2, we have that E(g) = 1
mn

∑m−1
k=0 |ρ(V (Hεk))| εk, and the

result follows. □

Now we can prove the equivalence theorem.

Theorem 4.9 (Equivalence theorem for m-ary functions). Let h : N → R be a function and m a
positive integer. The following are equivalent:

(1) For any collection of (possibly empty) induced subgraphs {Hεk | 0 ≤ k ≤ m − 1} of H(n,m)

whose vertex sets partition V (H(n,m)) and
∑m−1

k=0 |ρ(V (Hεk))| εk ̸= 0, it holds

(m− 1)n−min{δ(Hεk) | 0 ≤ k ≤ m− 1} ≥ h(n).

(2) For any m-ary function f : U n
m → Um, s(f) ≥ h

(
1

m−1 deg(f)
)
.

Proof. First of all, we transform statement (1) into the equivalent statement (1′) concerning m-ary
functions:

(1′) For any m-ary function f : U n
m → Um with E(f) ̸= 0, there is a vector v ∈ U n

m such that
h(n) ≤ sv(fεm−1).

We begin by proving that (1′) ⇒ (1). Let H1, Hε, . . . ,Hεm−1 be m induced subgraphs of H(n,m)

such that their vertex sets partition U n
m and

∑m−1
k=0 |ρ(V (Hεk))| εk ̸= 0.

We define the m-ary function f : U n
m → Um given by f−1(εk) = V (Hεk) for all k ∈ [0,m− 1]. Then,

by Lemma 4.2 we have that f−1
ε (εk) = ρ(V (Hεk)) for all k ∈ [0,m− 1]. Moreover,

0 ̸=
m−1∑
k=0

|ρ(V (Hεk))| εk =
∑

x∈U n
m

fε(x) = mn E(fε),

being E(fε) the average value of fε on U n
m. Then E(fε) ̸= 0 and, by (1′), there is a vector v ∈ U n

m

satisfying h(n) ≤ sv((fε)εm−1) = sv(f).
Now, by Equation (3),

(m− 1)n−min{δ(Hεk) | 0 ≤ k ≤ m− 1} = s(f) ≥ sv(f) ≥ h(n).



10 S. ASENSIO, I. GARCÍA-MARCO, AND K. KNAUER

Now we prove that (1) ⇒ (1′). Let f : U n
m → Um be an m-ary function with E(f) ̸= 0. We define Hεk

as the induced subgraph of H(n,m) on (fεm−1)−1(εk) for all k ∈ [0,m−1]. By Lemma 4.2, ρ(V (Hεk)) =

((fεm−1)ε)
−1(εk) = f−1(εk) for all k ∈ [0,m− 1], and hence

∑m−1
i=0 |ρ(V (Hεi))| εi = mnE(f) ̸= 0.

By (1), we get that

min{δ(Hεk) | 0 ≤ k ≤ m− 1} ≤ (m− 1)n− h(n) ,

so there must be some εj ∈ Um and a vertex v ∈ V (Hεj ) such that degHεj
(v) ≤ (m − 1)n − h(n).

Furthermore, since V (Hεj ) = (fεm−1)−1(εj) for all j ∈ [0,m− 1], we have that degHεj
(v) = (m− 1)n−

sv(fεm−1). Hence (m− 1)n− sv(fεm−1) ≤ (m− 1)n− h(n), and we conclude that h(n) ≤ sv(fεm−1).

We now rewrite statement (2) in an equivalent way:

(2′) For any m-ary function f : U n
m → Um, s(f) < h(n) implies that deg(f) < (m− 1)n.

We start by showing that (2) ⇒ (2′). Let f be an arbitrary m-ary function with deg(f) ≥ (m− 1)n.
Then we have that deg(f) = (m− 1)n (because deg(f) ≤ (m− 1)n). Let us prove that s(f) ≥ h(n). By

(2), we have that s(f) ≥ h
(

1
m−1deg(f)

)
, and thus

s(f) ≥ h

(
1

m− 1
deg(f)

)
= h

(
1

m− 1
(m− 1)n

)
= h(n) .

Now we prove that (2′) ⇒ (2) by contradiction. Assume that (2′) holds and that there exists an

m-ary function f with s(f) < h
(

1
m−1deg(f)

)
. Then, by (2′), deg(f) < (m− 1) 1

m−1deg(f) = deg(f), a

contradiction.
At this point, it is enough to show that statements (1′) and (2′) are equivalent for any function

h : N → R and any natural number m.

(1′) For any m-ary function f : U n
m → Um with E(f) ̸= 0, there is a vector v ∈ U n

m satisfying
h(n) ≤ sv(fεm−1).

(2′) For any m-ary function f : U n
m → Um, s(f) < h(n) implies that deg(f) < (m− 1)n.

We begin by proving (2′) ⇒ (1′). Let us see that E(f) = 0 for any m-ary function f such that
h(n) > sv(fεm−1) for all v ∈ U n

m. We have that s(fεm−1) = maxv∈U n
m
sv(fεm−1) < h(n), and by (2′) this

implies that deg(fεm−1) < (m− 1)n. Then, by Lemma 4.7 we are done.
It only remains to prove (1′) ⇒ (2′). Since deg(f) ≤ (m− 1)n for every m-ary function f , deg(f) <

(m − 1)n is equivalent to deg(f) ̸= (m − 1)n. Take an m-ary function f with deg(f) = (m − 1)n,
and let us prove that s(f) ≥ h(n). Taking g := fε, we have that gεm−1 = f . Hence, applying
Lemma 4.7 to g, we have that E(g) = E(fε) ̸= 0. Then, by (1′) there is a vector v ∈ U n

m satisfying that
h(n) ≤ sv((fε)εm−1) = sv(f), and we directly conclude that s(f) = maxx∈U n

m
sx(f) ≥ sv(f) ≥ h(n). □

Example 4.10. The three induced subgraphs H1, Hε, Hε2 whose vertices partition U 3
3 and were studied

in Examples 4.1 and 4.4 satisfy that
∑2

k=0 |ρ(V (Hεk))|εk = 9ε2 + 10ε + 8 = ε − 1 ̸= 0, and 2 · 3 −
min{δ(H1), δ(Hε), δ(Hε2)} = 3. As a consequence, if there exists h : N → R satisfying (any of) the
conditions of Theorem 4.9 for 3-ary functions, then h(3) ≤ 3.

Remark 4.11. Although the equivalence theorem for m-ary functions looks different from its Boolean
version, it is a generalization of it. Indeed, if m = 2, then Um = {−1, 1}, and if one denotes H ′

1 (respect.
H ′

−1) the induced subgraphs with vertices ρ(V (H1)) (respect. ρ(V (H−1))), in Theorem 4.9 one has that

n−min{δ(H1), δ(H−1)} = max{∆(H ′
1),∆(H ′

−1)}

(see Figure 5), and the condition
∑m−1

i=0 |ρ(V (Hεi))| εi ̸= 0 is translated to |V (H ′
1)| ≠ |V (H ′

−1)|. Hence,
for m = 2 and taking G := H ′

1, condition (1) can be equivalently restated as:
For any induced subgraph G of Qn such that |V (G)| ≠ 2n−1, then max{∆(G),∆(Qn − G)} ≥ h(n),

where Qn −G denotes the induced subgraph of Qn with V (Qn −G) = V (Qn) \ V (G).

The equivalence theorem allows us to translate the sensitivity conjecture for m-ary functions into an
equivalent graph theoretical problem.

Conjecture 4.12. For every positive integer m there exists µ > 0 such that for any collection of
(possibly empty) induced subgraphs H1, Hε, . . . ,Hεm−1 of H(n,m) whose vertex sets partition U n

m and∑m−1
k=0 |ρ(V (Hεk))| εk ̸= 0, it holds

(m− 1)n−min{δ(Hεk) | 0 ≤ k ≤ m− 1} ∈ Ω(nµ) .
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H ′1

H ′−1

C1 C−1

H1

H−1

C1 C−1

−→

Figure 5. Theorem 4.9 generalizes Gotsman-Linial’s Boolean equivalence theorem

Remark 4.13. Note that when m = p is a prime number, the m-th cyclotomic polynomial is Φp(x) =

xp−1 + xp−2 + · · ·+ x+1 ∈ Q[x]. Hence,
∑p−1

i=0 aiε
i = 0 with a0, . . . , ap−1 ∈ Q if and only if a0 = · · · =

ap−1. As a consequence, when m is a prime number, the condition “
∑m−1

k=0 |ρ(V (Hεk))| εk ̸= 0” in the
statement of Conjecture 4.12 can be replaced by the equivalent condition “there exists k ∈ [0, p− 1] such
that |ρ(V (Hεk))| ≠ pn−1”.

In the next section, we prove that if m is a prime number and Conjecture 4.12 holds for m-ary
functions, then µ ≤ 1/2.

5. Quadratic separation between the sensitivity and the degree

Chung, Füredi, Graham and Seymour [8] provided an induced subgraph of the n-dimensional hyper-
cube with 2n−1+1 vertices whose maximum degree is strictly smaller than

√
n+1. By Gotsman-Linial’s

equivalence theorem, this resulted in the existence of Boolean functions with s(f) <
√

deg(f) + 1.

Huang [17] later proved that s(f) ≥
√
deg(f) for every Boolean function f . The goal of this section

it to extend the construction in [8] to the Hamming graph H(n,m) and use the equivalence theorem
for m-ary functions to produce m-ary functions with low sensitivity and high degree. For convenience,
in this section we work with the set [0,m − 1] instead of {1, ε, . . . , εm−1}; consequently, we denote the
vertex set of H(n,m) by [0,m− 1]n.

Let m,n ≥ 2. There is a natural bijection between the set P([n])≤(m−1) of multisubsets of [n] with
multiplicity at most m − 1 and [0,m − 1]n. This bijection sends I ∈ P([n])≤(m−1) to the n-tuple
(multI(1), . . . ,multI(n)) ∈ [0,m − 1]n, and lets us identify the vertices of H(n,m) with elements of
P([n])≤(m−1).

For A ⊂ [n] and j ≥ 1, we denote by A(j) the multisubset of [n] with the same elements as A, all
of them with multiplicity j. In P([n])≤(m−1) we consider the partial order given by inclusion, where
P ⊆ Q if the multiplicity of every element in P is smaller than or equal to its multiplicity in Q. For every
multisubset P ∈ P([n])≤(m−1) we denote by ↑ {P} its filter, i.e., the set ↑ {P} = {Q ∈ P([n])≤(m−1) :
P ⊆ Q}, and for F ⊆ P([n])≤(m−1) we denote ↑ F = ∪P∈F ↑ {P}.

Lemma 5.1. Let m,n ≥ 2, and let {A1, . . . , Ak} be a partition of [n] into k nonempty sets. We denote

Fi :=↑ {A(i)
1 , A

(i)
2 , . . . , A

(i)
k } and consider the following induced subgraphs of H(n,m):

• Gm−1 is the induced subgraph on Fm−1,
• Gi is the induced subgraph on Fi \ Fi+1 for i ∈ {1, 2, . . . ,m− 2}, and
• G0 is the induced subgraph on P([n])≤(m−1) \ F1.

Then {V (Gi) | 0 ≤ i ≤ m− 1} constitute a partition of V (H(n,m)), and

δ(Gi) = (m− 1)(n− k) + i(k −max(|A1|, . . . , |Ak|)) for 0 ≤ i ≤ m− 1.

In particular, (m− 1)n−min{δ(G0), . . . , δ(Gm−1)} = (m− 1) max(k, |A1|, . . . , |Ak|).

Proof. It is clear that V (G0), V (G1), . . . , V (Gm−1) constitute a partition of V (H(n,m)). Let us compute
the values δ(G0), δ(G1), . . . , δ(Gm−1).

Take B ∈ V (Gm−1). Then there is at least one index i ∈ [k] such that A
(m−1)
i ⊆ B. If there are

two indices verifying the previous property, then all the neighbors of B are in Gm−1 and degGm−1
(B) =

(m − 1)n. If there is only one index i0 such that A
(m−1)
i0

⊆ B, then changing the multiplicity in B of

any element of Ai0 (from m − 1 to any value in [0,m − 2]) one gets a multiset not containing A
(m−1)
i0

anymore, and hence degGm−1
(B) = (m − 1)(n − |Ai0 |). As a consequence, δ(Gm−1) = (m − 1)(n −

max(|A1|, . . . , |Ak|)).



12 S. ASENSIO, I. GARCÍA-MARCO, AND K. KNAUER

Take now B ∈ V (G0). Then B does not contain Ai for any i ∈ [k]. If there are at least two elements
in each Ai which do not belong to B, then all the neighbors of B are in G0 and degG0

(B) = (m− 1)n.
On the other hand, for each i ∈ [k] such that B does not contain exactly one element of Ai, then we
can add to B this missing element with all possible multiplicities to get (m− 1) vertices adjacent to B
and not in G0. Since this can happen for all i ∈ [k], B has at most (m− 1)k neighbors not in G0, and
there are vertices attaining this bound. Hence, δ(G0) = (m− 1)(n− k).

Now let i ∈ {1, . . . ,m − 2} and B ∈ V (Gi). Then there is some j ∈ [k] such that A
(i)
j ⊆ B but

A
(i+1)
s ̸⊆ B for all s ∈ [k]. Let us compute how many neighbors of B are not in Gi.
First, we compute the number of neighbors of B not in Fi. If B contains more than one multiset

A
(i)
j , then B has all its neighbors in Fi. Assume that there is only one index j0 such that A

(i)
j0

⊆ B. In

order to obtain a neighbor of B which does not contain A
(i)
j0
, we have to change the multiplicity in B of

any element of Aj0 to any value in [0, i− 1]. Hence B has at most i|Aj0 | neighbors not in Fi.
Now we compute the number of vertices adjacent to B in Fi+1. If we change the multiplicity of only

one element of B and as a result we obtain a new multiset B′ such that A
(i+1)
s ⊆ B′ for some s ∈ [k],

then all the elements of As already have multiplicity at least i + 1 in B except one, which is the one
whose multiplicity we have to change to any value in [i + 1,m − 1] (m − i − 1 different possibilities).
Since this can happen with every Aj , we conclude that B has at most k(m− i− 1) neighbors in Fi+1.
As a consequence,

δ(Gi) ≥ (m− 1)n− i(max(|A1|, . . . , |Ak|))− k(m− 1− i)

for all i ∈ [0,m− 1], and there are vertices achieving this bound. Hence, δ(Gi) = (m− 1)(n− k)+ i(k−
max(|A1|, . . . , |Ak|)) and the result follows. □

If one takes a partition {A1, . . . , Ak} of [n] such that max(k, |A1|, . . . , |Ak|) = ⌈
√
n⌉, applying the

previous lemma one gets that

(m− 1)n−min{δ(G0), δ(G1), . . . , δ(Gm−1)} = (m− 1)⌈
√
n⌉.

Now we are going to prove that, when m is a prime number and n is a perfect square which is a multiple
of m2(m − 1)2, then this construction also satisfies that

∑m−1
k=0 |ρ(V (Gk))| εk ̸= 0, and hence one may

apply Proposition 4.8.

Proposition 5.2. For every prime p ≥ 3 and every perfect square n = N2 with N ≡ 0 mod p(p− 1),
there exist p induced subgraphs G0, G1, . . . , Gp−1 of H(n, p) whose vertex sets partition V (H(n, p)) such

that
∑p−1

i=0 |ρ(V (Gk))| εk ̸= 0 and (p− 1)n−min{δ(G0), δ(G1), . . . , δ(Gp−1)} = (p− 1)
√
n.

For proving this result we will use some lemmas:

Lemma 5.3. Let m, ℓ ≥ 2 and s ∈ Z, and denote

Hℓ
s :=

∣∣∣∣∣
{
(x1, . . . , xℓ) ∈ [0,m− 2]ℓ :

ℓ∑
i=1

xi ≡ s mod m

}∣∣∣∣∣ .

Then,

Hℓ
s =



(∑(ℓ−2)/2
i=0 (m− 1)2i

)
(m− 2) if ℓ is even and s+ ℓ ̸≡ 0 mod m,(∑(ℓ−2)/2

i=0 (m− 1)2i
)
(m− 2) + 1 if ℓ is even and s+ ℓ ≡ 0 mod m,(∑(ℓ−3)/2

i=0 (m− 1)2i+1
)
(m− 2) + 1 if ℓ is odd and s+ ℓ ̸≡ 0 mod m,(∑(ℓ−3)/2

i=0 (m− 1)2i+1
)
(m− 2) if ℓ is odd and s+ ℓ ≡ 0 mod m.

Proof. The result follows by induction on ℓ applying the recursive formula

Hℓ
s =

m−2∑
k=0

Hℓ−1
s−k

and the fact that for ℓ = 1 one has that H1
s = 1 if s ̸≡ −1 mod m, and H1

s = 0 if s ≡ −1 mod m,
which lead us to the table in Figure 6, in which the entry in the i-th row and the j-th column is equal
to Hi

j . It is clear that each row satisfies that its entries are all equal except one, and the one which is
different corresponds to the case in which i+ j ≡ 0 mod m. □
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2

3

...

m

m+ 1

...

1 2 . . . m− 3 m− 2 m− 1

H1
0 = 1 1 1 . . . 1 1 0

H2
0 = m− 2 m− 2 m− 2 . . . m− 2 m− 1 m− 2

H3
0 = (m− 2)(m− 1) + 1 (m− 2)(m− 1) + 1 . . . (m− 2)(m− 1)

m− 1

Hm
0

1

0

(m− 2)(m− 1) + 1 (m− 2)(m− 1) + 1(m− 2)(m− 1) + 1

Hm
1 Hm

2 Hm
m−3 Hm

m−2 Hm
m−1

. . .

Figure 6. Table T with Tij = Hi
j

Lemma 5.3 provides the exact values of Hℓ
s . However, in the proof of Proposition 5.2 we only use

that Hℓ
s −Hℓ

t ∈ {−1, 0, 1}, and that Hℓ
s = Hℓ

t whenever s+ ℓ ̸≡ 0 mod m and t+ ℓ ̸≡ 0 mod m.

A theorem due to Lucas (see, e.g., [11,23]) provides the value of the binomial coefficient
(
M
N

)
modulo a

prime in terms of the p-adic expansion of M and N . A direct consequence of this result is the following:

Corollary 5.4. Let p be a prime and let M ∈ N be a multiple of p. If N ∈ N is not a multiple of p,
then

(
M
N

)
≡ 0 mod p . As a consequence, if N1, . . . , Ns ∈ N satisfy that N1 + · · · +Ns = N and Ni is

not a multiple of p for some i ∈ [1, s], then(
M

N1, . . . , Ns

)
≡ 0 mod p.

Lemma 5.5. Let p ≥ 3 be a prime number, t ∈ [p− 2], N a multiple of p(p− 1) and s ∈ Z. Then,

∆N
t,s :=

∣∣∣∣∣
{
(x1, . . . , xN ) ∈ [0, t]N \ [1, t]N :

N∑
i=1

xi ≡ s mod p

}∣∣∣∣∣
is a multiple of p.

Proof. We observe that ∆N
t,s = ∆N

t,(s mod p), so we may assume that 0 ≤ s ≤ p − 1. We separate the

proof in two cases.
We first assume that s ̸= 0. We observe that for every (x1, . . . , xN ) ∈ ∆N

t,s and every permutation

σ : {1, . . . , N} → {1, . . . , N} one has that (xσ(1), . . . , xσ(n)) ∈ ∆N
t,s. Hence, if yi denotes the number

of entries among x1, . . . , xN that are equal to i, then there are
(

N
y0,...,yt

)
different elements that can be

obtained permuting the entries of (x1, . . . , xN ). Since x1 + · · ·+ xN = 0y0 + · · ·+ tyt ≡ s (mod p), then
there exists j such that yj ̸≡ 0 mod p. Since N is a multiple of p, applying Corollary 5.4 we have that(

N
y0,...,yt

)
≡ 0 mod p.

We assume now that s = 0. We have that
∑p−1

i=0 ∆N
t,i = (t+1)N − tN . Since N is a multiple of p− 1

and 1 ≤ t < t + 1 ≤ p − 1, by Fermat’s little Theorem one has that (t + 1)N ≡ tN ≡ 1 mod p. Then

∆N
t,0 ≡ −

∑p−1
i=1 ∆N

t,i ≡ 0 mod p. □

Proof of Proposition 5.2. Consider the partition of [n] into the sets A1 = {1, . . . , N}, A2 = {N +
1, . . . , 2N}, . . . , AN = {N2 − N + 1, . . . , N2} and consider the induced subgraphs G0, . . . , Gp−1 de-
scribed in Lemma 5.1 (see Figure 7).

By Lemma 5.1 we have that V (G0), . . . , V (Gp−1) partition V (H(n, p)) ∼= P([n])≤(p−1), and (p−1)n−
min{δ(G0), δ(G1), . . . , δ(Gp−1)} = (p− 1)

√
n.
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↑ {A(p−1)
1 }

A
(p−1)
1

A
(p−1)
2 A

(p−1)
N

. . .

V (Gp−1) =↑ {A(p−1)
1 , A

(p−1)
2 , . . . , A

(p−1)
N } = ∪N

i=1 ↑ {A(p−1)
i }

V (Gp−2) =
(
∪N
i=1 ↑ {A(p−2)

i }
)
\ V (Gp−1)

...

A
(1)
1 A

(1)
2 A

(1)
N

V (G0) = P([n])≤(p−1) \
(
∪p−1
j=1V (Gj)

)

A
(p−2)
1 A

(p−2)
2 A

(p−2)
N

. . .

Figure 7. V (G0), . . . , V (Gp−1) as elements of the poset P([n])≤(p−1)

It only remains to prove that
∑p−1

i=0 |ρ(V (Gi))| εi ̸= 0. Since p is prime, by Remark 4.13 this is
equivalent to proving that |ρ(V (G0))|, . . . , |ρ(V (Gp−1))| are not all equal. Indeed, we are going to show
that |ρ(V (Gp−1))| ̸≡ |ρ(V (G1))| mod p. This will follow from:

(i) |ρ(V (Gp−1)) ∩ V (Gp−1)| − |ρ(V (G1)) ∩ V (Gp−1)| ∈ {1,−1},
(ii) |ρ(V (Gp−1)) ∩ V (G0)| − |ρ(V (G1)) ∩ V (G0)| = 0, and
(iii) |ρ(V (Gr)) ∩ V (Gi)| ≡ 0 mod p for 1 ≤ i ≤ p− 2 and 0 ≤ r ≤ p− 1.

We recall that, by Remark 4.5, we have that

ρ(V (Gi)) = ∪p−1
j=0(Dj ∩ V (Gi−j))

for every i ∈ [0, p − 1], where the indices are taken modulo p and Dj = {x = (x1, x2, . . . , xn) ∈
[0, p− 1]n |

∑n
i=1 xi ≡ j mod p}.

Let us prove (i), taking into account that

|ρ(V (Gp−1)) ∩ V (Gp−1)| − |ρ(V (G1)) ∩ V (Gp−1)| = |D0 ∩ V (Gp−1)| − |D2 ∩ V (Gp−1)|.

We observe that if B ∈ ↑ {A(p−1)
1 }, then its last entry is free in the following sense: if we change its

last entry by any value (or, in other words, if we change the multiplicity of n in B), then we obtain new

elements of ↑ {A(p−1)
1 }, and each of them belongs to a different Di. In particular, | ↑ {A(p−1)

1 }∩D0|−| ↑
{A(p−1)

1 } ∩ D2| = 0. The same happens if we take an element of ↑ {A(p−1)
i } \

(
∪i−1
j=1 ↑ {A(p−1)

j }
)
for

all i ∈ {2, . . . , N − 1}, so we just have to focus on what happens with the elements of ↑ {A(p−1)
N } \(

∪N−1
i=1 ↑ {A(p−1)

i }
)
.

The entries of every element of V (H(n, p)) can be separated in N blocks according to the different
sets A1, A2, . . . , AN to which their indices belong. If the first element of the block corresponding to
AN−1 is not equal to p − 1, then the last entry of that block is free. So we can assume that this first
element is equal to p − 1, and repeating this reasoning we get that the elements of V (Gp−1) that are
not equally distributed among D0, D1, . . . , Dp−1 must be of the form

(p− 1, . . . , p− 1, ∗1︸ ︷︷ ︸
N

, p− 1, . . . , p− 1, ∗2︸ ︷︷ ︸
N

, . . . , p− 1, . . . , p− 1, ∗N−1︸ ︷︷ ︸
N

, p− 1, . . . , p− 1, p− 1︸ ︷︷ ︸
N

).

To compute which of these elements belong to D0, we want that
∑N−1

j=1 ∗j+(p−1)(N−1)2+(p−1)N ≡ 0

mod p. Since N ≡ 0 mod p, this is equivalent to
∑N−1

j=1 ∗j ≡ 1 mod p, and following the notation of
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Lemma 5.3 there are exactly HN−1
1 such vertices. Furthermore, for D2, we want that

∑N−1
j=1 ∗j + (p−

1)(N −1)2+(p−1)N ≡ 2 mod p; i.e., we want that
∑N−1

j=1 ∗j ≡ 3 mod p, and there are exactly HN−1
3

such vertices. Moreover, since N is a multiple of p one has that N − 1+ 1 ≡ 0 mod p and, since p ≥ 3,
N − 1 + 3 ̸≡ 0 mod p; thus, by Lemma 5.3,

|ρ(V (Gp−1)) ∩ V (Gp−1)| − |ρ(V (G1)) ∩ V (Gp−1)| = HN−1
1 −HN−1

3 ∈ {+1,−1}.
Let us prove (ii), starting with the fact that

|ρ(V (Gp−1)) ∩ V (G0)| − |ρ(V (G1)) ∩ V (G0)| = |Dp−1 ∩ V (G0)| − |D1 ∩ V (G0)|.
As in the previous case, we separate the entries of these vertices in N blocks. The vertices of G0 have at
least one entry equal to 0 in each of the N blocks. If the first entry of the first block is equal to 0, then
the last entry of that block is free. Hence we can assume that this entry is not equal to 0. Repeating
this idea we get that the elements of V (G0) that are not equally distributed among D0, D1, . . . , Dp−1

must be of the form

(∗11, . . . , ∗1N−1, 0︸ ︷︷ ︸
N

, ∗21, . . . , ∗2N−1, 0︸ ︷︷ ︸
N

, . . . , ∗N1 , . . . , ∗NN−1, 0︸ ︷︷ ︸
N

) ,

where ∗ji ∈ [1, p− 1]. If we subtract one unit to every nonzero entry of the previous vector, then we get
that

|Dp−1 ∩ V (G0)| − |D1 ∩ V (G0)| = H
N(N−1)
p−1 −H

N(N−1)
1 ,

which equals 0 by Lemma 5.3.
Let us prove (iii). We are going to show that |ρ(V (Gr))∩V (Gj)| ≡ 0 mod p for all r ∈ [0, p− 1] and

all j ∈ [1, p− 2] or, equivalently, that |Ds ∩ V (Gj)| ≡ 0 mod p for all s ∈ [0, p− 1] and all j ∈ [1, p− 2].
We observe that all the elements x ∈ V (Gj) can be uniquely built by choosing:

• k ∈ [1, N ] (here k indicates the smallest index such that x contains A
(j)
k ),

• c1, . . . , ck−1 ∈ [0, p− 1]N \ [j, p− 1]N ,
• b ∈ [j, p− 1]N \ [j + 1, p− 1]N ,
• ck+1, . . . , cN ∈ [0, p− 1]N \ [j + 1, p− 1]N , and

considering x = (c1, . . . , ck−1, b, ck+1 . . . , cN ).
Hence, by Lemma 5.5, for a given k ∈ [1, N ], c1, . . . , ck−1 ∈ [0, p − 1]N \ [j, p − 1]N , ck+1, . . . , cN ∈

[0, p− 1]N \ [j + 1, p− 1]N , the number of elements x = (c1, . . . , ck−1, b, ck+1 . . . , cN ) ∈ Ds ∩ V (Gj) is a
multiple of p. Thus, |Ds ∩ V (Gj)| ≡ 0 mod p.

By (i), (ii) and (iii) we can conclude that

|ρ(V (Gp−1))| − |ρ(V (G1))| =
p−1∑
i=0

(|ρ(V (Gp−1)) ∩ V (Gi)| − |ρ(V (G1)) ∩ V (Gi)|) ≡ ±1 mod p,

and hence |ρ(V (Gp−1))| ≠ |ρ(V (G1))|. □

Proposition 5.2 imposes several conditions on the values of m and n (m ≥ 3 is a prime and n = N2

is a perfect square which is a multiple of p2(p− 1)2), and our proof heavily relies on these hypotheses.
However, we believe that the same type of results can be proved for general values of m and n.

As a consequence of Proposition 5.2 together with Proposition 4.8 we have the following result,
which in particular implies that if the p-ary sensitivity conjecture (Conjecture 1.2) holds, then c ≥ 2.
Equivalently, this also implies that if Conjecture 4.12 holds for p-ary functions, then µ ≤ 1/2.

Proposition 5.6. For every prime p and every positive integer D, there exists n0 such that for all
n ≥ n0 there is a p-ary function f : {1, ε, . . . , εp−1}n → {1, ε, . . . , εp−1} with deg(f) > D and

s(f) =
√
(p− 1)deg(f) .

Proof. Take n0 = N2 a perfect square such that N ≡ 0 mod p(p − 1) and n0 > D/(p − 1). By
Proposition 5.2 together with Proposition 4.8, there exists a p-ary function g : {1, ε, . . . , εp−1}n0 →
{1, ε, . . . , εp−1} of degree deg(g) = (p − 1)n0 > D and sensitivity s(g) =

√
(p− 1)deg(g). Now, for

n ≥ n0, we consider f : {1, ε, . . . , εp−1}n → {1, ε, . . . , εp−1} given by f(x1, . . . , xn) = g(x1, . . . , xn0) for
every (x1, x2, . . . , xn) ∈ {1, ε, . . . , εp−1}n. Since f and g have the same sensitivity and degree, the result
follows. □

This result together with Proposition 2.7 yield the following.

Theorem 1.3. For every set T ⊆ C of prime cardinality |T | = p and every positive integer D, there
exists a p-ary function f : Tn → T with deg(f) > D and s(f)2/(p− 1)3 ≤ deg(f).
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6. Conclusions

The main open problem is the m-ary sensitivity conjecture (Conjecture 1.2) and its reformulation in
graph theoretical terms (Conjecture 4.12). The statement of Conjecture 4.12 is a bit intricate due to
the additional property concerning the values |ρ(V (Hεk))|. We present a stronger conjecture in more
natural terms:

Conjecture 6.1 (Strong m-ary Sensitivity Conjecture). Let m be a positive integer and ε an m-th
primitive root of unity. There exists µ > 0 such that for any partition of H(n,m) into (possibly empty)
induced subgraphs H1, . . . ,Hm with

∑m
i=1 |V (Hi)| εi ̸= 0, we have

max{∆(H1), . . . ,∆(Hm)} ∈ Ω(nµ) .

Let us quickly see that indeed:

Proposition 6.2. Conjecture 6.1 implies Conjecture 4.12.

Proof. Assume that Conjecture 6.1 holds, and consider m induced subgraphs H1, Hε, . . . ,Hεm−1 of
H(n,m) such that their vertex sets partition V (H(n,m)) and

∑m−1
i=0 |ρ(V (Hεi))|εi ̸= 0. Denote by H ′

εi

the induced subgraph with V (H ′
εi) = ρ(V (Hεi)). Since we are assuming that Conjecture 6.1 holds, then

max{∆(H ′
1), . . . ,∆(H ′

εm−1)} ∈ Ω(nµ)

for some µ > 0.
We observe that for all v ∈ V (H(n,m)) there exist r, s ∈ [0,m−1] such that v ∈ V (Hεr ), v ∈ V (H ′

εs),
and degHεr

(v) + degH′
εs
(v) ≤ (m − 1)n because the neighborhoods of v in Hεr and H ′

εs are disjoint.

Hence,

(m− 1)n−min{δ(Hεk) | 0 ≤ k ≤ m− 1} ≥ max{∆(H ′
1), . . . ,∆(H ′

εm−1)}
and the result follows. □

Note that if m is a prime number, then the condition
∑m

i=1 |V (Hi)| εi ̸= 0 in Conjecture 6.1 reduces
to requiring that not all Hi have the same order (see Remark 4.13). For m = 3 this leads to the
conjecture in the introduction:

Conjecture 1.4. There exists µ > 0 such that for any partition of the Hamming graph H(n, 3) into
three (possibly empty) induced subgraphs H1, H2, H3 not all of the same order, it holds:

max{∆(H1),∆(H2),∆(H3)} ∈ Ω(nµ) .

Concerning Conjecture 6.1, there are some recent works in which the authors study the maximum
degrees of induced subgraphs of the Hamming graph H(n,m). For example, denoting by α(G) the
independence number of a graph G, Dong [10] constructed an induced subgraph ofH(n,m) on more than
α(H(n,m)) = mn−1 vertices whose maximum degree is strictly smaller than

√
n+1. This construction

was later improved by Tandya [32], who was able to prove that H(n,m) has an induced subgraph on
mn−1 + 1 vertices with maximum degree 1 whenever m ≥ 3.

For m = 3, Potechin and Tsang [30] provide upper bounds on the maximum number of vertices of
an induced subgraph with maximum degree at most 1. They show that if U ⊆ V (H(n, 3)) is disjoint
from a maximum size independent set of H(n, 3) and the induced subgraph on U has maximum degree
at most 1, then |U | ≤ 3n−1 + 1. This shows that a construction by Garćıa-Marco and Knauer [14]
is largest-possible. Potechin and Tsang also provide an induced subgraph of H(n, 3) with 3n−1 + 18
vertices with maximum degree equal to 1 and which is almost optimal in several senses. However, it
seems that from these constructions no partition into induced subgraphs of small maximum degrees can
be obtained, if they are not allowed to be all of the same order. Finally, note that our graph theoretical
Conjectures 1.4, 4.12, 6.1 can all be seen as special variants of so-called defective colorings, see [34] for
a survey. However, our imbalance requirements on the color classes seem to be novel.
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Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France, Departament de Matemàtiques
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