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Abstract. We generalize the (signed) Varchenko matrix of a hyperplane arrangement
to complexes of oriented matroids and show that its determinant has a nice factorization.
This extends previous results on hyperplane arrangements and oriented matroids.

1. Introduction

Schechtman and Varchenko [11] considered a symmetric matrix which may be viewed
as a bilinear form on the vector space of linear forms of the set of regions of a hyperplane
arrangement A over some ordered field K. The value of the product of the characteristic
vectors of regions Qi and Qj is given by a product

∏
e∈S(Qi,Qj)

we, where the we are weights

on the hyperplanes He of the arrangements and S(Qi, Qj) is the set of hyperplanes that
have to be crossed on a shortest path from Qi to Qj. The corresponding Varchenko Matrix
BA has entries of the form

∏
e∈S(Qi,Qj)

we for any pair of regions Qi and Qj, also see

Theorem 2.9. In order to determine when the bilinear form is degenerate, Varchenko [13]
gave an elegant factorization of the determinant of that matrix, considering the weights as
variables.

Theorem 1.1 (Varchenko 1993 [13]). Let A be a real hyperplane arrangement, BA its
Varchenko matrix, and L(A) the geometric lattice formed by the intersections of hyper-
planes in A, then

det(BA) =
∏

F∈L(A)

(
1− w2

F

)mF

where wF =
∏

F⊂He
we and mF are positive integers depending only on L(A).

After the original proof of Varchenko there were several approaches to provide cleaner
proofs of this result. Denham and Henlon [5] sketched an elegant alternative way to prove
the result. Gente [6] provided some more details for that proof and claimed to have gener-
alized the result to cones, which are also called topcones or in our notation supertopes, i.e.
convex sets of regions. This method was generalized by Hochstättler and Welker [8] to ori-
ented matroids, which form a combinatorial model for hyperplane arrangements reflecting
their local linear structure but allowing for some global non-linearities.

Aguiar and Mahajan [1] generalized the original proof of Varchenko to a signed version
of the matrix and also derived the result for topcones. Here one considers an oriented
hyperplane arrangement and the entries of the signed Varchenko matrix depend on which
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side of a hyperplane a cell lies, see Definition 2.7. Randriamaro [10] generalized their proof
to oriented matroids.

Bandelt et al. generalized oriented matroids to complexes of oriented matroids by relaxing
the global symmetry while maintaining convexity and local symmetry. This framework
captures a variety of classes beyond oriented matroids, e.g., distributive lattices, CAT(0)-
cube complexes, lopsided sets, linear extension graphs, and affine oriented matroids, see [2].
The purpose of this paper is to show, that the latter requirements are still sufficient for
the factorization formula to hold. The presentation as well as the proof follow the lines of
Hochstättler and Welker [8]. We furthermore achieve a generalization to the signed version
of the Varchenko matrix, thus generalizing Randriamaro [10].

The paper is organized as follows. In Section 2 we introduce the considered structures.
In Section 3 we present some tools from algebraic topology that we need for the proof
of the main theorem. The latter is presented in Section 4. We give some examples and
applications in Section 5 and conclude the paper with some further remarks in Section 6.

2. The Varchenko Determinant and Complexes of Oriented Matroids

Before we introduce the Varchenko Determinant, we need to get familiar with complexes
of oriented matroids (COMs). COMs have been introduced in [2] as a common general-
ization of oriented matroids, affine oriented matroids, and lopsided sets. We will use the
notation from [2] and [4]. Note that the symbols +,− and 0 act like 1,−1 and 0 when it
comes to negation and multiplication. We start with the following definitions and axioms.

Definition 2.1. We consider sign vectors on a finite ground set E, i.e., elements of
{0,+,−}E. The composition of two sign vectors X and Y is defined as the sign-vector

(X ◦ Y )e =

{
Xe if Xe ̸= 0,

Ye if Xe = 0
∀e ∈ E.

The reorientation of X with respect to A ⊆ E is defined as the sign-vector

AX =

{
−Xe if e ∈ A,

Xe if e /∈ A
∀e ∈ E.

The separator of X and Y is defined as

S(X, Y ) = {e ∈ E : Xe = −Ye ̸= 0}.

The support of X is defined as

X = {e ∈ E : Xe ̸= 0}.

The zero-set of X is defined as

z(X) = E\X = {e ∈ E : Xe = 0}.

For a set L ⊆ {0,+,−}E we introduce five axioms:
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(FS): Face Symmetry

∀X, Y ∈ L : X ◦ (−Y ) ∈ L.
(SE): Strong Elimination

∀X, Y ∈ L∀e ∈ S(X, Y )∃Z ∈ L :

Ze = 0 and ∀f ∈ E \ S(X, Y ) : Zf = (X ◦ Y )f .

(C): Composition

∀X, Y ∈ L : X ◦ Y ∈ L.
(Z): Zero

The all zeros vector 0 ∈ L.
(Sym): Symmetry

∀X ∈ L : −X ∈ L.
Now we can define the term COM.

Definition 2.2 (Complex of Oriented Matroids (COM)). Let E be a finite set and L ⊆
{0,+,−}E. The pair M = (E,L) is called a COM, if L satisfies (FS) and (SE). The
elements of L are called covectors.

Let us first present OMs as special COMs.

Definition 2.3 (Oriented Matroid (OM)). Let E be a finite set and L ⊆ {0,+,−}E. The
pair M = (E,L) is called an OM, if it is a COM that satisfies (Z).

Remark 2.4. Usually OMs are defined satisfying (C),(Sym),(SE). But note that (FS) im-
plies (C). Indeed, by (FS) we first get X ◦ −Y ∈ L and then X ◦ Y = (X ◦ −X) ◦ Y =
X ◦ −(X ◦ −Y ) ∈ L for all X, Y ∈ L. Further, (Z) together with (FS) clearly implies
(Sym). Conversely, (Sym) and (C) imply (FS) while (Sym) and (SE) imply (Z).

Let M = (E,L) be a COM. In the following we assume that M = (E,L) is simple, i.e.

∀e ∈ E : {Xe | X ∈ L} = {+,−, 0} and ∀e ̸= f ∈ E : {XeXf | X ∈ L} = {+,−, 0}.
In this setting the sign-vectors in L of full support are called topes and their collection is
denoted by T .

The restriction of a sign-vector X ∈ {0,+,−}E to E\A, A ⊆ E, denoted by X\A ∈
{0,+,−}E\A, is defined by (X\A)e = Xe for all e ∈ E\A. We also write X|E\A. The
deletion of a COM is defined by (E\A,L\A), where L\A = {X\A, X ∈ L}, also written
as L|E\A. Let T ∈ T a tope of a COM M = (E,L) and S+, S− ⊆ E be subsets of the
positive respectively negative elements of T . The topal fiber ρ(S+,S−)(L) has ground set
E \ (S+ ∪ S−) and covectors {X \ (S+ ∪ S−) | X ∈ L, e ∈ S± =⇒ Xe = ±}. We denote
by T (S+, S−) the set of topes of ρ(S+,S−)(L).

We will make use of the fact (shown in [2]) that the class of simple COMs is closed under
deletion and under taking topal fibers.
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For a covector X ∈ L, the set F (X) = {X ◦ Y | Y ∈ L} is usually called the face of X.
We define star(X) = {T ∈ T |X ≤ T}, where the componentwise ordering with respect to
0 < +,− is used. Note that star(X)\X is the set of topes of (E\X,F (X)\X), which is
well-known and easily seen to be an oriented matroid.

Let us look at a special OM which we will need in the next chapter.

Definition 2.5 (Graphic OM of a directed n-cycle). This OM has a ground set E of size n
and its set of covectors Cn consists of 0 and all compositions of sign-vectors from {0,+,−}E
with exactly one positive and exactly one negative entry.

It can easily be checked that Cn is the set of covectors of an OM. We use C3 as an
example:

Example 2.6 (Graphic OM of a directed triangle). We look at a digraph with three vertices
which just consists of a directed cycle, i.e.

The ground set E of this OM corresponds to the three arcs. One gets the covectors of such
an OM by looking at the sign vectors of directed cuts (indicated with dotted lines). These
sign vectors are (+,−, 0), (−,+, 0), (+, 0,−), (−, 0,+), (0,+,−) and (0,−,+). Their
compositions additionally yield the covectors (+,+,−), (+,−,+), (−,+,+), (−,−,+),
(−,+,−) and (+,−,−). We see that T consists of all full support sign vectors, except
(+,+,+) and (−,−,−).

We define the signed Varchenko matrix for COMs analogously to this matrix for hyper-
plane arrangements in [1]. For this purpose we introduce two variables xe+ , xe− for each
element e ∈ E. Let K be a field and let K[xe∗ | ∗ ∈ {+,−}, e ∈ E] the polynomial ring in
the set of variables xe∗ , ∗ ∈ {+,−}, e ∈ E.

Definition 2.7 (Signed Varchenko Matrix of a COM). Let M = (E,L) be a COM. The
signed Varchenko matrix V of a COM is defined by a #T ×#T -Matrix over

K[xe∗ | ∗ ∈ {+,−}, e ∈ E].

Its rows and columns are indexed by the topes T in a fixed linear order. For P,Q ∈ T

VP,Q =
∏

e∈S(P,Q)

xePe .

Note that the diagonal entries VP,P of the matrix are equal to 1. Let us illustrate this
definition with the graphic OM of a directed triangle.
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Example 2.8 (continued). The signed Varchenko Matrix of the graphic OM of a directed
triangle is

V =


1 x+

2 x
−
3 x+

1 x
−
3 x+

1 x
+
2 x

−
3 x+

1 x+
2

x−
2 x

+
3 1 x+

1 x
−
2 x+

1 x+
1 x

−
2 x

+
3 x+

3

x−
1 x

+
3 x−

1 x
+
2 1 x+

2 x+
3 x−

1 x
+
2 x

+
3

x−
1 x

−
2 x

+
3 x−

1 x−
2 1 x−

2 x
+
3 x−

1 x
+
3

x−
1 x−

1 x
+
2 x

−
3 x−

3 x+
2 x

−
3 1 x−

1 x
+
2

x−
2 x−

3 x+
1 x

−
2 x

−
3 x+

1 x
−
3 x+

1 x
−
2 1



In this work we will prove the following theorem.

Theorem 2.9. Let V be the signed Varchenko matrix of the COM M = (E,L). Then

det(V) =
∏
Y ∈L

(1− a(Y ))bY .

where a(Y ) :=
∏

e∈z(Y ) xe+xe− and bY are nonnegative integers that can be explicitly com-
puted, see Remark 4.8.

Example 2.10 (continued). For our example the determinant of the signed Varchenko ma-
trix factorizes to

det(V) = (1− x+
1 x

−
1 )

2(1− x+
2 x

−
2 )

2(1− x+
3 x

−
3 )

2(1− x+
1 x

−
1 x

+
2 x

−
2 x

+
3 x

−
3 ).

A corollary of this result, namely the case where xe− = xe+ , which is the original version
of the Varchenko matrix, has been already proven for OMs in [8]. We formulate it for
COMs.

Corollary 2.11. Let V be the (unsigned) Varchenko matrix (i.e. xe− = xe+ = xe) of the
COM M = (E,L). Then

det(V) =
∏
Y ∈L

(1− c(Y )2)bY .

where c(Y ) :=
∏

e∈z(Y ) xe and bY are nonnegative integers.

Example 2.12 (continued). For our example the determinant of the (unsigned) Varchenko
matrix factorizes to

det(V) = (1− x2
1)

2(1− x2
2)

2(1− x2
3)

2(1− x2
1x

2
2x

2
3).
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3. Preparation

We start with some basics about partially ordered sets P (posets). For an introduction
we recommend [14]. One can associate an abstract simplicial complex ∆(P), called order
complex, to every poset. The elements of P are the vertices of this complex and the chains
(i.e. totally ordered subsets) the faces. Two posets are homotopy equivalent if their order
complexes are homotopy equivalent. A poset is called contractible if its order complex is
homotopy equivalent to a point. Clearly a poset is contractible if it has a unique minimal
or a unique maximal element, since this element is contained in every chain. We introduce
now the Möbius function µ of a poset:

µ(x, x) = 1 for all x ∈ P

µ(x, y) = −
∑

x≤z<y

µ(x, z) for all x < y ∈ P .

The bounded extension P̂ of a poset is the poset together with a new maximal element
1̂ and a new minimal element 0̂. The Möbius number of P is defined by

µ(P) = µ(0̂, 1̂),

where the right-hand-side is evaluated in P̂ .

Example 3.1. Let us look at the poset P which consists only of one element. In the following
its bounded extension and the value of the Möbius function of the elements of the bounded
extension are depicted.

Hence, the Möbius number of the poset consisting of only one element is

µ(P) = µ(0̂, 1̂) = 1 + (−1) = 0.

It follows from the following fact that the Möbius number is a topological invariant with
respect to homotopic equivalence.

Theorem 3.2. [14, Philip Hall Theorem] The Möbius number of a poset equals the reduced
Euler characteristic of its order complex, i.e.

µ(P) = χ(∆(P))− 1.

In particular we get the following corollary, whose second part follows from the definition
of contractability and Example 3.1.
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Corollary 3.3. For two homotopy equivalent posets P and Q we have µ(P) = µ(Q). In
particular, if P is contractible then µ(P) = 0.

We denote for a poset P and p ∈ P by P≤p the subposet {q ∈ P | q ≤ p}.

Proposition 3.4 (Quillen Fiber Lemma). Let P and Q be posets and f : P → Q order
preserving. If for all q ∈ Q we have that f−1(Q≤q) is contractible, then P and Q are
homotopy equivalent.

We will now associate posets with COMs, so let M = (E,L) be a COM and let R ∈
{+,−}E be a fixed sign vector. We consider T as a poset with order relation

P ⪯R Q if S(R,P ) ⊆ S(R,Q).

We write TR if we consider T with this partial order and we call R the base pattern of the
poset.

Now we will introduce a theorem which will help us with our crucial Lemma 3.9.

Theorem 3.5. Let M = (E,L) be a topal fiber of a COM M′ = (E ′,L′), R′ ∈ T ′ a tope
of M′ and R = R′

|E its restriction to E. Then the order complex of TR is contractible.

Note that the restriction R in the statement of Theorem 3.5 is not necessarily a tope of
M. In order to apply the Quillen Fiber Lemma in the proof of Theorem 3.5 we need the
following lemma. For this given f ∈ E

Lemma 3.6. Let f ∈ E and R = {+}E. Let T \ f denote the set of topes of M\ f and
T\fR\f the corresponding tope poset with base pattern R\{f}. Consider the order-preserving
map πf : TR → T \fR\f given by restriction. Let Q ∈ T \f . Then

π−1
f ((T \fR\f )⪯Q) = T (Q+, ∅).

Proof. Let Q̃ ∈ T \ f⪯Q. As R \ f is all positive, we must have Q̃− ⊆ Q− and hence

Q+ \ f ⊆ Q̃+ implying π−1
f (Q̃) ⊆ T (Q+, ∅). If on the other hand Q̂ ∈ T (Q+, ∅), then

Q̂− ⊆ Q− ∪ {f}, Q+ ⊆ Q̂+ ∪ {f}. Hence πf (Q̂) ⪯R\f Q. □

We need two preparatory results. For the proof of Theorem 3.5, for the first one also
see [7, Lemma 10]. We reprove it here, since in the presentation in [7] the signs are chosen
the opposite way. Recall from Example 2.6 that Cn is the set of covectors of the OM of the
directed cycle on n vertices.

Proposition 3.7. Let M = (E,L) be a COM with tope set T and let R = {+}E. If for
all f ∈ E we have −fR ∈ T , then the poset TR is contractible.

Proof. We will show by induction that all covectors which contain exactly one plus-entry
and at least one minus-entry are in L. Since then in particular all covectors which contain
exactly one minus-entry and one plus-entry (i.e. the cocircuits) exist in L, we get by (SE)
that the all zero vector is in L. Together, we can conclude that L = Cn, since we obtain
all its covectors by composition of those vectors. Since Cn is uniform no other oriented
matroid can contain these covectors.
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So let −fR ∈ T for all f ∈ E and −R /∈ T . We will use induction over the number
of zero-entries in the covectors, i.e. we want to show that for every n = 0, . . . , |E| − 2 all
sign-vectors with n zero entries, one plus-entry and |E| − (n+ 1) minus-entries are in L.
n = 0: By the existence of −fR here is nothing to show. We fix n ≥ 0 and assume that

all covectors with n or less zero-entries, exactly one plus-entry and at least one minus-entry
exist in L.

n → n + 1 ≤ |E| − 2: We will show that there exists a covector with zero-entries in
the i-th position, i ∈ I ⊂ E, |I| = n + 1, a plus-entry in the j-th position, j /∈ I and

− everywhere else. We choose an î ∈ I and consider two covectors with 0 in I \̂i, where
one has a + in the î-th position and the other one in the j-th position and both have a
− everywhere else. These do exist by inductive assumption. W.l.o.g. those two covectors
look like this:

(0, . . . , 0,

î︷︸︸︷
+ , − ,−, . . . ,−)

(0, . . . , 0︸ ︷︷ ︸
I\̂i

, − , +︸︷︷︸
j

,−, . . . ,−).

If we now perform strong elimination on î with those two covectors we get the covector

X = (0, . . . , 0︸ ︷︷ ︸
I\̂i

, 0︸︷︷︸
î

, ∗︸︷︷︸
j

,−, . . . ,−).

If ∗ was −, then X ◦ T j = {−}E. Since {−}E = −R /∈ T we have ∗ = + and have the
covector we were looking for. We have shown that if L ̸= Cn, then the poset TR has a
unique maximal element. In particular, it is contractible.

□

Lemma 3.8. Let M = (E,L) be a topal fiber of a COM M′ = (E ′,L′), R′ ∈ T ′ a
tope of M′ and R = R′

|E its restriction to E. If L = Cn, then R ∈ L, in particular

R ̸= {+}E, {−}E.

Proof. Let M = (E,L) be a COM such that there is a COM M = (E ′,L′), with E ⊂ E ′

and L = ρ(S+,S−)(L′) for some S+, S− ⊆ E ′ and L = Cn. We saw in Example 2.6 that
0 ∈ Cn. By the definition of ρ(S+,S−)(L′) there exists Z ∈ L′ with

Ze =


+ if e ∈ S+,

− if e ∈ S−

0 else.

Since the composition of Z with every other covector in L′ is in L′, we see that ρ(S+,S−)(L′) =
L\{S+ ∪ S−}. So in this case L\{S+ ∪ S−} = Cn, so every tope R′ ∈ L′ restricted to E
has to be in Cn. Since {+}E, {−}E /∈ Cn, R = R′|E ̸= {+}E, {−}E.

□

Now we are in position to prove Theorem 3.5.
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Proof of Theorem 3.5. Let M = (E,L) be a COM such that there is a COM M = (E ′,L′),
with E ⊂ E ′ and L = ρ(S+,S−)(L′) for some S+, S− ⊆ E ′, R′ ∈ T ′ a tope of M′ and
R = R′

|E its restriction to E. First we look at the case L = Cn. From Lemma 3.8 we

know, R is a tope of Cn and hence different from {+}E and {−}E. But since 0 ∈ Cn,
0 ◦ −R = −R ∈ Cn. So we have a unique maximal element and TR is contractible. Now
let L ≠ Cn. Possibly reorienting elements we may assume that R = {+}E. We proceed by
induction on |E|. If |E| = 1 then TR either is a singleton or a chain of length 2 and thus
contractible. Hence assume |E| ≥ 2. If for all f ∈ E there exists −fR as in Proposition 3.7,
then TR is contractible by Proposition 3.7. Hence we may assume that there exists f ∈ E
such that −fR ̸∈ T . Let T \fR\f denote the tope poset in L \ f with base pattern R \ f .
Since the class of COMs is closed under deletion, we know that L′ \ f is a COM. Since L
evolved from L′ by setting L = ρ(S+,S−)L′ for some S+ and S−, L \ f evolves in the same
way from L′ \ f , i.e. L \ f = ρ(S+,S−)(L′ \ f) (note that f cannot be in S+ ∪ S−, since
E = E ′ \ (S+ ∪ S−) and f ∈ E). Also R \ f is the restriction to E of the tope R′ \ f
of L′ \ f . We see that L \ f together with R \ f fulfills the assumptions of the theorem.
Furthermore, L \ f ̸= Cn, this follows from Lemma 3.8. Hence, T \fR\f is contractible by
inductive assumption. We now want to show that TR and T \fR\f are homotopy equivalent
by using Proposition 3.4. So consider the order-preserving map πf : TR → T \fR\{f} given
by restriction. Let Q ∈ T \fR\{f}. By Lemma 3.6

π−1
f ((T \ fR\{f})⪯Q) = T (Q+, ∅).

T (Q+, ∅) is the set of topes of ρ(S+∪Q+,S−)L′. If Q+ ̸= ∅, then ρ(S+∪Q+,S−)L′ has fewer

elements than L. Furthermore, by Lemma 3.8, ρ(S+∪Q+,S−)L′ ̸= Cn. Hence π−1
f (T \ f⪯Q)

is contractible by inductive assumption. If Q+ = ∅ then by the choice of f the preimage
π−1
f (Q) is the all minus vector. Hence, this is the unique maximal element in π−1

f (T \ f⪯Q)
and that fiber is also contractible. So by Proposition 3.4 TR and T \ fR\f are homotopy
equivalent and the claim follows. □

For e ∈ E and R ∈ T we write TR,e for the poset {T ∈ T | Te = −Re}∪{0̂} with 0̂ as its
artificial least element and the remaining poset structure induced from TR. For P ∈ TR,e

we write (0̂, P )R,e for the interval from 0̂ to P in TR,e.

Lemma 3.9. Let M = (E,L) be a COM, R ∈ T a tope, e ∈ E an element, P ∈ TR,e and
S such that e ̸∈ S ⊆ E. Then∑

Q∈T (∅,{e})
S=S(P,Q)∩S(Q,R)

µ((0̂, Q)R,e) =

{
−1 if S = ∅
0 if S ̸= ∅(1)

and ∑
Q∈T ({e},∅)

S=S(P,Q)∩S(Q,R)

µ((0̂, Q)R,e) =

{
−1 if S = ∅
0 if S ̸= ∅ .(2)
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Proof. In order to prove (1) we assume R = {+}E. We prove the assertion by induction
on |S|. If S = ∅ then ∑

Q∈T (∅,{e})
S=S(P,Q)∩S(Q,R)

µ((0̂, Q)R,e) =
∑

0̂<R,eQ≤R,eP

µ((0̂, Q)R,e)

Note that
∑

0̂<R,eQ≤R,eP
µ((0̂, Q)R,e) = µ

(
{Q ∈ TR,e | 0̂ ≤R,e Q ≤R,e P}

)
−µ((0̂, 0̂)R,e). This

poset has the maximal element P , so it is contractible and has Möbius number 0. Therefore
we have ∑

Q∈T (∅,{e})
S=S(P,Q)∩S(Q,R)

µ((0̂, Q)R,e) = −µ((0̂, 0̂)R,e) = −1.

Assume |S| > 0. Set

T+ = {f ∈ E \ (S ∪ {e}) | Pf = +}.
Then ∑

Q∈T (∅,{e})
S(P,Q)∩S(Q,R)⊆S

µ((0̂, Q)R,e) =
∑

Q∈T (T+,{e})

µ((0̂, Q)R,e).(3)

T (T+, {e}) is isomorphic to the set of topes of the COM ρ(T+,{e})(L) which is contractible
by Theorem 3.5. So the right hand side of (3) ranges over the elements of a contractible
poset. By the same argument as above it is −µ(0̂, 0̂) = −1 minus the Möbius number of
the poset. Since the poset is contractible its Möbius number is 0 and we have shown that

∑
Q∈T (∅,{e})

S(P,Q)∩S(Q,R)⊆S

µ((0̂, Q)R,e) = −1.(4)

Now rewrite the left hand side of (4) as

∑
Q∈T (∅,{e})

S(P,Q)∩S(Q,R)⊆S

µ((0̂, Q)R,e) =
∑
T⊆S

∑
Q∈T (∅,{e})

S(P,Q)∩S(Q,R)=T

µ((0̂, Q)R,e)(5)

By induction the summand
∑

Q∈T (∅,{e})
S(P,Q)∩S(Q,R)=T

µ((0̂, Q)R,e) is 0 for T ̸= S, ∅ and −1 for T = ∅.

Thus combining (4) and (5) we obtain:

−1 =
∑

Q∈T (∅,{e})
S(P,Q)∩S(Q,R)⊆S

µ((0̂, Q)R,e)

= −1 +
∑

Q∈T (∅,{e})
S(P,Q)∩S(Q,R)=S

µ((0̂, Q)R,e)
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From this we conclude ∑
Q∈T (∅,{e})

S(P,Q)∩S(Q,R)=S

µ((0̂, Q)R,e) = 0.

The second claim follows analogously by reorienting all the signs. □

We conclude this section with another result on contractability needed in the main proof.
We start with a lemma:

Lemma 3.10. Let M = (E,L) be a COM, X ∈ L and P ∈ T . The tope Q = X ◦ P ∈
star(X) is the only tope in star(X) such that for all O ∈ star(X) we have

S(P,O) = S(P,Q) ∪ S(Q,O)(6)

∅ = S(P,Q) ∩ S(Q,O).(7)

Proof. It is easy to see that Q fulfills (6) and (7). Let us assume there is another tope
Q∗ ̸= Q in star(X) which has this property. By the definition of Q we have

S(Q,O) = S(P,O) ∩ z(X) and S(P,Q) = (P,O)\z(X) for all O ∈ star(X).

Since Q∗ ̸= Q and S(Q∗, O) can only contain elements from z(X), S(P,Q∗) has to contain
at least one element from z(X). Now considering O∗ = (X ◦ −Q∗) ∈ star(X) we see that
S(P,Q∗)∩ S(Q∗, O∗) ̸= ∅, so Q∗ does not fulfill the property and we have a contradiction.

□

For e ∈ E and P ∈ T we say that e defines a proper face of P if there is a covector
X ∈ L with X ≤ P and Xe = 0 with X ̸= 0. Note that in this case there is a unique
maximal such covector, namely the composition of all of them. Otherwise, we say that e
does not define a proper face of P .

Theorem 3.11. Let M = (E,L) be a COM, R ∈ T a tope, and let e ∈ E define a proper
face of R. Let Y ∈ L be the maximal covector such that Y ≤ R and Ye = 0 and choose
Ptop ∈ TR,e \ star(Y ). Then (0̂, Ptop)R,e is contractible. In particular, µ((0̂, Ptop)R,e) = 0.

Proof. Let P ∈ (0̂, Ptop)R,e. Then by Lemma 3.10 the tope Q = Y ◦ P ∈ star(Y ) is the
unique tope in star(Y ) such that for all O ∈ star(Y ) we have

S(P,O) = S(P,Q) ∪ S(Q,O)

∅ = S(P,Q) ∩ S(Q,O).

Since Ye = 0 and P ∈ TR,e it also follows that Qe = −. Since Y ≤ R, clearly S(R,Q) =

S(R, Y ◦ P ) ⊆ S(R,P ) and hence Q ⪯R P . This shows Q ∈ (0̂, Ptop)R,e. We now define
the map

◦Y : (0̂, Ptop)R,e → (0̂, Ptop)R,e

◦Y (P ) = Y ◦ P
and prove that it is a closure operator by showing that it is order preserving and idempotent
(i.e. ◦Y (◦Y (P )) = ◦Y (P )). So let Q ⪯R Q′. Then Y ◦Q ⪯R Y ◦Q′. Since Y ≤ R it follows
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that Y ◦ Q ⪯R Q. Obviously Y ◦ (Y ◦ Q) = Y ◦ Q. So ◦Y is a closure operator and it
follows that (0̂, Ptop)R,e is homotopy equivalent to its image (see e.g, [3, Corollary 10.12]).

Since Ptop ̸∈ star(Y ) and Y ◦ Ptop ∈ star(Y ) ∩ (0̂, Ptop)R,e, it also follows that Y ◦Q ⪯R

Y ◦ Ptop for all Q ∈ (0̂, Ptop)R,e. Hence the image of ◦Y has a unique maximal element and
hence is contractible. □

4. Main Proof

In this Section we assume thatM = (E,L) is a COM with topes T and signed Varchenko
matrix V. Recall, that we assume T to be linearly ordered. Note however that swapping
two topes leads to a row swap and a columns swap at the same time, so we do not change
the sign of our determinant. Hence, in this section we will rearrange the ordering on T ,
whenever convenient for the proof. Moreover, for the proof we also fix a linear ordering on
E, i.e., E = {e1 ≺ · · · ≺ er}.
For any sign vector ϵ = (ϵ1, ϵ2) ∈ {+,−}2 let Ve,ϵ be a matrix with rows indexed by

T ({e}, ∅) for ϵ1 = +, T (∅, {e}) for ϵ1 = − and columns indexed by T ({e}, ∅) for ϵ2 = +,
T (∅, {e}) for ϵ2 = −. For a tope R indexing a row and a tope Q indexing a column we set
Ve,ϵ

R,Q = VR,Q. After reordering T this yields a block decomposition of V as

V =

(
Ve,(−,−) Ve,(−,+)

Ve,(+,−) Ve,(+,+)

)
.(8)

We fix such a linear ordering on T and set Me to

Me
Q,R =


1 if Q = R

−µ((0̂, Q)R,e)VQ,R if e is the maximal element of S(Q,R),
0 otherwise

.

Note that this matrix has the following form

Me =

(
Ie
ℓ U e

Le Ie
m

)
,

where

U e
Q,R = −µ((0̂, Q)R,e)VQ,R, e is the maximal element of S(Q,R),

Q ∈ T (∅, {e}), R ∈ T ({e}, ∅),
Le
Q,R = −µ((0̂, Q)R,e)VQ,R, e is the maximal element of S(Q,R),

Q ∈ T ({e}, ∅), R ∈ T (∅, {e})

and I the identity matrix with ℓ = #T (∅, {e}) and m = #T ({e}, ∅).

Lemma 4.1. Let e be the maximal element of E. Then Ve,(−,+) factors as

Ve,(−,+) = Ve,(−,−) · U e(9)
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and Ve,(+,−) as

Ve,(+,−) = Ve,(+,+) · Le.(10)

Proof. Let us prove (9) first. For P ∈ T (∅, {e}) and R ∈ T ({e}, ∅) the entry in row P and
column R on the left hand side of (9) is VP,R. On the right hand side the corresponding
entry is: ∑

Q∈T (∅,{e})

VP,Q · U e
Q,R = −

∑
Q∈T (∅,{e})

µ((0̂, Q)R,e) ·VP,Q ·VQ,R

This follows from the fact that e is the maximal element of any separator of the topes
indexing U e. By definition we have for Q ∈ T (∅, {e})

VP,Q ·VQ,R = VP,R ·
∏

f∈S(P,Q)∩S(Q,R)

xf+xf− .

We see that VP,Q ·VQ,R = VP,R if S(P,Q)∩ S(Q,R) = ∅. Thus the claim of the lemma
is proved once we have shown that for a fixed subset S ⊆ E and fixed P,R we have:∑

Q∈T (∅,{e})
S=S(P,Q)∩S(Q,R)

µ((0̂, Q)R,e) =

{
0 if S ̸= ∅
−1 otherwise.

.(11)

But this is the content of Lemma 3.9 and we are done. For (10) the right hand side is∑
Q∈T ({e},∅)

VP,Q · Le
Q,R = −

∑
Q∈T ({e},∅)

µ((0̂, Q)R,e) ·VP,Q ·VQ,R

and we can proceed analogous to the proof above. □

Next we use the matrices Me to factorize V. The following lemma yields the base case
for the inductive step in the factorization.

Lemma 4.2. Let e be the maximal element of E and let Vxe=0 be the matrix V after
evaluating xe+ and xe− to 0. Then

V = Vxe=0 · Me

Proof. Let T be in that order, that we get the block decomposition (8) of V. Using lemma
Lemma 4.1, we see that

V =

(
Ve,(−,−) Ve,(−,+)

Ve,(+,−) Ve,(+,+)

)
=

(
Ve,(−,−) 0

0 Ve,(+,+)

)
·
(

Ie
ℓ U e

Le Ie
m

)
(12)

=

(
Ve,(−,−) 0

0 Ve,(+,+)

)
· Me.(13)

Now the monomial VP,Q has a factor xe+ or xe− if and only if P ∈ T (∅, {e}) and
Q ∈ T ({e}, ∅) or P ∈ T ({e}, ∅) and Q ∈ T (∅, {e}). Hence

Vxe=0 =

(
Ve,(−,−) 0

0 Ve,(+,+)

)
.(14)
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Combining (12) and (14) yields the claim. □

Now we are in position to state and prove the crucial factorization.

Proposition 4.3. Let E = {e1 ≺ · · · ≺ er} be a fixed ordering. Then

V = Me1 · · ·Mer .

Proof. We will prove by downward induction on i that

V = Vxi=···=xr=0 · Mei · · ·Mer .(15)

For i = r the assertion follows directly from Lemma 4.2. For the inductive step assume
i > 1 and (15) holds for i. We know from Lemma 4.2 that if we choose a linear ordering
on E for which ei−1 is the largest element then

V = Vxi−1=0 · N ,(16)

where N = (NQ,R)Q,R∈T is defined as

NQ,R =


1 if Q = R

−µ((0̂, Q)R,ei−1
)VQ,R if ei−1 ∈ Sep(Q,R)

0 otherwise
,

Since N = Mei−1 for this particular ordering. Now we go back to the ordering in the
assumption and set xi = · · · = xr = 0 in N . We see that

(NQ,R)xi=···=xr=0


1 if Q = R

−µ((0̂, Q)R,ei−1
)VQ,R if ei−1 is the largest element in S(Q,R)

0 otherwise
.

But then Nxi=···=xr=0 = Mei−1 .
Now (16) implies

Vxi=···=xr=0 = Vxi−1=···=xr=0 · Nxi=···=xr=0

= Vxi−1=···=xr=0 · Mei−1

With the induction hypothesis this completes the induction step by

V = Vxi=···=xr=0 · Mei · · ·Mer

= Vxi−1=xi=···=xr=0 · Mei−1 · · ·Mer .

For i = 1 the matrix Vx1=···=xr=0 is the identity matrix. Thus (15) yields:

V = Me1 · · ·Mer .

□

Before we prove the following proposition, we quote [8, Corollary 3], which is a result
for oriented matroids.

Lemma 4.4. Let 0 ∈ L and let P ∈ TR,e such that e does not define a proper face of P .

Then the Möbius number µ((0̂, P )R,e) is 0 if −R ̸= P and (−1)rank(L) if −R = P .
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Now let Y ∈ L and e ∈ z(Y ) be the maximal element of z(Y ). Define T Y,e as the set of
topes P ∈ T such that Y is the maximal element of L for which Ye = 0 and Y ≤ P .

Proposition 4.5. For any pair of topes Q,R ∈ T Y,e we have

µ((0̂, Q)R,e) =

{
(−1)rank(L|z(Y )) if Qz(Y ) = −Rz(Y )

0 otherwise
.

Proof. By the definition of T Y,e we have Y ≤ Q,R. Thus, if we consider the poset TR|z(Y ),e in

the restriction L|z(Y ) we find that the interval (0̂, Q)R,e is isomorphic to (0̂, Q|z(Y ))R|z(Y ),e.

We saw in Section 2, that (E\Y , F (Y )\Y ) is an OM. Further, TR|z(Y ),e is a poset and

(0̂, Q|z(Y ))R|z(Y ),e is an interval in this particular OM. Furthermore, since Y is the maximal

element satisfying Ye = 0 and Y ≤ Q, e does not define a proper face of Q|z(Y ). Since our
interval is in an OM, we can use Lemma 4.4 and the claim follows. □

We define bY,e = 0 if e is not the maximal element of z(Y ) and 1
2
#T Y,e otherwise. Since

P 7→ Y ◦ (−P ) is a perfect pairing on T Y,e it follows that T Y,e contains an even number
of topes. In particular, bY,e is a nonnegative integer. We denote by MY,e the submatrix of
Me obtained by selecting rows and columns indexed by T Y,e.

Lemma 4.6. Let Y ∈ L and e ∈ z(Y ). If T Y,e ̸= ∅. then

det(MY,e) = (1− a(Y ))bY,e

where a(Y ) :=
∏

e∈z(Y ) xe+xe−.

Proof. If Qz(Y ) = −Rz(Y ) then VQ,R =
∏

e∈z(Y ),Qe=∗ xe∗ . Using the definition of Me

and Proposition 4.5 we find

MY,e
Q,R =


1 if Q = R

−(−1)rank(L|z(Y ))
∏

e∈z(Y ),Qe=∗ xe∗ if Q = Y ◦ (−R)

e largest element of S(Q,R)
0 otherwise

.

We order rows and columns of MY,e so that the elements R and Y ◦ (−R) are paired in
consecutive rows and columns. With this ordering MY,e is a block diagonal matrix having
along its diagonal bY,e two by two matrices(

1 −(−1)rank(L|z(Y ))
∏

e∈z(Y ),Re=∗ xe∗

−(−1)rank(L|z(Y ))
∏

e∈z(Y ),−Re=∗ xe∗ 1

)
if e is the maximal element of z(Y ) and identity matrices otherwise. In any case we find
det(MY,e) = (1− a(Y ))bY,e as desired. □

Lemma 4.7. After suitably ordering T the matrix Me is the block lower triangular matrix
with the matrices MY,e for Y ∈ L with Ye = 0 and T Y,e ̸= ∅ on the main diagonal.
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Proof. If Y = 0, T Y,e would be empty, so we assume that this is not the case. We fix a
linear ordering of T such that for fixed e ∈ E and Y ∈ L the topes from T Y,e form an
interval and such that the topes from T Y,e precede those of T Y ′,e if Y < Y ′.
For this order the claim follows if we show that the entry (Me)Q,R is zero whenever

Q ∈ T Y ′,e, R ∈ T Y,e and Y ′ < Y .
If Qe = Re then by Q ̸= R we have (Me)Q,R = 0. Hence it suffices to consider the case

Qe ̸= Re. Since Y ̸= 0, e is a proper face of R.
If Q ̸∈ star(Y ), Q ∈ T (∅, {e}) and R ∈ T ({e}, ∅) then it follows from Theorem 3.11 that

µ((0̂, Q)R,e) = 0 and therefore (Me)Q,R = 0. Analogously if Q ̸∈ star(Y ), Q ∈ T ({e}, ∅)
and R ∈ T (∅, {e}) then µ((0̂, Q)R,e) = 0 and therefore (Me)Q,R = 0.

On the other hand, if Q ∈ star(Y ), then in particular Y ≤ Q. Since by definition of
T Y ′,e we have that Y ′ is the maximal covector such that Y ′ ≤ Q and Y ′

e = 0 it follows
that Y ≤ Y ′. Since Y ̸= Y ′ we must have that Y < Y ′, i.e. (Me)Q,R is an entry below the
diagonal and we are done.

□

Proof of Theorem 2.9. After fixing a linear order on E it follows from Proposition 4.3 that
detV is the product of the determinants of Me for e ∈ E. By Lemma 4.7 the determinant
of each Me is a product of determinants of MY,e for e ∈ E and Y ∈ L for which T Y,e ̸= ∅.
Then Lemma 4.6 completes the proof. □

Remark 4.8 (Description of bY ). In Theorem 2.9 we describe bY as a nonnegative integer,
but this can be made more precise: Fix any linear order on E and let eY be the maximal
element of z(Y ). From Lemma 4.6 we deduce, that bY = bY,eY . Thus 2bY counts the topes
P ∈ T such that Y is the maximal element of L for which YeY = 0 and Y ≤ P . In
particular, bY does not depend on the choice of the linear ordering on E.

5. Applications

We give two applications of our formula for the Varchenko determinant on two COMs
associated to a poset P : its lattice of ideals and its set of linear extensions. As an example
we will use the poset Q in Figure 1.

5.1. Distributive Lattices. By the Fundamental Theorem of Finite Distributive Lat-
tices, for every distributive lattice L there exists a poset P , such that ordering the ideals
(downward closed sets) of P by inclusion yields a lattice isomorphic to L. The topes of
the COM associated to L correspond to the ideals of P , the empty set can be seen as the
all-plus vector, the ground set E of this COM is the ground set of P , and the separator of
two ideals I, I ′ is the symmetric difference I∆I ′. So this allows, to quickly write down the
(unsigned) Varchenko matrix VL of L. In our example we indicate VL(P) in the following
way, where we just display the elements of the symmetric difference of two ideals to make
it easier to read. Note that in order to get the Varchenko matrix itself one has to exchange
a string s1 . . . sk for the product

∏
s∈S xs. The ∅ translates therefore to the empty product,

which is 1.
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a b

c d e

∅

a b

ab be

abeabc abd

abcd abce abde

abcde

abcde

bacde

abdce

abced

abecd abedc

abdec

badce

badec

beadcbaecd

baced

baedc

Q L(Q) X(Q)

Figure 1. A poset Q, its lattice L(Q) of ideals and its set X(Q) of linear
extensions. Edges in the graphs in the middle and on the right are drawn if
endpoints correspond to topes with separator consisting of a single element.
Edges corresponding to the same element are parallel.



∅ a b ab be abc abd abe abcd abce abde abcde
a ∅ ab b abe bc bd be bcd bce bde bcde
b ab ∅ a e ac ad ae acd ace ade acde
ab b a ∅ ae c d e cd ce de cde
be abe e ae ∅ ace ade a acde ac ad acd
abc bc ac c ace ∅ cd ce d e cde de
abd bd ad d ade cd ∅ de c cde e ce
abe be ae e a ce de ∅ cde c d cd
abcd bcd acd cd acde d c cde ∅ de ce e
abce bce ace ce ac e ced c de ∅ cd d
abde bde ade de ad cde e d ce cd ∅ c
abcde bcde acde cde acd de ce cd e d c ∅


More generally, given two antichains A′ ⊆ A, the set of ideals {↓ A′′ | A′ ⊆ A′′ ⊆ A}

corresponds to the covector Y (A′, A), that is 0 on A \A′, − on all elements in or below A′,
and + on all elements above A. In particular, when A′ = A we get a tope corresponding to
the ideal ↓ A′ and the all −-tope corresponds to the empty ideal. Now, if we pick a linear
ordering on E, let eY be the largest element of A \A′, then 2bY (A′,A) counts those ideals I
such that for the antichain of maxima Max(I) we have

• A′ ⊆ Max(I) ⊆ A,
• if B′ ⊆ Max(I) ⊆ B and eY is the largest element of B \B′, then A \A′ ⊊ B \B′.
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But note that this condition is only satisfied if A′ = Max(I) and A = A′∪{e} for some e ∈ P
or A = Max(I) and A′ = A\{e} for some e ∈ P . Indeed, if otherwise A′ ⊊ Max(I) ⊊ A and
eY is the largest element of A\A′ one can set B′ = Max(I)\{eY } and B = Max(I)∪{eY },
contradiction the above condition. Hence bY (A′,A) is 1 if |A \ A′| = 1 and 0 otherwise.
Thus, Corollary 2.11 and Remark 4.8 yield that

det(VL) =
∏
A∈A

∏
p∈A

(1− x2
p) =

∏
p∈P

(1− x2
p)

mp ,

where A denotes the set of antichains of P and mp denotes the number of antichains
containing p. In our example we get the following formula for det(VL(Q)):
(1− x2

a) · (1− x2
b) · ((1− x2

a)(1− x2
b)) · (1− x2

e) · (1− x2
c) · (1− x2

d) · ((1− x2
a)(1− x2

e)) · ((1−
x2
c)(1− x2

d)) · ((1− x2
c)(1− x2

e)) · ((1− x2
d)(1− x2

e)) · ((1− x2
c)(1− x2

d)(1− x2
e)) =

(1− x2
a)

3(1− x2
b)

2(1− x2
c)

4(1− x2
d)

4(1− x2
e)

5.

5.2. Linear extensions. Another instance is the ranking COM of a poset P , that was
described in [2]. The topes are the linear extensions of P , and the separator of two linear
extensions L,L′ is the set of pairs of elements of P that are ordered differently in L and
L′. In particular, the ground set of this COM consists of the set Inc(P) of incomparable
pairs of P , e.g., Inc(Q) = {ab, ae, cd, ce, de}. We can thus define the (unsigned) Varchenko
matrix VX(P). We get a description of VX(Q). We deem it too large to display it entirely,
but for example the entry corresponding to extensions abcde, beadc is xabxaexcdxcexde.

The covectors of the ranking COM are the weak extensions of P , i.e., those poset exten-
sions of P that are chains of antichains. The set z(Y ) of such an extension Y corresponds
to its set of incomparable pairs Inc(Y ). In order to properly define the signs of the cov-
ectors, one can pick an arbitrary linear extension L0 of P , and set at non-zero coordinate
of Y to + if the corresponding incomparable pair of P is ordered the same way in L0 and
Y and to − otherwise. To define bY we can fix an arbitrary linear order on the set Inc(P)
and let eY = {p, q} be the largest element of Inc(Y ). Then 2bY counts linear extensions L
of P such that

• L is a linear extension of Y ,
• if another weak extension Z of P has eY as largest incomparable pair, then either
L is not an extension of Z or Z is not an extension of Y .

In this setting one can see that not such Z can exist if and only if Y is a chain of antichains
only one which - say A - has size larger than 1. In this cases the feasible L are extensions
of Y that extend A by starting and ending with an element among {p, q}. Hence, there
are 2(|A| − 2)! such linear extensions. By Corollary 2.11 and Remark 4.8 we have

det(VP) =
∏

A∈A≥2

(1−
∏

p ̸=q∈A

x2
p,q)

(|A|−2)!,

where A≥2 denotes the set of antichains of size at least 2 of P .
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6. Conclusion

One might wonder, to which extent our result could be further generalized to other
classes. A natural next class are partial cubes, i.e., isometric subgraphs of the hypercube
Qd. These generalize (tope graphs of) COMs and allow for an analogous definition of the
Varchenko Matrix, where the (u, v) entry contains a product of monomials indexed by
those coordinates in {1, . . . , d} where u and v differ. The smallest partial cube that is not
the tope graph of a COM is the full subdivision of K4, see [9]. In this case the Varchenko
matrix looks like the following

1 x1 x2 x3 x1x4 x1x3x4 x3x4 x2x3x4 x2x4 x1x2x4

x1 1 x1x2 x1x3 x4 x3x4 x1x3x4 x1x2x3x4 x1x2x4 x2x4

x2 x1x2 1 x2x3 x1x2x4 x1x2x3x4 x2x3x4 x3x4 x4 x1x4

x3 x1x3 x2x3 1 x1x3x4 x1x4 x4 x2x4 x2x3x4 x1x2x3x4

x1x4 x4 x1x2x4 x1x3x4 1 x3 x1x3 x1x2x3 x1x2 x2

x1x3x4 x3x4 x1x2x3x4 x1x4 x3 1 x1 x1x2 x1x2x3 x2x3

x3x4 x1x3x4 x2x3x4 x4 x1x3 x1 1 x2 x2x3 x1x2x3

x2x3x4 x1x2x3x4 x3x4 x2x4 x1x2x3 x1x2 x2 1 x3 x1x3

x2x4 x1x2x4 x4 x2x3x4 x1x2 x1x2x3 x2x3 x3 1 x1

x1x2x4 x2x4 x1x4 x1x2x3x4 x2 x2x3 x1x2x3 x1x3 x1 1


and its determinant is of the following form:

(x4 − 1)3(x4 + 1)3(x3 − 1)3(x3 + 1)3(x2 − 1)3(x2 + 1)3(x1 − 1)3(x1 + 1)3

(3x2
1x

2
2x

2
3x

2
4 − x2

1x
2
2x

2
3 − x2

1x
2
2x

2
4 − x2

1x
2
3x

2
4 − x2

2x
2
3x

2
4 + 1)

Thus, in this case there is no nice factorization.

Problem 6.1. Are there classes of partial cubes beyond COMs, that allow for a factor-
ization theorem of the Varchenko Matrix?

Hochstättler and Welker proved the factorization formula not only for the full oriented
matroid but also for supertopes, i.e. topal fibers in oriented matroids. The main motivation
for the work in the present paper is that COMs seem to capture convexity in oriented
matroids. At the moment we do not know an example of a COM which cannot be extended
to become the supertope of an oriented matroid. This supports the the suspicion that they
might not exist. Therefore we pose the following problem in our language, that is equivalent
to previous conjectures [2, Conjecture 1] and [9, Conjecture 1]:

Problem 6.2. Are supertopes of oriented matroids a proper subclass of the class of Com-
plexes of Oriented Matroids?
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