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ABSTRACT. We show that any minimal Cayley graph of a (finitely generated) generalized dihedral
or nilpotent group has chromatic number at most 3, while 4 colors are sometimes necessary for
soluble groups. On the other hand we construct graphs of unbounded chromatic number that admit
a proper edge coloring such that each cycle has some color at least twice. The latter disproves
a conjecture of Babai’78 that would have implied that all minimal Cayley graphs have bounded
chromatic number – a problem that remains open.

1. INTRODUCTION

Given a group Γ and a connection set C ⊆ Γ the (undirected, right) Cayley graph Cay(Γ, C) has
vertex set Γ and a, b ∈ Γ form an edge if a−1b ∈ C. A Cayley graph is minimal (a.k.a irreducible)
if C is an inclusion-minimal generating set of Γ and in this paper we only consider the case where
C is finite. Minimal Cayley graphs appear naturally: a famous and open problem often attributed
to Lovász is (equivalent to) whether minimal Cayley graphs are Hamiltonian, see [27, Section
4]. Other areas in which minimal Cayley graphs naturally occur are the genus of a group, see
the book [32] or concerning sensitivity [14, Questions 7.7 and 8.2]. Different aspects of these
graphs (sometimes of particular groups) and their distinguishing features compared to general
Cayley graphs have been considered in [12,15,19,21,24,30]. The present work is motivated by a
question that has been brought up by Babai [3, 5]:

Question 1.1. Does there exist a constant c such that every minimal Cayley graph has chromatic
number at most c?

Note that assuming minimality here is essential. Indeed, every graph is an induced subgraph
of some Cayley graph [4, 6, 16], this is far from being the case for minimal Cayley graphs, which
are known to be sparse [3, 31]. However, there also exist (non-minimal) sparse Cayley graphs
(of arbitrary girth) that are expanders and hence have unbounded chromatic number [22]. The
chromatic number of random Cayley graphs has been studied by Alon [2] and Green [17] as well
as some concrete Cayley graphs have been considered recently [9,10]. However, none of these are
minimal. Concerning, the chromatic number of minimal Cayley graphs in [5, Section 3.4] Babai
mentions the following:
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Conjecture 1.2. For every ε > 0 there exists a minimal Cayley graph G = (V,E) such that
α(G) ≤ ε|V | where α(G) denotes the size of the largest independent set of G.

Hence, this in particular would imply a negative answer to Question 1.1. However, previously
in [3] Babai proposed an opposing conjecture, for which we introduce some notions first. A graph
G is called no lonely color if G admits an edge coloring satisfying:

(1) each vertex is incident with at most two edges of any color,
(2) each circuit contains no color exactly once.

In a Cayley graph the edges can be naturally colored by the elements of C, which makes it easy to
see that any subgraph G of a minimal Cayley graph is no lonely color. A Cayley graph Cay(Γ, C)
is semiminimal if C is a generating set of Γ that can be linearly ordered such that none of its
elements is generated by its predecessors. With the same ideas one can show that any subgraph
G of a semiminimal Cayley graph is one popular color1, this is, G admits an edge coloring that
satisfies (1) and

(2’) each circuit contains at least one color more than once.
Babai observes that K4 − e and K3,5 are not no lonely color and K5,17 is not one popular color,

hence they cannot be subgraphs of minimal and semiminimal Cayley graphs, respectively. Later
using these ideas Spencer [31] shows that for every g ≥ 3 there exists a finite graph G of girth
g that is not a subgraph of any (semi)minimal Cayley graph. In [3, Conjecture 3.5] Babai puts
forward the following:

Conjecture 1.3. There is a constant c such that any one popular color graph (no lonely color
graph) has chromatic number at most c.

Note that Conjecture 1.3 in particular implies that (semi)minimal Cayley graphs have bounded
chromatic number and hence would disprove the more recent Conjecture 1.2 and give a positive
answer to Question 1.1.

FIGURE 1. Left: Cay(Z3⋊Z7, {(0, 1), (1, 0)}) is a minimal Cayley graph of chro-
matic number 4. Right: G, such that G⊠K2 = Cay(Q32, C) is a semiminimal Cay-
ley graph of chromatic number 7, being Q32 = ⟨a, b | a16 = b4 = 1, a8 = b2, aba =
b⟩ the generalized quaternion group or order 32 and C = (b2, a4, a5b, a3b, a6b). The
graph G is induced by vertices {biaj | 0 ≤ i ≤ 1, 0 ≤ j ≤ 7}, edges corresponding
to right multiplication by a4, a5b, a4b and a14b are depicted in blue, gray, green and
violet, respectively.

This is the starting point for the present work: First, we observe that every group admits a
minimal Cayley graph of chromatic number at most 3 and characterize the bipartite case (Theorem

1Babai called these no pied circuit.
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2.2). Then we show that minimal Cayley graphs of finitely generated nilpotent groups (Theorem
2.5) as well as generalized dihedral groups (Theorem 2.6) have chromatic number at most 3. On
the other hand, we show a minimal Cayley graph of a soluble group of chromatic number 4 and a
semiminimal Cayley graph of a nilpotent group of chromatic number 7 (see Figure 1). Finally, we
disprove the stronger statement of Conjecture 1.3 by constructing a family of one popular color
graphs of unbounded chromatic number (Theorem 3.2). We further remark, that the clique number
of a semiminimal Cayley graph is at most 4 (Proposition 3.1).

2. POSITIVE RESULTS

Let us begin with the question whether every group admits a minimal Cayley graph of bounded
chromatic number. This was already answered by Babai [3,5]. Indeed, he proved that every group
has a 3-colorable minimal Cayley graph contingent upon the truth of some facts about simple
groups that were conjectured at that time (see [3, Conjecture 4.3]). Years later the classification
of finite simple groups was settled and those conjectures were verified. For completeness we
include a proof following Babai’s lines. At the basis of this we have the following [3, Lemma
4.2], which will also use later on. For a group Γ denote its minimum chromatic number y χmin(Γ)
the minimum χ(Cay(Γ, C)) over all generating sets C of Γ.

Lemma 2.1. Let (Γ, ·) be a group, N a normal subgroup of Γ and C ⊆ Γ/N . Then,

χ(Cay(Γ, C ·N)) ≤ χ(Cay(Γ/N,C));

where C ·N := {c · n | c ·N ∈ C, n ∈ N}. In particular, χmin(Γ) ≤ χmin(Γ/N).

Combining this also with ideas present in [12] we get:

Theorem 2.2. For a group Γ we have:

χmin(Γ) =


1 if Γ is trivial,
2 if Γ has a subgroup of index 2,

3 otherwise.

Proof. The statement that χmin(Γ) = 1 if and only if Γ is trivial, is trivial. Now, by Lemma 2.1
χmin(Γ) ≤ χmin(Γ/N) for any normal subgroup N of Γ. If Γ has a subgroup of index 2, then it is
normal an the quotient is Z2 and has a bipartite Cayley graph. In general, this argument reduces
the question to simple groups. Since each such group Γ′ is either cyclic or has a generating set C ′

of size 2 containing an involution [20], Cay(Γ′, C ′) has maximum degree 3 and is different from
K4. Hence χ(Cay(Γ′, C ′)) ≤ 3. It remains to show that if χmin(Γ) = 2, then Γ has a subgroup
of index 2. In this case, Γ may be partitioned into two independent sets A,B, which by vertex
transitivity of Γ are of equal size. If say e ∈ A, then A consists of all elements of Γ that can be
expressed as an word of even length in C. Hence, A is a subgroup of index 2. □

We now turn to the maximum chromatic number of a group Γ, i.e., χmax(Γ) the maximum
χ(Cay(Γ, C)) over all minimal generating sets C of Γ. We will show that this is at most 3 for
Dedekind groups, generalized dihedral groups, and nilpotent groups.

If H < Γ is a subgroup and C ⊆ Γ, the Schreier (coset) graph Cay(Γ/H,C) has as vertices
the left cosets of H and there is an edge between two cosets if they can be represented as gH , g′H
and g−1g′ ∈ C.

Lemma 2.3. Let C be a minimal generating set of Γ, then

χ(Cay(Γ, C)) ≤ max{χ(Cay(Γ/⟨C − {c}⟩, c)) | c ∈ C}.
Proof. Since C = {c1, . . . , ck} is minimal, for each c ∈ C the graph Cay(Γ, C − {c}) is dis-
connected and its connected components correspond to the vertices of Cay(Γ/⟨C − {c}⟩, c).
Moreover, if two vertices x, y of Cay(Γ, C) are connected with an edge corresponding to c,
then x, y are contained in different components of Cay(Γ, C − {c}) corresponding to adjacent
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vertices xc, yc of Cay(Γ/⟨C − {c}⟩, c). Hence, if we map every vertex of x ∈ Cay(Γ, C) to
the tuple of vertices (xc1 , . . . , xck) we obtain a graph homomorphism into the Cartesian product
Cay(Γ/⟨C − {c1}⟩, c1)□ · · ·□Cay(Γ/⟨C − {ck}⟩, ck). Hence, the chromatic number of the lat-
ter is an upper bound for χ(Cay(Γ, C)). Finally, by a well-known result of Sabidussi [29], the
chromatic number of a Cartesian product is the maximum chromatic number of its factors. □

Remark 2.4. Note that Lemma 2.3 alone does not give a useful upper bound for general minimal
Cayley graphs. Consider the so-called star graph (see [1],) which is the bipartite graph Cay(Sn, C)
of the symmetric group of degree n with respect to the set of transpositions involving 1, i.e.,
C = {(12), (13), . . . , (1n)}). However, Cay(Sn/⟨C − {c}⟩, c)) = Kn for all n and c ∈ C.

We can however use the above lemma to bound the maximum chromatic in some cases. A
group is called Dedekind if all its subgroups are normal. Clearly, this includes all abelian groups,
and by results of Dedekind [11] and Baer [7], actually not much more.

Theorem 2.5. Every minimal Cayley graph of a Dedekind group is 3-colorable.

Proof. Consider Cay(Γ, C) a minimal Cayley graph of a Dedekind group Γ. Since Γ is Dedekind,
for all c ∈ C we have that ⟨C − {c}⟩ is a normal subgroup of Γ. Hence, Γ/⟨C − {c}⟩ is a cyclic
group generated by the coset of c, i.e., the Schreier coset graph (which is a Cayley graph) is a
cycle and χ(Cay(Γ/⟨C − {c}⟩, c)) ≤ 3. The statement follows from Lemma 2.3. □

For any abelian group Γ, the generalized dihedral group of Γ, written Dih(Γ), is the semidirect
product of Γ and Z2, with Z2 acting on Γ by inverting elements, i.e., Dih(Γ) = Γ⋊ϕ Z2 with ϕ(0)
the identity, and ϕ(1) the inversion. Thus we get:

(g1, 0) ∗ (g2, t2) = (g1 + g2, t2), and
(g1, 1) ∗ (g2, t2) = (g1 − g2, 1 + t2),

for all g1, g2 ∈ Γ, and t2 ∈ Z2.

Theorem 2.6. Every minimal Cayley graph of a generalized dihedral group is 3-colorable.

Proof. Let G = Cay(Dih(Γ), C) be the Cayley graph of a generalized dihedral group Dih(Γ) =
Γ ⋊ Z2 minimally generated by C. We denote Ci = C ∩ (Γ × {i}) for i = 0, 1, and consider
H := (Γ× {0}) ∩ ⟨C1⟩. By the minimality of C we have that:

(a) the vertices corresponding to elements of H form an independent set in G,
(b) The cosets of C0 minimally generate the abelian group (Γ× {0})/H .

By (b) and Theorem 2.5, it follows that Cay((Γ × {0})/H,C0) is 3-colorable. We consider
f̃ : (Γ× {0})/H −→ {0, 1, 2} a proper coloring. By (a), we have that f̃ : Γ× {0} −→ {0, 1, 2}
defined as f(g, 0) := f̃((g, 0)∗H) is also a proper coloring of Cay(Γ×{0}, C0). Now we choose
(y, 1) ∈ C1 and consider

h : Dih(Γ) −→ {0, 1, 2}
(g, 0) 7→ f(g, 0)
(g, 1) 7→ f(g − y, 0) + 1 mod 3.

We claim that h is a proper 3-coloring of G. Indeed, consider (g1, t1), (g2, t2) two adjacent vertices
of G and let us prove that f(g1, t1) ̸= f(g2, t2). We separate the proof in three cases:

(1) If t1 = t2 = 0, then (g1, 0) and (g2, 0) are adjacent in Cay(Γ × {0}, C0) and, hence,
h(g1, 0) = f(g1, 0) ̸= f(g2, 0) = h(g2, 0).

(2) If t1 = t2 = 1, then (g1, 1) and (g2, 1) are adjacent if and only if there exist (x, 0) ∈ C0

such that (g1, 1) = (g2, 1) ∗ (x, 0) = (g2 − x, 1). Then,

(g1 − y, 0) = (g1, 1) ∗ (y, 1) = (g2 − x, 1) ∗ (y, 1) = (g2 − y − x, 0)

and, hence, (g1−y, 0) and (g2−y, 0) are adjacent in Cay(Γ×{0}, C0). Thus, we conclude
that h(g1, 1) = f(g1 − y, 0) + 1 ̸= f(g2 − y, 0) + 1 = h(g2, 1).



COLORING MINIMAL CAYLEY GRAPHS 5

(3) If t1 = 0, t2 = 1, then (g1, 0) and (g2, 1) are adjacent if and only if there exist (z, 1) ∈ C1

such that (g2, 1) = (g1, 0) ∗ (z, 1) = (g1 + z, 1). Then,

h(g2, 1) = f(g1 + z − y, 0) + 1 mod 3 = f(g1, 0) + 1 mod 3 ̸= f(g1, 0) = h(g1, 0),

where the equality f(g1 + z − y, 0) = f(g1, 0) follows from the fact that (z − y, 0) =
(z, 1) ∗ (y, 1) ∈ H .

□

For the next result, we denote by Φ(Γ) the Frattini subgroup of Γ, that is, the intersection of all
maximal proper subgroups of Γ, or Φ(Γ) = {e} if it has no maximal subgroups.

Lemma 2.7. Let Γ be a group with Frattini subgroup Φ(Γ), then:

χmax(Γ) ≤ χmax(Γ/Φ(Γ)).

Proof. For Γ a group and C any minimal generating set. The following remarkable properties of
the Frattini subgroup are well known (see, e.g., [28, Section 5.2]):

(1) Φ(Γ) is a characteristic subgroup of Γ and, hence, Φ(Γ)� Γ,
(2) Φ(Γ) ∩ C = ∅, and
(3) C/Φ(Γ) = {c · Φ(Γ) | c ∈ C} is a minimal generating set of Γ/Φ(Γ).

By (1), (2) and Lemma 2.1, one has that χ(Cay(Γ, C)) ≤ χ(Cay(Γ/ϕ(Γ), C/Φ(Γ))). By (3)
χ(Cay(Γ/ϕ(Γ), C/Φ(Γ))) ≤ χmax(Γ/ϕ(Γ)), and the result follows. □

For a group (Γ, ·), we denote by Γ′ its commutator subgroup, i.e.,

Γ′ = {x · y · x−1 · y−1 |x, y ∈ Γ}.

Theorem 2.8. Let Γ be a finitely generated group such that its commutator Γ′ is contained in its
Frattini subgroup Φ(Γ). Then, every minimal Cayley graph of Γ is 3-colorable. This includes
nilpotent groups.

Proof. Let G = Cay(Γ, C) be the Cayley graph of Γ with respect to a minimal set of generators
C. Since Γ′ ⊆ Φ(Γ), then it follows that Γ/Φ(Γ) is commutative and minimally generated by
C/Φ(Γ). Then, by Theorem 2.5, Cay(Γ/Φ(Γ), C/Φ(Γ)) is 3-colorable. Since C ⊂ (C/Φ(Γ)) ·
Φ(Γ), by Lemma 2.1 we conclude that Cay(Γ, C) is 3-colorable. □

A group Γ satisfies that Γ′ < Φ(Γ) if and only if all its maximal subgroups have prime index (see
[25, Theorem A] for other characterizations of these groups). In particular, every nilpotent group
satisfies that Γ′ ≤ Φ(Γ). A result of Wielandt [28, 5.2.16] proves that for a finite group Γ, one
has that Γ′ ≤ Φ(Γ) if and only if Γ is nilpotent. However, there are non-nilpotent infinite groups
whose commutator is contained in its corresponding Frattini subgroup. A famous such group is
the Grigorchuk group, which is a finitely generated 2-group in which all maximal subgroups have
index 2. In fact Γ′ = Φ(Γ), and has index 8 in Γ [18]. Other examples are considered in [13].

Let us end this section with a general upper bound for the chromatic number of (semi)minimal
Cayley graphs. For this purpose given a positive integer n, we denote by Wb(n) the binary Lam-
bert W function, i.e., n = Wb(n)2

Wb(n).

Proposition 2.9. Let Γ be a group of order n and C be a generating set. We have

χ(Γ, C) ≤

{
2 log2 n if C is semiminimal,
2Wb(n) if C is minimal.

Moreover, Wb(n) < log2 n− log2 log2(
n

log2 n
).

Proof. Let C = (c1, . . . , ck) a semiminimal generating set of Γ. One has that Γi−1 := ⟨c1, . . . , ci−1⟩
is a proper subgroup of Γi for all 1 ≤ i ≤ k and, by Lagrange’s Theorem, we have 2i ≤ |Γi|.
Hence k = |C| ≤ log2(|Γ|) = log2 n. Thus, the maximum degree of Cay(G,C) is at most
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2 log2 n. By Brook’s Theorem, this is an upper bound for χ(Cay(G,C)) except if Cay(G,C) is
an odd cycle or a clique. However, in the first case χ(Cay(G,C)) = 3 ≤ 2 log2(2ℓ + 1) for all
ℓ ≥ 1. If otherwise Cay(G,C) = Kn is a clique, by Proposition 3.1 we know that n = 4 and
χ(Cay(G,C)) = 4 ≤ 2 log2(4).

Now suppose C minimal. Again by Lagrange’s Theorem, for any c ∈ C the subgroup ⟨C−{c}⟩
has order at least 2k−1. Hence, the Schreier graph of this subgroup has at most n

2k−1 vertices,
and χ(Cay(Γ/⟨C − {c}⟩, c)) ≤ n

2k−1 . Thus, with the first part and Lemma 2.3 we have that
χ(Cay(Γ, C)) ≤ min(2k, n

2k−1 ), which is maximised exactly if k = Wb(n). By definition we
have that Wb(n) = log2(

n
Wb(n)

) = log2(
n

log2(
n

Wb(n)
)
). Moreover we clearly have clearly Wb(n) <

log2(n), then we finally get that Wb(n) < log2(
n

log2(
n

log2(n)
)
) = log2 n− log2 log2(

n
log2 n

). □

Note that the bounds in the previous proposition depend on the maximal size of a minimal
generating set of a group Γ. This parameter has been studied, see e.g. [8, 23].

3. LOWER BOUNDS

Already in [3] it is shown that minimal Cayley graphs have clique number at most 3 and it also
follows from the results there, that semiminimal Cayley graphs have bounded clique number. We
first make this precise.

Proposition 3.1. For any one popular color graph G we have ω(G) ≤ 5 and this is tight. For a
semiminimal Cayley graph Cay(Γ, C) we have ω(Cay(Γ, C)) ≤ 4 and this is tight.

Proof. Suppose a one popular color coloring of K6 and consider an edge ab of color 1 and the
four triangles abc, abd, abe, abf . At most two among these four triangles have popular color 1. If
two of these triangles, say abc, abd have one popular color among different colors 2, 3, then the
triangle acd has no popular color. Hence two triangles say abc, abd have popular color 2 then the
triangles abe, abf must have popular color 1. So assume that the edge ae is colored in 1. But then
the edges ec and ed both must be of color 1 to make triangles aec and aed have a popular color.
But then the degree of e in color 1 is 3.

To show tightness just edge-color K5 with two colors each inducing a cycle of length 5. Since
we are only using two colors, it is straight-forward to check that all cycles have a popular color.
Let us now, see that this is the only way to one popular color color the K5. Let ab an edge of color
1 and consider the three triangles abc, abd, abe. If two of these triangles, say abc, abd have one
popular color because of different colors 2, 3, then the triangle acd has no popular color. If two
triangles say abc, abd have one popular color because of color 2 then the triangle abe must have
popular color 1, say the edge be is of color 1 and both the edges ce, de must be of color 1 in order
to make triangle bce, bde have a popular color. But then the degree of e in color 1 is 3. Suppose
now that only the triangle abc has popular color 2, then both abd, abe have popular color 1 and
without loss of generality we have edges ad, be of color 1. Now bd cannot be of color 1 (because
the degree of b in color 1 would be 3), and cannot be of color 3, because this would force the edge
cd to be of color 3, but then the triangle acd would have no popular color. Hence bd is of color 2,
and by an analogous argument also ae is of color 2. Now, cd is forced to be of color 1, de of color
2, and ce of color 1. The resulting two-coloring is a decomposition into two cycles of length 5.

Suppose now that a semiminimal Cayley graph Cay(Γ, C) contains a K5, then as argued above
its one popular color coloring consists of two cycles of length 5. Hence the corresponding elements
c, c′ ∈ C generate the same cyclic subgroup of order 5 of Γ. Hence C is not semiminimal. Thus,
ω(Cay(Γ, C)) ≤ 4. To see that this is tight simply consider Cay(Z4, {2, 1}) = K4. □

We finish disproving [3, Conjecture 3.5], i.e., that one popular color graphs have bounded chro-
matic number. The construction we provide is based on one of the fundamental constructions
for triangle-free graphs of arbitrary chromatic number due to Tutte (alias Blanche Descartes) and
independently Zykov, see Nešetřil’s survey [26] for a more detailed discussion.



COLORING MINIMAL CAYLEY GRAPHS 7

Theorem 3.2. For any k there exists a one popular color graph Gk with χ(Gk) ≥ k.

Proof. We proceed by induction on k ≥ 1. Chose G1 to be the graph with a single vertex and
G2 = C4 with edges colored alternatingly with two colors. If k ≥ 3 then denote by n the order of
Gk−1. Define X as a set of size (k − 1)(n− 1) + 1. Now, for every subset of Y size n of X take
a copy G′ of Gk−1 (where all copies can be considered to be edge-colored with the same set) and
add a perfect matching between Y and the copy G′. Each of these new matchings will be edge
colored with its own private color.

To see that Gk is a one popular color graph, note first that every color class is a matching, hence
the coloring satisfies property (1). Now, observe that by induction hypothesis all cycles within a
single copy G′ have one color at least twice. Since X is an independent set any other cycle must
enter and leave some copy G′, but then it uses two edges of the same matching, hence repeats at
least one color. This proves property (2’).

The fact that χ(Gk) ≥ k is well-known, see e.g. [26].
□

While we have disproved the strong variant of Conjecture 1.3 its weak variant remains open.
Let us propose a strengthening of it.

Conjecture 3.3. There is a function f , such that if the edges of a graph G can be colored such
the subgraph induced by any color has maximum degree d, and no color appears exactly once on
a cycle of G, then χ(G) ≤ f(d).

Note that this conjecture for d = 2 is the weak variant of Conjecture 1.3. However, it is open
even for the case d = 1.
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