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Abstract. We study the existence and the number of k-neighborly reorientations of
an oriented matroid. This leads to k-variants of McMullen’s problem and Roudneff’s
conjecture, the case k = 1 being the original statements. Adding to results of Larman and
Garćıa-Coĺın, we provide new bounds on k-McMullen’s problem and prove the conjecture
for several ranks and k by computer. Further, we show that k-Roudneff’s conjecture
for fixed rank and k reduces to a finite case analysis. As a consequence we prove the
conjecture for odd rank r and k = r−1

2 as well as for rank 6 and k = 2 with the aid of
the computer.

1. Introduction

We assume some knowledge and standard notation of the theory of oriented matroids, for
further reference the reader can consult the standard reference [3]. An oriented matroid
is a pair M = (E, C) of a finite ground set E and a set of sign-vectors C ⊆ {+,−, 0}E
called circuits satisfying a certain set of axioms, see Definition 1.1. The size of a member
X ∈ {+,−, 0}E is the size of its support X = {e ∈ E | Xe ̸= 0}. Throughout the paper
all oriented matroids are considered simple, i.e., all circuits have size at least 3. The rank
r of M is the size of a largest set not containing a circuit of M. An oriented matroid of
rank r is called uniform if all its circuits are of size r+1. Most of the problems we study
in this paper reduce to uniform oriented matroids.

For a sign-vector X ∈ {+,−, 0}E on ground set E we denote by X+ := {e ∈ E | Xe = +},
the set of positive elements of X, and X− := {e ∈ E | Xe = −}, its set of negative
elements. Hence, the set X = X+ ∪ X− is the support of X. For a subset R ⊆ E the
reorientation of R is the oriented matroid −RM obtained from M by reversing the sign
of Xe for every e ∈ R and X ∈ C. The set of all oriented matroids that can be obtained
this way from M is the reorientation class [M] of M. We denote by −X the sign-vector

−EX where all signs are reversed, i.e., such that −X+ = X− and −X− = X+. We say
that X is positive if X− = ∅ and X ̸= ∅.
Definition 1.1. An oriented matroid M = (E, C) is a pair of a finite ground set E and
a collection of signed sets on E called circuits, satisfying the following axioms:

(C0) ∅ /∈ C,
(C1) X ∈ C if and only if −X ∈ C,
(C2) if X, Y ∈ C and X ⊆ Y , then X = ±Y ,
(C3) if X, Y ∈ C, X ̸= −Y , and e ∈ X+ ∩ Y −, then there exists a Z ∈ C, such that

Z+ ⊆ (X+ ∩ Y +) \ e and Z− ⊆ (X− ∩ Y −) \ e.
An oriented matroid M = (E, C) is acyclic if every circuit has positive and negative signs,
i.e., if |X+| > 0 and |X−| > 0 for every circuit X ∈ C. We say that M is k-neighborly if
for every subset R ⊆ E of size at most k the reorientation −RM is acyclic, in other words,
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if |X+| > k and |X−| > k, for every X ∈ C. A reorientation R of M is k-neighborly if

−RM is k-neighborly.

In this paper we study k-neighborly reorientations of oriented matroids. In particular we
study two well-known conjectures on 1-neighborly oriented matroids and their generaliza-
tion to arbitrary k: the k-McMullen problem and the k-Roudneff conjecture.

Along the course of the paper we will provide and use different equivalent descriptions of
being k-neighborly: in terms of faces (Lemma 2.1), in terms of orthogonality (Proposi-
tion 3.1) in terms of topes (defined in Subsection 3.1) and in terms of balls in the tope
graph (Proposition 3.3). It follows from the definition that a k-neighborly oriented ma-
troid is k′-neighborly for all 0 ≤ k′ ≤ k. Note that M is 0-neighborly if and only if M
is acyclic. If M is 1-neighborly, then M is called matroid polytope. If M has rank r,
then it can be at most ⌊ r−1

2
⌋-neighborly and in this case M is often just called neighborly.

There is quite some work about neighborly oriented matroids, starting with Sturmfels [31]
and [3, Section 9.4] but also more recent works such as [25, 27]. In the realizable setting
(see the appendix for the definition of a realizable oriented matroid), a k-neighborly ma-
troid is a k-neighborly polytope, i.e., a polytope such that every set of at most k vertices
are the vertices of a face.

Given an oriented matroid M = (E, C) the contraction of F ⊂ E is the oriented matroid
M/F = (E \F, C/F ), where C/F is the set of support-minimal sign-vectors from {X \F |
X ∈ C}\{0} where X\F is the sign-vector on groundset E\F such that (X\F )e = Xe for
all e ∈ E \F . If M is a uniform oriented matroid of rank r, then M/F is uniform of rank
max{0, r−|F |}. The deletion of F from M is the oriented matroid M\F = (E\F, C\F ),
where C \ F = {X \ F | X ∈ C, X ∩ F = ∅} \ {0}. If M is a uniform oriented matroid of
rank r, then M/F is uniform of rank min{|E \ F |, r}.
Two sign-vectors X, Y ∈ {+,−, 0}E are called orthogonal if either there are e, f ∈ E such
that XeYe = + and XfYf = − or X ∩ Y= ∅. The set L of covectors of M consists of all
sign-vectors X ∈ {+,−, 0}E such that X is orthogonal to every circuit Y ∈ C of M. The
set C∗ of cocircuits of M consists of the support-minimal elements of L \ {0}. The topes
of M are defined as L ∩ {+,−}E, i.e., as the maximal covectors of M. All these three
sets uniquely determine M and oriented matroids can be axiomatized in terms of them
as well, see [3] for covectors, cocircuits, and [7,17] for topes. The tope graph G(M) is the
graph whose vertex set are the topes of M, where two vertices are adjacent if they differ
in a single coordinate. The (unlabelled) G(M) determines the reorientation class of M
and purely graph theoretical polynomial time verifiable characterizations of tope graphs
of oriented matroids have been obtained recently, see [19].

The definition of the base axioms of an oriented matroid is due to Guiterrez Novoa [16]
who called the structure multiply ordered sets. Lawrence [23] proved that this yields
another axiom system for oriented matroids. The term chirotope is due to Dress [8], who
reinvented oriented matroids.

Definition 1.2. Let r ≥ 1 be an integer be a set. An oriented matroid of rank r is a pair
M = (E,χ) of a finite ground set E and a chirotope χ : Er → {+, 0,−} satisfying:

(B0) χ is not identically zero,
(B1) χ is alternating,
(B2) if x1, . . . , xr, y1, . . . , yr ∈ E and χ(yi, x2, . . . , xr)χ(y1, . . . , yi−1, x1, yi+1, . . . , yr) ≥ 0

for all i ∈ [r], then χ(x1, . . . , xr)χ(y1, . . . , yr) ≥ 0.

If χ : Er → {−,+} is a chirotope, then M = (E,χ) is uniform. Moreover, if E = [n]
and χ(B) = + for any ordered tuple B = (b1 < . . . < br), then the uniform matroid
M = (E,χ) is the alternating oriented matroid of rank r on n elements: Cr(n). In this
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model the reorientation −RM is obtained by defining

−Rχ(x1, . . . , xr) = (−χ(x1, . . . , xr))
|{x1,...,xr)}∩R|.

Given an oriented matroid M = (E,χ) of rank r, its dual is the oriented matroid M∗ =
(E,χ∗) of rank n− r defined by setting

χ∗(x1, . . . , xn−r) = χ(x′
1, . . . , x

′
r)sign(x1, . . . , xn−r, x

′
1, . . . , x

′
r),

where (x′
1, . . . , x

′
r) is any permutation of E \ {x1, . . . , xn−r}. In particular, M is uniform

of rank r if and only if M∗ is uniform of rank n − r. Therefore, we have the following
observation which will be useful throughout this paper.

Remark 1.3. For every r ≤ n ≤ r+2, there is exactly one reorientation class of uniform
rank r oriented matroids on n elements.

1.1. k-McMullen’s problem. This problem is about the existence of k-neighborly re-
orientations of uniform oriented matroids. Denote by ν(r, k) (respectively νR(r, k)) the
largest n such that any (realizable) uniform oriented matroid M of rank r and n elements
has a k-neighborly reorientation. Clearly, ν(r, k) ≤ νR(r, k) for k ≥ 1. Note that since
every uniform oriented matroid has an acyclic orientation ν(r, 0) = +∞. This param-
eter was originally only studied for k = 1. First, it was defined for realizable uniform
oriented matroids [20] (the original version can be found in the appendix) and then for
general uniform oriented matroids [6]. The following conjecture is known as the McMullen
problem [20]:

Conjecture 1.4 (McMullen 1972). For any r ≥ 3 it holds ν(r, 1) = 2r − 1.

The inequality 2r − 1 ≤ νR(r, 1) has been shown in [20] for realizable uniform oriented
matroids and in [6] for general uniform oriented matroids, i.e., 2r − 1 ≤ ν(r, 1). This
conjecture has been verified for r ≤ 5 [12], but remains open otherwise. After a series of
results [20, 22], the currently best-known upper bound ν(r, 1) < 2(r − 1) +

⌈
r
2

⌉
is due to

Ramı́rez Alfonśın [29]. For general positive k we propose the following strengthening of
Conjecture 1.4:

Question 1.5. Does ν(r, k) = r + ⌊ r−1
k
⌋ hold for all k = 0, . . . , ⌊ r−1

2
⌋ and r ≥ 3?

Remark 1.6. In [14, Theorem 1] the authors stated that r+⌈ r−1
k
⌉ ≤ νR(r, k) < 2r−k−1,

for 2 ≤ k ≤ ⌊ r−1
2
⌋, but what they actually prove was

r + ⌊r − 1

k
⌋ ≤ νR(r, k) < 2r − k + 1.

Proof. The authors stated this result in [14] in terms of the dimension d, instead of the
rank r, where d = r − 1. So, we may reformulate the parameter νR(r, k) in terms of d
as ν ′

R(d, k). To prove the lower bound, the authors introduce the parameter λ(r − 1, k)
proving that λ(r − 1, k) ≤ (k + 1)(r − 1) + (k + 2) [14, Lemma 9]. On the other hand,
they proved in [14, Equation (1)] that

(1) ν ′
R(r − 1, k) = max{w ∈ N : w ≥ λ(w − r − 1, k)}

Hence, λ(w−r−1, k) ≤ (k+1)(w−r−1)+(k+2) and so, for the positive integer w such
that (k+1)(w−r−1)+(k+2) ≤ w, we obtain by (1) that w ≤ ν ′

R(r−1, k). Now, from the
inequality (k+1)(w−r−1)+(k+2) ≤ w it follows that w ≤ r+ r−1

k
and since w is an integer,

w ≤ r + ⌊ r−1
k
⌋. Therefore, we conclude by (1) that r + ⌊ r−1

k
⌋ ≤ ν ′

R(r − 1, k) = νR(r, k).
To prove the upper bound, the authors construct in Definitions 8 and 9 of [14] (for the cases
k = 2 and k ≥ 3, respectively) examples of realizable uniform oriented matroids, called
Lawrence oriented matroids, of rank r and order 2r−k+1 (and not 2r−k−1 as mentioned
in Theorem 1 of [14]) without k-neighborly reorientations. Then, νR(r, k) < 2r−k+1. □
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In fact, we show in Theorem 4.3 that the inequality r + ⌈ r−1
k
⌉ ≤ νR(r, k) does not hold

for r = 6 and k = 2. On the other hand, notice that r+ ⌊ r−1
k
⌋ = 2r− k− 1 for r = 5 and

k = 2, showing that νR(r, k) < 2r − k − 1 is not true.

Question 1.5 holds in a sense for k = 0 since every uniform oriented matroid has an acyclic
orientation, i.e., ν(r, 0) = +∞. For k = 1, is just Conjecture 1.4 (McMullen’s problem)
and for realizable uniform oriented matroid it is partially solved since r+⌊ r−1

k
⌋ ≤ νR(r, k)

(Remark 1.6). Note that yet another variant of McMullen’s problem has been studied
recently in [15].

In Section 2 we prove that r − 1 + ⌊ r−1
k
⌋ ≤ ν(r, k) for r ≥ 3 and every k = 1, . . . , ⌊ r−1

2
⌋

(Theorem 2.3). Hence, we are only off by 1 of the lower bound claimed in Question 1.5.
Moreover, we prove the lower bound r + ⌊ r−1

k
⌋ ≤ ν(r, k) for some cases (Theorem 2.4).

Further, with the help of the computer, we improve in Section 4 the upper bound
νR(r, k) < 2r − k + 1 for some small values of r and k and as a consequence, we an-
swer Question 1.5 affirmatively showing that ν(5, 2) = νR(5, 2) = 7, ν(6, 2) = νR(6, 2) = 8
and ν(7, 3) = νR(7, 3) = 9 (Theorem 4.3).

1.2. k-Roudneff’s conjecture. This problem is about the number of k-neighborly reori-
entations of a rank r oriented matroid M on n elements, denoted by m(M, k). The cyclic
polytope of dimension d with n vertices, Cd(t1, . . . , tn), discovered by Carathéodory [4], is
the convex hull in Rd of n ≥ d+1 ≥ 3 different points x(t1), . . . , x(tn) of the moment curve
µ : R −→ Rd, t 7→ (t, t2, . . . , td). Cyclic polytopes play an important role in the combi-
natorial convex geometry due to their connection with certain extremal problems. The
Upper Bound theorem due to McMullen is an example of this [24]. The oriented matroid
associated to the cyclic polytope of dimension d = r−1 with n elements is the alternating
oriented matroid Cr(n). It is the uniform oriented matroid of rank r and ground set
E = [n] := {1, . . . , n} such that every circuit X ∈ C is alternating, i.e., Xij = −Xij+1

for
all 1 ≤ j ≤ r if X = {i1, . . . , ir+1} and i1 < . . . < ir+1.

Denote by cr(n, k) = m(Cr(n), k) the number of k-neighborly reorientations of Cr(n).
Since Cr(n) is uniform and the 0-neighborly reorientations are just the acyclic reori-
entations, we have cr(n, 0) = 2

∑r−1
i=0

(
n−1
i

)
, see e.g. [5]. Roudneff [30] proved that

cr(n, 1) ≥ 2
∑r−3

i=0

(
n−1
i

)
and that is an equality for all n ≥ 2r− 1. In [13] it is shown that

cr(n, 1) = 2(
(

r−1
n−r+1

)
+
(

r
n−r

)
+
∑r−3

i=0

(
n−1
i

)
) for n ≥ r + 1.

The following has been conjectured by Roudneff, originally in terms of projective pseu-
dohyperplane arrangements [30, Conjecture 2.2] (the original version can be found in the
appendix).

Conjecture 1.7 (Roudneff 1991). For any rank r ≥ 3 oriented matroid M on n ≥ 2r−1
elements it holds m(M, 1) ≤ cr(n, 1).

The above conjecture is stated for r ≥ 3 since for r = 1, 2 there is only one reorientation
class and clearly m(M, 1) = cr(n, 1) (see [3, Section 6.1]). The case r = 3 is not difficult
to prove, the case r = 4 has been shown in [28] and recently also for r = 5 [18] as well
as for Lawrence oriented matroids [26]. Furthermore, in [2] it is shown that for realizable
oriented matroids of rank r on n elements, the number of 1-neighborly reorientations is
2
(

n
r−3

)
+O(nr−4), i.e., Roudneff’s conjecture holds asymptotically in the realizable setting.

In [26, Question 2] the authors asked if the conjecture holds for n ≥ r + 1 and again, it
turns out that it is true for r ≤ 5 [18] and for Lawrence oriented matroids [26]. In the
same manner as for McMullen’s problem we propose the k-variant of the above question.

Question 1.8. Is it true that m(M, k) ≤ cr(n, k), for any rank r ≥ 3 oriented matroid
M on n > r elements and 0 ≤ k ≤ ⌊ r−1

2
⌋?



ON k-NEIGHBORLY REORIENTATIONS OF ORIENTED MATROIDS 5

The above question holds for k = 0, since all oriented matroids of given rank r and
number n of elements have at most the number of acyclic reorientations of (any) uniform
oriented matroid [5], moreover it holds trivially for n ≤ r + 2 (Remark 1.3). For k = 1
Question 1.8 combines Roudneff’s conjecture and [26, Question 2]. Hence, the answer is
positive for k = 1 if r ≤ 5. We prove in Theorem 3.16 that in order to answer Question 1.8
affirmatively for a fixed r and k, it is enough to prove it for uniform oriented matroids with
r+1 ≤ n ≤ 2(r−k)+1 and all rank r′ ≤ r uniform oriented matroidM′ on n′ = 2(r′−k)+1
elements. Thus, the question reduces to a finite number of cases. As a consequence we
answer Question 1.8 in the positive for odd r and k = ⌊ r−1

2
⌋ (Corollary 3.17). Moreover,

in Theorem 4.4 we answer Question 1.8 in the affirmative for r = 6 and k = 2. One
might think that as in the Upper Bound Theorem [24] the reorientation class of Cr(n)
is unique in attaining the maximum in Question 1.8. However, in Theorem 4.1 we show
that different reorientation classes attain cr(n, k), for r = 5, n = 8, 9 and k = 2 and for
r = 7, n = 10 and k = 3.

As a tool in the study of Question 1.8 we make use of a refinement of m(M, k), namely we
define the o-vector of M, as the vector with entries o(M, k), for every k = 0, 1, . . . , ⌊ r−1

2
⌋,

where o(M, k) is the number of reorientations of M that are k-neighborly but not (k+1)-
neighborly. In Theorem 3.11 we compute this parameter for the alternating oriented
matroid, which lies at the heart of the proof of Theorem 3.16. We then proceed to
study o(M, k) as a parameter of independent interest, and note that here the role of the
alternating oriented matroid is more complicated than for m(M, k). On the one hand,
the alternating oriented matroid maximizes o(M, k) for n ≤ r + 2 (Remark 1.3), for odd
r and k = ⌊ r−1

2
⌋ (Corollary 3.17) and for r = 6 and k = 2 (Theorem 4.4). In Theorem 4.1

we show that for r = 5, k = 1 and n = 8, 9, for r = 6, k = 2 and n = 9, and for r = 7,
k = 2 and n = 10, the alternating oriented matroid is even unique (up to reorientation)
with this property. On the other hand, for r = 6, k = 1 and n = 9 and for r = 7, k = 1
and n = 10, there are (up to reorientation) 91 and 312336 uniform oriented matroids
M of rank r on n elements such that o(M, 1) > o(C6(9), 1) and o(M, 1) > o(C7(10), 1),
respectively (Theorem 4.1 (c) and (d)).

1.3. Organization of the paper. The structure of the paper is as follows.

In Section 1, we introduce some basic notions of oriented matroid theory and explain the
k-McMullen problem and the k-Roudneff conjecture.

In Section 2 we study k-McMullen’s problem providing some lower bounds of ν(r, k).

In Section 3 we study k-Roudneff’s conjecture. First, we present in Subsection 3.1 two
cryptomorphic descriptions of k-neighborliness (Propositions 3.1 and 3.3), most impor-
tantly the notion of k′-orthogonality which generalizes usual orthogonality of sign-vectors,
as well as metric descriptions in terms of the tope graph. In Subsection 3.2 we study the
tope graph of the alternating oriented matroid and obtain o(Cr(n), k) for n large enough
(Theorem 3.11). In Subsection 3.3 we show that we may restrict Question 1.8 to uniform
oriented matroids and a finite case analysis (Theorem 3.16) and solve Question 1.8 for
odd r and k = r−1

2
(Corollary 3.17).

In Section 4 we present computational results for the k-McMullen problem and the k-
Roudneff conjecture. In Subsection 4.1 we explain our computer program that obtains
o(M, k) for uniform oriented matroids M via the chirotope. We then obtain the maximal
o(M, k) among all M of rank r and n elements for several values of r, n, and k (Theorem
4.1). On the one hand, we answer Question 1.5 affirmatively for (r, k) ∈ (5, 2), (6, 2), (7, 3)
and show that the lower bound in Question 1.5 is tight in one more case, i.e., 10 ≤ ν(7, 2)



6 RANGEL HERNÁNDEZ-ORTIZ, KOLJA KNAUER, AND LUIS PEDRO MONTEJANO

(Theorem 4.3). On the other hand, using Theorem 3.16 we answer Question 1.8 in the
affirmative for r = 6, k = 2 and n ≥ 9 (Theorem 4.4).

Finally, in the appendix we present McMullen’s problem and Roudneff’s conjecture in
their original versions.

2. Results on the k-McMullen problem

First, we present the following description of k-neighborly oriented matroids that will be
useful in this section. Following Las Vergnas [21] a subset F ⊆ E is a face of M = (E,L)
if there is a covector Y ∈ L such that F = E \ Y + and Y − = ∅.
Lemma 2.1. An oriented matroid M = (E, C) is k-neighborly if and only if every subset
F ⊆ E of size at most k is a face.

Proof. Suppose that M = (E, C) is k-neighborly and let F ⊆ E be of size k. Then for
every subset F ′ ⊆ F the reorientation −F ′M is acyclic. Thus, we have that F ′ properly
intersects X+ or X− for every circuit X of M or is disjoint if X+, X− ̸= ∅. This implies
that the sign-vector Y that is positive on F ′ \ E and 0 on F ′ is orthogonal to all circuits
of M. Hence all subsets of F are faces.
Conversely, if for every F ⊆ E of size k all subsets F ′ ⊆ F are faces, then −FM is acyclic.
This implies that M = (E, C) is k-neighborly. □

The inequality 2r − 1 ≤ ν(r, 1) has been shown in [6]. In this section we give some lower
bounds for ν(r, k) and k ≥ 2. In order to prove that n ≤ ν(r, k), one has to prove that any
uniform rank r oriented matroidM on n elements has a reorientation that is k-neighborly.
In particular, if n ≤ r + 2 then M is in the same reorientation class as the alternating
oriented matroid by Remark 1.3. So, we have the following observation.

Remark 2.2. If ⌊ r−1
k
⌋ ≤ 2, then r + ⌊ r−1

k
⌋ ≤ ν(r, k).

Theorem 2.3. For every k = 2, . . . , ⌊ r−1
2
⌋, we have r − 1 + ⌊ r−1

k
⌋ ≤ ν(r, k).

Proof. LetM = (E, C∗) be a uniform rank r oriented matroid on n = r−1+⌊ r−1
k
⌋ elements

with set of cocircuits C∗. First notice that |C| = ⌊ r−1
k
⌋ for every cocircuit C ∈ C∗ and

since n ≥ (k+1)⌊r − 1

k
⌋, there exist k+1 cocircuits C1, . . . , Ck+1 ∈ C∗ mutually disjoint.

Let R be the set of elements x ∈ ⋃k+1
i=1 Ci such that x ∈ C−

i for some i ∈ {1, . . . , k + 1}
and consider −RM, the oriented matroid resulting from reorienting the set R. We will see
that −RM is a k-neighborly oriented matroid. Let S ⊆ E be any set of size at most k and
observe that S ∩ Ci = ∅ for some i ∈ {1, . . . , k + 1}. Then, S ⊆ E \ Ci, where Ci is the
support of a positive cocircuit in −RM, concluding that S is a face of −RM. Therefore,

−RM is a k-neighborly by Lemma 2.1 and the theorem holds. □

The next result improves Theorem 2.3 in some cases.

Theorem 2.4. For every k = 2, . . . , ⌊ r−1
2
⌋, we have r+⌊ r−1

k
⌋ ≤ ν(r, k) if r−1 ≡ β mod k,

where β = ⌈k−1
2
⌉, . . . , k − 1,

Proof. Let M = (E, C∗) be a uniform rank r oriented matroid on n = |E| = r + ⌊ r−1
k
⌋

elements with set of cocircuits C∗ and notice that |C| = ⌊ r−1
k
⌋ + 1 for every cocircuit

C ∈ C∗. As r − 1 = αk + β for some positive integer α, then α = ⌊ r−1
k
⌋ and so,

n = (k + 1)α + β + 1.

Next, we will consider a partition of E into two sets, A and B, as follows. Consider any
set B = {b1, . . . , bβ+1} of cardinality β + 1 and let A =

⋃k+1
i=1 Ai = E \B, where |Ai| = α
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and Ai ∩Aj = ∅ for every distinct i, j ∈ {1, . . . , k + 1}. Notice that |B| ≥ ⌈k+1
2
⌉ since by

hypothesis β ≥ ⌈k−1
2
⌉. Thus, for every i = 1, . . . , ⌊k+1

2
⌋ we will consider the sets

Di = A2i−1 ∪ A2i ∪ bi

of cardinality 2α+1 and if k is even, we will also consider the set D k+2
2

= Ak+1 ∪ b k+2
2
, of

cardinality α + 1 (see Figure 2).

b1 bi bβ+1

B

A1 A2i−1 A2i Ak+1

Di

First observe that Di ∩ Dj = ∅ for every distinct i, j ∈ {1, . . . , ⌈k+1
2
⌉}. Now, for each

i ∈ {1, . . . , ⌊k+1
2
⌋} consider M/(E \ Di), the contraction of E \ Di from M, which we

will denote by MDi
. So, MDi

is a uniform oriented matroid with ground set Di and
rank ri = max{0, r − |E \ Di|} (see Section 1 for the definition of a contraction of a
uniform oriented matroid). As n = (k + 1)α + β + 1 and r = αk + β + 1, it follows
that ri = r − |E \ Di| = r − n + 2α + 1 = α + 1. Hence, the cocircuits of MDi

have
cardinality |Di| − ri + 1 = |Di| − (α + 1) + 1 = α + 1 and so, the cocircuits of MDi

are
also cocircuits of M. On the other hand, MDi

has order 2α + 1 = 2ri − 1 and since
2ri − 1 ≤ ν(ri, 1) (see [6]), there exists a reorientation of MDi

on Ri ⊆ Di such that

−Ri
MDi

is a 1-neighborly matroid polytope.
Now, consider the set

R =


⌊ k+1

2
⌋⋃

i=1

Ri if k is odd,

⌊ k+1
2

⌋⋃
i=1

Ri ∪ F− if k is even,

where F denotes the cocircuit of M with support F = D k+2
2
. Notice that Ri ∩Rj = ∅ for

every distinct i, j = 1, . . . , ⌊k+1
2
⌋ and moreover, if k is even then also Ri∩F− = ∅ for every

i = 1, . . . , ⌊k+1
2
⌋. We will see that −RM is a k-neighborly oriented matroid. Let S ⊂ E be

any set of size at most k and first suppose that |S ∩Di| ≤ 1 for some i ∈ {1, . . . , ⌊k+1
2
⌋}.

As −Ri
MDi

is 1-neighborly, then there exists a positive cocircuit C of −Ri
MDi

such that
C ∩ S = ∅. Then, S is a face of −RM since C is also a positive cocircuit of −RM,
concluding that −RM is k-neighborly by Lemma 2.1. Now suppose that |S ∩Di| ≥ 2 for

every i = 1, . . . , ⌊k+1
2
⌋ and let denote D = ∪⌊ k+1

2
⌋

i=1 Di. Then, |S ∩D| ≥ 2⌊k+1
2
⌋ concluding

that k is even since |S| = k. Moreover, as |S ∩ D| = k, then |S ∩ F | = 0, concluding
that S is a face of −RM since F is the support of a positive cocircuit of −RM. Therefore,

−RM is k-neighborly by Lemma 2.1 and the theorem holds. □

3. Results on the k-Roudneff conjecture

3.1. Orthogonality and neighborliness. The main result of this subsection is to present
an equivalent description of neighborliness in terms of orthogonality. Throughout this sec-
tion and Section 4, several of our results and proofs are stated in terms of k′-orthogonality
which is equivalent to k-neighborliness, with k = k′ − 1.
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Given two sign-vectors X, Y ∈ {+,−, 0}E, their separation is the set S(X, Y ) = {e ∈ E |
Xe · Ye = −}. For convenience, we denote by H(X, Y ) = {e ∈ E | Xe · Ye = +}. We
define the orthogonality of X and Y by

X ⊥ Y = min{|H(X, Y )|, |S(X, Y )|}.
We say that X, Y are k-orthogonal if X ⊥ Y ≥ k. For an oriented matroid M = (E, C),
we call a sign-vector T ∈ {+,−}E, k-orthogonal (to M) if X ⊥ T ≥ k for all X ∈ C.
Note that for X ∈ {0,+,−}E and T ∈ {+,−}E of M we have X ⊥ T ≥ 1 if and only
if X and T are orthogonal. Hence, the sign-vectors T ∈ {+,−}E that are 1-orthogonal
to M constitute the set of topes T of M. The following establishes a correspondence
between k − 1-neighborly reorientations and k-orthogonal topes.

Proposition 3.1. Let M be a rank r oriented matroid on n = |E| elements, R ⊆ E,
and T the sign-vector that is negative on R and positive on E \ R, and k = 1, . . . , ⌊ r+1

2
⌋.

Then, T is a k-orthogonal tope if and only if −RM is k − 1-neighborly.

Proof. ”⇒”. Let T be a k-orthogonal tope of M, i.e., H(X,T ) ≥ k and S(X,T ) ≥ k
for every circuit X of M and denote R = T−. Now, let us consider the oriented matroid

−RM. Then, we notice that T ′, the resulting sign-vector obtained from reorienting each
element of R in T , is a sign-vector with only + entries, i.e., T ′ = {+}E. Let Y be the
resulting circuit of −RM obtaining from reorienting a circuit X of M. Hence, notice that
H(X,T ) = H(Y, T ′) = |Y +| and S(X,T ) = S(Y, T ′) = |Y −|, obtaining that |Y +| > k− 1
and |Y −| > k − 1 for every circuit Y of −RM. Hence, −RM is (k − 1)-neighborly.

”⇐”. Let R ⊆ E be such that −RM is k − 1-neighborly and T ∈ {+,−}E be such that
T− = R. By definition |Y +| > k− 1 and |Y −| > k− 1 for every circuit Y of −RM. Let T ′

be the tope of −RM such that T ′ ∈ {+}E, which exists because −RM is acyclic such that
T is obtained by reoriented each element of R in T ′. For every circuit Y of −RM, let X
be the resulting circuit of M obtaining from reorienting each element of R′ in Y . Hence,
notice that H(Y, T ′) = |Y +| = H(X,T ) and S(Y, T ′) = |Y −| = S(X,T ), obtaining that
H(X,T ) ≥ k and S(X,T ) ≥ k for every circuit X of M. Therefore T is a k-orthogonal
tope of M. □

We say that T is a k-neighborly tope of M if the oriented matroid −T−M (obtained
from reorienting such that T becomes all positive) is k-neighborly. By Proposition 3.1,
k-neighborly topes are in correspondence with the (k+1)-orthogonal topes. Given an ori-
ented matroidM with tope set T and T ∈ T denoteM⊥k = {T ∈ T | T is k-orthogonal}.
Further denote ort(T ) = max{k | T is k-orthogonal} and Ok(M) = {T ∈ T | ort(T ) =
k}, i.e., Ok(M) = M⊥k \M⊥k+1 , the set of k-orthogonal but not k + 1-orthogonal topes
in M. So, we may describe the o-vector of M (defined in Subsection 1.2) in terms of
orthogonality. By Proposition 3.1 we get the following result that will be very useful
throughout this paper.

Corollary 3.2. For every k = 1, . . . , ⌊ r+1
2
⌋, m(M, k− 1) = |M⊥k |. Moreover, o(M, k−

1) = |Ok(M)|.
Recall that the tope graph G(M) of an oriented matroid M on n elements naturally
embeds as an induced subgraphs into the hypercube {+,−}E ∼= Qn. The edges of G(M)
are partitioned into classes, where two edges are equivalent if their corresponding adjacent
topes differ in exactly the same entry e ∈ E (see Figure 1 for an example and [19] for
further reference). In order to present a graph theoretical description of k-orthogonal
topes for any graph G with vertex v and k a non-negative integer, define the ball of radius
k and center v in G, denoted by BG

k (v), as the induced subgraph of G with set of vertices
V (BG

k (v)) = {u ∈ V (G) | dG(u, v) ≤ k}. Here dG(u, v) denotes the distance between u
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and v in the graph G. Next, we have another characterization of neighborliness that we
will use later.

Proposition 3.3. Let M be a rank r oriented matroid on n elements, k = 0, . . . , ⌊ r−1
2
⌋,

and T ∈ T a tope. Then T is k-neighborly if and only if B
G(M)
k (T ) ∼= BQn

k (T ).

Proof. T is k-neighborly if and only if reorienting any F ⊆ E of size at most k in −T−M
is acyclic. Direct computation yields that this is equivalent to any reorientation of −FT
being at least 1-orthogonal. Hence this changing any set of at most k coordinates in
T yields another vertex of G(M). Since G(M) is an induced subgraph of Qn this is

equivalent to B
G(M)
k (T ) ∼= BQn

k (T ). □

3.2. The o-vector of Cr(n) and its tope graph. The main result of this subsection is
to obtain the o-vector of Cr(n), for n ≥ 2(r − k) + 1 (Theorem 3.11).

Let n be a positive integer. Given a sign-vector T ∈ {+,−}n, notice that T partitions
{1, . . . , n} into signed blocks B1, . . . , Bm, 1 ≤ m ≤ n, where Bj denotes the j-th maximal
set of consecutive elements having the same sign. Sign-vectors with m blocks can be easily
counted as there are m− 1 possibilities to choose the change of sign in n− 1 places. So,
the number of sign-vectors with m blocks is 2

(
n−1
m−1

)
since for every sign-vector T there

exists also −T .

Remark 3.4. The number of sign-vectors of n elements with m blocks is 2
(
n−1
m−1

)
.

Throughout this subsection, we will denote by T and C the set of topes and circuits of
Cr(n), respectively. Given a tope T ∈ T with m blocks, we denote O(m) = ⌈ r+1−m

2
⌉.

Next, we prove that O(m) is the minimum orthogonality that T can have.

Lemma 3.5. Let T ∈ T be with m blocks, then ort(T ) ≥ O(m).

Proof. Let B1, B2, . . . , Bm be the blocks of T and let X ∈ C. As X is alternating, we

have that min{|S(X,T ) ∩ Bi|, |H(X,T ) ∩ Bi|} ≥ ⌈ |X∩Bi|−1
2

⌉ for every i = 1, 2, . . . ,m.

Thus, X ⊥ T = min{|H(X,T )|, |S(X,T )|} ≥
m∑
i=1

⌈ |X∩Bi|−1
2

⌉ ≥ ⌈ r+1−m
2

⌉ = O(m) for every

X ∈ C, concluding that T is O(m)-orthogonal. Therefore, as ort(T ) = max{k | T is k −
orthogonal}, it follows that ort(T ) ≥ O(m), concluding the proof. □

Lemma 3.6. Let n ≥ r + 1 ≥ 2, then T ∈ T if and only if T has at most r blocks.

Proof. Recall that T ∈ T if and only if T is 1-orthogonal. On the other hand, as every
circuit X ∈ C is alternating, it follows that T is 1-orthogonal if and only if T has at most
r blocks. □

For n ≥ r + 1 ≥ 3 we define the graph of blocks, denoted by B(r, n), as the graph whose
vertices are the sign-vectors T ∈ {+,−}n with at most r blocks and two sign-vectors T, T ′

are adjacent if |S(T, T ′)| = 1 (see Figure 1). Thus, the adjacency of the vertices in the
graph B(r, n) corresponds to the adjacency of topes in G(Cr(n)) and so, it follows from
Lemma 3.6 that B(r, n) is just the tope graph of Cr(n).
We say that a block is an even block (odd block) if it has an even (odd) number of
elements. From now, we will denote by B1, B2, . . . , Bm the blocks of a tope T ∈ T .
Denote by Be and Bo the set of even and odd blocks of T , respectively. We will also
denote Be = |Be| and Bo = |Bo|. Given a tope T and a circuit X, let denote SX =
{i | min{|S(X,T )∩Bi|, |H(X,T )∩Bi|} = |S(X,T )∩Bi|} and HX = {i | min{|S(X,T )∩
Bi|, |H(X,T ) ∩Bi|} = |H(X,T ) ∩Bi|}, see Figure 2.
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+++++

– − − −−
++−++

+++−+

++++−

–+ + ++

+−+++

+−−++

++−−+

+++−−–+ + +–

– − +++

+− − −+

++− − −

–+ + −−

–− + +−

–− − ++

– − − −+

+− − −−

–+ − −−

– − + +−

– − − +−

B(3, 5)

– − − −++++

–+ + +

+−++ ++−+

+++−

– − + +

–+ + −

++−−

+− − +

+− − −

–+ − −

– − + −

– − − +

B(3, 4)

5

5

5

5

5

5

5 5

Figure 1. The graphs B(3, 5) and B(3, 4) corresponding to the tope
graphs of C3(5) and C3(4), respectively. Red vertices correspond to 2-
orthogonal topes (i.e., 1-neighborly topes) and adjacent topes between a
blue edge, differ exactly in the fifth entry.

The following observation can be deduced by a simple parity argument and will be very
useful for the next lemmas.

Remark 3.7. Let T ∈ T and X ∈ C. Let j < j′ and suppose that |X ∩Bj| and |X ∩Bj′ |
are odd, and that |X ∩Bi| is even for every i ∈ {j + 1, . . . , j′ − 1}. Then,

|{j + 1, . . . , j′ − 1}| = j′ − j − 1 is even if and only if j, j′ ∈ SX or j, j′ ∈ HX .

The above remark holds since the blocks and the circuits are alternating. In the first
example of Figure 2 we observe that if j′ = j + 2, then j′ − j − 1 = 1 is odd and so,
j ∈ SX \ HX and j′ ∈ HX \ SX by Remark 3.7. In the second example, we notice that
j′ − j− 1 = 0 is even if j′ = j+1 and so, j, j′ ∈ SX . Moreover, applying Remark 3.7 now
to the blocks j + 1 and j + 2 of the second example, it follows that j + 1, j + 2 ∈ SX .

+++ −− +++

+−+ −+ −+−
T
X

j j + 2

+++ − +++

+−+ − +−+
T
X

j j + 2j + 1j + 1

Figure 2. In the first example j ∈ SX \ HX , j + 1 ∈ SX ∩ HX and
j + 2 ∈ HX \ SX . In the second example, j, j + 1, j + 2 ∈ SX \HX .

The following lemmas provide a connection between blocks and orthogonality that will
allow us to prove Theorem 3.11.

Lemma 3.8. Let T ∈ T be with m blocks. If r + 1 ≤ n−Be, then ort(T ) = O(m).

Proof. We will find a circuit X ∈ C such that X ⊥ T = O(m), where O(m) = ⌈ r+1−m
2

⌉.
First suppose that r+ 1−m is even. Then, there exists X ∈ C such that |X ∩Bi| is odd
for every 1 ≤ i ≤ m, since |X| > m (Lemma 3.6) and |X| ≤ n−Be. Thus, by Remark 3.7
and by possibly exchanging X with −X, we can assume that i ∈ SX for every 1 ≤ i ≤ m
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and hence,

X ⊥ T = min{|H(X,T )|, |S(X,T )|} =
m∑
i=1

|S(X,T ) ∩Bi|

=
m∑
i=1

|X ∩Bi| − 1

2
=

(r + 1−m)

2
= O(m).

Now suppose that r + 1 − m is odd and consider X ∈ C such that |X ∩ Bi| is odd for

every i ≤ m− 1 and |(
m−1⋃
i=1

Bi) ∩X| is maximum possible. If there are no more elements

in X to place, i.e., |X ∩Bi| is odd for every 1 ≤ i ≤ m− 1 and X ∩Bm = ∅, we obtain by
Remark 3.7 and by possibly exchanging X with −X, that i ∈ SX for every 1 ≤ i ≤ m−1.
Therefore,

X ⊥ T =
m−1∑
i=1

|S(X,T ) ∩Bi| =
m−1∑
i=1

|X ∩Bi| − 1

2

=
r + 1− (m− 1)

2
=

r + 2−m

2
= O(m),

as desired. If there are still elements in X to be placed, by the maximality of |(
m−1⋃
i=1

Bi)∩X|
and since |X| ≤ n − Be, we may place such elements in Bm (see Figure 3). Notice that
|X ∩Bm| is even since r+1−m is odd, obtaining that m ∈ SX ∩HX . Hence, i ∈ SX for
every 1 ≤ i ≤ m and then

X ⊥ T =
m∑
i=1

|S(X,T ) ∩Bi| =
m−1∑
i=1

|X ∩Bi| − 1

2
+

|X ∩Bm|
2

=
r + 1− (m− 1)

2
=

r + 2−m

2
= O(m).

Therefore, there exists a circuit X such that X ⊥ T = O(m) and so, ort(T ) ≤ O(m).
Thus, ort(T ) = O(m) by Lemma 3.5, concluding the proof. □

The example of Figure 3, for n = 13, r + 1 = 9,m = 4 and Be = 1, illustrates the case of
the above lemma when r+1−m is odd. We choose a circuit X such that |X ∩Bi| is odd
for every i ≤ m − 1 = 3 and maximum possible. In this case, we notice that there are
still elements in X to be placed, so, we may place such elements in Bm = B4. Finally, we
observe that X ⊥ T = min{|H(X,T )|, |S(X,T )|} = min{6, 3} = 3 = O(m), as required.

+++ −− +++

+−+ − +−+

T
X

−−−−−
−+ 00 00

Figure 3. An example of the case r + 1−m odd in Lemma 3.8.

Given a tope T ∈ T and a circuit X ∈ C of Cr(n), let us denote the sets

SX
<j =

{
i | i < j, Bi ∈ Bo and min{|S(X,T ) ∩Bi|, |H(X,T ) ∩Bi|} = |S(X,T ) ∩Bi|

}
and

HX
<j =

{
i | i < j, Bi ∈ Bo and min{|S(X,T ) ∩Bi|, |H(X,T ) ∩Bi|} = |H(X,T ) ∩Bi|

}
,
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see Figures 4 and 5. Notice that these sets contain integers i such that Bi ∈ Bo is an odd
block. The following lemma provides an upper bound for ort(T ) in terms of its blocks.

Lemma 3.9. Let T ∈ T be with m blocks and n ≥ r + 2. If r + 1 > n−Be, then

ort(T ) ≤ n−Be −m

2
+ r + 1− (n−Be) +

⌊
Bo

2

⌋
.

Proof. Let α = r+1− (n−Be). In order to prove the lemma, it is enough to find X ∈ C
such that X ⊥ T ≤ n−Be−m

2
+ α + ⌊Bo

2
⌋. Let us denote by Be

1, . . . , B
e
α, the first α blocks

of Be (from left to right) and notice that α > 0 since by hypothesis r+1 > n−Be. Then,
Be

α = Bj for some j ∈ {1, . . . ,m}. Consider X ∈ C as follows:

• |X ∩Bi| = |Bi| for every Bi ∈ Bo,
• |X ∩Be

i | = |Be
i | for every i = 1, . . . , α and

• |X ∩Bi| = |Bi| − 1 otherwise.

Such a circuit exists, since |X| = n−Be + α = r + 1. Thus, as |X ∩Bi| is odd for every
i > j, by Remark 3.7 and by possibly exchanging X with −X, we can assume that i ∈ SX

for every i > j. Hence,

(2)
∑
i>j

|S(X,T ) ∩Bi| =
∑

i>j,Bi∈Be

|S(X,T ) ∩Bi|+
∑

i>j,Bi∈Bo

|S(X,T ) ∩Bi|

=
∑

i>j,Bi∈Be

|Bi| − 2

2
+

∑
i>j,Bi∈Bo

|Bi| − 1

2
.

Consider the following cases.

Case 1. |HX
<j| ≤ ⌊Bo

2
⌋ (see Figure 4).

Then,

(3)
∑
i≤j

|S(X,T ) ∩Bi| =
∑

i∈SX
<j∪HX

<j

|S(X,T ) ∩Bi|+
∑

i≤j,Bi∈Be

|S(X,T ) ∩Bi|

=
∑
i∈SX

<j

|Bi| − 1

2
+

∑
i∈HX

<j

|Bi|+ 1

2
+

∑
i≤j,Bi∈Be

|Bi|
2

=
∑
i∈SX

<j

|Bi| − 1

2
+

∑
i∈HX

<j

|Bi| − 1

2
+ |HX

<j|+
∑

i≤j,Bi∈Be

|Bi| − 2

2
+ α

≤
∑

i∈SX
<j∪HX

<j

|Bi| − 1

2
+

∑
i≤j,Bi∈Be

|Bi| − 2

2
+ α + ⌊Bo

2
⌋.
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Thus, by Equations (2) and (3) we obtain that

X ⊥ T = min{|H(X,T )|, |S(X,T )|} ≤
∑
i≤j

|S(X,T ) ∩Bi|+
∑
i>j

|S(X,T ) ∩Bi|

≤
∑

i∈SX
<j∪HX

<j

|Bi| − 1

2
+

∑
i≤j,Bi∈Be

|Bi| − 2

2
+ α + ⌊Bo

2
⌋

+
∑

i>j,Bi∈Be

|Bi| − 2

2
+

∑
i>j,Bi∈Bo

|Bi| − 1

2
=

n−Be −m

2
+ α + ⌊Bo

2
⌋

concluding that ort(T ) ≤ n−Be−m
2

+ α + ⌊Bo

2
⌋ and so, the lemma holds in this case.

Case 2. |HX
<j| ≥ ⌈Bo

2
⌉ (see Figure 5).

We will slightly modify X in order to find another circuit X ′ ∈ C such that X ′ ⊥ T ≤
n−Be−m

2
+ α + ⌊Bo

2
⌋. First, observe that ⌈Bo

2
⌉ ≤ |SX

<j| + |HX
<j| ≤ Bo. So, |SX

<j| + |HX
<j| =

Bo − p for some p ∈ {0, . . . , ⌊Bo

2
⌋}. Then, |SX

<j| = Bo − p − |HX
<j| ≤ Bo − p − ⌈Bo

2
⌉,

concluding that

(4) |SX
<j| ≤ ⌊Bo

2
⌋ − p

As |SX
<j|+ |HX

<j|+ |{i | i > j,Bi ∈ Bo}| = Bo, we also conclude that

(5) |{i | i > j,Bi ∈ Bo}| = p

Let Bj′ be the last block of Be (from left to right). As n ≥ r + 2, we have that α < Be

and then j′ > j. Choose e ∈ Bj and e′ ∈ Bj′ \X (such e′ exists since |X ∩Bj′ | = |Bj′|−1)
and consider the circuit X ′ = X − e ∪ e′. Hence, notice that

(6) SX
<j = SX′

<j

Now, we claim that j ∈ HX′
. Let i′ = max{i | i < j and Bi ∈ Bo} and first suppose that

i′ ∈ SX . As we have assumed that j+1 ∈ SX , applying Remark 3.7 to the blocks Bi′ and
Bj+1, respect to the circuit X, we obtain that (j + 1)− i′ − 1 is even. Hence, as i′ ∈ SX′

by Equation (6) and j− i′ − 1 is odd, applying Remark 3.7 now to the blocks Bi′ and Bj,
respect to the circuit X ′, we obtain that j ∈ HX′

, as desired. The case when i′ ∈ HX can
be treated analogously, so the claim holds. Thus, by the above claim and by Remark 3.7
it can be deduced that

(7) i ∈ HX′
if j ≤ i < j′ and i ∈ SX′

if i > j′

Therefore, we conclude the following:

(a)
∑

i∈SX′
<j

|H(X ′, T ) ∩Bi| =
∑

i∈SX′
<j

|Bi|+1
2

=
∑

i∈SX′
<j

|Bi|−1
2

+ |SX′
<j | ≤

∑
i∈SX′

<j

|Bi|−1
2

+ ⌊Bo

2
⌋ − p,

by Equations (4) and (6).

(b)
∑

i∈HX′
<j

|H(X ′, T ) ∩Bi| =
∑

i∈HX′
<j

|Bi|−1
2

.
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(c) |H(X ′, T ) ∩Bj′| +
∑

i<j and Bi∈Be

|H(X ′, T ) ∩Bi| = |Bj′ |
2

+
∑

i<j and Bi∈Be

|Bi|
2

=
∑

i<j,i=j′, Bi∈Be

|Bi|−2
2

+ α,

since such blocks are just Be
1, . . . , B

e
α−1 and Bj′ .

(d)
∑

i≥j, i̸=j′
|H(X ′, T ) ∩Bi| =

∑
j≤i<j′, Bi∈Be

|Bi|−2
2

+
∑

j<i<j′, Bi∈Bo

|Bi|−1
2

+
∑
i>j′

|Bi|+1
2

≤ ∑
j≤i<j′, Bi∈Be

|Bi|−2
2

+
∑

j<i<j′, Bi∈Bo

|Bi|−1
2

+
∑
i>j′

|Bi|−1
2

+ p,

by Equations (5) and (7).

Finally, by (a), (b), (c) and (d), we obtain that,

X ′ ⊥ T =
∑
i<j

|H(X ′, T ) ∩Bi|+
∑
i≥j

|H(X ′, T ) ∩Bi|

≤
∑

i∈SX′
<j∪HX′

<j

|Bi| − 1

2
+ ⌊Bo

2
⌋ − p+ α +

∑
i<j,i=j′,Bi∈Be

|Bi| − 2

2

+
∑

j≤i<j′,Bi∈Be

|Bi| − 2

2
+

∑
j<i<j′,Bi∈Bo

|Bi| − 1

2
+
∑
i>j′

|Bi| − 1

2
+ p

= n−Be−m
2

+ α + ⌊Bo

2
⌋,

concluding that ort(T ) ≤ n−Be−m
2

+ α + ⌊Bo

2
⌋ and so, the lemma holds. □

The example of Figure 4, for n = 13, r + 1 = 10,m = 9,Be = 4,Bo = 5, α = 1 and j = 3,
illustrate Case 1 of the above lemma. We consider the circuit X as in the proof and we
notice that X ⊥ T = 3 = n−Be−m

2
+ α + ⌊Bo

2
⌋, as required.

T + −− −−
j = 3
α = 1

− +X + 00− 0 −+− +− +

1 2 4 5 7 8 9

++ ++ − ++ +

6

Figure 4. An example of the case |HX
<j| ≤ ⌊Bo

2
⌋ of Lemma 3.9. Notice

that 2 = |HX
<j| = |HX

<3| = ⌊Bo

2
⌋, HX

<j = {1, 2}, SX = {3, 4, 5, 6, 7, 8, 9} and

HX = {1, 2, 3}.

The example of Figure 5, for n = 13, r + 1 = 11,m = 9,Be = 4,Bo = 5, α = 2 and
j = 6, illustrates the Case 2 of Lemma 3.9. We consider the circuit X as in the proof
and we notice that X ⊥ T = 5 > 4 = n−Be−m

2
+ α + ⌊Bo

2
⌋. Then, we consider the circuit

X ′ = X − e∪ e′ and we observe that X ′ ⊥ T = 3 < 4 = n−Be−m
2

+α+ ⌊Bo

2
⌋, as required.

Proposition 3.10. Let n ≥ 2(r − k) + 3 ≥ r + 2 and let T ∈ T be with m blocks. Then
the following holds.

(i) If O(m) ≥ k, then ort(T ) = O(m);
(ii) If O(m) ≤ k − 1 then ort(T ) ≤ k − 1.
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−−T + ++ +− −− −− ++

−+X ′ + 0 0− + −+− +

j = 6
α = 2

e e′−+X + 00− +− + − +−+
−+

1 2 3 4 5 7 8 9

Figure 5. An example of the case |HX
<j| > ⌊Bo

2
⌋ of Lemma 3.9. Notice

that |HX
<j| = |HX

<6| = |{3, 4, 5}| = 3, ⌊Bo

2
⌋ = 2, SX = {1, 2, 6, 7, 8, 9}, HX =

{2, 3, 4, 5, 6}, SX′
= {1, 2, 9}, HX′

= {2, 3, 4, 5, 6, 7, 8, 9} and SX
<j = SX′

<j =
{1}.

Proof. Recall that O(m) = ⌈ r+1−m
2

⌉.
(i) As k ≤ O(m) ≤ r+2−m

2
, then m ≤ r+ 2− 2k. Hence, as Be ≤ m and 2(r− k) + 3 ≤ n

we obtain that r+1+Be ≤ r+1+m ≤ 2(r−k)+3 ≤ n, concluding that r+1 ≤ n−Be.
Thus, ort(T ) = O(m) by Lemma 3.8 and the result holds in this case.
(ii) Let n = 2(r − k) + 3 + l, where l ≥ 0 is an integer. As each even block have at least
two elements, we have that Be ≤ ⌊n

2
⌋. If n is odd, then l is even and ⌊n

2
⌋ = r− k+1+ l

2
.

Similarly, ⌊n
2
⌋ = r − k + 1 + l+1

2
if n is even. Hence, Be ≤ ⌊n

2
⌋ = r − k + 1 + ⌈ l

2
⌉ and so,

Be = r−k+1+⌈ l
2
⌉−j for some integer j ≥ 0. On the other hand, let α = r+1+Be−n and

suppose first that α ≤ 0. Then r+1 ≤ n−Be and by Lemma 3.8, ort(T ) = O(m) ≤ k−1,

as desired. Now suppose that α > 0, then ort(T ) ≤ (n−Be)−m
2

+ α + ⌊Bo

2
⌋ by Lemma 3.9.

As α = r+1+(r−k+1+⌈ l
2
⌉− j)− (2(r−k)+3+ l) = k−1− j−⌊ l

2
⌋ and m = Be+Bo,

we obtain that ort(T ) ≤ (2(r−k)+3+l)−(r−k+1+⌈ l
2
⌉)−(r−k+1+⌈ l

2
⌉+Bo)

2
+ (k− 1− j−⌊ l

2
⌋) + ⌊Bo

2
⌋

and thus, ort(T ) ≤ 1+⌊ l
2
⌋−⌈ l

2
⌉−Bo

2
+

2k−2−2j−2⌊ l
2
⌋

2
+ ⌊Bo

2
⌋, concluding that

ort(T ) ≤ 2k − 1− l −Bo

2
+ ⌊Bo

2
⌋.

If Bo is odd, then ort(T ) ≤ 2k−1−l−Bo

2
+ Bo−1

2
≤ k − 1. If Bo is even, then l ≥ 1 is odd.

Therefore, ort(T ) ≤ 2k−1−l−Bo

2
+ Bo

2
≤ 2k−2−Bo

2
+ Bo

2
= k − 1, concluding the proof. □

Recall that Ok(M) = {T ∈ T | ort(T ) = k}. For short, let us denote Ok(Cr(n)) by Ok.
Let denote by Tm the set of T ∈ T with exactly m blocks. Next, we will obtain the
o-vector of Cr(n), for n large enough.

Theorem 3.11. If n ≥ 2(r − k) + 1 ≥ r + 2, then

o(Cr(n), i) = 2

(
n

r − 1− 2i

)
for every i = k, . . . , ⌊ r−1

2
⌋.

Proof. For every k = 0, . . . , ⌊ r−1
2
⌋ let k′ = k + 1 and consider m ∈ {1, . . . , r} such that

r + 2−m

2
∈ N and O(m) ≥ k′, where O(m) = ⌈ r+1−m

2
⌉.

We first claim that Tm ∪ Tm−1 = OO(m). Let T ∈ Tm ∪ Tm−1. By Proposition 3.10 (i),
ort(T ) = O(m) since O(m) ≥ k′ and n ≥ 2(r− k′) + 3, concluding that T ∈ OO(m). Now,
let T ′ be a tope of Cr(n) with m′ blocks and such that T ′ /∈ Tm ∪ Tm−1. We will prove
that T ′ /∈ OO(m). As O(m) = O(m − 1) by the choice of m and m′ ̸∈ {m,m − 1}, we
obtain that O(m′) ̸= O(m). If O(m′) ≥ k′, then ort(T ′) = O(m′) by Proposition 3.10
(i), concluding that T /∈ OO(m) since ort(T ′) = O(m′) ̸= O(m). If O(m′) ≤ k − 1, then
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ort(T ′) ≤ k′ − 1 by Proposition 3.10 (ii). As O(m) ≥ k′, we obtain that ort(T ′) ̸= O(m)
and so, T ′ /∈ OO(m). Hence, Tm ∪ Tm−1 = OO(m) and the claim holds.

As |Tm| = 2
(
n−1
m−1

)
and |Tm−1| = 2

(
n−1
m−2

)
by Remark 3.4, we obtain by the above claim

that |OO(m)| = 2(
(
n−1
m−1

)
+
(
n−1
m−2

)
) = 2

(
n

m−1

)
. On the other hand, as O(m) = r+2−m

2
by the

choice of m, then m = r + 2− 2O(m) and so,

|OO(m)| = 2

(
n

r + 1− 2O(m)

)
for every O(m) ≥ k′. Finally, as o(Cr(n), k) = |Ok+1| for every k = 0, . . . , ⌊ r−1

2
⌋ (Corol-

lary 3.2), the theorem holds. □

The above theorem is best possible. For instance, Proposition 3.12 shows that o(Cr(n), k) ̸=
2 if n = r + 1 and k = r−1

2
(i.e., for n < 2(r − k) + 1), while the formula given in The-

orem 3.11 for these values give us 2
(

n
r−1−2k

)
= 2. Further, Example 4.2 shows several

values of r, k and n < 2(r − k) + 1, where o(Cr(n), k) ̸= 2
(

n
r−1−2k

)
.

Below, we obtain the o-vector of Cr(r + 1). Given two sign-vectors X, Y ∈ {+,−}n, we
denote by X · Y the vector whose i-th entry is − if i ∈ S(X,T ) and + if i ∈ H(X,T ).

Proposition 3.12. Let r ≥ 3 and 0 ≤ k ≤ ⌊ r−1
2
⌋, then

o(Cr(r + 1), k) =


(
r+1
k+1

)
if k = r−1

2
;

2
(
r+1
k+1

)
otherwise.

Proof. Let X be the unique circuit of Cr(r+ 1) that starts with the sign +. Consider the
set Y = {Y ∈ {+,−}r+1} \ {Z,−Z}, where Z ∈ {+}r+1. Now, let define the function
f : T → Y as f(T ) = X · T . We will see that f is bijective. Consider any tope T ∈ T
and notice that X · T ̸∈ {Z,−Z} since by Lemma 3.6, T has at most r blocks. Thus, f
is injective since for every T, T ′ ∈ T , clearly X · T ̸= X · T ′ and X · T,X · T ′ ∈ Y . Now,
let T = (T1, . . . , Tr+1) be such that

Ti =


+ if i is odd and Yi = +;
− if i is odd and Yi = −;
+ if i is even and Yi = −;
− if i is even and Yi = +,

for every i = 1, . . . , r+1. Then, we notice thatX ·T = Y sinceX is alternating. Moreover,
T has at most r blocks since Y ̸∈ {Z,−Z}. Hence, T ∈ T by Lemma 3.6 and so, f is
bijective.
Therefore, as ort(T ) = X ⊥ T = min{(X · T )+, (X · T )−}, computing |Ok+1(Cr(r + 1))|
is equivalent to counting the number of sign-vectors Y ∈ Y with |Y +| = k + 1 and the
number of sign-vectors Y ∈ Y with |Y −| = k + 1, for every k = 0, . . . , ⌊ r−1

2
⌋, which is(

r+1
k+1

)
if k = r−1

2
and 2

(
r+1
k+1

)
otherwise. Finally, as |Ok+1(Cr(r + 1))| = o(Cr(r + 1), k) =

by Corollary 3.2, the result holds. □

3.3. Reducing k-Roudneff’s conjecture to a finite case analysis and proving
the case k = r−1

2
. The main results of this subsection are that Question 1.8 can be

reduced, for fixed r and k, to uniform oriented matroids and a finite case analysis and
that Question 1.8 holds for k = r−1

2
(Theorem 3.16 and Corollary 3.17).

Given a tope T of M and e ∈ E, denote by −eT the sign-vector obtained from reorienting
the element e in T .
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Lemma 3.13. Let M = (E, C) be an oriented matroid of odd rank r ≥ 3 on |E| ≥ r + 1
elements and suppose that M has an ( r+1

2
)-orthogonal tope T . Then, ort(−eT ) =

r−1
2

for
every e ∈ E.

Proof. Let e ∈ E and first consider a circuit X ∈ C with e ̸∈ X (if exists). Then,
X ⊥ −eT = r+1

2
since |S(X,T )| = |S(X, −eT )| = |H(X,T )| = |H(X, −eT )| = r+1

2
. Now,

consider X ∈ C such that e ∈ X and notice that X ⊥ −eT = r−1
2
. Therefore, X ⊥ −eT ≥

r−1
2

for every circuit X ∈ C, concluding that −eT is ( r−1
2
)-orthogonal. Moreover, since

there exists X ∈ C such that X ⊥ T ′ = r−1
2
, we conclude that ort(−eT ) =

r−1
2
. □

For an oriented matroid M on E elements, e ∈ E and a tope T , recall that T \ e is the
sign-vector on ground set E \ e and the same signs on these elements as T .

Lemma 3.14. Let M be a uniform rank r ≥ 3 oriented matroid on n = |E| elements
and e ∈ E. If T is a k-orthogonal tope of M, 1 ≤ k ≤ ⌊ r+1

2
⌋, then

(a) T \ e is a k-orthogonal tope in M\ e;
(b) T \ e is a k-orthogonal tope in M/e if −eT is k-orthogonal and k < r+1

2
.

Proof. (a) By Proposition 3.3, B
G(M)
k−1 (T ) ∼= BQn

k−1(T ). The tope graph of M \ e can be

obtained by contracting all the edges of G(M), corresponding to e. Hence, B
G(M\e)
k−1 (T \

e) ∼= B
Qn−1

k−1 (T \ e) and so, T \ e is a k-orthogonal tope in M\ e.
(b) Notice that M/e has rank r′ = r − 1 and k ≤ ⌊ r′+1

2
⌋. If T \ e is not a k-orthogonal

tope in M/e, then there exists a circuit Y of M/e such that (T \e) ⊥ Y ≤ k−1, but then
taking the circuit X = Y ∪ e of M, we obtain that T ⊥ X ≤ k − 1 or −eT ⊥ X ≤ k − 1,
since T and −eT differ in exactly the entry e, contradicting then the fact that T and −eT
were k-orthogonal. Therefore, T \ e is a k-orthogonal tope and the result holds. □

Figure 1 shows the tope graph of M = C3(5) and M\ e = C3(4), where e = 5. Observe
that k-orthogonal topes in M are mapped to k-orthogonal topes in M\ e, for k = 1, 2.
Next, we will obtain a bound for m(M, k) in terms of M\ e and M/e.

Lemma 3.15. Let M be a uniform rank r ≥ 3 oriented matroid and let e ∈ E. Then,
m(M, k) ≤ m(M\ e, k) +m(M/e, k) for every k = 0, . . . , ⌊ r−1

2
⌋.

Proof. Let k′ = k + 1 and let T be a k′-orthogonal tope of M. First suppose that
k′ = r+1

2
. Then by Lemma 3.13, every tope adjacent to T in G(M), in particular −eT

is not k′-orthogonal. Hence, the mapping M⊥k′ → (M\ e)⊥k′ sending T to T \ e which
by Lemma 3.14 (a) is well-defined furthermore is injective. Hence, |M⊥k′ | ≤ |(M\ e)⊥k′ |
and by Corollary 3.2 we get m(M, k) ≤ m(M\ e, k).
If k′ < r+1

2
notice that M/e has rank r′ = r − 1 and so, k′ ≤ ⌊ r′+1

2
⌋. If however, the

neighbor −eT of T with respect to e was also k′-orthogonal, then both will be mapped to
the same k′-orthogonal tope of M\ e, but then the tope T \ e of M/e is k′-orthogonal
by Lemma 3.14 (b). Thus, we conclude that |M⊥k′ | ≤ |(M \ e)⊥k′ | + |(M/e)⊥k′ |. By
Corollary 3.2, this yields m(M, k) ≤ m(M\ e, k) +m(M/e, k). □

An analogue of the above result in terms of o(M, k) is not true since topes T with ort(T ) =
k in M do not necessarily satisfy that ort(T \e) = k in M\e or M/e, even if its neighbor
T ′ has ort(T ′) = k as in Lemma 3.14. For instance, Figure 1 shows examples of topes T
with ort(T ) = 1 and ort(T \ e) = 2 in M\ e. In fact, for r = 4 and n = 6 we have that
36 = o(C4(6), 0) > o(C4(6) \ e, 0)+ o(C4(6)/e, 0) = o(C4(5), 0)+ o(C3(5), 0) = 10+20 = 30,
where these values are obtained from Example 4.2.

The following reduces Question 1.8 for fixed r and k to a finite number of cases.



18 RANGEL HERNÁNDEZ-ORTIZ, KOLJA KNAUER, AND LUIS PEDRO MONTEJANO

Theorem 3.16. Let r ≥ 3 and 0 ≤ k ≤ ⌊ r−1
2
⌋. If m(M′, k) ≤ cr′(n

′, k) for every uniform
oriented matroid M′ of rank r′ ≤ r on n′ = 2(r′−k)+1 elements, then m(M, k) ≤ cr(n, k)
for every oriented matroid M of rank r on n ≥ 2(r − k) + 1 elements.

Proof. Every rank r oriented matroid M on n elements can be perturbed to become a
uniform rank r oriented matroid M′ on n elements, see [3, Corollary 7.7.9]. In particular,
we have that the tope graph G(M) is a subgraph of the tope graph G(M′). Hence,
m(M, k) ≤ m(M′, k) for every k = 0, . . . , ⌊ r−1

2
⌋. So, let us consider a uniform rank r

oriented matroid M on n elements and let e ∈ E.
Let us show the claim by induction on r and n. By Lemma 3.15, m(M, k) ≤ m(M \
e, k) + m(M/e, k). Now, fix r and let n > 2(r − k) + 1. Notice that the inequality
m(M \ e, k) ≤ cr(n − 1, k) then follows by induction on n since we know that it is
verified for all uniform rank r oriented matroids on n − 1 elements. On the other hand,
the inequality m(M/e, k) ≤ cr−1(n − 1, k) follows since by assumption all uniform rank
r′ = r−1 oriented matroid M′ on n′ = 2(r′−k)+1 elements satisfy m(M′, k) ≤ cr(n

′, k).
Thus by induction this also holds for n−1 ≥ 2(r−k)+1 ≥ 2(r′−k)+1. Now, a straight-

forward computation using Theorem 3.11 and the fact that
⌊ r−1

2
⌋∑

i=k

o(Cr(n), i) = cr(n, k),

yields

cr(n− 1, k) + cr−1(n− 1, k) = cr(n, k).

Thus, we obtain that m(M, k) ≤ cr(n, k). □

The following result answers Question 1.8 in the affirmative for odd r and k = r+1
2
.

Corollary 3.17. Let M be an oriented matroid of odd rank r ≥ 3 on n ≥ r+2 elements
and k = r−1

2
. Then, m(M, k) ≤ cr(n, k) = 2.

Proof. As k = r−1
2
, we notice that o(M, k) = m(M, k) and o(Cr(n), k) = cr(n, k). More-

over, cr(n, k) = 2 by Theorem 3.11. In order to prove that m(M, k) ≤ cr(n, k) for
n ≥ r + 2, it is sufficient by Theorem 3.16 to verify it for all uniform rank r oriented
matroid M on n = r + 2 = 2(r − k) + 1 elements, since for smaller rank r′ < r we
will have k > r′−1

2
and hence the k-entries of all o-vectors are 0. As in that case there

is only one reorientation class (see Remark 1.3), we obtain that o(M, k) = o(Cr(n), k),
concluding the proof. □

4. k-McMullen’s problem and k-Roudneff’s conjecture for low ranks

4.1. A computer program that obtains o(M, k). Next, we explain how we can obtain
the o-vector of a uniform oriented matroid from its chirotope:

chirotope → circuits:
In a uniform oriented matroid the chirotope χ(B) ̸= 0 for every ordered set of size r.
Further, the supports of its circuits correspond to all sets of size r + 1. It is well-known,
see [3, Section 3.5], that from the chirotope of a uniform oriented matroid, we obtain the
signs of a circuit X with X = {b1, ..., br+1} via:

χ(B) = −Xbi ·Xbi+1
· χ(B′),

where B = X \ bi and B′ = X \ bi+1. This allows us to compute the set C from χ.

circuits → o-vector:
For any sign-vector T ∈ {+,−}n, we obtain ort(T ) = min{X ⊥ T | X ∈ C} and so, using
the correspondence o(M, k) = |Ok+1(M)| given in Corollary 3.2, the o-vector of M.
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Finschi and Fukuda [9, 10] generated (up to isomorphism) all the chirotopes of uniform
rank r oriented matroids on n elements, for 4 ≤ r ≤ 7 and n = r + 3, and moreover
classified them by realizability and for r = 5 and n = 9 (where some of the data and also
their source code for the enumeration is available only upon request from Lukas Finschi).
We implemented the above procedure in Python (available at [1]) giving us the o-vector
of all the reorientation classes from the database. We resume the results in the following
theorem:

Theorem 4.1. Let M ̸∈ [Cr(n)] be a uniform rank r oriented matroid on n elements,
then the following hold:

(a) if r = 5 and n = 8, then o(M, 1) < o(C5(8), 1), m(M, 1) < c5(8, 1), m(M, 2) ≤
c5(8, 2) and there are exactly 3 reorientation classes with m(M, 2) = c5(8, 2).
Moreover, there exists M realizable such that m(M, 2) = 0;

(b) if r = 5 and n = 9, then o(M, 1) < o(C5(9), 1), m(M, 1) < c5(9, 1), m(M, 2) ≤
c5(9, 2) and there are exactly 23 reorientation classes with m(M, 2) = c5(9, 2);

(c) if r = 6 and n = 9, then m(M, 1) < c6(9, 1) and m(M, 2) < c6(9, 2). Moreover,
there are exactly 91 reorientation classes having o(M, 1) > o(C6(9), 1) and there
exists M realizable such that m(M, 2) = 0;

(d) if r = 7 and n = 10, then m(M, 1) < c7(10, 1), 0 < o(M, 2) < o(C7(10), 2),
m(M, 2) < c7(10, 2), m(M, 3) ≤ c7(10, 3) and there are exactly 37 reorientation
classes with m(M, 3) = c7(10, 3). Moreover, there are exactly 312336 reorienta-
tion classes having o(M, 1) > o(C7(10), 1) and there exists M realizable such that
m(M, 3) = 0.

Example 4.2. Since the chirotope of the alternating oriented matroid is always +, using
our computer program we compute the o-vector of Cr(n) for some values of r and n in
Figure 6. For all these values and k such that n ≤ 2(r − k), we notice that o(Cr(n), k) ̸=
2
(

n
r−1−2k

)
, showing that Theorem 3.11 is best possible.

o(C3(5), k)
o(C4(5), k)

o(C6(8), k)
o(C6(9), k)

k = 0

o(C4(6), k)
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o(C7(10), k)

o(C7(11), k)

o(C8(11), k)

k = 1 k = 2 k = 0 k = 1 k = 2 k = 3 k = 0 k = 1 k = 2 k = 3

o(C8(12), k)
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Figure 6.

4.2. Results on k-McMullen’s problem. Next, we answer Question 1.5 affirmatively
for (r, k) ∈ (5, 2), (6, 2), (7, 3). Further, we show that the lower bound in Question 1.5 is
tight in one more case, i.e., 10 ≤ ν(7, 2).

Theorem 4.3. We have ν(5, 2) = νR(5, 2) = 7, ν(6, 2) = νR(6, 2) = 8, ν(7, 3) =
νR(7, 3) = 9, and 10 ≤ νR(7, 2).

Proof. By Remark 2.2, we have 7 ≤ ν(5, 2), 8 ≤ ν(6, 2) and 9 ≤ ν(7, 3) (and so, also
7 ≤ νR(5, 2), 8 ≤ νR(6, 2) and 9 ≤ νR(7, 3)). The lower bound 10 ≤ ν(7, 2) holds
since by Theorem 4.1 (d), 0 < o(M, 2) for any uniform rank 7 oriented matroid M
on 10 elements. On the other hand, the upper bounds νR(5, 2) < 8, νR(6, 2) < 9 and
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νR(7, 3) < 10 hold by Theorem 4.1 (a), (c) and (d), respectively, since there exists a
rank r realizable uniform oriented matroid M on n elements such that m(M, k) = 0, for
(r, k, n) ∈ (5, 2, 8), (6, 2, 9), (7, 3, 10). Then, ν(5, 2) < 8, ν(6, 2) < 9 and ν(7, 3) < 10 and
the result follows. □

4.3. Results on k-Roudneff’s conjecture. Question 1.8 can be reduced to uniform
oriented matroids and reduce to a finite problem for fixed r and k by Theorem 3.16.
Next, we may answer Question 1.8 affirmatively for r = 6 and k = 2.

Theorem 4.4. Let M be a rank 6 oriented matroid on n ≥ 9 elements. Then, m(M, 2) ≤
c6(n, 2).

Proof. By Theorem 4.1 (c), m(M, 2) ≤ c6(9, 2) for all rank 6 uniform oriented matroid
M on 9 elements. On the other hand, it is known that m(M′, 2) ≤ c5(n, 2) for any rank
5 oriented matroid M′ on n ≥ 7 elements by Corollary 3.17. Then, the result follows for
n ≥ 9 by Theorem 3.16. □
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appendix

We present the formulation of McMullen’s problem and Roudneff’s conjecture in their
original versions. This is done merely out of illustrative reasons and none of our proofs
or arguments outside of this appendix are based on what we will briefly explain below.

McMullen’s problem. Oriented matroids generalize the oriented linear algebra of Eu-
clidean space in the following way: let M ∈ Em×n a real m × n matrix, then MM =
([n], CM) is an oriented matroid where X ∈ CM if there is a minimal linear combination
λi1ci1 + . . . + λikcik = 0 of columns of M such that X = {i1, . . . , ik} and Xij is the sign
of λij for all 1 ≤ j ≤ k. The rank of MM is the rank of M . If M arises this way from
a matrix M , it is called realizable. Realizable oriented matroids form a small subclass
of all oriented matroids [3, Corollary 7.4.3], but capture hyperplane arrangements, point
configurations, linear programming, and directed graphs.

McMullen’s problem (Conjecture 1.4) was originally formulated for realizable uniform ori-
ented matroids in the language of projective transformations [20] and then, more generally
in terms of uniform oriented matroids [6]. A projective transformation T : Rd → Rd is a
function such that T (x) = Ax+b

⟨c,x⟩+δ
, where A is a linear transformation of Rd, b, c ∈ Rd and

δ ∈ R, is such that at least one of c ̸= 0 or δ ̸= 0. Further, T is said to be permissible for
a set X ⊂ Rd if ⟨c, x⟩+δ ̸= 0 for all x ∈ X (see [32, Appendix 2.6]). It turns out that per-
missible projective transformations on n points in Rd correspond to acyclic reorientations
of the corresponding rank r = d+ 1 oriented matroid M on n elements, see [6, Theorem
1.2]. Therefore, as a set X of n points in general position in Rd corresponds to a real-
izable uniform oriented matroid M of rank r = d + 1 on n elements and a permissible
projective transformation leading X to the vertices of a convex polytope corresponds to
a 1-neighborly reorientation of M, we get Conjecture 1.4 in its original version [20, P.1.].

Problem (McMullen 1972). Determine the largest number ν(d) such that any set of
ν(d) points, lying in general position in Rd, may be mapped by a permissible projective
transformation onto the set of vertices of a convex polytope.

Roudneff’s conjecture. The Topological Representation Theorem states that the re-
orientation classes of simple oriented matroids on n elements and rank r are in one-to-
one correspondence with the classes of isomorphism of arrangements of n pseudospheres
in Sr−1 [11]. See [3, Theorem 1.4.1] for the precise definitions of such arrangements.
There is a natural identification between pseudospheres and pseudohyperplanes as fol-
lows: Recall that Pr−1 is the topological space obtained from Sr−1 by identifying all pairs
of antipodal points. The double covering map π : Sr−1 → Pr−1, given by π(x) = {x,−x},
gives an identification of centrally symmetric subsets of Sr−1 and general subsets of Pr−1.
This way centrally symmetric pseudospheres in Sr−1 correspond to pseudohyperplanes
in Pr−1. Since the pseudoshperes in the Topological Representation Theorem can be as-
sumed to be centrally symmetric, we get a statement in terms of pseudohyperplanes in
Pr−1, i.e., the reorientation classes of simple oriented matroids on n elements and rank
r are in one-to-one correspondence with the classes of isomorphism of arrangements of
n pseudohyperplanes in Pr−1. See [3, Exercise 5.8]. In this model one usually uses the
dimension d = r−1 of the rank. Given an arrangement H(d, n) of n pseudohyperplanes in
Pd representing an reorientation class of [M], any given element of a class can be obtained
by choosing for each pseudohyperplane He ∈ H(d, n) in which of its two sides is positive
and which is negative. Now, every point in x ∈ Pd yields a sign-vector X, where Xe is
0,+,− depending on whether x lies on He, on its positive side, or its negative side.

An arrangement H(d, n) of n pseudohyperplanes in Pd is called simple if every intersection
of d pseudohyperplanes is a unique distinct point. Simple arrangements correspond to
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reorientation classes of uniform oriented matroids. The maximal cells of the arrangement
H(d, n) correspond to one half of the topes of the oriented matroid M (obtained by
factoring the antipodal map). The topes then corresponds to the acyclic reorientation of
M, by orienting the pseudohyperplanes such that points inside the corresponding maximal
cell are all-positive. A complete cell of H(d, n) is a maximal cell that is bounded by every
hyperplane of the arrangement. In the corresponding reorientation of M, reorienting any
element of E results in another acyclic reorientation, i.e., the one corresponding to the
adjacent maximal cell. This is, complete cells correspond to 1-neighborly reorientations.

On the other hand, Cyclic arrangements are defined as the lattice theoretical dual or
polar of the point set given by the vertices of the cyclic polytope which hence have
1
2
cr−1(n, 1) complete cells. Since the latter number for n ≥ 2r − 1 can be expressed as a

sum of binomial coefficients (see [28, Theorem 2.1]), we get Conjecture 1.7 in its original
version [28, Conjecture 2.2].

Conjecture (Roudneff 1991). Every arrangement of n ≥ 2d+1 ≥ 5 (pseudo)hyperplanes

in Pd has at most
∑d−2

i=0

(
n−1
i

)
complete cells.
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