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ABSTRACT. In 1978 Babai raised the question whether all minimal Cayley graphs have bounded
chromatic number; in 1994 he conjectured a negative answer. In this paper we show that any min-
imal Cayley graph of a (finitely generated) generalized dihedral or nilpotent group has chromatic
number at most 3, while 4 colors are sometimes necessary for soluble groups. On the other hand
we address a related question proposed by Babai in 1978 by constructing graphs of unbounded
chromatic number that admit a proper edge coloring such that each cycle has some color at least
twice. The latter can be viewed as a step towards confirming Babai’s 1994 conjecture – a problem
that remains open.

1. INTRODUCTION

Given a group Γ and a connection set C ⊆ Γ the (undirected, right) Cayley graph Cay(Γ, C)
has vertex set Γ and a, b ∈ Γ form an edge if a−1b ∈ C. Note that we will consider Cayley
graphs as undirected even if the connection set is not inverse-closed. A Cayley graph is minimal
(a.k.a irreducible) if C is an inclusion-minimal generating set of Γ and in this paper we only
consider the case where C is finite. Minimal Cayley graphs appear naturally: a famous and
open problem often attributed to Lovász is (equivalent to) whether minimal Cayley graphs are
Hamiltonian, see [28, Section 4]. Other areas in which minimal Cayley graphs naturally occur
are the genus of a group, see the book [33] or concerning sensitivity [15, Questions 7.7 and 8.2].
Different aspects of these graphs (sometimes of particular groups) and their distinguishing features
compared to general Cayley graphs have been considered in [13, 16, 20, 22, 25, 31]. The present
work is motivated by a question that has been brought up by Babai [3, 5]:

Question 1.1. Does there exist a finite constant c such that every minimal Cayley graph has
chromatic number at most c?

Babai conjectured in 1994 a negative answer even in the case the group is finite. Note that
assuming minimality here is essential. Indeed, every graph is an induced subgraph of some Cayley
graph [4, 6, 17], this is far from being the case for minimal Cayley graphs, which are known to be
sparse [3, 32]. However, there also exist (non-minimal) sparse Cayley graphs (of arbitrary girth)
that are expanders and hence have unbounded chromatic number [23]. The chromatic number of
random Cayley graphs has been studied by Alon [2] and Green [18] and some concrete Cayley
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graphs have been considered recently [9,10]. However, none of these are minimal. Concerning the
chromatic number of minimal Cayley graphs, in [5, Section 3.4] Babai mentions the following:

Conjecture 1.2. For every ε > 0 there exists a minimal Cayley graph G = (V,E) such that
α(G) ≤ ε|V | where α(G) denotes the size of the largest independent set of G.

Hence, this in particular would imply a negative answer to Question 1.1. However, previously
in [3] Babai had proposed an opposing conjecture (which he withdrew in 1994 when he proposed
Conjecture 1.2), for which we introduce some notions first. A graph G is called no lonely color if
G admits an edge coloring satisfying:

(1) each vertex is incident with at most two edges of any color,
(2) each circuit contains no color exactly once.

In a Cayley graph the edges can be naturally colored by the elements of C, which makes it easy to
see that any subgraph G of a minimal Cayley graph is no lonely color. A Cayley graph Cay(Γ, C)
is semiminimal if C is a generating set of Γ that can be linearly ordered such that none of its
elements is generated by its predecessors. With the same ideas one can show that any subgraph
G of a semiminimal Cayley graph is one popular color1, this is, G admits an edge coloring that
satisfies (1) and

(2’) each circuit contains at least one color more than once.
Babai observes that K4 − e and K3,5 are not no lonely color and K5,17 is not one popular color,

hence they cannot be subgraphs of minimal and semiminimal Cayley graphs, respectively. Later
using these ideas Spencer [32] shows that for every g ≥ 3 there exists a finite graph G of girth
g that is not a subgraph of any (semi)minimal Cayley graph. In [3, Conjecture 3.5] Babai puts
forward the following:

Question 1.3. Is there a finite constant c such that any one popular color graph (no lonely color
graph) has chromatic number at most c?

Note that a positive answer to Question 1.3 would imply that (semi)minimal Cayley graphs
have bounded chromatic number, and hence would disprove the more recent Conjecture 1.2 and
give a positive answer to Question 1.1.

This is the starting point for the present work: First, we observe that every group admits a
minimal Cayley graph of chromatic number at most 3 and characterize the bipartite case (Theorem
2.2). Then we show that minimal Cayley graphs of finitely generated nilpotent groups (Theorem
2.5) as well as generalized dihedral groups (Theorem 2.6) have chromatic number at most 3. On
the other hand, we show a minimal Cayley graph of a soluble group of chromatic number 4 and
a semiminimal Cayley graph of a nilpotent group of chromatic number 7 (see Proposition 3.1).
Finally, we negatively answer the stronger statement of Question 1.3 by constructing a family of
one popular color graphs of unbounded chromatic number (Theorem 3.3). We further remark, that
the clique number of a semiminimal Cayley graph is at most 4 (Proposition 3.2).

2. POSITIVE RESULTS

Let us begin with the question whether every finite group admits a minimal Cayley graph of
bounded chromatic number. This was already answered by Babai [3, 5]. Indeed, he proved that
every finite group has a 3-colorable minimal Cayley graph. His proof depends on the fact that
every finite simple group can be generated by two elements, one of which is an involution. This is
a known consequence of the Classification of Finite Simple Groups. For completeness we include
a proof following Babai’s lines. At the basis of this we have the following [3, Lemma 4.2], which
we will also use later on. For a group Γ denote its minimum chromatic number and χmin(Γ) the
minimum χ(Cay(Γ, C)) over all generating sets C of Γ.

1Babai called these no pied circuit.
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Lemma 2.1 ( [4, Lemma 4.1]). Let (Γ, ·) be a group, N a normal subgroup of Γ and C ⊆ Γ/N .
Then,

χ(Cay(Γ, C ·N)) ≤ χ(Cay(Γ/N,C));

where C ·N := {c · n | c ·N ∈ C, n ∈ N}. In particular, χmin(Γ) ≤ χmin(Γ/N).

Using this we get:

Theorem 2.2 (Babai). For a finite group Γ we have:

χmin(Γ) =


1 if Γ is trivial,
2 if Γ has a subgroup of index 2,

3 otherwise.

Proof. The statement that χmin(Γ) = 1 if and only if Γ is trivial, is trivial. Now, by Lemma 2.1
χmin(Γ) ≤ χmin(Γ/N) for any normal subgroup N of Γ. If Γ has a subgroup of index 2, then it is
normal and the quotient is Z2 and has a bipartite Cayley graph. In general, this argument reduces
the question to simple groups. Since each such group Γ′ is either cyclic or has a generating set C ′

of size 2 containing an involution [21], Cay(Γ′, C ′) has maximum degree 3 and is different from
K4. Hence χ(Cay(Γ′, C ′)) ≤ 3. It remains to show that if χmin(Γ) = 2, then Γ has a subgroup
of index 2. In this case, Γ may be partitioned into two independent sets A,B, which by vertex
transitivity of Γ are of equal size. If say e ∈ A, then A consists of all elements of Γ that can be
expressed as a word of even length in C. Hence, A is a subgroup of index 2. □

We now turn to the maximum chromatic number of a group Γ, i.e., χmax(Γ) the maximum
χ(Cay(Γ, C)) over all minimal generating sets C of Γ. We will show that this is at most 3 for
Dedekind groups, generalized dihedral groups, and nilpotent groups.

If H < Γ is a subgroup and C ⊆ Γ, the Schreier (coset) graph Cay(Γ/H,C) has as vertices
the left cosets of H and there is an edge between two cosets if they can be represented as gH , g′H
and g−1g′ ∈ C.

Lemma 2.3. Let C be a minimal generating set of Γ, then

χ(Cay(Γ, C)) ≤ max{χ(Cay(Γ/⟨C − {c}⟩, {c})) | c ∈ C}.

Proof. Since C = {c1, . . . , ck} is minimal, for each c ∈ C the graph Cay(Γ, C − {c}) is dis-
connected and its connected components correspond to the vertices of Cay(Γ/⟨C − {c}⟩, {c}).
Moreover, if two vertices x, y of Cay(Γ, C) are connected with an edge corresponding to c, then
x, y are contained in different components of Cay(Γ, C − {c}) corresponding to adjacent ver-
tices xc, yc of Cay(Γ/⟨C − {c}⟩, {c}). Hence, if we map every vertex of x ∈ Cay(Γ, C) to
the tuple of vertices (xc1 , . . . , xck) we obtain a graph homomorphism into the Cartesian product
Cay(Γ/⟨C − {c1}⟩, {c1})□ · · ·□Cay(Γ/⟨C − {ck}⟩, {ck}). Hence, the chromatic number of the
latter is an upper bound for χ(Cay(Γ, C)). Finally, by a well-known result of Sabidussi [30], the
chromatic number of a Cartesian product is the maximum chromatic number of its factors. □

Remark 2.4. Note that Lemma 2.3 alone does not give a useful upper bound for general minimal
Cayley graphs. Consider the so-called star graph (see [1]), which is the bipartite graph Cay(Sn, C)
of the symmetric group of degree n with respect to the set of transpositions involving 1, i.e.,
C = {(12), (13), . . . , (1n)}). However, Cay(Sn/⟨C − {c}⟩, {c})) = Kn for all n and c ∈ C.

We can however use the above lemma to bound the maximum chromatic number in some cases.
A group is called Dedekind if all its subgroups are normal. Clearly, this includes all abelian
groups, and by results of Dedekind [11] and Baer [7], actually not much more.

Theorem 2.5. Every minimal Cayley graph of a Dedekind group is 3-colorable.
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Proof. Consider Cay(Γ, C) a minimal Cayley graph of a Dedekind group Γ. Since Γ is Dedekind,
for all c ∈ C we have that ⟨C − {c}⟩ is a normal subgroup of Γ. Hence, Γ/⟨C − {c}⟩ is a cyclic
group generated by the coset of c, i.e., the Schreier coset graph (which is a Cayley graph) is a
cycle and χ(Cay(Γ/⟨C − {c}⟩, {c})) ≤ 3. The statement follows from Lemma 2.3. □

For any abelian group Γ, the generalized dihedral group of Γ, written Dih(Γ), is the semidirect
product of Γ and Z2, with Z2 acting on Γ by inverting elements, i.e., Dih(Γ) = Γ⋊ϕ Z2 with ϕ(0)
the identity, and ϕ(1) the inversion. Thus we get:

(g1, 0) ∗ (g2, t2) = (g1 + g2, t2), and
(g1, 1) ∗ (g2, t2) = (g1 − g2, 1 + t2),

for all g1, g2 ∈ Γ, and t2 ∈ Z2.

Theorem 2.6. Every minimal Cayley graph of a generalized dihedral group is 3-colorable.

Proof. Let G = Cay(Dih(Γ), C) be the Cayley graph of a generalized dihedral group Dih(Γ) =
Γ ⋊ Z2 minimally generated by C. We denote Ci = C ∩ (Γ × {i}) for i = 0, 1, and consider
H := (Γ× {0}) ∩ ⟨C1⟩. By the minimality of C we have that:

(a) the vertices corresponding to elements of H form an independent set in G,
(b) The cosets of C0 minimally generate the abelian group (Γ× {0})/H .

By (b) and Theorem 2.5, it follows that Cay((Γ × {0})/H,C0) is 3-colorable. We consider
f̃ : (Γ× {0})/H −→ {0, 1, 2} a proper coloring. By (a), we have that f : Γ× {0} −→ {0, 1, 2}
defined as f(g, 0) := f̃((g, 0)∗H) is also a proper coloring of Cay(Γ×{0}, C0). Now we choose
(y, 1) ∈ C1 and consider

h : Dih(Γ) −→ {0, 1, 2}
(g, 0) 7→ f(g, 0)
(g, 1) 7→ f(g − y, 0) + 1 mod 3.

We claim that h is a proper 3-coloring of G. Indeed, consider (g1, t1), (g2, t2) two adjacent vertices
of G and let us prove that f(g1, t1) ̸= f(g2, t2). We separate the proof in three cases:

(1) If t1 = t2 = 0, then (g1, 0) and (g2, 0) are adjacent in Cay(Γ × {0}, C0) and hence,
h(g1, 0) = f(g1, 0) ̸= f(g2, 0) = h(g2, 0).

(2) If t1 = t2 = 1, then (g1, 1) and (g2, 1) are adjacent if and only if there exist (x, 0) ∈ C0

such that (g1, 1) = (g2, 1) ∗ (x, 0) = (g2 − x, 1). Then,

(g1 − y, 0) = (g1, 1) ∗ (y, 1) = (g2 − x, 1) ∗ (y, 1) = (g2 − y − x, 0)

and, hence, (g1−y, 0) and (g2−y, 0) are adjacent in Cay(Γ×{0}, C0). Thus, we conclude
that h(g1, 1) = f(g1 − y, 0) + 1 ̸= f(g2 − y, 0) + 1 = h(g2, 1).

(3) If t1 = 0, t2 = 1, then (g1, 0) and (g2, 1) are adjacent if and only if there exist (z, 1) ∈ C1

such that (g2, 1) = (g1, 0) ∗ (z, 1) = (g1 + z, 1). Then,

h(g2, 1) = f(g1 + z − y, 0) + 1 mod 3 = f(g1, 0) + 1 mod 3 ̸= f(g1, 0) = h(g1, 0),

where the equality f(g1 + z − y, 0) = f(g1, 0) follows from the fact that (z − y, 0) =
(z, 1) ∗ (y, 1) ∈ H .

This concludes the proof. □

For the next result, we denote by Φ(Γ) the Frattini subgroup of Γ, that is, the intersection of all
maximal proper subgroups of Γ, or Φ(Γ) = {e} if it has no maximal proper subgroups.

Lemma 2.7. Let Γ be a group with Frattini subgroup Φ(Γ), then:

χmax(Γ) ≤ χmax(Γ/Φ(Γ)).

Proof. For Γ a group and C any minimal generating set. The following remarkable properties of
the Frattini subgroup are well known (see, e.g., [29, Section 5.2]):
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(1) Φ(Γ) is a characteristic subgroup of Γ and, hence, Φ(Γ)� Γ,
(2) Φ(Γ) ∩ C = ∅, and
(3) C/Φ(Γ) = {c · Φ(Γ) | c ∈ C} is a minimal generating set of Γ/Φ(Γ).

By (1), (2) and Lemma 2.1, one has that χ(Cay(Γ, C)) ≤ χ(Cay(Γ/ϕ(Γ), C/Φ(Γ))). By (3)
χ(Cay(Γ/ϕ(Γ), C/Φ(Γ))) ≤ χmax(Γ/ϕ(Γ)), and the result follows. □

For a group (Γ, ·), we denote by Γ′ its commutator subgroup, i.e.,

Γ′ = ⟨x · y · x−1 · y−1 |x, y ∈ Γ⟩.

Theorem 2.8. Let Γ be a finitely generated group such that its commutator Γ′ is contained in its
Frattini subgroup Φ(Γ). Then, every minimal Cayley graph of Γ is 3-colorable. This includes
nilpotent groups.

Proof. Let G = Cay(Γ, C) be the Cayley graph of Γ with respect to a minimal set of generators
C. Since Γ′ ⊆ Φ(Γ), then it follows that Γ/Φ(Γ) is commutative and minimally generated by
C/Φ(Γ). Then, by Theorem 2.5, Cay(Γ/Φ(Γ), C/Φ(Γ)) is 3-colorable. But now we are done
because since C ⊂ (C/Φ(Γ)) · Φ(Γ), by Lemma 2.1 we have that Cay(Γ, C) is 3-colorable. □

A group Γ satisfies that Γ′ < Φ(Γ) if and only if all its maximal subgroups have prime index (see
[26, Theorem A] for other characterizations of these groups). In particular, every nilpotent group
satisfies that Γ′ ≤ Φ(Γ). A result of Wielandt [29, 5.2.16] proves that for a finite group Γ, one
has that Γ′ ≤ Φ(Γ) if and only if Γ is nilpotent. However, there are non-nilpotent infinite groups
whose commutator is contained in its corresponding Frattini subgroup. A famous such group is
the Grigorchuk group, which is a finitely generated 2-group in which all maximal subgroups have
index 2. In fact Γ′ = Φ(Γ), and has index 8 in Γ [19]. Other examples are considered in [14].

Let us end this section with a general upper bound for the chromatic number of (semi)minimal
Cayley graphs. For this purpose given a positive integer n, we denote by Wb(n) the binary Lam-
bert W function, i.e., n = Wb(n)2

Wb(n).

Proposition 2.9. Let Γ be a group of order n and C be a generating set. We have

χ(Γ, C) ≤

{
2 log2 n if C is semiminimal,
2Wb(n) if C is minimal.

Moreover, Wb(n) < log2 n− log2 log2(
n

log2 n
).

Proof. Let C = (c1, . . . , ck) a semiminimal generating set of Γ. One has that Γi−1 := ⟨c1, . . . , ci−1⟩
is a proper subgroup of Γi for all 1 ≤ i ≤ k and, by Lagrange’s Theorem, we have 2i ≤ |Γi|.
Hence k = |C| ≤ log2(|Γ|) = log2 n. Thus, the maximum degree of Cay(G,C) is at most
2 log2 n. By Brook’s Theorem, this is an upper bound for χ(Cay(G,C)) except if Cay(G,C) is
an odd cycle or a clique. However, in the first case χ(Cay(G,C)) = 3 ≤ 2 log2(2ℓ + 1) for all
ℓ ≥ 1. If otherwise Cay(G,C) = Kn is a clique, by Proposition 3.2 we know that n = 4 and
χ(Cay(G,C)) = 4 ≤ 2 log2(4).

Now suppose C minimal. Again by Lagrange’s Theorem, for any c ∈ C the subgroup ⟨C−{c}⟩
has order at least 2k−1. Hence, the Schreier graph of this subgroup has at most n

2k−1 vertices,
and χ(Cay(Γ/⟨C − {c}⟩, {c})) ≤ n

2k−1 . Thus, with the first part and Lemma 2.3 we have that
χ(Cay(Γ, C)) ≤ min(2k, n

2k−1 ), which is maximised exactly if k = Wb(n). By definition we have
that

Wb(n) = log2

(
n

Wb(n)

)
= log2

(
n

log2
n

Wb(n)

)
.

Moreover, we clearly have clearly Wb(n) < log2(n), then we finally get that

Wb(n) < log2

(
n

log2
n

log2(n)

)
= log2 n− log2 log2

(
n

log2 n

)
,
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which concludes the proof. □

Note that the bounds in the previous proposition depend on the maximal size of a minimal
generating set of a group Γ. This parameter has been studied, see e.g. [8, 24].

3. LOWER BOUNDS

We begin this section by presenting a minimal Cayley graph of chromatic number 4 and a
semiminimal Cayley graph of chromatic number 7.

Proposition 3.1. There exist minimal Cayley graphs of chromatic number 4 and semiminimal
Cayley graphs of chromatic number 7.

Proof. For both graphs we computed the chromatic number by computer. The first graph is the
minimal Cayley graph Cay(Z3 ⋊ Z7, {(0, 1), (1, 0)}). It is depicted on the left side of Figure 1
where the grey edges correspond to (1, 0) and the purple edges correspond to (0, 1). The second
graph is the semiminimal Cayley graph Cay(Q32, C), where Q32 = ⟨a, b | a16 = b4 = 1, a8 =
b2, aba = b⟩ is the generalized quaternion group or order 32 and C = (b2, a4, a5b, a3b, a6b).
The graph G depicted in the right of Figure 1 is such that G ⊠ K2 = Cay(Q32, C), where ⊠
denotes the strong graph product. It is induced by vertices {biaj | 0 ≤ i ≤ 1, 0 ≤ j ≤ 7}, edges
corresponding to right multiplication by a4, a5b, a4b and a14b are depicted in blue, gray, green and
violet, respectively. □

FIGURE 1. The graphs Cay(Z3 ⋊Z7, {(0, 1), (1, 0)}) and G such that G⊠K2 =
Cay(Q32, C) from Proposition 3.1.

Already in [3] it is shown that minimal Cayley graphs have clique number at most 3 and it also
follows from the results there, that semiminimal Cayley graphs have bounded clique number. We
first make this precise.

Proposition 3.2. For any one popular color graph G we have ω(G) ≤ 5 and this is tight. For a
semiminimal Cayley graph Cay(Γ, C) we have ω(Cay(Γ, C)) ≤ 4 and this is tight.

Proof. Suppose that there exists a one popular color coloring of K6 and consider an edge ab of
color 1 and the four triangles abc, abd, abe, abf . At most two among these four triangles have
popular color 1. If two of these triangles, say abc, abd have one popular color among different
colors 2, 3, then the triangle acd has no popular color. Hence two triangles say abc, abd have
popular color 2 then the triangles abe, abf must have popular color 1. So assume that the edge ae
is colored in 1. But then the edges ec and ed both must be of color 1 to make triangles aec and
aed have a popular color. But then the degree of e in color 1 is 3.

To show tightness just edge-color K5 with two colors each inducing a cycle of length 5. Since
we are only using two colors, it is straight-forward to check that all cycles have a popular color.
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Let us now, see that this is the only way to one popular color color the K5. Let ab an edge of color
1 and consider the three triangles abc, abd, abe. If two of these triangles, say abc, abd have one
popular color because of different colors 2, 3, then the triangle acd has no popular color. If two
triangles say abc, abd have one popular color because of color 2 then the triangle abe must have
popular color 1, say the edge be is of color 1 and both the edges ce, de must be of color 1 in order
to make triangle bce, bde have a popular color. But then the degree of e in color 1 is 3. Suppose
now that only the triangle abc has popular color 2, then both abd, abe have popular color 1 and
without loss of generality we have edges ad, be of color 1. Now bd cannot be of color 1 (because
the degree of b in color 1 would be 3), and cannot be of color 3, because this would force the edge
cd to be of color 3, but then the triangle acd would have no popular color. Hence bd is of color 2,
and by an analogous argument also ae is of color 2. Now, cd is forced to be of color 1, de of color
2, and ce of color 1. The resulting two-coloring is a decomposition into two cycles of length 5.

Suppose now that a semiminimal Cayley graph Cay(Γ, C) contains a K5, then as argued above
its one popular color coloring consists of two cycles of length 5. Hence the corresponding elements
c, c′ ∈ C generate the same cyclic subgroup of order 5 of Γ. Hence C is not semiminimal. Thus,
ω(Cay(Γ, C)) ≤ 4. To see that this is tight simply consider Cay(Z4, {2, 1}) = K4. □

We finish by giving a negative answer to the stronger version of Question 1.3, i.e., we provide
a family of one popular color graphs with unbounded chromatic number. The construction we
propose is based on one of the fundamental constructions for triangle-free graphs of arbitrary
chromatic number due to Tutte (alias Blanche Descartes) [12], also see Nešetřil’s survey [27] for
a more detailed discussion.

Theorem 3.3. For any k there exists a one popular color graph Gk with χ(Gk) ≥ k.

Proof. We proceed by induction on k ≥ 1. Choose G1 to be the graph with a single vertex and
G2 = C4 with edges colored alternatingly with two colors. If k ≥ 3 then denote by n the number
of vertices of Gk−1. Define X as a set of (k− 1)(n− 1)+ 1 new vertices without edges. Now, for
every subset Y of size n of X take a copy G′ of Gk−1 (where all copies can be considered to be
edge-colored with the same set) and add a matching of size n that connects the vertices of Y with
the vertices of G′. Each of these new matchings will be edge colored with its own private color.
The resulting graph is Gk. Note that the choice of the matchings in the construction is not unique.

To see that Gk is a one popular color graph, note first that every color class is a matching, hence
the coloring satisfies property (1). Now, observe that by induction hypothesis all cycles within a
single copy G′ have one color at least twice. Since X is an independent set any other cycle must
enter and leave some copy G′, but then it uses two edges of the same matching, hence repeats at
least one color. This proves property (2’).

The fact that χ(Gk) ≥ k is well-known, see e.g. [12, 27]. □

While we have negatively answered the one popular color variant of Question 1.3 its no lonely
color variant remains open. Let us propose a strengthening of it.

Conjecture 3.4. There is a function f , such that if the edges of a graph G can be colored such
the subgraph induced by any color has maximum degree d, and no color appears exactly once on
a cycle of G, then χ(G) ≤ f(d).

Note that this conjecture for d = 2 implies a positive answer to the weak variant of Question 1.3.
However, it is open even for the case d = 1. On the other hand, it also remains open if graphs with
a one popular color coloring exist that satisfy Conjecture 1.2. Finally, note that the questions about
the boundedness of the chromatic number of minimal or semiminimal Cayley graphs of general
finite groups remain open.
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