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Planar bipartite graphs can be represented as touching graphs of horizontal and
vertical segments in R2. We study a generalization in space: touching graphs
of axis-aligned rectangles in R3, and prove that planar 3-colorable graphs can be
represented this way. The result implies a characterization of corner polytopes
previously obtained by Eppstein and Mumford. A by-product of our proof is a
distributive lattice structure on the set of orthogonal surfaces with given skeleton.

Further, we study representations by axis-aligned non-coplanar rectangles in R3

such that all regions are boxes. We show that the resulting graphs correspond
to octahedrations of an octahedron. This generalizes the correspondence between
planar quadrangulations and families of horizontal and vertical segments in R2 with
the property that all regions are rectangles.
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1 Introduction

The importance of contact and intersection representations of graphs stems not only from
their numerous applications including information visualization, chip design, bio informatics
and robot motion planning (see for example the references in [2,10]), but also from the struc-
tural and algorithmic insights accompanying the investigation of these intriguing geometric
arrangements. From a structural point of view, the certainly most fruitful contact representa-
tions (besides the \Kissing Coins" of Koebe, Andrew, and Thurston [1,20,27]) are axis-aligned
segment contact representations: families of interior-disjoint horizontal and vertical segments

∗An extended abstract appears in the proceedings of the 46th International Workshop on Graph-Theoretic
Concepts in Computer Science (WG 2020) [13].

†Partially supported by DFG grant FE-340/11-1.
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Figure 1: An axis-aligned segment contact representation (left) and a Plattenbau (right) to-
gether with the respective touching graphs.

in R2 where the intersection of any two segments is either empty or an endpoint of at least
one of the segments. The corresponding touching graph1 has the segments as its vertices and
the pairs of segments as its edges for which an endpoint of one segment is an interior point
of the other segment, see the left of Figure 1. It has been discovered several times [18, 25]
that any such touching graph is bipartite and planar, and that these two obviously necessary
conditions are in fact already su�cient: Every planar bipartite graph is the touching graph of
interior-disjoint axis-aligned segments in R2. In fact, edge-maximal segment contact represen-
tations endow their associated plane graphs with many useful combinatorial structures such
as 2-orientations [10], separating decompositions [4], bipolar orientations [26, 28], transversal
structures [15], and Schnyder woods [30].

In this paper we extend axis-aligned segment contact representations in R2 to axis-aligned
rectangle contact representations in R3. That is, we consider families R of axis-aligned closed
and bounded rectangles in R3 with the property that for all R, R 0 2 R the intersection R \ R 0

is a subset of the boundary of at least one of them, i.e., the rectangles are interiorly disjoint.
We call such a family a Plattenbau2. Given a Plattenbau R one can consider its intersection Plattenbau

graph IR, see Section 5. However, for us the more important concept is a certain subgraph
of IR, called the touching graph GR of R. There is one vertex in GR for each rectangle in R touching

graphand two vertices are adjacent if the corresponding rectangles touch , i.e., their intersection is

touchnon-empty and contains interior points of one and only one of the rectangles. We say that G

is a Plattenbau graph if there is a Plattenbau R such that G ∼= GR. In this case we call R a Plattenbau

graphPlattenbau representation of G.

Plattenbau

represen-

tation

Plattenbauten are a natural generalization of axis-aligned segment contact representations
in R2 and thus Plattenbau graphs are a natural generalization of planar bipartite graphs. While
clearly all Plattenbau graphs are tripartite (properly vertex 3-colorable), it is an interesting
challenge to determine the exact topological properties in R3 that hold for all Plattenbau
graphs, thus generalizing the concept of planarity from 2 to 3 dimensions (for tripartite graphs).
We present results towards a characterization of Plattenbau graphs in three directions.

Our Results and Organization of the Paper. In Section 2 we provide examples of Plattenbau
graphs and give some necessary conditions for all Plattenbau graphs. We observe that unlike
touching graphs of segments, general Plattenbau graphs are not closed under taking subgraphs.

1We use the term touching graphs rather than the more standard contact graph to underline the fact that
segments with coinciding endpoints (e.g., two horizontal segments touching a vertical segment in the same
point but from di�erent sides, but also non-parallel segments with coinciding endpoint) do not form an edge.

2Plattenbau (plural Plattenbauten) is a German word describing a building (Bau) made of prefabricated
concrete panels (Platte).
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We circumvent this issue by restricting ourselves to generic Plattenbauten, i.e., R contains no
coplanar rectangles. Moreover, we introduce boxed Plattenbauten where every bounded region
of R3 is a box, and discuss questions of augmentability.

In Section 3 we show that within planar graphs the necessary condition of 3-colorability
is also su�cient for Plattenbau graphs. Thus, the topological characterization of Plattenbau
graphs must fully contain planarity (which is not obvious as we consider 3-colorable graphs
and not only bipartite graphs).

Theorem 1. Every 3-colorable planar graph is the touching graph of a generic Plattenbau.

Along the proof of Theorem 1, we obtain a characterization of skeletons of orthogonal surfaces
which is implicit already in work of Eppstein and Mumford [6]. Another proof of Theorem 1 can
be obtained from Gon�calves' proof that 3-colorable planar graphs admit segment intersection
representations with segments of 3 slopes [16]. We further comment on these alternative
approaches in Section 3.3. A consequence of our approach is a natural partial order - namely
a distributive lattice - on the set of orthogonal surfaces with a given skeleton.

In Section 4 we consider generic and boxed Plattenbau graphs as the 3-dimensional ana-
logue of edge-maximal planar bipartite graphs, the quadrangulations. We give a complete
characterization:

Theorem 2. A graph G is the touching graph of a generic boxed Plattenbau R if and only
if there are six outer vertices in G such that each of the following holds:

(P1) G is connected and the outer vertices of G induce an octahedron.

(P2) The edges of G admit an orientation such that

• the bidirected edges are exactly the outer edges,

• each vertex has exactly 4 outgoing edges.

(P3) The neighborhood N(v) of each vertex v induces a spherical quadrangulation SQ(v)
in which the out-neighbors of v induce a 4-cycle.

• If v is an outer vertex, this 4-cycle bounds a face of SQ(v).

(P4) For every edge uv of G with common neighborhood C = N(u) \ N(v), the cyclic
ordering of C around u in SQ(v) is the reverse of the cyclic ordering of C around v

in SQ(u).

A spherical quadrangulation is a graph embedded on the 2-dimensional sphere without spherical

quadran-

gulation

crossings such that each face is bounded by a 4-cycle. Spherical quadrangulations are 2-
connected, planar, and bipartite. We remark that Theorem 2 does not give a complete charac-
terization of generic Plattenbau graphs since some generic Plattenbau graphs are not contained
in any generic boxed Plattenbau graph as discussed in Section 2.

Let us further remark that we show in Subsection 4.1 how every generic boxed Plattenbau
can be constructed in a natural way from trivial parts.

2 Types of Plattenbauten and Questions of Augmentation

Let us observe some properties of Plattenbau graphs. Clearly, the class of all Plattenbau
graphs is closed under taking induced subgraphs. Examples of Plattenbau graphs are K2,2,n,
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Figure 2: Plattenbau representations of K2,2,5 (left) and K5,6 (right).

see Figure 2, and the class of grid intersection graphs, i.e., bipartite intersection graphs of axis-
aligned segments in the plane [18]. For the latter take the segment intersection representation
of a graph, embed it into the xy-plane in R3 and thicken all horizontal segments a small
amount into y-direction and all vertical segments a bit into z-direction outwards the xy-plane.
In particular, Km,n is a Plattenbau graph, see Figure 2. In order to exclude some graphs, we
observe some necessary properties of all Plattenbau graphs.

Observation 1. If G is a Plattenbau graph, then

1. the chromatic number of G is at most 3,

2. the neighborhood of any vertex of G is planar,

3. the boxicity of G, i.e., the smallest dimension d such that G is the intersection
graph of some boxes in Rd, is at most 3.

Proof. Item 1: Each orientation class is an independent set.
Item 2: Let v be a vertex of G represented by R 2 R. Let H be the supporting hyperplane

of R and H+, H− the corresponding open halfspaces. The neighborhood N(v) consists of rect-
angles R+ intersecting H+ and those R− intersecting H−. The rectangles in each of these sets
have a plane touching graph, since it corresponds to the touching graph of the axis-aligned
segments given by their intersections with R. The neighboring rectangles in R+ \ R− are on
the outer face in both graphs in opposite order, so identifying them gives a planar drawing of
the graph induced by N(v). See Figure 3 for an illustration.

Item 3: A Plattenbau R can be transformed into a set B of boxes such that the touching
graph of R is the intersection graph of B as follows: First, shrink each rectangle orthogonal to
the i-axis by a small enough ε > 0 in both dimensions di�erent from i. As a result, we obtain a
set of pairwise disjoint rectangles. Then, expand each such rectangle by ε in dimension i. The
obtained set B of boxes are again interiorly disjoint and all intersections are touchings.

Note that for Items 1 and 2 of Observation 1 it is crucial that G is the touching graph and not
the intersection graph. Moreover, Observation 1 allows to reject some graphs as Plattenbau
graphs:

• K4 is not a Plattenbau graph (by Item 1 of Observation 1),
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Figure 3: Left: A z-rectangle (depicted in blue) in a Plattenbau with its touching rectangles
intersecting its upper halfspace H+. Right: The resulting crossing-free embedding
on the upper hemisphere.

• K1,3,3 is not a Plattenbau graph (by Item 2 of Observation 1).

• The full subdivision of K
22

5
+1

is not a Plattenbau graph (by Item 3 of Observation 1
and [3]).

Remark 1. The number of vertices of the last example is a 10 digits number. This can
be reduced: A class S of geometric objects in Rd is t-separable if there exists a family
H = {H1, . . . , Ht} of hyperplanes, such that any two disjoint elements of S can be separated
by a translate of one of the hyperplanes from H. A family B of axis-aligned boxes in R3

is clearly 3-separable. In [11, Prop. 2.3] it has been shown that if G is a bipartite graph
admitting a t-separable intersection representation, then the bipartite poset corresponding
to G has order dimension at most 2t. Since it is known that the order dimension of the
full subdivision of K2647 is 7 (Ho�sten and Morris [19]) we conclude:

• the full subdivision of K2647 is not a Plattenbau graph.

In particular, some bipartite graphs are not Plattenbau graphs. Together with Km,n being
a Plattenbau graph, this shows that the class of Plattenbau graphs is not closed under taking
subgraphs; an unusual situation for touching graphs, which prevents us from solely focusing
on edge-maximal Plattenbau graphs. To overcome this issue, we say that a Plattenbau R

is generic if it contains no co-planar rectangles3. In a generic Plattenbau each edge of each generic

rectangle intersects the interior of at most one other rectangle. Thus, if R is generic, then
each edge of the touching graph GR can be removed by shortening one of the participating
rectangles slightly. That is, the class of graphs with generic Plattenbau representations is
closed under subgraphs.

We furthermore say that a Plattenbau R is boxed if six outer rectangles constitute the boxed

sides of a box that contains all other rectangles and all regions inside this box are also boxes.
(A box is an axis-aligned full-dimensional cuboid, i.e., the Cartesian product of three bounded
intervals of non-zero length. And a region is a connected component of R3 after the removal
of all rectangles in R.) For boxed Plattenbauten we use the additional convention that the

3In the conference version of this paper, we worked with a more restrictive version of \proper" Plattenbau,
where for any two touching rectangles R, R 0 the intersection R \ R 0 must be a boundary edge of one of R
and R 0. However, there was a mistake in one proof whence we cannot ensure such a representations for
planar 3-chromatic graphs.
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Figure 4: A generic Plattenbau that cannot be augmented to a boxed Plattenbau and a boxed
Plattenbau that is not generic.

edge-to-edge intersections of outer rectangles yield edges in the touching graph, even though
these intersections contain no interior points. In particular, the outer rectangles of a generic
boxed Plattenbau induce an octahedron in the touching graph.

Observation 2. The touching graph GR of a generic Plattenbau R with n � 6 vertices has
at most 4n− 12 edges. Equality holds if R is boxed.

Proof. As noted above, for a generic Plattenbau R with touching graph GR there is an in-
jection from the edges of GR to the edges of rectangles in R: For each edge uv in GR with
corresponding rectangles Ru, Rv 2 R, take the edge of Ru or Rv that contributes to their inter-
section Ru \ Rv. This way, each of the four edges of each of the n rectangles in R corresponds
to at most one edge in GR.

Moreover, if R contains at least two rectangles of each orientation, the bounding box of R
contains at least 12 edges of rectangles in its boundary, none of which corresponds to an
edge in GR. Thus, in this case GR has at most 4n − 12 edges. Otherwise, for one of the
three orientations, R contains at most one rectangle in that orientation. In this case, GR

is a planar bipartite graph plus possibly one additional vertex. In particular, GR has at
most 2(n− 1) − 4+ (n− 1) < 4n− 12 edges, as long as n � 6.

Finally, if R is boxed, then the above analysis is tight, i.e., GR has exactly 4n− 12 edges in
this case.

An immediate consequence of Observation 2 is that K5,6 is a Plattenbau graph which has
no generic Plattenbau representation. Contrary to the case of axis-aligned segments in R2,
neither can every generic Plattenbau in R3 be completed to a boxed Plattenbau, nor is every
boxed Plattenbau equivalent to a generic one. See Figure 4 for problematic examples. The
example on the left is generic, but it is not a subgraph of a Plattenbau graph with a generic and
boxed Plattenbau representation. The touching graph of the example on the right is 7-regular
and has 12 vertices, i.e., 42 edges. Hence, by Observation 2 it has too many edges to be the
touching graph of a generic Plattenbau.

3 Planar 3-Colorable Graphs

Let us recall the main result of this section:

Theorem 1. Every 3-colorable planar graph is the touching graph of a generic Plattenbau.
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The proof of this theorem is in several steps. First we introduce orthogonal surfaces and
show that the dual graph of the skeleton of an orthogonal surface is a Plattenbau graph
(Proposition 3). In the second step we characterize triangulations whose dual is the skeleton
of an orthogonal surface (Proposition 4). One consequence of this is a natural very well-
behaved partial order, namely a distributive lattice, on the set of orthogonal surfaces with
given skeleton (Corollary 5). We then show that a Plattenbau representation of a 3-colorable
triangulation can be obtained by patching orthogonal surfaces in corners of orthogonal surfaces
(Section 3.2).

We begin with an easy observation.

Observation 3. Every 3-colorable planar graph G is an induced subgraph of a 3-colorable
planar triangulation.

Sketch. Consider G with a plane embedding. By adding just subdivided edges we �nd a
2-connected 3-colorable G 0 which has G as an induced subgraph.

Fix a 3-coloring of G 0. Let f be a face of G 0 of size at least four and c be a color such that
at least three vertices of f are not colored c. Stack a vertex v inside f and connect it to the
vertices on f that are not colored c. The new vertex v is colored c and the sizes of the new
faces within f are 3 or 4. After stacking in a 4-face, the face is either triangulated or there is
a color which is not used on any newly created 4-face. A second stack triangulates it.

A plane triangulation T is 3-colorable if and only if it is Eulerian. Hence, the dual graph T�

of T apart from being 3-connected, cubic, and planar is also bipartite. The idea of the proof
is to �nd an orthogonal surface S such that T� is the skeleton of S. This is not always
possible but with a technique of patching one orthogonal surface in an appropriate corner of
a Plattenbau representation obtained from another orthogonal surface, we shall get to a proof
of the theorem.

Consider R3 with the dominance order, i.e., x � y if and only if xi � yi for i = 1, 2, 3. The
join and meet of this distributive lattice are the componentwise max and min. Let V � R3

be a �nite antichain, i.e., a set of mutually incomparable points. The �lter of V is the
set V↑ := {x 2 R3 | 9v 2 V : v � x} and the boundary SV of V↑ is the orthogonal surface orthogonal

surfacegenerated by V. The left part of Figure 5 shows an example in R3. The nine vertices of the
generating set V are emphasized.

Orthogonal surfaces have been studied by Scarf [17] in the context of test sets for integer
programs. They later became of interest in commutative algebra, cf. the monograph of Miller
and Sturmfels [24]. Miller [23] observed the connections between orthogonal surfaces, Schnyder
woods and the Brightwell-Trotter Theorem about the order dimension of polytopes, see also [8].

A maximal connected set of points of an orthogonal surface which is constant in one of
the coordinates is called a 
at. A non-empty intersection of two 
ats is an edge. A point
contained in three 
ats is called a vertex. An edge incident to only one vertex is a ray.
We will only consider orthogonal surfaces obeying the following non-degeneracy conditions:
(1) Every vertex has degree exactly three. (2) There are exactly three rays.

The skeleton GS of an orthogonal surface is the graph consisting of the vertices and edges skeleton

of the surface, in addition there is a vertex v∞ which serves as second vertex of each ray. The
skeleton graph is planar, cubic, and bipartite. The bipartition consists of the maxima and
minima of the surface in one class and of the saddle vertices in the other class. The vertex v∞
is a saddle vertex. The dual of GS is a triangulation with a designated outer face, the dual
of v∞.
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Figure 5: An orthogonal surface and its skeleton (vertex v∞ omitted).

f

R(f)

Figure 6: Generic 
at f and the spanned rectangle R(f).

The generic structure of a bounded 
at is as shown in Figure 6; the boundary consists of
two zig-zag paths sharing the two extreme points of the 
at. The minima of the lower zig-zag
are elements of the generating set V, they are minimal elements of the orthogonal surface S.
The maxima of the upper zig-zag are maximal elements of S. The maxima can be considered
to be dual generators of S.

With the following proposition we establish a �rst connection between orthogonal surfaces
and Plattenbau graphs.

Proposition 3. The dual triangulation of the skeleton of an orthogonal surface S obeying
the two non-degeneracy conditions is a Plattenbau graph and admits a generic Plattenbau
representation.

Proof. Choose a point not on V on each of the three rays of S and call these points the
extreme points of their incident unbounded 
ats.

The two extreme points af, bf of a 
at f of S span a rectangle R(f). Note that the other two
corners of R(f) are max(af, bf) and min(af, bf). We claim that the collection of rectangles R(f)
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Figure 7: Replacing 
ats by rectangles and expanding in order to avoid weak contacts.

is a weak rectangle contact representation of the dual triangulation T of the skeleton of S. weak

represen-

tation

Here weak means that the contacts of pairs of rectangles of di�erent orientation can be an
edge to edge contact. If f and f 0 share an edge e of the skeleton, then since one of the ends
of e is a saddle point of S and thus extreme in two of its incident 
ats, it is extreme for at
least one of f and f 0. This shows that e is contained in the boundary of at least one of the
rectangles R(f), R(f 0), i.e., the intersection of the open interiors of the rectangles is empty.

Let f and f 0 be two 
ats. Let Hf and Hf 0 be the supporting planes. If f is contained in
an open halfspace O de�ned by Hf 0 , then max(af, bf) and min(af, bf), the other two corners
of R(f), are also in O, hence R(f) � O and R(f) \ R(f 0) = ;. If f intersects Hf 0 and f 0

intersects Hf, then consider the line ℓ = Hf 0 \Hf. This line is parallel to one of the axes, hence
it intersects S in a closed interval IS. If If and If 0 are the intervals obtained by intersecting ℓ

with f and f 0 respectively, then one of them equals IS and the other is an edge of the skeleton
of S, i.e., (f, f 0) is an edge of the triangulation T .

It remains to expand some of the rectangles to change weak contacts into true contacts.
Let e = f\f 0 be an edge such that the contact of R(f) and R(f 0) is weak. Select one of f and f 0,
say f. Now expand the rectangle R(f) with a small parallel shift of the boundary segment
containing e. This makes the contact of R(f) and R(f 0) a true contact. The expansion can be
taken small enough as to avoid that new contacts or intersections are introduced. Iterating
over the edges we eventually get rid of all weak contacts. See Figure 7 for an illustration.

In an orthogonal surface some 
ats might be co-planar. But by non-degeneracy all ver-
tices are of degree three. Thus, 
ats (and the corresponding rectangles) can be perturbed
slightly into the orthogonal direction such that co-planarity is avoided. This concludes the
construction.
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Recall that we aim at realizing T�, the dual of the 3-colorable triangulation T as the skeleton
of an orthogonal surface. Since T is Eulerian its dual T� is bipartite. Let U (black) and U 0

(white) be the bipartition of the vertices of T� such that the dual v∞ of the outer face of T
is in U. The critical task is to assign two extreme vertices to each face of T� such that v∞
is never assigned. This has to be done so that each vertex in U (except v∞) is extremal for
exactly two of the faces.

To solve the assignment problem we will work with an auxiliary graph HT . The faces of T�

which do not contain v∞ correspond to the interior vertices of T , we denote this set with V�.
As the vertices of T� are the facial triangles of T , we think of U as representing the black
triangles of T . We also let U� = U − v∞, this is the set of bounded black triangles of T . The
vertices of HT are V� [ U� the edges of HT correspond to the incidence relation in T� and T

respectively, i.e., v, u with v 2 V� and u 2 U� is an edge if vertex v is a corner of the black
triangle u. A valid assignment of extreme vertices is equivalent to an orientation of HT such
that each vertex v 2 V� has outdegree two and each vertex u 2 U� has indegree two, i.e.,
the outdegrees of the vertices are prescribed by the function α with α(v) = 2 for v 2 V�

and α(u) = deg(u) − 2 for u 2 U�. Since |V�| = |U�| = n− 3 it is readily seen that the sum of
the α-values of all vertices equals the number of edges of HT .

Orientations of graphs with prescribed out-degrees have been studied e.g. in [9], there it
is shown that the following necessary condition is also su�cient for the existence of an α-
orientation. For all W � V� and S � U� and X = W [ S∑

x2X

α(x) � |E[X]|+ |E[X,X]|. (α)

Here E[X] and E[X,X] denote the set of edges induced by X, and the set of edges in the cut
de�ned by X, respectively.

Inequality (α) does not hold for all triangulations T and all X. We next identify speci�c
sets X violating the inequality, they are associated to certain badly behaving triangles, which we
will call babets for short. In Proposition 4 we then show that babets are the only obstructions
for the validity of (α).

Let ∆ be a separating triangle of T such that the faces of T bounding ∆ from the outside
are white. Let W be the set of vertices inside ∆ and let S be the collection of black triangles
of T which have all vertices in W. We claim that X = W [ S is violating (α). If |W| = k

and |S| = s, then
∑

x2X α(x) = 2|W| + |S| = 2k + s. The triangulation whose outer boundary
is ∆ has 2(k+ 3) − 4 triangles, half of them, i.e., k+ 1, are black and interior. The right side
of (α) is counting the number of incidences between vertices of W and black triangles. Black
triangles in ∆ have 3(k + 1) incidences in total. There are k + 1 − s black triangles which
have an incidence with a corner of ∆ and 3 of them have incidences with two corners of ∆.
Hence the value on the right side is 3(k + 1) − (k + 1 − s) − 3 = 2k + s − 1. This shows that
the inequality is violated. A separating triangle ∆ of T with white touching triangles on the
outside is called babet . babet

Proposition 4. If T has no babet, then there is an orientation of HT whose outdegrees are
as prescribed by α.

Before we prove Proposition 4 and Theorem 1, let us brie
y summarize the procedure.
First, we construct a Plattenbau representation in the babet-free case (Section 3.1) based on

an auxiliary graph G arising from the bipartition of T�, and a Schnyder wood S for G. We then
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�nd an orthogonal surface S based on the Schnyder wood S and show that the skeleton GS of S
is T�, which together with Proposition 3 gives a Plattenbau for T . Then (Section 3.2), in case T

contains some babets, we cut the triangulation T along an innermost babet, �nd orthogonal
surfaces for the orthogonal surfaces for the inside and outside, and patch the former into a
saddle point of the latter.

Now, let us start with the proof of Proposition 4.

Proof. Suppose that there is an X = W[S violating inequality (α). We are going to modify X

in several steps always maintaining the property that the inequality is violated. At the end
we will be able to point to a babet in T .

Suppose there is a u 2 S with a � 2 neighbors in W. Let X 0 = X − u when going from X

to X 0 the left side of (α) is loosing deg(u) − 2 while on the right side we loose the deg(u) − a

edges of HT which are incident to u but not to W. Since a � 2 the set X 0 is violating. From
now on we assume that every u 2 S has 3 neighbors in W, in particular α(u) = 1.

Now the left side of (α) equals 2|W| + |S| and for the right side we have |E[X]| = 3|S| and
E[X,X] contains no edge incident to S. We de�ne ∂W = |E[X,X]| the notation indicates that
we only have to care of boundary edges of W. The assumption that Inequality (α) is violated
then becomes 2|W|+ |S| > 3|S|+ ∂W or equivalently

2|W| > 2|S|+ ∂W. (∂)

We can assume that the subgraph of HT induced by X is connected, otherwise a connected
component would also violate. Let |W| = k and |S| = s. The set S is a set of black triangles
in the triangulation T and W is the set of vertices of these triangles. Let TS be the plane
embedding of all edges of triangles of S as seen in T . Classify the faces of TS as black triangles,
white triangles and big faces, and let their numbers be s, t and g, respectively. We consider the
outer face of TS a big face independent of its size, therefore, g � 1. Consider the triangulation
T+
S obtained by stacking a new vertex in each big face and connecting it to all the angles of the

face, i.e., the degree of the vertex zf stacked into face f equals the length rf of the boundary of f.
Note that T+

S may have multi-edges but every face of T+
S is a triangle so that Euler's formula

holds. Let R =
∑

f rf be the sum of degrees of the stack vertices. Since T+
S has k + g vertices

it has 2(k + g) − 4 faces. However, we also know that T+
S has s + t + R faces. Counting the

edges incident to the triangles of S we obtain 3s = 3t+ R. Using this to eliminate t we obtain
2(k+ g) − 4 = 2s+ 2R

3 , i.e., 2|W| = 2|S|+ 4− 2g+ 2R
3 . With (∂) this implies 4+ 2R

3 > ∂W + 2g.

Claim 1. R is divisible by 3.

Proof of Claim. Actually we prove that each rf is divisible by 3. Let Y be a collection of
triangles in a 3-colorable triangulation and let γ be the boundary of Y, i.e., γ is the set of
edges incident to exactly one triangle from Y. Let Yb and Yw be the black and white triangles
in Y and let γb and γw be the edges of γ which are incident to black and white triangles of Y.
Double counting the number of edges in Y we get 3|Yb|+ |γw| = 3|Yw|+ |γs|, hence, |γw| � |γs|

mod 3. In our case |γs| = 0 and depending on the chosen Y either R = |γw| or rf = |γw|. 4

Let γ be the boundary cycle of a big face of TS which is not the outer face. We have seen
that |γ| � 0 mod 3. We are interested in the contribution of γ to ∂W, i.e., in the number of
incidences of vertices of γ with black triangles in the inside of the big face. For convenience
we can use multiple copies of a vertex to make γ simple. We let Tγ be the triangulation of the
hole. The claim below implies that ∂γ � 2|γ|/3, unless |γ| � 6 and there is at most one black
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triangle in Tγ. Add all the inner black triangles of γ to S and all the inner vertices to W and
consider the e�ect for the violator inequality 4 + 2R

3 > ∂W + 2g. In the exceptional case we
only have one black triangle and |γ| = 6, i.e., the left side is reduced by 4 and the right side
by 3+ 2. In all other cases the left side of the violator inequality is reduced by 2|γ|/3 and the
right side is reduced by at least 2|γ|/3+ 2, i.e., violators are preserved.

Claim 2. If γ is a simple cycle in a 3-colorable triangulation with interior triangulation Tγ
and ∂γ is the number of incidences of vertices of γ with black triangeles of Tγ, then

• ∂γ � |γ|− 3 if Tγ has no interior vertex, and

• ∂γ � 2|γ|/3 otherwise.

Proof of Claim. We assume that all the faces of Tγ incident to an edge of γ are white. If not
then adding white triangles to achieve this property increases |γ| and keeps ∂γ the same.

Suppose ∂γ < |γ|. Then on γ we �nd an ear, this is a vertex which has no incidence to a
black triangle of Tγ, i.e., its degree in Tγ is 2.

We �rst deal with the case where Tγ has no interior vertex, i.e., all the edges not on γ are
chords. If b is an ear and a, c are the neighbors of b on γ, then ac is an edge and, if |γ| > 3,
there is a black triangle acx in Tγ. An ear is reducible if b has a neighbor on γ which is
only incident to a single black triangle in Tγ. Assume that c is such a neighbor of b, then the
second neighbor d of c on γ has an edge to x. delete b and c and identify a with d and also
identify the edges xa and xd. This results in a cycle γ 0 with |γ 0| = |γ| − 3. We call this an
ear reduction with center x. Figure 8 (left and middle) shows sketches of reducible ears with
x 2 γ. If |γ| > 3, then there is a reducible ear, otherwise the average degree of a vertex would
be 4. This is impossible because Tγ has 2|γ|− 3 edges.

If starting with γ we can perform m reductions, then |γ| = 3m + 3 and ∂γ = 3m. This
completes the proof in this case.

Now assume that Tγ has an interior vertex. Again there is an ear b, let a, c be the neighbors
of b on γ. Then a, c is an edge and there is a black triangle acx in Tγ. Now x may also be an
inner vertex, see Figure 8 (right). However, if x is the unique common neighbor of a and d,
then we can perform an ear reduction with center x by identifying a with d as well as the
edges xa and xd. This results in a cycle γ 0 with |γ 0| = |γ| − 3. Note that when x is not on γ

we have ∂γ = ∂γ 0 + 2, while ∂γ = ∂γ 0 + 3 when x belongs to γ.

a

b
c

x

d

a

b
c

d

a

b
c

d

x

x

Figure 8: Three examples where b is a reducible ear.

If b is a reducible ear but a and d share several neighbors, then there is an extreme common
neighbor y with the property that the cycle a, b, c, d, y encloses all the common neighbors of a
and d. In this case we perform an ear reduction with center y (since a and d have the same
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color in every 3-coloring, the reduced graph remains 3-colorable and its faces 2-colorable). The
reduction again yields a cycle γ 0 with |γ 0| = |γ|− 3 and ∂γ � ∂γ 0 + 2.

After a series of m reductions we obtain a cycle γ 0 which has no reducible ear. Suppose
that there remains an interior vertex in the triangulation Tγ 0 . Now every ear of Tγ 0 has two
neighbors which are incident to at least two black triangles. This shows that ∂γ 0 � |γ 0|. Hence
∂γ � ∂γ 0+2m � |γ 0|+2m = |γ|−3m+2m = |γ|−m. Since m � |γ|/3 we arrive at ∂γ � 2|γ|/3.

Now suppose that Tγ 0 has no interior vertex. There has been a last reduction where a and d

had at least two common neighbors and the outermost y was on the current outer cycle γ�.
In this case one of the edges ay or dy is incident to a black triangle which disappears with
the reduction (cf. Figure 10 (right)), hence, in this step ∂γ� drops by 4. For the initial γ we
get: |γ| = 3m+ 3 and ∂γ � 2m+ 2. This completes the proof of the claim. 4

We have already seen that the claim implies that we may assume that g = 1, i.e., the
violator TS only has a single big face, the outer face f∞. We write rf∞ = 3ρ, the condition for
violation becomes ∂W < 2ρ+ 2.

Let γ be the boundary cycle of the unique big face. While the outer face of T has to be
contained in the big face, we prefer to think of a drawing of TS such that the big face is the
interior of γ. It will be crucial, however, that in the inner triangulation of γ inherited from T

there is a special black triangle δ∞. The goal is to �nd a babet in the interior of γ. We use
induction on ρ.

In the case ρ = 1 the triangle γ has ∂W < 4 incidences with black triangles from the inside.
The unique con�guration with this property is shown in Figure 9. Since the black triangle δ∞
is not yet in the picture one of the triangles must be separating. If the separating triangle was
not the central one it would lead to an increase of ∂W. Hence the white central triangle is
separating, i.e., a babet.

this triangle is a babet
it contains δ∞.

Figure 9: Illustration for the case ρ = 1.

Now let ρ � 2. Assuming a black incident triangle for every vertex of γ we obtain ∂W �

3ρ � 2ρ+ 2. Therefore, on γ we �nd an ear. As above we aim for an ear reduction. Let b be
a reducible ear with neighbors a and c such that c is only incident to a single black triangle
acx inside γ and d is the second common neighbor of c and x. In the proof of Claim 2 we
have seen that in this case a reduction is possible which preserves the violation inequality.

If x is the unique common neighbor of a and d, then the reduction leads to a decrease of
∂W by 2 or 3 and a decrease of ρ by 1, whence the reduced cycle remains violating.

If b is reducible but a and d share several neighbors, then we aim at a reduction whose
center y is the extreme common neighbor of a and d. If this cycle does not enclose the black
triangle δ∞ we can apply the reduction with center y.

The described reductions may decrease ρ until it is 1 whence there is a babet. In fact we
will complete the proof by showing that when no reduction is possible and ρ > 1, then the
violator inequality is not ful�lled.
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We �rst discuss the case where b is reducible but a and d share several neighbors and δ∞
is enclosed in the cycle a, b, c, d, y where y is the extreme common neighbor of a and d. We
show that in this case we can �nd a cycle γ 0 of length 6 which is a violator, i.e., ∂γ < 6.

y

a dd

x

y

a
b c a d

y

d

x

y

y 00

a
b c

y 0

y 00

Figure 10: Illustration for the subcon�gurations generated from a cycle a, b, c, d, y enclos-
ing δ∞.

Suppose y is in the interior of γ in this case we take the cycle a, b, c, d, y add a new common
neighbor y 0 for a, d, y and an ear y 00 over the black triangle containing y 0. This yields a 6-
cycle γ 00 as shown in Figure 10 (left 1). In the interior of γ we replace the triangles inside
a, b, c, d, y by the 3 triangles of a reducible ear, see Figure 10 (left 2) and refer to the cycle
with the simpli�ed interior as γ 0. Now we compare ∂γ with ∂γ 0 and ∂γ 00 and use the bound
previously shown in the claim for γ 0, i.e., ∂γ 0 � 2|γ 0|/3 = 2|γ|/3. Taking into account that on
each of γ 0 and γ 00 we see two incidences with black triangles which are not counted in ∂γ we
get 2|γ|/3+ 2 > ∂γ = (∂γ 00 − 2) + (∂γ 0 − 2) � ∂γ 00 + 2|γ|/3− 4. Hence ∂γ 00 < 6, whence γ 00 is
also a violator.

If y is a vertex on the cycle γ we add a new ear y 00 either over ay or over dy depending on
which is incident to a black triangle. This yields a 6-cycle γ 00 as shown in Figure 10 (right 1).
In the interior of γ we replace the triangles inside a, b, c, d, y by the 3 triangles of a reducible
ear, see Figure 10 (right 2) and refer to the cycle with the simpli�ed interior as γ 0. Taking into
account that on γ 0 we see three incidences with black triangles which are not counted in ∂γ

we get 2|γ|/3 + 2 > ∂γ � ∂γ 00 + (∂γ 0 − 3) � ∂γ 00 + 2|γ|/3 − 3. Hence ∂γ 00 < 5, whence γ 00 is
also a violator.

If ρ � 3 and there are no reducible ears, then both neighbors of each ear vertex have
two incidences with black triangles. Let each vertex with at least two incidences with black
triangles discharge 1/2 to the neighbors, then all vertices have a weight of at least 1. We get
∂W � 3ρ > 2ρ+ 2 and the example is not a violator.

For the case ρ = 2 we consider circular sequences (s1, s2, s3, s4, s5, s6) with
∑

i si < 2ρ+2 = 6

such that there is an inner Eulerian triangulation of a 6-gon with only white triangles touching
the 6-gon and si black incident triangles at vertex vi of the 6-gon. A vertex vi with si = 0 is
an ear. Clearly, the circular sequence has no 00 subsequence. With two ears which share a
neighbor of degree 1, i.e., with a 010 subsequence, we have the graph T1 from Figure 11, this
triangulation does not occur in our setting since it does not contain a black δ∞ which is vertex
disjoint from the outer 6-gon. Making any of the four triangles of T1 separating so that it can
accommodate δ∞ in its interior would make

∑
i si � 6.

With a 0110 subsequence we have T2. Again there is no δ∞ in T2 and making a triangle
separating would make

∑
i si � 6. It remains to look at sequences without 00, and 010, and

0110 but
∑

i si � 5. The sequence 011102 is the unique sequence with these properties and
there is a unique corresponding triangulation T3. As with T1 and T2 there is no δ∞ in T3 and
making a triangle separating would make

∑
i si � 6.
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T1 T2 T3

Figure 11: Three triangulations with ρ = 2 and ∂W < 6.

3.1 Plattenbau Representations in the Babet-Free Case

Let T be a 3-colorable triangulation which has no babet. Due to Proposition 4 we �nd the
α-orientation of HT . This orientation can be represented on the dual T� of T as a collection C
of cycles such that every face which is not incident to v∞ contains exactly one fragment of a
cycle which leaves the face in distinct vertices of U� and every vertex of U� is covered by one of
the cycles (Eppstein and Mumford [6] refer to this structure as cycle cover). The connected
components of R2 \ C can be two-colored in white and pink such that the two sides of each
cycle have distinct colors, the two-coloring is unique if we want the unbounded region to be
colored white. This two-coloring of the plane induces a partition of the vertices of U 0 into
U 0

w, U
0
p where U 0

w consists of all vertices living in white regions and U 0
p consists of the vertices

in pink regions, see Figure 12 for an example. An important property of the partition is that
every vertex of u 2 U� is adjacent to vertices from both classes U 0

w and U 0
p. This follows form

the fact that a cycle C from C contains u, whence two of the edges of u are on one side and
the third is on the other side of C.

Figure 12: Example of a T� with a cycle cover of U� and the induced partition of U 0.

The partition U 0
w, U

�, U 0
p of the vertices of T�\{v∞} corresponds to the partition into minima,

saddle points, maxima of the vertices of the orthogonal surface with skeleton T�. To construct
this orthogonal surface we �rst de�ne a 3-connected planar graph G whose vertex set is U 0

w,
the edges of G are in bijection with U� and each bounded face of G contains exactly one vertex
of U 0

p. This graph G will be decorated with a Schnyder wood, i.e., an orientation of the edges
which obeys the following rules:
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(W1) On the outer face of G there are three special vertices ar, ag, ab colored red, green, and
blue in clockwise order. For c 2 {r, g, b} vertex ac is equipped with an outward oriented
half-edge of color c.

(W2) Every edge e is oriented in one or in two opposite directions. The directions of edges
are colored such that if e is bioriented the two directions have distinct colors.

(W3) Every vertex v has outdegree one in each color c 2 {r, g, b}. The edges er, eg, eb leaving
v in colors r, g, b occur in clockwise order. Each edge entering v in color c enters v in
the sector bounded by the two ei with colors di�erent from c (see Figure 13).

(W4) There is no interior face whose boundary is a directed cycle in one label.

Figure 13: Illustration for the vertex condition (W3).

The construction of G and the Schnyder wood S is in several steps. Consider a 3-coloring of
T with colors r, g, b, such that on the outer triangle these colors appear clockwise in the given
order. Note that this implies that all white triangles see r, g, b in clockwise order and all black
triangles see r, g, b in counterclockwise order. The coloring of T induces a 3-coloring of the
edges: for edge e = v, v 0 use the unique color which is not used for v and v 0. This edge-coloring
of T can be copied to the dual edges. This yields an edge-coloring of T� such that each vertex
in U 0 is incident to edges of colors r, g, b in clockwise order. Delete v∞ from T� but keep the
edges incident to v∞ as half edges at their other endpoint, we denote the obtained graph as
T�∞. The neighbors of v∞ are the special vertices ar, ag, ab for the Schnyder wood.

Next we introduce some new edges. For every black vertex u 2 U� which is adjacent to only
one vertex white vertex v of U 0

w we identify the unique face f which is adjacent to u but not
to v. Connect u to a vertex v 0 on the boundary of f which belongs to U 0

w. Note that the edge
uv 0 is intersected by a cycle from C and that both faces obtained by cutting f via u, v 0 contain
the vertex v 0 2 U 0

w. This shows that we can add edges to all vertices of U� which are adjacent
to only one vertex in U 0

w without introducing crossings. The color of vu is copied to the new
edge uv 0. Figure 14 exempli�es the coloring of T�∞ together with the additional edges.

Now remove all the edges incident to vertices in U 0
p. In the remaining graph all the vertices

of U� are of degree 2. We remove these `subdivision' vertices and melt the two edges into one.
The result is G. We claim that orienting the three edges of v 2 U 0

p which come from an edge
of T�∞ as outgoing we obtain a Schnyder wood of G. Indeed (W1), (W2), and (W3) follow
directly or from what we have already said. For (W4) we need a little argument. Consider a
monochromatic edge vv 0 and let f be one of the faces of G containing this edge on the boundary.
The other edge on the boundary of f which contains v 0 is either incoming in the same color or
outgoing in a di�erent color. This shows that there is no monochromatic directed facial cycle
containing vv 0. Now consider a face f of G which has no monochromatic edge. Note that f is
a union of faces of T�∞ and each face of T�∞ is incident to a pink vertex in U 0

p. Let w 2 U 0
p be a

vertex in the interior of f such that in T�∞ there is an edge wu with u 2 U� on the boundary
∂f of f. Let c 2 {r, g, b} be the color of the edge wu. Vertex u has two neighbors v, v 0 on ∂f.
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Figure 14: The coloring of the edges of T�∞ obtained from the 3-coloring of T . The dashed
arrows are the additional edges.

By looking at the colors of edges of T�∞ we see that at v and v 0 the incident edge on ∂f which is
di�erent from vv 0 has color c. In the Schnyder wood we therefore see these outgoing in color c
at v and v 0 one of them being oriented clockwise, the other counterclockwise on the boundary
of f. This shows that ∂f supports no monochromatic directed cycle.

For the following we rely on the theory of Schnyder woods for 3-connected planar graphs, see
e.g. [7] or [14] or [9]. In the Schnyder wood S on G for every vertex v and every color c 2 {r, g, b}

there is a directed path Pc(v) of color c from v to ac. The three paths Pr(v), Pg(v), Pb(v) pairwise
only share the vertex v. The three paths of v partition the interior of G into 3 regions. For
{c1, c2, c3} = {r, g, b} we let Rc1(v) be the region bounded by Pc2 and Pc3 . With v we associate
the region vector (vr, vg, vb) where vc is the number of faces of G in region Rc(v). Figure 14
illustrates regions and region vectors.

4

5

100 0

1 4

3 4 3

5 2 3

0 6

1 4

6 13

811

10 0

5 0 5

0

0 28

5

10 0

0

Figure 15: A Schnyder wood with a shading indicating the regions of the yellow vertex. Vertices
are labeled with their region vector.

Let V = {(vr, vg, vb) : v 2 V(G)} be the generating set for an orthogonal surface S. In
slight abuse of notation we identify region vectors with their corresponding vertices and say
that S is generated by V(G). The minima of S are the vertices of G. Moreover, S supports
the Schnyder wood S in the sense that every outgoing edge at v in S corresponds to an edge of
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the skeleton of S such that the direction of the skeleton edge is given by the color of the edge.
In fact from the clockwise order of directions of skeleton edges at minima, saddle points and
maxima it can be concluded that the skeleton GS of S is T�. With Proposition 3 we obtain a
Plattenbau representation of T .

Figure 16: The orthogonal surface obtained from the region vectors given in Figure 15.

Since the set of α-orientations of a �xed planar graph carries the structure of a distributive
lattice [9], and we have shown a correspondence of such a set with the orthogonal surfaces with
given skeleton, we obtain:

Corollary 5. Let G be a planar cubic bipartite graph with speci�ed vertex v∞ such that
the dual triangulation is babet-free. The set of orthogonal surfaces with skeleton G and
vertex v∞ at in�nity carries a distributive lattice structure.

3.2 Plattenbau Representations in the Presence of Babets

Let T be a 3-colorable triangulation, suppose that T contains babets. Being separating triangles
babets can be nested, let B be the family of basic babets of T , i.e., of babets which are not
contained in the interior of another babet. Let T△ be the triangulation obtained from T by
cleaning all the babets, i.e., removing the interior vertices and their incident edges from all
babets B 2 B. Clearly T△ is 3-colorable and babet-free. Triangles which have been babets are
black. With the method from the previous subsection we get an orthogonal surface S△ for T△.
In this representation triangles which have been babets correspond to saddle points. For later
reference let uB be the saddle point corresponding to B 2 B.

For each babet B 2 B let TB the inside triangulation of B in T . Clearly, TB is 3-colorable,
hence, its triangles can be colored black and white with the outer face being black (note that
this coloring of TB is obtained from the coloring of triangles in T by exchanging black and
white). Assuming that TB has no babet we obtain an orthogonal surface SB for TB.

The construction of the orthogonal surface SB works with the assumption that the vertices of
the outer face, i.e., of the triangle B are colored r, g, b in clockwise order. The same assumption
for the full triangulation T implies that the vertices of B are colored r, b, g in clockwise order.

The goal is to patch SB at the saddle point uB to S△ so that the 
ats corresponding to a
vertex of B in the two orthogonal surfaces are coplanar. Let fr, fg, and fb be the red, green
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and blue 
at at uB in S△, they represent the vertices vr, vg, vb of B with their color in T . At
uB exactly one of the three 
ats has a concave angle, we assume that this 
at is fr, the other
cases are completely symmetric. The point uB is an interior point of the rectangle R = R(fr)
spanned by the extreme points of fr. The point uB is the apex of a convex corner whose sides
coincide locally with R \ fr, fg and fb. In this corner we see the colors of the 
ats in clockwise
order as r, b, g. Hence, we can patch and appropriately scaled down copy of SB into this
corner such that the red outer 
at of SB becomes part of R \ fr, while the green outer 
at of
SB becomes part of fb and the blue outer 
at of SB becomes part of fg. With the technique
of Proposition 3 we obtain a rectangle contact representation of the subgraph of T induced
by all the vertices of T which are represented by 
ats of S△ and SB. See Figure 17 for an
illustration.

Figure 17: An orthogonal surface with three saddle points. The frames indicate how to patch
a small orthogonal surfaces at the respective saddle points.

Repeating the procedure for further babets in B and for babets which may occur in triangu-
lations TB we eventually obtain an rectangle contact representation of T . This completes the
proof of Theorem 1.

3.3 Comments on Related Work

Eppstein and Mumford [6] study orthogonal polytopes and their graphs. They de�ne corner
polyhedra as polytopes obtained from what we call an orthogonal surface by restricting the corner

polyhedrasurface to the bounded 
ats and connecting their boundary to the origin 0 = (0, 0, 0), this
replaces the 3 unbounded 
ats of an orthogonal surface by three 
ats closing the polytope.
Eppstein and Mumford show that the skeleton graphs of corner polyhedra are exactly the cubic
bipartite 3-connected graphs with the property that every separating triangle of the planar
dual graph has the same parity. This is equivalent to our characterization of these graphs as
duals of 3-colorable triangulations with admit a choice of the outer face such that there are no
babets, see Proposition 4.

A major part of their proof is devoted to the construction of a rooted cycle cover, respectively,
to the investigation of necessary and su�cient conditions for the existence of such a cycle cover.
The proof is based on a set of operations that allow any 4-connected Eulerian triangulation to
be reduced to a smaller one. In contrast we show the equivalent existence of an α-orientation
with a counting argument. Given a cycle cover Eppstein and Mumford provide a construction of
an appropriate orthogonal surface from the combinatorial data by combining the coordinates
obtained from plane drawings of three orthogonal projections. In contrast we refer to the
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established theory of Schnyder woods and their relation to orthogonal structures to get the
results.

As a more general class than corner polyhedra Eppstein and Mumford de�ne xyz polyhedra xyz

polyhedraas orthogonal polytopes with the property that each axis-parallel line through a vertex contains
exactly one additional vertex. They characterize the skeletons of them as cubic bipartite 3-
connected graphs, i.e., as the duals of 3-colorable triangulations. Modulo the `re
ection' of the
three outer 
ats this corresponds to our Theorem 1. The main step in the proof is the gluing
of an orthogonal surface into a corner of another orthogonal surface, see Section 3.2 and also
Fig. 29 in [6].

A recent paper of Gon�calves [16] can be used as a basis for yet another proof of Theo-
rem 1, i.e., a proof of the characterization of xyz polyhedra. Gon�calves uses a system of linear
equations to construct a TC-scheme (triangle contact scheme) for a given 3-colorable trian- TC-

schemegulation. The TC-scheme comes very close to a segment contact representation with segments
of 3 slopes for the input graph, however, there can be degeneracies: segments may degenerate
to points (this relates to babets) and segments ending on two sides of another segment may
have coinciding endpoints. The TC-scheme can be transformed into an orthogonal surface.
First adjust the directions to have slopes 0, +π

3 , and −π
3 , then add an orthogonal peak in

each gray triangle4 and an orthogonal valley in each white triangle, and extend the outer 
ats.
This yields an orthogonal surface. If there are no degeneracies the orthogonal surface properly
represents the triangulation via 
at contacts. Degeneracies of the TC-scheme translate into
corners of degree 6 in the orthogonal surface, they can be resolved by shifting 
ats (c.f. [14]
for details on 
at shifting). Finally as in the other two approaches babets have to be recovered
by patching their orthogonal surface into corners of the surface.

Figure 18: A 3-colored triangulation, a TC-scheme of the triangulation and the corresponding
orthogonal surface.

A nice aspect of this approach is that the partition of white triangles of the triangulation
into peak and valley triangles is done by solving the linear system, no need of computing an
α-orientation or a cycle cover for this task.

4 Generic Boxed Plattenbauten and Octahedrations

In this section we characterize the touching graphs of generic boxed Plattenbauten, that is, we
prove Theorem 2. Furthermore, we provide iterative constructions for generic boxed Platten-

4This refers to the two color classes of the triangles of the TC-scheme, not to the two classes of triangles of
the original triangulation.
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bauten from smaller ones in Subsection 4.1. Here is the theorem again.

Theorem 2. A graph G is the touching graph of a generic boxed Plattenbau R if and only
if there are six outer vertices in G such that each of the following holds:

(P1) G is connected and the outer vertices of G induce an octahedron.

(P2) The edges of G admit an orientation such that

• the bidirected edges are exactly the outer edges,

• each vertex has exactly 4 outgoing edges.

(P3) The neighborhood N(v) of each vertex v induces a spherical quadrangulation SQ(v)
in which the out-neighbors of v induce a 4-cycle.

• If v is an outer vertex, this 4-cycle bounds a face of SQ(v).

(P4) For every edge uv of G with common neighborhood C = N(u) \ N(v), the cyclic
ordering of C around u in SQ(v) is the reverse of the cyclic ordering of C around v

in SQ(u).

First, as noted earlier, in a generic Plattenbau for any two touching rectangles R, R 0 one
rectangle, say R uses part of one of its edges for this incidence and does not use this edge for
any other incidence. We denote this as R → R 0 and remark that this orientation has already
been used in the proof of Observation 2.

Second, in any generic boxed Plattenbau R there are six rectangles that are incident to the
unbounded region. We refer to them as outer rectangles and to the six corresponding vertices outer

rectanglesin the touching graph G for R as the outer vertices. The corners incident to three outer
rectangles are the outer corners , and the inner regions/cells of R will be called rooms . outer

corners
rooms

Whenever we have speci�ed some vertices of a graph to be outer vertices, this de�nes inner
vertices, outer edges, and inner edges as follows: The inner vertices are exactly the vertices
that are not outer vertices; the outer edges are those between two outer vertices; the inner
edges are those with at least one inner vertex as endpoint. We shall use these notions for a
Plattenbau graph, as well as for some planar quadrangulations we encounter along the way.

Let us start with the necessity of Items (P1) to (P4) in Theorem 2.

Proposition 6. Every touching graph of a generic boxed Plattenbau satis�es Items (P1)
to (P4) in Theorem 2.

Proof. Item (P1) follows directly from the de�nition of boxed Plattenbauten. Also, for
Item (P2) simply orient each edge towards the end-vertex whose rectangle has interior points
in the intersection. This way, any edge between two outer vertices is bidirected, which is in
accordance with Item (P2). Now, Item (P3) follows from Observation 1 Item 2 together with
the fact that edge-maximal planar bipartite graphs are quadrangulations. Indeed, if the rect-
angles on one side of a given rectangle would not induce a quadrangulation, then there would
be a rectangle with a free edge and R would not be boxed. Let us �nally argue Item (P4).
The common neighbors of two vertices u, v lie on the circle that is the intersection of the
spheres with centers SQ(u) and SQ(v), respectively. Since u and v are on di�erent sides of
the intersection, u, v see the vertices on the circle in opposite order. See Figure 19 for an
illustration.
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Figure 19: Two rectangles (green and blue) and their common neighborhood.

Next, we prove the su�ciency in Theorem 2, i.e., for every graph G satisfying Items (P1)
to (P4) we �nd a generic boxed Plattenbau with touching graph G.

Fix a graph G = (V, E) with six outer vertices and edge orientation ful�lling Items (P1)
to (P4). For each vertex v 2 V denote by SQ(v) the spherical quadrangulation induced
by N(v) given in Item (P3). By Item (P3), the out-neighbors of vertex v induce a 4-cycle
in SQ(v), which we call the equator Ov of SQ(v). The equator Ov splits the spherical quad- equator

rangulation SQ(v) into two hemispheres , each being a plane embedded quadrangulation with hemispheres

outer face Ov with the property that each vertex of SQ(v) − Ov is contained in exactly one
hemisphere. The vertices of Ov are the outer vertices of either hemisphere. Note that one
hemisphere (or even both) may be trivial, namely when the equator bounds a face of SQ(v).

We proceed with a number of claims.

Claim 3. In each hemisphere, each inner vertex has exactly two outgoing edges and no
outer vertex has an outgoing inner edge.

Proof of Claim. Let u be any inner vertex of a hemisphere of SQ(v). We shall �rst show
that u has at least two out-neighbors in that hemisphere. We have u 2 N(v) − Ov, i.e., u is
a neighbor of v but not an out-neighbor. Hence, the edge uv is directed from u to v and v

lies on the equator Ou of SQ(u). As such, v has two neighbors w1, w2 on the equator of Ou,
i.e., w1, w2 are out-neighbors of u. Also w1, w2 2 SQ(v) since they are neighbors of v. Hence,
u has at least two out-neighbors in SQ(v) and, by planarity of SQ(v), these are in the same
hemisphere as u, as desired.

Finally, each hemisphere of v is a plane quadrangulation with outer 4-cycle Ov, and as such
has exactly 2k inner edges for k inner vertices. As each inner vertex has at least two outgoing
edges, the edge count gives that each inner vertex has exactly two outgoing edges. Moreover,
each inner edge is outgoing at some inner vertex, i.e., no outer vertex of the hemisphere has
an outgoing inner edge. 4

Together with v each equator edge of SQ(v) induces a triangle in G. These four triangles
are the equator triangles of v. equator

triangles
Claim 4. Every triangle in G is an equator triangle.

Proof of Claim. Let ∆ be a triangle in G with vertices u, v,w. First, we shall show that ∆

is not oriented as a directed cycle, i.e., ∆ has a vertex of out-degree two. Without loss of
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generality let uv be directed from u to v. If uw is directed from u to w, we are done. So
assume that uw is directed from w to u. Then u 2 N(v)−Ov is an inner vertex of a hemisphere
of SQ(v). Moreover w 2 N(v) has an outgoing edge to u, and Claim 3 implies that w is an
inner vertex of the same hemisphere of SQ(v). In particular, vw is directed from w to v

whence w is a vertex of out-degree two in ∆.
Now let a be the vertex in ∆ with out-degree two and b, c be its out-neighbors in ∆. Then b

and c lie on the equator of a and are connected by an edge bc in G. Thus ∆ is an equator
triangle. 4

Clearly, a vertex w forms a triangle with two vertices u and v if and only if uv is an edge
and w is a common neighbor of u and v. Equivalently, w is adjacent to v in SQ(u), which
in turn is equivalent to w being adjacent to u in SQ(v). Hence, the set N(u) \ N(v) of all
common neighbors (and thus also the set of all triangles sharing edge uv) is endowed with
the clockwise cyclic ordering around v in SQ(u), as well as with the clockwise cyclic ordering
around u in SQ(v). By Item (P4), these two cyclic orderings are reversals of each other.

Let us de�ne for a triangle ∆ in G with vertices u, v,w the two sides of ∆ as the two cyclic sides

permutations of u, v,w, which we denote by [u, v,w] and [u,w, v]. So triangle ∆ has the two [u, v,w]

sides [u, v,w] = [v,w, u] = [w,u, v] and [u,w, v] = [w, v, u] = [v, u,w]. We de�ne a binary
relation ∼ on the set of all sides of triangles in G as follows.

[u, v, a] ∼ [v, u, b] if


a comes immediately before b

in the clockwise cyclic ordering

of N(u) \N(v) around v in SQ(u)

(1)

Note that by (P4) a comes immediately before b in the clockwise ordering around v if and only
if b comes immediately before a in the clockwise ordering around u. Thus [u, v, a] ∼ [v, u, b]
also implies [v, u, b] ∼ [u, v, a], i.e., ∼ is a symmetric relation and as such encodes an undirected
graph H on the sides of triangles.

Claim 5. Each connected component of H is a cube. The corresponding subgraph in G is
an octahedron.

Proof of Claim. Consider any �xed vertex [u, v,w] of H. Then vw is an edge of G contained
in SQ(u). As SQ(u) is a quadrangulation, vertex v has degree at least two in SQ(u). Hence,
there exists a unique vertex a in SQ(u) such that [u, v,w] ∼ [v, u, a] according to Eq. (1).
Moreover, a and w are both neighbors of v in SQ(u) and hence non-adjacent in G, i.e.,
a 2 (N(u)\N(v))−N(w). Symmetrically, we �nd b 2 (N(w)\N(u))−N(v) with [w,u, v] ∼
[u,w, b] and c 2 (N(v) \ N(w)) − N(u) with [v,w, u] ∼ [w, v, c]. It follows that a, b, c are
pairwise distinct vertices of G and thus [u, v,w] has degree exactly three in H.

Now recall that vw is an edge of G contained in SQ(u). Consider the face f in SQ(u) for
which v comes immediately before w in the clockwise ordering around f. Let v,w, s, t be the
clockwise ordering of vertices around f. Then, for example, w comes immediately before t in
the clockwise cyclic ordering around v in SQ(u). Using Eq. (1), we have the following.

[u, v,w] ∼ [v, u, t] = [u, t, v] ∼ [t, u, s] = [u, s, t] ∼ [s, u,w] = [u,w, s] ∼ [w,u, v] = [u, v,w]

It follows that t = a and s = b. I.e., the component of H with vertex [u, v,w] contains the four
triangle sides [u, v,w], [u,w, b], [u, b, a], [u, a, v] and these form a 4-cycle in H. As v,w, a, b
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[u, v, w]
[v, w, u]
[w, u, v]

[v, u, a]
[u, a, v]
[a, v, u]

[u, b, a]
[b, a, u]
[a, u, b]

[u,w, b]
[w, b, u]
[b, u, w]

[b, w, c]
[w, c, b]
[c, b, w]

[w, v, c]
[v, c, w]
[c, w, v]

[c, v, a]
[v, a, c]
[a, c, v]

Figure 20: The second neighborhood of vertex [u, v,w] in the auxiliary graph H.

are pairwise distinct vertices in G, we have [u, v,w] 6∼ [u, b, a] and [u,w, b] 6∼ [u, a, v], meaning
that the above 4-cycle in H is induced.

Repeating the same argument for [v,w, u] in quadrangulation SQ(v) and [w,u, v] in quad-
rangulation SQ(w), we get the induced 4-cycles

[v,w, u] ∼ [w, v, c] = [v, c,w] ∼ [c, v, a] = [v, a, c] ∼ [a, v, u] = [v, u, a] ∼ [u, v,w] = [v,w, u]

and

[w,u, v] ∼ [u,w, b] = [w,b, u] ∼ [b,w, c]

= [w, c, b] ∼ [c,w, v] = [w, v, c] ∼ [v,w, u] = [w,u, v].

As [u, v,w] = [v,w, u] = [w,u, v], these three induced 4-cycles in H pairwise share exactly
one edge, as shown in Figure 20. For each of the three vertices [a, c, v], [b, a, u], and [c, b,w],
the third neighbor in H is yet to be explored. However by symmetry, each of those vertices is
also in exactly three induced 4-cycles, which implies that they have the same third neighbor:
vertex [a, b, c] = [b, c, a] = [c, a, b].

Thus, the component of H containing [u, v,w] is a cube. The eight corresponding triangles
in G form an octahedron with vertex set {u, v,w, a, b, c}. 4

With Claim 5 we have identi�ed a family of octahedra in G such that each side of each triangle
in G is contained in exactly one octahedron. We call these octahedra the cells of G, as these cells

correspond in the 2-dimensional case to the 4-cycles bounding faces of the quadrangulation.
As Eq. (1) puts two triangle sides [u, v, a] and [v, u, b] into a common cell if and only if the
edges va and vb bound the same facial 4-cycle in SQ(u), we have the following correspondence
between the cells of G and the faces in the spherical quadrangulations.

Claim 6. If O � G is a cell of G and C is an induced 4-cycle in O, then C bounds a face
of SQ(v) and a face of SQ(u) for the two vertices u, v 2 O − C. Conversely, if C is a
4-cycle bounding a face of SQ(v), then there is a cell O of G containing {v} [ V(C).

Having identi�ed the cells, we can now construct a generic boxed Plattenbau for G by
identifying two opposite vertices in a particular cell, calling induction, and then splitting
the rectangle corresponding to the identi�cation vertex into two. The cells of G will then
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correspond to the rooms in R, except that one cell of G will correspond to the unbounded
region of R (which is not a room). To this end, we prove the following stronger statement:

Lemma 7. Let G be a graph satisfying Items (P1) to (P4) and let A,B,C be three outer
vertices forming a triangle in G. Then there exists a generic boxed Plattenbau R whose
touching graph is G such that each of the following holds.

(I1) The six outer vertices of G correspond to the outer rectangles of R.

(I2) The cells of G correspond to the rooms of R, except for one cell that is formed by
all six outer vertices.

(I3) For any two vertices u, v with corresponding rectangles Ru, Rv we have u → v in the
orientation of G if and only if Ru \ Rv contains an edge of Ru.

(I4) For each vertex v corresponding to a rectangle Rv, the rectangles touching Rv come
in the same spherical order as their corresponding vertices in SQ(v).

Proof. We proceed by induction on the number of vertices in G = (V, E). As the base case we
have |V | = 6 and G ∼= K2,2,2 is just an octahedron. In this case G has exactly eight triangles
and 16 sides of triangles. There are exactly two cells, each isomorphic to G. The desired
Plattenbau R is given by the six sides of an axis-aligned cuboid in R3. It is easy to see that
R has the required properties.

So let us assume that |V | > 6, i.e., there is at least one inner vertex. Consider the three
outer vertices A,B,C, which form a triangle in G. We shall �rst show that at least one of the
quadrangulations SQ(A), SQ(B), SQ(C) has an inner vertex. As G is connected by Item (P1),
there is an edge in G from some inner vertex v to some outer vertex w with w not necessarily
in {A,B,C}. Then v is an inner vertex of SQ(w), i.e., one hemisphere of SQ(w) is a plane
quadrangulation with at least �ve vertices whose outer 4-cycle consists of four outer vertices
of G. One edge of the outer 4-cycle has both endpoints in {A,B,C} and, as there is some inner
vertex, at least one of these two endpoints has an inner vertex as a neighbor.

So we may assume that A has an inner neighbor, i.e., the non-trivial hemisphere Q of SQ(A)
has an inner face f that is bounded by the edge BC and at least one inner vertex of G. Consider
the cell O of G that contains all vertices on f, as given by Claim 6. Let the vertices of this
octahedron O be denoted by A,B,C, a, b, c with the three pairs of non-adjacent vertices being
{A,a}, {B, b}, and {C, c}. Note that at least one of a, b, c is in inner vertex of G since O includes
an inner vertex of Q. In any case, vertices a, b, c form a triangle in G and each of the three
vertices has outgoing edges to two of A,B,C. By Claim 4, one of a, b, c, say c, has outgoing
edges to the other two vertices (a and b in this case). In particular, c is an inner vertex, as
otherwise c has only outer vertices as out-neighbors (by Item (P2)), contradicting that one of
a, b, c is an inner vertex.

Now we identify vertices c and C in G, denoting the resulting vertex by ~C and the resulting
graph by ~G. Each of A,B, a, b is a neighbor of c and C in G. We remove double edges during
the identi�cation, so that in ~G vertex ~C is connected to each of A,B, a, b with a single edge.
In ~G we choose the same six vertices except for ~C replacing C as the outer vertices. We claim
that ~G together with this choice of outer vertices has the properties in Items (P1) to (P4).
Indeed Item (P1) holds because each neighbor w of ~C in ~G that is not a neighbor of C in G

has in G an incoming edge to c. In particular, such w is an inner vertex, as c is an inner
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Figure 21: The situation in Claim 7 that leads to a contradiction.

vertex. Hence the outer vertices in ~G induce an octahedron. Connectivity of ~G follows from
connectivity of G.

For Item (P2) we �rst prove the following.

Claim 7. We have N(c) \N(C) = {A,B, a, b}.

Proof of Claim. Suppose for the sake of contradiction that v is a common neighbor of c and C

di�erent from A,B, a, b. Then C and c are out-neighbors of v, i.e., v is a non-equator vertex
in SQ(c) and SQ(C). Let w be an out-neighbor of v di�erent from c, C. Then, by Claim 3 w

is contained in SQ(c) and SQ(C), too. If w is neither on the equator of SQ(c) nor on the
equator of SQ(C), we can repeat the argument with w taking the role of v. Thus assume
that w is an out-neighbor of at least one of c, C. As out-neighbors of the outer vertex C are
outer vertices, it follows that w is an out-neighbor of c, i.e., w 2 {A,B, a, b}. By symmetry,
assume that w 2 {B, b}. Now consider the hemisphere Q of SQ(w) that contains v as an inner
vertex. As A,B,C, a, b, c form a cell, the vertices A,C, a, c form a quadrangular face in Q by
Claim 6. Moreover, we know that c has outgoing edges to A and a, while v has outgoing edges
to c and C, see Figure 21 for an illustration of the situation on SQ(w).

Vertices a,A, c, C and v induce a K2,3 in SQ(w). Since a,A, c, C bound a face of the hemi-
sphere Q of SQ(w), and A,C are outer vertices of G (hence outer vertices of Q), it follows
that vertex a lies inside the 4-cycle K formed by A, c, v, C in Q. As Q is a quadrangulation,
the 4-cycle K together with the vertices in its interior is as well a quadrangulation J with outer
face K. Hence, J has |V(J)|−4 inner vertices and 2|V(J)|−8 inner edges. One of the inner edges
of J, namely the edge ca is outgoing at the outer vertex c of J. Hence at most 2|V(J)|− 9 inner
edges of J are outgoing at an inner vertex of J. But this is a contradiction to Claim 3, which
states that each of the |V(J)|− 4 inner vertices has exactly two outgoing edges in Q. 4

Claim 7 implies that the orientation of G given by Item (P2) naturally induces an orientation
of ~G satisfying again Item (P2).

Claim 8. Item (P3) holds for ~G.

Proof of Claim. We shall show that for each vertex v of ~G, the neighborhood of v induces a
spherical quadrangulation SQ(v) in which the out-neighbors of v form a 4-cycle. We distinguish
di�erent cases of v and how N(v) changes during the identi�cation of c and C. For v = ~C, N(v)
in ~G is the union of N(c) and N(C) in G. As A,B,C, a, b, c form a cell, A,B, a, b form a face
in both SQ(c) and SQ(C) by Claim 6. Moreover, A,B, a, b are the equator in SQ(c). Hence,
the subgraph of ~G induced by N(v) = N(c)[N(C) can be obtained by pasting SQ(c) into the
face A,B, a, b of SQ(C). This is a quadrangulation and the out-neighbors of ~C are the same
as for C, i.e., induce a 4-cycle. For v 2 {A,B, a, b}, identifying C and c corresponds to merging
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opposite vertices of a face f in SQ(v). As N(c) \ N(C) = {A,B, a, b} by Claim 7, in SQ(v)
vertices c and C have no common neighbor outside of f. Thus the identi�cation of C and c in
SQ(v) preserves the property of being a quadrangulation and does not a�ect the equator. For
v /2 { ~C,A,B, a, b} the neighborhood of v does not change, except for possibly renaming c or C

to ~C. This shows that ~G satis�es Item (P3). 4

Claim 9. Item (P4) holds for ~G.

Proof of Claim. Recall that during the identi�cation of c and C, we changed the embedding
of SQ(v) only for v 2 { ~C,A, B, a, b}. Thus we need to check only those edges in ~G with at
least one endpoint in { ~C,A, B, a, b}. First consider an edge ~Cv with v /2 {A,B, a, b}. If v was
a neighbor of c in G, then in SQ( ~C) vertex v is embedded inside the quadrangle A,B, a, b.
If v was a neighbor of C in G, then in SQ( ~C) vertex v is embedded outside the quadrangle
A,B, a, b. By planarity of SQ( ~C), there is no edge between these two types of vertices. Thus
the common neighborhood of ~C and any v /2 {A,B, a, b} coincides with either N(c) \N(v) or
N(C) \ N(v) in G. Say v was a neighbor of c. As the clockwise cyclic ordering around v in
SQ( ~C) is the same as in SQ(c), and the clockwise ordering around ~C in SQ(v) is the same
as that around c in SQ(v) before, Item (P4) is satis�ed here. The case of an edge ~Cv with
v 2 {A,B, a, b} and the other cases are similar. 4

Up to now we have shown that the graph ~G obtained from G by identifying c and C satis�es
Items (P1) to (P4). Thus, by induction there is a generic boxed Plattenbau R 0 whose touching
graph is ~G such that Items (I1) to (I4) hold. In particular the rectangles RA, RB, Ra, Rb for
the 4-cycle A,B, a, b in SQ( ~C) enclose a rectangular region in one corner of the rectangle R

for ~C (possibly entire R). We alter R by shortening all rectangles touching R inside this region
by the same small amount ε > 0 and introducing a new rectangle Rc for c parallel to R at
distance ε, touching all shortened rectangles and the rectangles RA, RB, Ra, Rb. Secondly, we
let R be the rectangle for C. Then the resulting Plattenbau R represents G as its touching
graph, and Items (I1) to (I4) hold for R.

Lemma 7 shows the su�ciency of Items (P1) to (P4). The necessity is given in Proposition 6.
Together this proves Theorem 2.

4.1 Iterative Constructions for generic boxed Plattenbauten

We have given a characterization of graphs of generic boxed Plattenbauten as a generalization of
plane quadrangulation. In this section, we show, how these Plattenbauten can be constructed
iteratively by inserting Plattenbauten into each other starting from the trivial one.

The following propositions give two di�erent descriptions on the iterative structure of generic
boxed Plattenbauten.

Proposition 8. If R is a generic boxed Plattenbau with at least two rooms and Z is a room
containing an outer corner, then Z has a side A0, that is a rectangle of R.

Proof. Let o be an outer corner and Z be the room of R which contains o. Let �o be the corner
of Z which is opposite to o. Let A0, A1, A2 be the three rectangles of R which form the sides
of Z containing �o. Let A0 be the one which has �o as a corner, A1 be the one which has �o on
a boundary edge, and A2 be the one which has �o as an interior point. This local structure
at �o shows that A0 → A1, A0 → A2, and A1 → A2. The �rst two of these imply that A0 is a
rectangle of R.
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Proposition 8 shows that a generic boxed Plattenbau R with outer corner o can be reduced
to a trivial Plattenbau with only one room by repeating the following step: Identify the
rectangle A0, remove it and extend all the rectangles B with B → A0 such that the edge of B
which made a contact with A0 makes a contact with the outer rectangle which contains o

and is parallel to A0. This reduction also follows from the inductive proof of Theorem 2.
A consequence that can be drawn from the reduction is that the number of combinatorially
di�erent generic boxed Plattenbauten with n rectangles is only exponential in n. A rough
estimate gives an upper bound of 24n.

The next proposition gives a decomposition of generic boxed Plattenbauten by means of
\stacking" Plattenbauten into Plattenbauten.

Proposition 9. Let R be a generic boxed Plattenbau with inner rectangles in all three direc-
tions and r rooms. Then there are generic boxed Plattenbauten RO and RI with rO > 1

and rI > 1 rooms respectively and a room Z of RO, such that R can be obtained by
inserting the inner rectangles of RI in the room Z of RO, i.e., r = ro + rI − 1.

Proof. Let x, y, z be the axes of the coordinate system. By translating and scaling the Plat-
tenbau we may assume that the outer box of the Plattenbau is the cube spanned by (0, 0, 0)
and (1, 1, 1). The outer rectangle in the z = 0 plane is the bottom rectangle R0 of R. The top
rectangle is the rectangle in a plane z = 1, we denote it R1. All the contacts of R0 with inner
rectangles are of type A → R0, i.e., A \ R0 is a segment on R0.

If there is no inner rectangle A with A → R0, then there is a unique room Z with a side
on R0. Let B be the side of Z opposite of the R0-side. Now let RI = R− R0 and let RO consist
of the outer rectangles of R together with B, i.e., rO = 2 and rI = r− 1.

From now on we assume that there is an inner rectangle A with A → R0, i.e., a segment
in R0. The union of all these segments yields a rectangular dissection D of the unit square
U � R0. With each inner segment s of D there is a rectangle Rs. Let zs be the maximum z

coordinate of a point in Rs, we refer to zs as the height of Rs.
If s and s 0 are segments in R0 and Rs → Rs 0 , then zs � zs 0 because the representation is

proper. This shows that if we �x some h with 0 � h � 1 and only look at segments s 2 D

with zs > h we get a dissection Dh of U into rectangles. Let h+ be the maximum value of zs
taken over inner segments s 2 D.

If h+ = 1 we use that the dissection D1 is nontrivial and conclude that at least one of the
rectangles of D1 spans a box B between R0 and R1 which contains a rectangle A in a plane
z = h with 0 < h < a. Let RB be the set of all rectangles of R which are in B. Since A 2 RB

this set is nonempty. Let RI be RB together with 6 outer rectangles covering the sides of B
and let RO = R−RB. This is a decomposition as claimed.

If h+ < 1 let D+ be the dissection Dh+ . If D+ contains a guillotine segment, i.e., a segment
spanned between opposite sides of the outer square of D+. Then we can permute the coordi-
nates such that after the permutation we have h+ = 1, i.e., we are in the previous case and
have a nontrivial decomposition.

If h+ < 1 and there is no guillotine segment, then the contact system of inner segments
of D+ is connected and for each of the outer segments there is an inner segment having a
contact with it. Now consider two segments s and s 0 in D+ such that Rs → Rs 0 . Since R is
generic there is some rectangle Ts 0 containing the (open) top segment of Rs 0 in the interior,
i.e, Ts 0 contains some ε stripe on both sides of the intersection of Rs 0 with the plane z = h+.
Similarly there is a rectangle Ts containing the top segment of Rs. Hence, Ts 0 and Ts intersect
whence Ts 0 = Ts. Iterating this argument through all contacts of two segments of D+ we �nd
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that there is a unique rectangle T such that Rs → T for all interior segments s of D+. This
shows that T spans the outer square of D+. Now let RB be the set of all rectangles of R which
have z-coordinates between 0 and h+, except T . This set is nonempty. Let RI be RB together
with 6 outer rectangles covering the sides of B and let RO = R−RB. This is a decomposition
as claimed.

5 Conclusions

We have studied touching graphs of (generic) Plattenbauten as generalizations of planar bipar-
tite graphs to space. Our main results are that 3-chromatic planar graphs belong to this class,
and the characterization of touching graphs of generic boxed Plattenbauten as a generalization
of planar quadrangulations. However, a full characterization of touching graphs of (generic)
Plattenbauten remains challenging.

With our results at hand it is natural to try and extend results from the planar setting to
space. One example, is to attack a question asked by Jean Cardinal at the Order & Geometry
Workshop at Gu ltowy Palace in 2016: What is the 3-dimensional analogue of Baxter permu-
tations? Since Baxter permutations are in bijection with boxed arrangements of axis-parallel
segments in R2 [12], the question aims at �nding permutation-like objects corresponding to
generic boxed Plattenbauten. Our iterative constructions from Subsection 4.1 might help.

A natural continuation of this project is going to higher dimensions, i.e., consider touching
graphs of cuboids of co-dimension one in Rd. Already the class of 4-dimensional Plattenbau
graphs contains all planar graphs, which follows from [29]. However, our constructions for
planar 3-chromatic graphs could be generalized to higher dimensions, i.e., orthogonal subspaces
in Rd. A �rst interesting question here would be to characterize the skeleta of orthogonal
subspaces in Rd.

Finally, as suggested in the introduction, considering the intersection graph IR instead of
the touching graph of a Plattenbau, yields an interesting but very di�erent graph class. The
plane analogue of this is known as B0-CPG graphs [5], yielding a �rst subclass. Another
subclass are 4-connected planar graphs, since they have a rectangle contact representation
in R2, see [21,22,26,29,31]. Also K12 is the intersection graph of the Plattenbau R consisting
of the twelve axis-parallel unit squares in R3 that have a corner on the origin.
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