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Abstract. J.-P. Roudneff conjectured in 1991 that every arrangement of n ≥ 2d+1 ≥ 5

pseudohyperplanes in the real projective space Pd has at most
∑d−2

i=0

(
n−1
i

)
complete

cells (i.e., cells bounded by each hyperplane). The conjecture is true for d = 2, 3 and
for arrangements arising from Lawrence oriented matroids. The main result of this
manuscript is to show the validity of Roudneff’s conjecture for d = 4. Moreover, based
on computational data we conjecture that the maximum number of complete cells is only
obtained by cyclic arrangements.

1. Introduction

A projective arrangement of n pseudohyperplanes H(d, n) in the real projective space
Pd is a finite collection of mildly deformed linear hyperplanes with several combinatorial
properties, see Section 2.1 for the definition in terms of oriented matroids. In particular,
no point belongs to every pseudohyperplane of H(d, n). Any arrangement H(d, n) de-
composes Pd into a d-dimensional cell complex and any d-cell c of H(d, n) has at most n
facets (that is, (d − 1)-cells). We say that a d-cell c is a complete cell of H(d, n) if c has
exactly n facets, i.e., c is bounded by each pseudohyperplane of H(d, n).

The cyclic polytope of dimension d with n vertices, discovered by Carathéodory [3], is the
convex hull in Rd of n ≥ d+ 1 ≥ 3 different points x(t1), . . . , x(tn) on the moment curve
x : R → Rd, t 7→ (t, t2, . . . , td). Cyclic polytopes play an important role in combinatorial
convex geometry due to their connection with certain extremal problems. See for exam-
ple, the upper bound theorem due to McMullen [10]. Cyclic arrangements are defined as
the dual of the cyclic polytopes. As for cyclic polytopes, cyclic arrangements also have
extremal properties, see Section 2.1 for the definition in terms of oriented matroids. For
instance, Shannon [14] introduced cyclic arrangements as examples of projective arrange-
ments in dimension d which minimize the number of cells with (d+ 1) facets.

Denote by Cd(n) the number of complete cells of the cyclic arrangement of dimension d

with n hyperplanes. Roudneff [13] proved that Cd(n) ≥
d−2∑
i=0

(
n−1
i

)
holds for d ≥ 2 and that

this bound is tight for all n ≥ 2d + 1. Moreover, he conjectured that in that case, cyclic
arrangements maximize the number of complete cells.

Conjecture 1.1 ([13, Conjecture 2.2]). Every arrangement of n ≥ 2d+ 1 ≥ 5 pseudohy-

perplanes in Pd has at most
d−2∑
i=0

(
n−1
i

)
complete cells.

The conjecture is true for d = 2 (that is, any arrangement of n pseudolines in P2 contains
at most one complete cell), Ramı́rez Alfonśın [12] proved the case d = 3, and in [11] the
authors proved it for arrangements corresponding to Lawrence oriented matroids.
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2 R. HERNÁNDEZ-ORTIZ, K. KNAUER, L. P. MONTEJANO, AND M. SCHEUCHER

In [8] the exact number of complete cells of cyclic arrangements was calculated for any
positive integers d and n with n ≥ d+ 1, namely,

Cd(n) =

(
d

n− d

)
+

(
d− 1

n− d− 1

)
+

d−2∑
i=0

(
n− 1

i

)
.

Thus, in view of Roudneff’s conjecture, the following question was asked in [11].

Question 1.2. Is it true that every arrangement of n ≥ d + 1 ≥ 3 pseudohyperplanes
in Pd has at most Cd(n) complete cells?

Notice that there is a unique arrangement of 3 (resp. 4) lines in P2 with C2(3) = 4 (resp.
C2(4) = 3) complete cells. Since Conjecture 1.1 is true for d = 2 and n ≥ 5, Question 1.2
is answered affirmatively for d = 2.

As the main result of this paper, we give an affirmative answer to Question 1.2 for d = 4
and therefore prove Roudneff’s conjecture for dimension 4, further supporting the general
conjecture. In addition, with a few simple observations, we answer Question 1.2 for d = 3
and further strengthen Roudneff’s conjecture.

2. Oriented matroids

Let us give some basic notions and definitions in oriented matroid theory. We assume some
knowledge and standard notation of the theory of oriented matroids, for further reference
the reader can consult the textbook [2]. A signed set or signed vector X on ground
set E is a set X ⊆ E together with a partition (X+, X−) of X into two distinguished
subsets: X+, the set of positive elements of X, and X−, its set of negative elements. The
set X = X+ ∪ X− is the support of X. We denote by −X the sign-vector such that
−X+ = X− and −X− = X+. An oriented matroid M = (E, C) is a pair of a finite
ground set E and a collection of signed sets on E called circuits, satisfying the following
axioms:

• ∅ /∈ C,
• if X ∈ C then −X ∈ C,
• if X, Y ∈ C and X ⊆ Y then X = ±Y ,
• if X, Y ∈ C, X ̸= −Y , and e ∈ X+ ∩ Y −, then there is Z ∈ C, with e /∈ Z and
Z+ ⊆ X+ ∩ Y + and Z− ⊆ X− ∩ Y −.

We say that X ∈ C is a positive circuit if X− = ∅. We call the set of all reorientations
of M its reorientation class. We say that M is acyclic if it does not contain positive
circuits (otherwise, M is called cyclic). A reorientation of M on R ⊆ E is performed by
changing the signs of the elements in R in all the circuits of M. It is easy to check that
the new set of signed circuits is also the set of circuits of an oriented matroid, usually
denoted by MR. A reorientation is acyclic if MR is acyclic. Recall that oriented matroid
on n elements is uniform of rank r if the set of supports of its circuits consists of all
(r + 1)-element subsets of E. Given a uniform oriented matroid M of rank r on n = |E|
elements, we denote its dual by M∗, which is another uniform oriented matroid of rank
n− r on n elements.

A characterization of oriented matroids in terms of basis orientations (that we will not
make explicit here) was given by Lawrence [9]. Let r ≥ 1 be an integer and E = {1, . . . , n}
be a set. A mapping χ : Er → {−1, 0, 1} (where we will abbreviate it by {−, 0,+}) is a
basis orientation of an oriented matroid of rank r on E if and only if χ is a chirotope, that
is, a special alternating mapping not identically zero. It is known that χ : Er → {−,+} is
a chirotope if and only if χ is a basis orientation of a rank r uniform oriented matroid on E.
Moreover, if χ(B) = + for any ordered basis B = (b1, . . . , br) of M with b1 < . . . < br,
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then the uniform matroid M is known to be the alternating oriented matroid of rank r
on n elements. In that case, the signs of each circuit alternate along the ordering of E.

Given two sign-vectors X, Y ∈ {+,−, 0}E, their separation is the set S(X, Y ) = {e ∈ E |
Xe ·Ye = −}, where Xe and Ye are the sings of the element e in X and Y , respectively. We
denote by X ⊥ Y and say that X and Y are orthogonal if the sets S(X, Y ) and S(X,−Y )
are either both empty or both non-empty. Maximal covectors of an oriented matroid M
are usually called topes. It is known that a sign-vector T ∈ {+,−}E is a tope of M if and
only if T ⊥ X for all circuit X ∈ C (see [2, Section 1.2, page 14]). Moreover, T is a tope
of M if and only if S(T,X) and S(T,−X) are both non-empty, for every circuit X ∈ C.

2.1. Topological Representation Theorem. The combinatorial properties of arrange-
ments of pseudohyperplanes can be studied in the language of oriented matroids. The
Folkman–Lawrence topological representation theorem [7] states that the reorientation
classes of oriented matroids on n elements and rank r (without loops or parallel elements)
are in one-to-one correspondence with the classes of isomorphism of arrangements of n
pseudospheres in Sr−1 (see [2, Theorem 1.4.1]). There is a natural identification between
pseudospheres and pseudohyperplanes as follows. Recall that Pr−1 is the topological space
obtained from Sd by identifying all pairs of antipodal points. The double covering map
π : Sr−1 → Pr−1, given by π(x) = {x,−x}, gives an identification of centrally symmetric
subsets of Sr−1 and general subsets of Pr−1. This way centrally symmetric pseudospheres
in Sr−1 correspond to pseudohyperplanes in Pr−1. Hence, the topological representation
theorem can also be stated in terms of pseudohyperplanes in Pr−1, i.e., the reorientation
classes of oriented matroids on n elements and rank r (without loops or parallel elements)
are in one-to-one correspondence with the classes of isomorphism of arrangements of n
pseudohyperplanes in Pr−1 (see [2, Section 5, exercise 5.8]).

An arrangement H(d, n) is called simple if every intersection of d pseudohyperplanes is
a unique distinct point. Simple arrangements correspond to uniform oriented matroids.
The d-cells of any arrangement H(d, n) are usually called topes since they are in one-to-
one correspondence with the topes of each of the oriented matroids M of rank r = d+ 1
on n elements of its corresponding reorientation class. It is known that a tope of M
(i.e, a d-cell of its corresponding arrangement) corresponds to an acyclic reorientation of
M having as interior elements precisely those pseudohyperplanes not bordering the tope.
Moreover, a tope T of M is a complete cell if reorienting any single element of T , the
resulting sign-vector is also a tope of M. Cyclic arrangements of n hyperplanes in Pd are
equivalent to alternating oriented matroids of rank r = d+ 1 on n elements, which hence
have exactly 2Cr−1(n) complete cells. Summarizing, Question 1.2 (and hence Roudneff’s
conjecture) can be stated in the following form:

Every rank r oriented matroid M on n ≥ r + 1 elements has at most
2Cr−1(n) complete cells.

We summarize for later usage: Given a rank r oriented matroid M = (E, C), the following
three conditions hold.

(a) A tope of M is a sign-vector T ∈ {+,−}E such that T ⊥ X for all circuit X ∈ C.
(b) A tope T of M is a complete cell if reorienting any single element of T , the resulting

sign-vector is also a tope of M.
(c) If the corresponding arrangement of n pseudohyperplanes in Pr−1 of M is simple,

then M is uniform.

3. Previous results

We will use the following result due to Roudneff.



4 R. HERNÁNDEZ-ORTIZ, K. KNAUER, L. P. MONTEJANO, AND M. SCHEUCHER

Proposition 3.1 ([13]). To prove Conjecture 1.1 for dimension d, it suffices to verify it
for all simple arrangements of n = 2d+ 1 pseudohyperplanes in Pd.

From the proof of the above proposition, it can be seen that even for any arrangement H
with n ≤ 2d pseudohyperplanes in Pd, we may also perturb each hyperplane of H a bit in
order to obtain a simple arrangement H ′ with at least the same number of complete cells
as H (see Proposition 2.3 of [13]). This shows that also for Question 1.2, we can restrict
ourselves to simple arrangements.

Remark 3.2. To answer Question 1.2 for dimension d in the affirmative, it suffices to
verify it for simple arrangements of pseudohyperplanes in Pd.

Thus, by condition (c) and by Remark 3.2, it is sufficient to prove Question 1.2 for uniform
oriented matroids. The following observation will be useful in this work.

Remark 3.3. There is only one reorientation class of uniform rank r oriented matroids
on n ≤ r + 2 elements.

Proof. The number of reorientation classes of a uniform oriented matroid M of rank r on
n elements is equal to the number of reorientation classes of its dual M∗. Now, if M has
rank r and n ≤ r + 2 elements, then M∗ has rank at most 2. Hence, M∗ and therefore
M has only one reorientation class. □

Thus, every acyclic uniform oriented matroid on at most r+ 2 elements is in the reorien-
tation class of the alternating oriented matroid and hence, they all have the same number
of complete cells. As a consequence of Remarks 3.2 and 3.3, we can answer affirmatively
Question 1.2 for n ≤ r + 2. In particular, as for r = 4 (dimension d = 3) Conjecture 1.1
is true for n ≥ 7, we obtain the following.

Corollary 3.4. Every arrangement of n ≥ 4 pseudohyperplanes in P3 has at most C3(n)
complete cells.

4. Main result

Given a uniform rank r oriented matroid M = (E, C) on n = |E| elements, we explain
the procedure to obtain the set of all complete cells of its corresponding arrangement of
n pseudohyperplanes in Pd via the signed bases of M. We start with the signature of all
the bases of M and then, we obtain all its signed circuits. After that, we get the set of
topes of M and finally, we obtain the set of all complete cells of M as follows:

Bases → Circuits: From the chirotope, we may obtain that

χ(B) = −Xbi ·Xbi+1
· χ(B′),

where X = {b1, ..., br+1} is the support of an ordered circuit of M and B = X − bi and
B′ = X − bi+1 are two bases of M (see [2, Section 3.5]). Hence, given χ(B), for any basis
B of M, we obtain the signed circuit X and since M is uniform, we can proceed to obtain
all the signed circuits of M.

Circuits → Topes: For any sign-vector T ∈ {+,−}n, we verify condition (a) to confirm
that T is a tope of M, i.e., we check for all circuit X ∈ C of M if S(T,X) and S(T,−X)
are both non-empty (see [2, Section 1.2, page 14]).

Topes → Complete cells: For any tope T , we verify condition (b) to confirm that T is a
complete cell of M. That is, we reorient any single element of T , check if the resulting
sign-vector is a tope of M and verify this for each of the n entries of T .

Finschi and Fukuda [5, 6] enumerated the signed bases of all the reorientation classes of
uniform rank 5 oriented matroids on 8 and 9 elements. While the data for 8 elements
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is available on the website [4], the data for 9 elements and also their source code for
the enumeration is available upon request from Lukas Finschi. We follow the procedure
explained above with a computer program (available at [1]) which gives us the number of
complete cells of each acyclic reorientation class. After about 26 CPU days of computing
time (i.e., few days with parallelization), we obtain the following.

Theorem 4.1. Each of the 135 reorientation classes of uniform rank 5 oriented matroids
on 8 elements has at most 2C4(8) complete cells. Moreover, the class of the alternating
oriented matroid is the only one with exactly 2C4(8) complete cells.

Theorem 4.2. Each of the 9276595 reorientation classes of uniform rank 5 oriented
matroids on 9 elements has at most 2C4(9) complete cells. Moreover, the class of the
alternating oriented matroid is the only one with exactly 2C4(9) complete cells.

We can now prove our main result:

Theorem 4.3. Every arrangement of n ≥ 5 pseudohyperplanes in P4 has at most C4(n)
complete cells.

Proof. By Proposition 3.2, it is sufficient to prove the theorem for simple arrangements,
that is, for uniform oriented matroids (see condition (c)). Thus, by Remark 3.3 and
Theorem 4.1, the result holds for n = 5, 6, 7 and 8. Finally, by Proposition 3.1 it suffices
to verify it for n = 9. Therefore, the result holds by Theorem 4.2. □

Finally, we have used our computer program to verify that the cyclic arrangement is the
unique example which maximizes the number of complete cells for d = 2 and n ≤ 10,
for d = 3 and n ≤ 7, and for d = 4 and n ≤ 9. Based on our computational evidence,
we conclude this article with the following strengthening of Roudneff’s conjecture and
Question 1.2:

Conjecture 4.4. Every arrangement of n ≥ d + 1 ≥ 3 pseudohyperplanes in Pd has at
most Cd(n) complete cells. Moreover, among all arrangements of n pseudohyperplanes
in Pd the cyclic arrangement is (up to isomorphism) the only one with Cd(n) complete
cells.

Last but not least, as the proof of Proposition 3.1, it suffices to verify Conjecture 4.4 for
simple arrangements of pseudohyperplanes in Pd. However, we do not know whether the
setting can also be restricted to n ≤ 2d+ 1 without loss of generality.
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