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Abstract

We show that the vertices of every planar graph can be partitioned
into two sets, each inducing a so-called triangle-forest, i.e., a graph with
no cycles of length more than three. We further discuss extensions to
locally planar graphs.

1 Introduction

It is well-known and easy to show that the vertices of any planar triangula-
tion G can be partitioned into two sets each inducing a forest if and only if
the dual graph G∗ of G contains a Hamiltonian cycle [4, 8]. Hence this is not
possible for all triangulations, due to the examples of Tutte [11]. However,
every planar graph can be vertex-partitioned into two outerplanar graphs, by
assigning the layers of a BFS-tree alternatingly to the two parts. See [3] for
further considerations into this direction. In this paper, we consider a family
of graphs strictly between forests and outerplanar graphs: We call a graph G
a triangle-forest if G has no cycles of length at least four. In other words, ev-
ery maximal 2-connected subgraph of G is a triangle, see Figure 1. We show
that the vertices of any planar graph can be partitioned into two sets each
inducing a triangle-forest (cf. Theorem 1). We then show that this does not
extend to locally planar graphs (cf. Corollary 1), while it follows from a result
of Kawarabayashi and Mohar that all such graphs can be partitioned into four
(triangle-)forests (cf. Corollary 2).

2 Vertex-Partitioning a Planar Graph into two
Triangle-Forests

We will need the following definitions. A Tutte path, respectively Tutte cycle, of
a graph G is a path, respectively cycle, T such that for any connected compo-
nent K of G\V (T ) there are at most 3 edges from K to T . Note that originally
the definition of Tutte paths has a further stronger property, which we omit
here, since we will not need it. We will use two results on these objects:
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Figure 1: A connected triangle forest.

Lemma 1 (Tutte 1956 [12]).
Let C be the outer face of a 2-connected planar graph G and u, v, e ∈ C be two
vertices and an edge of C. Then there exists a Tutte path from u to v through e
in G.

Lemma 2 (Three-Edge-Lemma [9, 10]).
Let C be the outer face of a 2-connected planar graph G and e, f, g ∈ C be three
edges of C. Then there exists a Tutte cycle using edges e, f, g in G.

An edge-cut of a connected graph G is a set of edges F , such that G \ F
is disconnected. A cyclic edge-cut F furthermore has the property that each
component of G \ F contains a cycle. The cyclic edge-connectivity of G is the
smallest size of a cyclic edge-cut. It is easy to see that a 3-connected cubic
graph is cyclically 4-edge-connected if every edge-cut F of order 3 isolates a
single vertex.

The following lemma explains why we are interested in the previous lemmas.

Lemma 3. If T is a Tutte cycle in a cyclically 4-edge-connected cubic planar
graph G, then 2-coloring the vertices of G∗ depending on whether they correspond
to faces in the interior or exterior of T , yields a partition into two triangle-
forests.

Proof. Without loss of generality consider a component K of G∗ \ V (T ) in the
interior of T . Since T is a Tutte cycle there are at most 3 edges from K to T .
Hence, these edges form an edge-cut of size at most 3. By cyclic connectivity
of G, we get that K is a single vertex.

Thus, all components of G∗ \V (T ) are single vertices, which means that G’s
vertices corresponding to faces inside T do not induce any cycles except faces.
This means that there are no cycles on more than 3 vertices, i.e., they induce a
triangle-forest.

The proof of the following is inspired by a proof in [6] and has been shown
in a slightly weaker form in [13].
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Lemma 4. Let G be a 4-connected planar triangulation with outer triangle ∆.
Then any 2-coloring of the vertices of ∆ extends to a 2-coloring of G such that
each color induces a triangle-forest and no edge of ∆ is in a monochromatic
triangle except if ∆ is monochromatic itself.

Proof. Let ∆ = (a, b, c) and denote by A,B,C the interior face of G that con-
tains the edge bc, ac, ab, respectively. Consider the dual graph G∗, which is
a 3-connected cyclically 4-edge-connected, cubic, planar graph. Denote by ∆∗

the vertex of G∗ corresponding to ∆, by A∗, B∗, C∗ its three neighbors cor-
responding to the faces A,B,C of G, and by a∗, b∗, c∗ its three incident faces
corresponding to the vertices a, b, c of G. Now, letH be the graph G∗\∆∗, which
is 2-connected since G∗ is 3-connected. Moreover, all A∗, B∗, C∗ lie on the outer
face C. See Figure 2 for an illustration of G∗ and the following constructions.
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Figure 2: The monochromatic and heterochromatic case of construction of Tutte
cycles in the proof of Lemma 4.

In order to construct the desired 2-coloring of G, we distinguish the two
different possible 2-colorings of ∆. If ∆ is monochromatic, then we choose three
edges on the outer face C of H that contain vertices A∗, B∗, C∗. By Lemma 2,
we get a Tutte cycle T ofH containing A∗, B∗, C∗. Since ∆∗ has all its neighbors
in T , also in G∗ we have that T is a Tutte cycle. Furthermore, observe that T
separates a∗ from b∗ and c∗. By Lemma 3 we obtain that G has a 2-coloring such
that each color induces a triangle-forest, coloring a, b, c with the same color.

If ∆ is heterochromatic, then we can assume without loss of generality that a
is colored differently from b and c. By Lemma 1, we can take a Tutte path T
from B∗ through A∗ to C∗. Now add to T the path B∗,∆∗, C∗ obtaining
a cycle T ′. Observe that T ′ separates a∗ from b∗ and c∗. Further, since T ′

contains A∗, the face f incident to b∗ and c∗ is also separated from b∗ and c∗.
Since T was a Tutte path inH and the only new vertex ∆∗ is on T ′ and has all its
neighbors in T , we have that T ′ is a Tutte cycle of G∗. Together with Lemma 3,
we obtain that G has a 2-coloring such that each color induces a triangle-forest,

3



coloring a different from b, c without a monochromatic triangle containing the
edge bc.

Theorem 1. The vertices of any planar graph G can be 2-colored such that
each color class induces a triangle-forest. Moreover, there is such a coloring for
any prescribed precoloring of any fixed triangle ∆.

Proof. Add edges or vertices to G in order to turn it into a triangulation. Re-
moving these elements from the end result, still gives a vertex-partition into two
triangle-forest.

Let ∆ be the fixed triangle. We proceed by induction on the number of ver-
tices. If G is 4-connected, then ∆ is a face and the result follows immediately
from Lemma 4. Otherwise, if ∆ is separating, let us pick one separating trian-
gle ∆′. If ∆′ = ∆ then apply induction to the interior and exterior of ∆ with
respect to the prescribed coloring on ∆. If ∆ is (without loss of generality) on
the exterior of ∆′, then remove the interior of ∆′ and apply induction resulting
in some coloring on ∆′. Now apply induction with respect to this precoloring
on ∆′ to the interior of ∆′.

2.1 Tightness and possible strengthenings

Theorem 1 implies that every planar graph G on n vertices contains an induced
triangle-forest on at least n/2 vertices. On the other hand, there are planar
graphs where every induced triangle-forest contains at most half the vertices.
Observe for example that any induced triangle-forest in the octahedron graph
contains at most 4 of its 8 vertices. Thus, any vertex-disjoint union of octahedra
(also with any set of additional edges, e.g., to obtain a triangulation) has no
induced triangle-forest on more than half of its vertices.

Theorem 1 cannot be strengthened to vertex-partitioning every planar graph
into one forest and one triangle-forest. To see this, takeG to be the dual graph of
a cyclically 4-edge-connected 3-connected planar cubic non-Hamiltonian graph.
(Such graphs exist from 42 vertices on, see [2].) Thus, G is a 4-connected planar
triangulation that cannot be vertex-partitioned into two forests. Now, stack
a triangle T into each face F of G, such that T ∪ F induces an octahedron.
Suppose that the obtained graph G′ has a vertex-partition into one forest and
one triangle-forest. Then, some triangular face F of G must be in the triangle-
forest. But then the triangle T of G′ stacked into F must be entirely part of
the forest — contradiction.

Question 1. Can every planar graph be vertex-partitioned into one forest and
one chordal graph, or into one forest and one outerplanar graph?

3 Graphs on surfaces

We will discuss possible extensions to surfaces of higher genus, see [7] for un-
defined notions. Indeed, Theorem 1 does not extend to graphs embeddable in
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other surfaces. It does not hold on the torus, since the K7 embeds on this
surfaces but cannot be vertex-partitioned into two triangle-forests. Also for the
projective plane there are graphs that cannot be vertex-partitioned into two
triangle-forests, as for example the graph in Figure 3.
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Figure 3: A projective planar graph (with g6-code J|tyIlxJGb?) that cannot
be vertex-partitioned into two triangle-forests.

Next, we show that Theorem 1 cannot even be extended to locally planar
graphs. To do so, we will construct graphs embeddable on a surface Σ such that
in every 2-coloring of their vertices, there is a long monochromatic cycle. This
will easily follows from the following lemma, which is inspired by an answer on
mathoverflow [1].

Lemma 5. Let Σ be a surface non-isomorphic to the sphere, and let G be a graph
cellularly embedded in Σ. Let ϕ be a 2-coloring of G such that every face f of G
which is not a triangle is monochromatic. Then there exists a monochromatic
non-contractible cycle C in G.

Proof. Suppose for contradiction that Σ, G and ϕ : V (G) → {1, 2} are a counter-
example with |V (G)| minimum. If ϕ−1(i) = ∅ for some i ∈ {1, 2}, then ϕ is
constant 3− i. Since G is cellularly embedded in Σ and Σ is not the sphere, G
contains a non-contractible cycle C, which is then monochromatic. Now suppose
that ϕ−1(1), ϕ−1(2) ̸= ∅.

Let K be a connected component of G[ϕ−1(1)]. Let f be a face of K whose
interior contains at least one vertex. Such a face exists since ϕ−1(2) ̸= ∅. Let
Int(f) be the (possibly empty) embedded graph induced by the vertices of G
lying in the interior of f . We denote by Out(f) the face of Int(f) containing
V (K).

We claim that every face of Int(f) is either a triangle or monochromatic for
ϕ|V (Int(f)). Indeed, if f ′ is a face of Int(f), then either f ′ is a face of G and so
is either a triangle or monochromatic, or f ′ = Out(f). In the latter case, if f ′
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is neither a triangle nor monochromatic, then there are two consecutive vertices
u, v along f ′ in Int(f) with ϕ(u) = 1 and ϕ(v) = 2. By construction, these two
vertices belongs to a face f ′′ of G that contains a vertex in V (K). Since f ′′ is
a face of G which is not monochromatic, f ′ is a triangle. In particular, there is
an edge colored 1 between V (K) and V (Int(f)), contradicting the fact that K
is a connected component of G[ϕ−1(1)]. This proves that every face of Int(f) is
either a triangle or monochromatic.

With the same argument, one can show that every face of G− V (Int(f)) is
either a triangle or monochromatic.

If Int(f) is cellularly embedded in Σ, then by minimality of |V (K)|, it con-
tains a monochromatic non-contractible cycle C and we are done. Otherwise,
G − V (Int(f)) is cellularly embedded in Σ, and so by minimality of |V (G)|,
G−V (Int(f)) contains a non-contractible monochromatic cycle C. This proves
the lemma.

Corollary 1. Let Σ be a surface non-isomorphic to the sphere. For every
positive integer ℓ, there is a graph G embeddable in Σ such that for every 2-
coloring of V (G), there is a monochromatic cycle of length at least ℓ in G. In
particular, for ℓ ≥ 4, G does not admit a partition of V (G) into two induced
triangle-forests.

Proof. Let ℓ be positive integer. Let G be a triangulation of Σ such that every
non-contractible cycle of G has length at least ℓ. Then, by Lemma 5, for every
2-coloring of G, G contains a monochromatic non-contractible cycle C, which
must have length at least ℓ.

On the other hand, we show that any graph embedded in a fixed surface
Σ with no small non-contractible cycle can be partitioned into four induced
forest. This is a consequence of the following theorem. We say that a graph G
is acyclically k-colorable for a positive integer k, if G admits a proper k-coloring
of its vertices, such that for every pair i, j of colors, the union of color class of
i and color class of j induces a forest in G.

Theorem 2 (Kawarabayashi and Mohar [5]).
Let Σ be a surface. There is an integer ℓ such that for every graph G embedded
in Σ, if G has no non-contractible cycle of length at most ℓ, then G is acyclically
7-colorable.

Corollary 2. Let Σ be a surface. There is an integer ℓ such that for every
graph G embedded in Σ, if G has no non-contractible cycle of length at most ℓ,
then G can be partitioned into four induced forests.

Note that a positive answer to the following is a weakening of [5, Conjecture
1.3]:

Question 2. Can every graph embedded in Σ with no small non-contractible
cycle be partitioned into three (triangle-)forests?
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