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Abstract We show that the topes of a complex of oriented matroids (abbreviated COM) of VC-dimension d admit

a proper labeled sample compression scheme of size d. This considerably extends results of Moran and Warmuth on

ample classes, of Ben-David and Litman on affine arrangements of hyperplanes, and of the authors on complexes of

uniform oriented matroids, and is a step towards the sample compression conjecture – one of the oldest open problems

in computational learning theory. On the one hand, our approach exploits the rich combinatorial cell structure of

COMs via oriented matroid theory. On the other hand, viewing tope graphs of COMs as partial cubes creates a

fruitful link to metric graph theory.

1. Introduction

1.1. General setting. Littlestone and Warmuth [51] introduced sample compression schemes as
an abstraction of the underlying structure of learning algorithms. Roughly, the aim of a sample
compression scheme is to compress samples of a concept class (i.e., of a set system) C as much
as possible, such that data coherent with the original samples can be reconstructed from the
compressed data. There are two types of sample compression schemes: labeled, see [35, 51] and
unlabeled, see [7, 34, 49]. A labeled compression scheme of size k compresses every sample of C to
a labeled subsample of size at most k and an unlabeled compression scheme of size k compresses
every sample of C to a subset of size at most k of the domain of the sample (see the end of the
introduction for precise definitions). The Vapnik-Chervonenkis dimension (VC-dimension) of a set
system, was introduced by [69] as a complexity measure of set systems. VC-dimension is central in
PAC-learning and plays an important role in combinatorics, algorithmics, discrete geometry, and
combinatorial optimization. In particular, it coincides with the rank in the theory of (complexes of)
oriented matroids. Furthermore, within machine learning and closely tied to the topic of this paper,
the sample compression conjecture of [35] and [51] states that any set system of VC-dimension d
has a labeled sample compression scheme of size O(d). This question remains one of the oldest
open problems in computational learning theory.

1.2. Related work. The best-known general upper bound is due to Moran and Yehudayoff [58]
and shows that there exist labeled compression schemes of size O(2d) for any set system of VC-
dimension d. The labeled compression scheme of [58] is not proper (i.e., does not necessarily return
a set from the input set system) and it is even open if there exist proper labeled sample compression
schemes which compress samples with support larger than d to subsamples with strictly smaller
support [56]. From below, Floyd and Warmuth [35] showed that there are classes of VC-dimension
d admitting no labeled compression scheme of size less than d and that no concept class of VC-
dimension d admits a labeled compression scheme of size at most d

5 . Pálvölgyi and Tardos [64]
exhibited a concept class of VC-dimension 2 with no unlabeled compression scheme of size 2.
However, no similar results are known for labeled sample compression schemes. Prior to [64], it
was shown in [61] that the concept class of positive halfspaces in R2 (which has VC-dimension 2)
does not admit proper unlabeled sample compression schemes of size 2.
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For more structured concept classes better upper bounds are known. Ben-David and Litman [7]
proved a compactness lemma, which reduces the existence of labeled or unlabeled compression
schemes for arbitrary concept classes to finite concept classes. They also obtained unlabeled com-
pression schemes for regions in arrangements of affine hyperplanes (which correspond to realizable
affine oriented matroids in our language). Finally, they obtained sample compression schemes for
concept classes by embedding them into concept classes for which such schemes were known. Helm-
bold, Sloan, and Warmuth [43] constructed unlabeled compression schemes of size d for intersection-
closed concept classes of VC-dimension d. They compress each sample to a minimal generating
set and show that the size of this set is upper bounded by the VC-dimension. An important class
for which positive results are available is given by ample set systems [3, 27] (originally introduced
as lopsided sets by Lawrence [50]). They capture an important variety of combinatorial objects,
e.g., (conditional) antimatroids, see [29], diagrams of (upper locally) distributive lattices, median
graphs or CAT(0) cube complexes, see [3] and were rediscovered in various disguises, e.g. by [10]
as extremal for (reverse) Sauer and by [59] as shattering-extremal [59]. Moran and Warmuth [57]
provide labeled sample compression schemes of size d for ample set systems of VC-dimension d. For
maximum concept classes (a subclass of ample set systems) unlabeled sample compression schemes
of size d have been designed by Chalopin et al. [11]. They also characterized unlabeled compression
schemes for ample classes via the existence of unique sink orientations of their graphs. However,
the existence of such orientations remains open.

1.3. OMs and COMs. A structure somewhat opposed to ample classes are Oriented Matroids
(OMs), see the book of Björner et al. [8]. Co-invented by Bland and Las Vergnas [9] and Folkman
and Lawrence [36], and further investigated by Edmonds and Mandel [30] and many other authors,
oriented matroids represent a unified combinatorial theory of orientations of ordinary matroids,
which simultaneously captures the basic properties of sign vectors representing the regions in a
hyperplane arrangement in Rd and of sign vectors of the circuits in a directed graph. OMs provide
a framework for the analysis of combinatorial properties of geometric configurations occurring in
discrete geometry and in machine learning. Point and vector configurations, order types, hyperplane
and pseudo-line arrangements, convex polytopes, directed graphs, and linear programming find a
common generalization in this language. The Topological Representation Theorem of [36] connects
the theory of OMs on a deep level to arrangements of pseudohyperplanes and distinguishes it from
the theory of ordinary matroids.

Complexes of Oriented Matroids (COMs) were introduced by Bandelt, Chepoi, and Knauer [4] as
a natural common generalization of ample classes and OMs. Ample classes are exactly the COMs
with cubical cells, while OMs are the COMs with a single cell. In general COMs, the cells are OMs
and the resulting cell complex is contractible. In the realizable setting, a COM corresponds to the
intersection pattern of a hyperplane arrangement with an open convex set, see Figure 1. Examples of
COMs neither contained in the class of OMs nor in ample classes include linear extensions of a poset
or acyclic orientations of mixed graphs, see [4], CAT(0) Coxeter complexes of [40], hypercellular
and Pasch graphs, see [17], and Affine Oriented Matroids through [6] and [23]. Note that none of
the listed examples is contained in the classes of OMs or ample classes. Apart from the above,
COMs already lead to new results and questions in various areas such as combinatorial semigroup
theory by [54], algebraic combinatorics in relation to the Varchenko determinant by [44,45], neural
codes [46], poset cones, see [26], as well as sweeping sequences, see [63]. In particular, relations
to COMs have already been established within sample compression, by [18, 19, 53] and [11]. A
central feature of COMs is that they can be studied via their tope graphs, see Figure 1. Indeed, the
characterization of their tope graphs by [47] establishes an embedding of the theory of COMs into
metric graph theory, with theoretical and algorithmic implications. Namely, tope graphs of COMs
form a subclass of the ubiquitous metric graph class of partial cubes, i.e., isometric subgraphs of
hypercubes, with applications ranging from interconnection networks [38] and media theory [33],
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to chemical graph theory [32]. On the other hand, tope graphs of COMs can be recognized in
polynomial time [31, 47]. The graph theoretic view has been used in several recent publications,
see [16,48,52] and is essential to our work.
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Figure 1. A realizable COM and its tope graph.

1.4. Labeled sample compression schemes. As we explain later, COMs can be defined as
sets of sign vectors, which is another unifying feature for OMs and ample classes. This turns
out to be beneficial for the present paper, since the language of sign vectors is perfectly suited for
defining sample compression schemes formally. The following formulation is due to [12], for classical
formulations, see [51,57,58]. Let U be a finite set, called the universe and C be a family of subsets
of U , called a concept class and whose elements are called concepts. We view C as a set of {−1,+1}-
vectors, i.e., C ⊆ {−1,+1}U . We also consider sets of {−1, 0,+1}-vectors, i.e., subsets of {±1, 0}U
endowed with the product order ≤ between sign vectors relative to the ordering 0 ≤ −1,+1. The
sign vectors of the set Samp(C) =

⋃
C∈C{S ∈ {±1, 0}U : S ≤ C} are realizable samples for C.

Definition 1 (Labeled sample compression schemes). A labeled sample compression scheme of size
k for a concept class C ⊆ {−1,+1}U is a pair (α, β) of mappings, where α : Samp(C) → {±1, 0}U
is called the compression function and β : Im(α) → {−1,+1}U the reconstruction function such
that for any realizable sample S ∈ Samp(C), it holds α(S) ≤ S ≤ β(α(S)) and |α(S)| ≤ k, where
α(S) is the support of the sign vector α(S), i.e., the non-zero entries of α(S). A labeled sample
compression scheme is proper if β(α(S)) ∈ C for all S ∈ Samp(C).

The condition S ≤ β(α(S)) means that the restriction of β(α(S)) on the support of S coincides
with the input sample S. In particular, if S is a concept of C, then β(α(S)) = S, i.e., the recon-
structor must reconstruct the input concept. Notice that the labeled compression schemes of size
O(2d) of [58] are not proper (i.e., β(α(S)) is not necessarily a concept of C) and they use additional
information. The compression schemes developed in [12] for balls in graphs are proper but also
use additional information. The unlabeled sample compression schemes [49] (which are not the
subject of this paper) are defined analogously, with the difference that in the unlabeled case α(S)
is a subset of size at most k of the support of S.

The definition of labeled compression scheme implies that if C′ ⊆ C and (α, β) is a labeled sample
compression scheme for C, then (α, β) is a labeled sample compression scheme for C′. However,
(α, β) is in general not proper for C′. Still, this yields an approach (suggested in [67] and implicit
in [35]) to obtain improper schemes. For instance, using the result of [57] that ample classes of
VC-dimension d admit labeled sample compression schemes of size d, one can try to extend a
given set system to an ample class without increasing the VC-dimension too much and then apply
their result. In [18] it is shown that partial cubes of VC-dimension 2 can be extended to ample
classes of VC-dimension 2. Furthermore, in [19] it is shown that OMs and complexes of uniform
oriented matroids (CUOMs) can be extended to ample classes without increasing the VC-dimension.
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Thus, in these classes there exist improper labeled sample compression schemes whose size is the
VC-dimension. On the other hand, there exist partial cubes of VC-dimension 3 that cannot be
extended to ample classes of VC-dimension 3, see [19], as well as set systems of VC-dimension 2,
that cannot be extended to partial cubes of VC-dimension 2, see [18]. In [19] it is conjectured that
every COM of VC-dimension d can be extended to an ample class of VC-dimension d. This would
yield improper labeled sample compression schemes for COMs of size d.

1.5. Our result. In this paper, we follow a different strategy to give (stronger) proper labeled
sample compression schemes of size d for general COMs of VC-dimension d, see Theorem 3. More
precisely, we show that the set systems defined by the topes of COMs satisfy the strong form of
the sample compression conjecture, i.e., COMs of VC-dimension d admit proper labeled sample
compression schemes of size d.

Our work substantially extends the result of [57] for ample concept classes, the result of [7]
for concept classes arising from arrangements of affine hyperplanes (i.e., realizable Affine Oriented
Matroids), and our results [19] for OMs and CUOMs. Many classes of COMs are only covered
by this new result. For example, the classes of COMs mentioned in Subsection 1.3 are neither
ample, nor affine, nor uniform. Some of these examples are realizable and can be embedded into
realizable Affine Oriented Matroid to which one can apply the result of [7]. However, this will lead
only improper compression schemes. One important class of COMs, which is neither realizable, nor
ample, nor affine, nor uniform, is the class of non-realizable OMs. By the Topological Representation
Theorem of Oriented Matroids of Folkman and Lawrence [36], the topes of OMs can be characterized
as the inclusion maximal cells of an arrangement of pseudohyperplanes. An OM is non-realizable if
it it represented by a non-stretchable arrangement, i.e., an arrangement whose pseudohyperplanes
cannot be replaced by linear hyperplanes.

To illustrate the representation by pseudohyperplanes, in Figure 2 we give an example of an
arrangement U of pseudolines in R2 and its graph of regions, i.e., the tope graph of the resulting
COM. While this example is stretchable, there are many non-stretchable arrangements. Indeed,
most OMs are non-realizable [8, Theorems 7.4.2 and 8.7.5]. Deciding stretchability of a pseudoline
arrangement and more generally realizability of an OM is a complete problem of the existential
theory of the reals, hence in particular NP-hard, see [68]. By a result of Edmonds and Mandel [30],
all arrangements of pseudohyperplanes can be considered piecewise-linear.

Figure 2. A pseudoline arrangement U and its region graph.

1.6. Pseudohyperplane arrangements and Machine Learning. Pseudohyperplane arrange-
ments have already arisen in the context of sample compression schemes and VC-dimension in [37,
55, 65, 66] in the treatment of maximum and ample classes. More recently, particular piecewise-
linear pseudohyperplane arrangements and their regions occurred in the study of deep feedforward
neural networks with ReLU activations [24, 39, 41, 42, 60]. In this theory they appear under the
names “arrangements of bent hyperplanes” and “activation regions”, respectively. Recall that a
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(trained) feedforward neural network used to answer Yes/No (i.e., {−1,+1}) classification problems
is a particular type of function F : Rd → R. The inputs to F are data feature vectors and the
outputs are used to answer the binary classification problem by partitioning the input space Rd

into activation regions.
Next, we closely follow [39] and [42]. A ReLU function ReLU : R → R is defined by ReLU(x) =

max{0, x}. ReLU is among the most popular activation functions for deep neural networks. Let
σ : Rd → Rd denote the function that applies ReLU to each coordinate. Let n0, . . . , nk, nk+1 = 1 be
a sequence of natural numbers and let Ai : Rni−1 → Rni , i = 1, . . . , k + 1 be (parametrized) affine
maps. A ReLU (Rectified Linear Unit) network N of architecture (n0, . . . , nk), depth k + 1, and
n :=

∑m
i=0 ni neurons is a neural network in which the map F is defined as the composition of the

layer maps F1 = σ◦A1, . . . , Fk = σ◦Ak, Fk+1 = Ak+1. An activation pattern for N is an assignment
of a {−1,+1}-sign to each neuron. Given a vector θ of trainable parameters, the activation pattern
of the neurons defines a partition of the input space Rd into activation regions. The activation
regions can be viewed as the regions defined by the arrangement of bent hyperplanes associated
to layers; for the precise definition see [39, Section 6] and [42]. Activation regions are convex
polyhedra [42] and one of important questions in the complexity analysis of deep ReLU networks
is counting the number of such activation regions [41, 42, 60]. Notice that the arrangements of
bent hyperplanes may not be arrangements of pseudohyperplanes in the classical sense [8] because
two bent hyperplanes may not intersect transversally. Transversality of arrangements of bent
hyperplanes was investigated in depth in the recent paper [39]. It will be interesting to further
investigate how sample compression schemes can be useful in the setting of deep ReLU networks.

2. Preliminaries

2.1. OMs and COMs. We recall the basic theory OMs and COMs from [8] and [4], respectively.
Let U be a set of size m and let L be a system of sign vectors, i.e., maps from U to {−1, 0,+1}.
The elements of L are referred to as covectors and denoted by capital letters X,Y, Z. For X ∈ L,
the subset X = {e ∈ U : Xe ̸= 0} is the support of X and its complement X0 = U \ X = {e ∈
U : Xe = 0} is the zero set of X. For X,Y ∈ L, Sep(X,Y ) = {e ∈ U : XeYe = −1} is the
separator of X and Y . The composition of X and Y is the sign vector X ◦ Y , where for all e ∈ U ,
(X ◦ Y )e = Xe if Xe ̸= 0 and (X ◦ Y )e = Ye if Xe = 0. Let ≤ be the product ordering on {±1, 0}U
relative to the ordering 0 ≤ −1,+1. A system of sign vectors (U,L) is simple if for each e ∈ U ,
{Xe : X ∈ L} = {−1, 0,+1} and for all e ̸= f there exist X,Y ∈ L with {XeXf , YeYf} = {+1,−1}.
In this paper, we consider only simple systems of sign vectors.

Definition 2 (OMs). An oriented matroid (OM) is a system of sign vectors M = (U,L) satisfying
(Z) the zero sign vector 0 belongs to L.
(C) (Composition) X ◦ Y ∈ L for all X,Y ∈ L.

(SE) (Strong elimination) for each pair X,Y ∈ L and for each e ∈ Sep(X,Y ), there exists Z ∈ L
such that Ze = 0 and Zf = (X ◦ Y )f for all f ∈ U \ Sep(X,Y ).

(Sym) (Symmetry) −L = {−X : X ∈ L} = L, that is, L is closed under sign reversal.

Notice that the axiom (Z) is implied by the three other axioms. The poset (L,≤) of an OM
M with an artificial global maximum 1̂ forms the (graded) big face lattice Fbig(M). The length
of maximal chains of Fbig(M) minus 1 is the rank of L and denoted rank(M). The rank of the
underlying matroid M equals rank(M) [8, Thm 4.1.14]. The topes T of M are the co-atoms of
Fbig(M). By simplicity the topes are {−1,+1}-vectors and T can be seen as a family of subsets
of U . For each T ∈ T , an element e ∈ U belongs to the corresponding set if and only if Te = +1.
The tope graph G(M) of an OM M is the 1-inclusion graph of the set T of topes of L, i.e., the
subgraph of the hypercube Q(U) induced by the vertices corresponding to T , see Figure 1.

In realizable OMs (i.e., OMs arising from central hyperplane arrangements of Rd), X ≤ Y
for two covectors X,Y if and only if the (open) cell corresponding to X is contained in the cell
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corresponding to Y . Consequently, the topes of realizable OMs are the covectors of the inclusion
maximal (open) cells (which all have dimension d), called regions. Therefore, the tope graph of
a realizable OM can be viewed as the adjacency graph of regions: the vertices of this graph are
the regions of a hyperplane arrangement and two regions are adjacent in this graph if they are
separated by a unique hyperplane of the arrangement. The Topological Representation Theorem of
Oriented Matroids of [36], generalizes this correspondence to all OMs: tope graphs of OMs can be
characterized as the adjacency graphs of maximal (open) cells of pseudohyperplane arrangements
in Rd [8], where d is the rank of the OM. More precisely, two topes are adjacent if and only if the
corresponding regions are separated by a unique pseudohyperplane, see Figure 1. It is also well-
known (see for example [8]) that L can be recovered from its tope graph G(L) (up to isomorphism).
Therefore, we can define all terms in the language of tope graphs.

Another important axiomatization of OMs is in terms of cocircuits of L. These are the atoms
of Fbig(L). Their collection is denoted by C∗ and axiomatized as follows: a system of sign vectors
(U, C∗) is an oriented matroid (OM) if C∗ satisfies (Sym) and the two axioms:

(Inc) (Incomparability) X ⊆ Y implies X = ±Y for all X,Y ∈ C∗.
(E) (Elimination) for each pair X,Y ∈ C∗ with X ̸= −Y and for each e ∈ Sep(X,Y ), there exists

Z ∈ C∗ such that Ze = 0 and Zf ∈ {0, Xf , Yf} for all f ∈ U .

The set L of covectors can be derived from C∗ by taking the closure of C∗ under composition.

COMs are defined by replacing the global axiom (Sym) with a weaker local axiom:

Definition 3 (COMs). A complex of oriented matroids (COM) is a system of sign vectors M =
(U,L) satisfying (SE) and the following axiom:

(FS) (Face symmetry) X ◦ −Y ∈ L for all X,Y ∈ L.

One can see that OMs are exactly the COMs containing the zero vector 0 (axiom (Z)), see [4].
The twist between (Sym) and (FS) allows to keep on using the same concepts, such as topes, tope
graphs, the sign-order and the big face (semi)lattice in a completely analogous way. On the other
hand, it leads to a combinatorial and geometric structure that is built from OMs as cells but is
much richer than OMs. Let M = (U,L) be a COM and X ∈ L a covector. The face of X is
F(X) := {Y ∈ L : X ≤ Y } (see [4,8]) and Q(X) denotes the smallest cube of {−1,+1}U containing
the topes of F(X). A facet of M is an inclusion maximal proper face. From the definition, any
face F(X) consists of the sign vectors of all faces of the subcube of [−1,+1]U with barycenter X.
By [4, Lemma 4], each face F(X) of a COM M is isomorphic to an OM, which however is not
simple, because all Y ∈ F(X) coincide on X. Thus, we consider its simplification M(X) obtained
by deleting all the elements of X. Deletion again gives an OM as is explained in Section 2.3. Ample
classes (called also lopsided [3,50] or extremal [10,57]) are exactly the COMs, in which all faces are
cubes. Since OMs are COMs, each face of an OM is an OM and the facets correspond to cocircuits.
Furthermore, by [4, Section 11] replacing each combinatorial face F(X) of M by a PL-ball, we
obtain a contractible cell complex associated to each COM. The topes T and the tope graph G(M)
of a COM M are defined as for OMs. Again, the COM M can be recovered from G(M), see [4,47].
For X ∈ L, the topes in F(X) induce a subgraph of G(M), which we denote by [X]. We show that
[X] is isomorphic to the tope graph G(M(X)) of M(X) and it is crucial for this paper.

2.2. Realizable COMs. In this subsection, we recall the geometric illustration of the axioms in
the case of realizable COMs given in the paper [4]. Let U be an affine arrangement of hyperplanes
of Rd and C an open convex set. Restrict the arrangement pattern to C, that is, remove all sign
vectors which represent the open regions disjoint from C. Denote the resulting set of sign vectors
by L(U,C) and call it a realizable COM. If U is a central arrangement with C being any open
convex set containing the origin, then L(U,C) coincides with the realizable oriented matroid of U .
If the arrangement U is affine and C is the entire space, then L(U,C) coincides with the realizable
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affine oriented matroid of U . The realizable ample sets arise by taking the central arrangement U
of all coordinate hyperplanes restricted to an arbitrary open convex set C of Rd (this model was
first considered in [50]).

We argue, why a realizable COM satisfies the axioms from Definition 3. Let X and Y be sign
vectors belonging to L(U,C) and designating two open regions of C defined by U . Let x, y be two
points in these regions. Connect x, y by a line segment and choose ϵ > 0 so that the open ball of
radius ϵ around x is contained in C and intersects only those hyperplanes from U containing x.
Pick any point w from the intersection of this ball with the open line segment between x and y.
The corresponding sign vector W is the composition X ◦ Y , establishing (C). If we select a point v
on the ray from y through x within the ϵ-ball but beyond x, then the corresponding sign vector V
has the opposite signs as W at the coordinates corresponding to the hyperplanes from U containing
x and not including the ray from y through x. Hence, V = X ◦ −Y , yielding (FS). Now, assume
that the hyperplane e from U separates x and y, that is, the line segment between x and y crosses
e at some point z. The corresponding sign vector Z is then zero at e and equals the composition
X ◦ Y at all coordinates where X and Y are sign-consistent, establishing (SE). If the hyperplanes
of U have a non-empty intersection in C, then any point o from this intersection corresponds to the
zero sign vector, showing that central hyperplane arrangements define OMs. In this case, L(U,C)
coincides with L(U,Rd) as well as with L(U,Cϵ), where Cϵ is any open ball centered at o. The face
F(X) of a covector X ∈ L(U,C) is obtained by taking any point x ∈ C corresponding to X and a
small ϵ-ball Cϵ centered at x. Then F(X) coincides with the OM L(U,Cϵ). Finally, notice that the
topes of L(U,C) correspond to the connected components of C minus the hyperplanes of U . Two
such topes are adjacent in the tope graph if and only if the corresponding regions are separated by
a single hyperplane. Furthermore, the distance between any two topes in the tope graph of L(U,C)
is equal to the number of hyperplanes separating the two regions corresponding to these topes (for
C = Rd this was proved by Deligne [21, Proposition 1.3]).

2.3. Deletions and duality. We continue with deletions in OMs and COMs. Let M = (U,L) be
a COM and A ⊆ U . Given a sign vector X ∈ {±1, 0}U , by X \ A (or by X|U\A) we refer to the

restriction of X to U \ A, that is X \ A ∈ {±1, 0}U\A with (X \ A)e = Xe for all e ∈ U \ A. The
deletion of A is defined as M\A = (U \A,L\A), where L\A := {X\A : X ∈ L}. We often consider
the following type of deletion. For a covector X ∈ L, we denote by M(X) = (U \X,F(X) \X) the
simple OM defined by the face F(X). Note that M(X) = M\X, since for every Y ∈ L we have
that Y \ X = (X ◦ Y ) \ X and X ◦ Y ∈ F(X). The classes of COMs and OMs are closed under
deletion, see [4, Lemma 1]. The cocircuits and the covectors of deletions of OMs are described in
the following way:

Lemma 1. [8] Let M = (U,L) be an OM with the set of cocircuits C∗ and A ⊆ U . Then the
cocircuits of M\A are the minimal elements of C∗ \A and the covectors of M\A are L \A.

We briefly recall the duality of OMs, see [8, Section 3.4]. The duality is defined via orthogonality
of circuits and cocircuits, which can be viewed as a synthetic version of classical orthogonality of
vectors. Two sign-vectors X,Y ∈ {±1, 0}U are orthogonal, denoted X⊥Y , if either X ∩ Y = ∅
or there are e, f ∈ X ∩ Y such that XeYe = −XfYf . Oriented matroids can be defined in terms
of their vectors V and circuits C, which can be derived from the cocircuits C∗ using the following
result:

Theorem 1. [8, Theorem 3.4.3 and Proposition 3.7.12] Let M be an OM. The set V consists of
all Y ∈ {±1, 0}U such that Y⊥X for any X ∈ C∗ and C consists of the minimal members of V \{0}.

We will also make use of the version of Lemma 1 for circuits:

Lemma 2. [8] Let M = (U,L) be an OM with the set of circuits C and A ⊆ U . Then the circuits
of M\A are X ∈ C such that X ∩A = ∅.
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Remark 1. Throughout the paper we will use letters like S, S′ for samples, T, T ′ for topes, and
X,Y, Z for cocircuits, covectors, and circuits.

2.4. Partial cubes and pc-minors. It is well-known, see for example [4, 8], that tope graphs of
OMs and COMs are partial cubes, which we introduce now. Let G = (V,E) be a finite, connected,
simple graph. The distance d(u, v) := dG(u, v) between vertices u and v is the length of a shortest
(u, v)-path, and the interval I(u, v) := {x ∈ V : d(u, x) + d(x, v) = d(u, v)} consists of all vertices
on shortest (u, v)-paths. A subgraph H is convex if I(u, v) ⊆ H for any u, v ∈ H and gated [28]
if for every vertex x /∈ H there exists a vertex x′ (the gate of x) in H such that x′ ∈ I(x, y) for
each vertex y of H. It is easy to see that gates are unique and that gated sets are convex. An
induced subgraph H of G is isometric if the distance between vertices in H is the same as that
in G. A graph G = (V,E) is isometrically embeddable into a graph H = (W,F ) if there exists
φ : V → W such that dH(φ(u), φ(v)) = dG(u, v) for all u, v ∈ V . A graph G is a partial cube
if it admits an isometric embedding into a hypercube Qm = Q(U). For an edge uv of G, let
W (u, v) = {x ∈ V : d(x, u) < d(x, v)}. For an edge uv, the sets W (u, v) and W (v, u) are called
complementary halfspaces of G.

Theorem 2. [25] A graph G is a partial cube if and only if G is bipartite and for any edge uv the
sets W (u, v) and W (v, u) are convex.

Djoković [25] introduced the following binary relation Θ on the edges of G: for two edges e = uv
and e′ = u′v′, we set eΘe′ if u′ ∈ W (u, v) and v′ ∈ W (v, u). If G is a partial cube, then Θ is an
equivalence relation. Each Θ-class Ee corresponds to a coordinate e ∈ U of the hypercube Q(U)
into which G is isometrically embedded. Let {G−

e , G
+
e } be the complementary halfspaces of G

defined by setting G−
e := G(W (u, v)) and G+

e := G(W (v, u)) for an arbitrary edge uv ∈ Ee (for
S ⊆ V (G) we denote by G(S) the subgraph of G induced by S). An elementary pc-restriction
consists of taking one of the halfspaces G−

e and G+
e . A pc-restriction is a convex subgraph of G

induced by the intersection of a set of halfspaces of G. Since any convex subgraph of a partial
cube G is the intersection of halfspaces [1, 2, 13], the pc-restrictions of G coincide with the convex
subgraphs of G. Denote by πe(G) an elementary pc-contraction, i.e., the graph obtained from
G by contracting the edges in Ee. For a vertex v of G, let πe(v) be the image of v under the
contraction. We apply πe to subsets S ⊆ V , by setting πe(S) := {πe(v) : v ∈ S}. By [14, Theorem
3], the class of partial cubes is closed under pc-contractions. Since pc-contractions commute, for
a set A of Θ-classes, we denote by πA(G) the isometric subgraph of Q(U \ A) obtained from G
by contracting the equivalence classes of edges from A. pc-Contractions and pc-restrictions also
commute in partial cubes. A pc-minor of G is a partial cube obtained from G by pc-restrictions
and pc-contractions. A deletion M\A in a COM M translates to the contraction of the Θ-classes
Ee with e ∈ A in its tope graph G(M). Since tope graphs of COMs and OMs are partial cubes,
we can describe pc-restrictions and pc-contractions on sign-vectors in terms of partial cubes. First
recall the following fundamental lemma from [4] and [47]:

Lemma 3. For each covector X of a COM M, [X] is a gated subgraph of the tope graph G(M) of
M. Moreover, for any tope T of M, X ◦ T is the gate of T in [X] and in Q(X).

Let G be an isometric subgraph of the hypercube Q(U) and H be an isometric subgraph of the
hypercube Q(U \ A) for some A ⊆ U . We say that G and H are U -isomorphic if there exists an
isomorphism between G and H which maps each edge of a Θ-class Ee of G to an edge of Ee of H.

Lemma 4. Let M = (U,L) be a COM and A ⊆ U . Then πA(G(M)) is the tope graph of M\ A.
If X ∈ L, then the tope graph [X] of (U,F (X)) is U -isomorphic to the tope graph G(M(X)) =
πX(G(M)) of M(X) = M\X.

Proof. That G(M\ A) = πA(G(M)) follows from the equivalence between deletion in COMs and
pc-contraction in their tope graphs. To prove that [X] is U -isomorphic to G(M(X)), note that
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[X] is obtained from G(M) by a pc-restriction: [X] is the intersection of the halfspaces defined
by the Θ-classes Ee with e ∈ X and containing [X]. We assert that the pc-restrictions and the
pc-contractions over X give the same result, i.e., that πX(G(M)) is U -isomorphic to [X]. Indeed,
by Lemma 3, [X] is a gated subgraph of G(M). Pick any e ∈ X and consider the elementary
pc-contraction of the class Ee. By Lemma 3, the gate of any tope T of M in [X] and in the cube
Q(X) is X ◦ T . Therefore, if T, T ′ ∈ {−1,+1}U such that Sep(T, T ′) = e, T is a vertex of G(M)
not belonging to [X], and T ′ belongs to Q(X), then necessarily T ′ = X ◦ T and thus T ′ must be
a vertex of [X]. This implies that the intersection of the cube Q(X) with πe(G(M)) (which is
the tope graph of the face of X in M \ e) coincides with [X]. Consequently, [X] coincides with
πe(G(M)). Performing elementary pc-contractions for all elements of X we conclude that [X] is
U -isomorphic to πX(G(M)) = G(M(X)). □

2.5. VC-dimension. Let S be a family of subsets of an m-element set U . A subset X of U
is shattered by S if for all Y ⊆ X there exists S ∈ S such that S ∩ X = Y . The Vapnik-
Chervonenkis dimension (VC-dimension) [69] VC-dim(S) of S is the cardinality of the largest
subset of U shattered by S. Any set system S ⊆ 2U can be viewed as a subset of vertices of
the m-dimensional hypercube Qm = Q(U). Denote by G(S) the 1-inclusion graph of S, i.e., the
subgraph of Q(U) induced by the vertices of Q(U) corresponding to S. A subgraph G of Q(U) has
VC-dimension d if G is the 1-inclusion graph of a set system of VC-dimension d. For partial cubes,
the notions of shattering and VC-dimension can be formulated in terms of pc-minors. First, note
that if G′ is a pc-minor of a partial cube G and G′ shatters a subset X of U , then G also shatters
X. Thus a partial cube G has VC-dimension ≤ d if and only if G does not have the hypercube
Qd+1 as a pc-minor. More precisely a subset D ⊆ U of the Θ-classes of G shatters G if πU\D(G) is
isomorphic to a hypercube. This is well-defined, since the embeddings of partial cubes are unique
up to isomorphism, see e.g. [62, Chapter 5].

The VC-dimension VC-dim(M) of a COM M = (U,L) is the VC-dimension of its tope graph
G(M) and we say that D ⊆ U is shattered by M if D is shattered by G(M). The VC-dimension
VC-dim(X) of a covector X ∈ L of M is the VC-dimension of the OM M(X), i.e., by Lemma 4,
it is the VC-dimension of the graph [X]. The VC-dimension of OMs, COMs, and their covectors
can be expressed in the following way:

Lemma 5. [19, Lemma 13] For a COM M, VC-dim(M) = max{VC-dim(M(X)) : X ∈ L}. If
M is an OM and X a cocircuit of M, then VC-dim(X) + 1 = VC-dim(M) = rank(M).

That VC-dim(X) = VC-dim(M) − 1 for cocircuits X of an OM M follows from the fact that
the cocircuits are atoms of the big face lattice Fbig(M) and this lattice is graded.

3. Auxiliary results

We establish and recall several auxiliary results about OMs and COMs. We also develop a
correspondence between realizable samples and convex subgraphs of partial cubes. Finally, we
define upper and lower covectors for a given sample, which are crucial notions for the main result.

3.1. More about shattering in OMs and COMs. We continue with new results about shat-
tering in OMs and COMs. Let G be a partial cube, H a convex subgraph, and Ee a Θ-class of G.
We say that Ee crosses H if H contains an edge of Ee. If Ee does not cross H and there exists an
edge uv of Ee with u ∈ H and v /∈ H, then Ee and H osculate. Otherwise, Ee is disjoint from H.
Denote by osc(H) the set of all e such that Ee osculates with H and by cross(H) the set of all e
such that Ee crosses H.

Lemma 6. Let G be a partial cube, H a convex subgraph of G, and e /∈ osc(H). Then πe(H) is
convex in πe(G) and osc(πe(H)) = osc(H), where osc(H) and osc(πe(H)) are considered in G and
πe(G), respectively.
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Proof. Let H ′ = πe(H). First, since e /∈ osc(H), the fact that H ′ is a convex subgraph of πe(G)
comes from [17, Lemma 5]. Then, the inclusion osc(H) ⊆ osc(H ′) is obvious. If there exists
e′ ∈ osc(H ′) \ osc(H), then there exists an edge πe(u)πe(v) in πe(Ee′) with πe(u) ∈ V (H ′) and
πe(v) /∈ V (H ′). Then πe(u)πe(v) comes from an edge uv of G belonging to Ee′ . Since e′ /∈ osc(H)
and the vertex v does not belong to H, the vertex u also does not belong to H. This implies
that there exists an edge uw of Ee with w ∈ V (H). If Ee and H contain an edge u′w′ and say
d(u, u′) < d(w, u′), then u ∈ I(w, u′), which contradicts the convexity of H. Thus Ee and H
osculate, a contradiction. This establishes the equality osc(πe(H)) = osc(H). □

Lemma 7. Let G be a partial cube and H a gated subgraph of G. If D ⊆ cross(H) is shattered by
G, then D is shattered by H.

Proof. Pick any Θ-class Ee with e ∈ D and let v be any vertex of G. If v belongs to the halfspace
G−

e of G, then the gate v′ of v in H also belongs to G−
e . Indeed, since Ee crosses H, there exists a

vertex w ∈ G−
e ∩H. Then v′ ∈ I(v, w) ⊂ G−

e by convexity of G−
e and because v′ is the gate of v in

H. Analogously, if v ∈ G+
e , then v′ ∈ G+

e .
Since G shatters D, for any sign vector X ∈ {−,+}D = {−1,+1}D, there exists a vertex vX of

G, whose restriction to D coincides with X. This means that for any e ∈ D, the vertex vX belongs
to the halfspace GXe

e . Since the gate v′X of vX in H also belongs to GXe
e , the restriction of v′X to

D also coincides with X. This implies that H also shatters D. □

The next lemma shows that the sets shattered by an OM M are exactly the independent sets of
the underlying matroid M, i.e., the sets not containing supports of circuits of M.

Lemma 8. Let M = (U,L) be an OM and D be a subset of U . Then D is shattered by M if and
only if D is independent in the underlying matroid M.

Proof. By definition D is shattered by M if and only if D is shattered by G(M). This is equivalent
to πU\D(G(M)) = QU\D. But since we have πU\D(G(M)) = G(M|D) this means L(M|D) =

{±1, 0}D. By Theorem 1 this is equivalent to V(M|D) = {0} and C(M|D) = ∅. Applying Lemma 2
this just means that the support of no circuit of M is contained in D. By definition this means
that D is independent in M. □

An antipode of a vertex v in a partial cube G is a (necessarily unique) vertex −v such that
G = I(v,−v). A partial cube G is antipodal if all its vertices have antipodes. By (Sym), a tope
graph of a COM is the tope graph of an OM if and only if it is antipodal, see [47].

The next lemma can be seen as dual analogue of Lemma 8. It shows that the VC-dimension of
OMs is defined locally at each tope T , by shattering subsets of osc(T ).

Lemma 9. Let M = (U,L) be an OM of rank d with tope graph G(M). For any tope T of M,
osc(T ) contains a subset D of size d shattered by M.

Proof. We proceed by induction on the size of U . If osc(T ) = U , then we are obviously done. Thus
suppose that there exists e /∈ osc(T ). Consider the tope graph G′ = πe(G) of the oriented matroid
M′ = M \ e. Let T ′ = πe(T ). Then osc(T ′) = osc(T ) by Lemma 6. If rank(M′) = d, by the
induction hypothesis the set osc(T ′) contains a subset D of size d shattered by G′. Since G′ is a
pc-minor of G, the set D ⊂ osc(T ′) = osc(T ) is also shattered by G and we are done.

Thus, let rank(M′) < rank(M). If the Θ-class Ee of G crosses the faces F(X) of all cocircuits
X ∈ L, then L is not simple. Therefore, there exists a cocircuit X ∈ L whose face F(X) is not
crossed by Ee. However, since when we contract Ee the rank decreases by 1, the resulting OM M′

coincides with F(X). Indeed, after contraction the rank of F(X) remains the same. Hence, if X
would remain a cocircuit, then the global rank would not decrease. Hence, G′ is the tope graph of
M(X). Since G is an antipodal partial cube and G+

e = F(X), we have G−
e
∼= G+

e . This shows that
G ∼= G+

e □K2
∼= G′□K2. This implies that Ee osculate with {T} in G, contrary to the assumption

e /∈ osc(T ). □
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Next we give a shattering property of COMs. The distance d(A,B) between sets A,B of vertices
of G is min{d(a, b) : a ∈ A, b ∈ B}. The set prB(A) = {a ∈ A : d(a,B) = d(A,B)} is the metric
projection of B on A. For two covectors X,Y ∈ L of a COM M, we denote by pr[X]([Y ]) the

metric projection of [X] on [Y ] in G(M). Since [X] and [Y ] are gated by Lemma 3, pr[X]([Y ])

consists of the gates of vertices of [X] in [Y ], see [28]. Two faces F(X) and F(Y ) of M are parallel
if pr[X]([Y ]) = [Y ] and pr[Y ]([X]) = [X]. A gallery between two parallel faces F(X) and F(Y ) of M
is a sequence of faces (F(X) = F(X0),F(X1), . . . ,F(Xk−1),F(Xk) = F(Y )) such that either k = 0
(i.e., F(X) = F(Y )) or any two faces of this sequence are parallel and any two consecutive faces
F(Xi−1),F(Xi) are facets of a common face of L. A geodesic gallery between F(X) and F(Y ) is a
gallery of length |Sep(X,Y )|. Two parallel faces F(X),F(Y ) are adjacent if |Sep(X,Y )| = 1, i.e.,
F(X) and F(Y ) are opposite facets of a face of L. See Figure 3 and recall the following result:

F(X ′1)

F(Y )F(X)

F(X ′2) F(Y ′)
= F(Y ◦X)
= F(X ′k)

F(X ′)
= F(X ◦ Y )
= F(X ′0)

F(X ′k−1)

Figure 3. Illustration of Lemmas 10 and 11.

Lemma 10. [19, Proposition 8] Let M = (U,L) be a COM and X,Y ∈ L (not necessarily
distinct). Then:

(i) d([X], [Y ]) = |Sep(X,Y )| and the gates of [Y ] in [X] are the vertices of [X ◦ Y ] ⊆ [X];
(ii) F(X) and F(Y ) are parallel if and only if X = Y . If F(X) and F(Y ) are parallel, then they

are connected by a geodesic gallery;
(iii) pr[Y ]([X]) = [X ◦ Y ], pr[X]([Y ]) = [Y ◦X], and F(X ◦ Y ) and F(Y ◦X) are parallel.

A covector X ∈ L of a COM M = (U,L) maximally shatters a set D ⊆ U if [X] shatters D but
[X] does not shatter any superset of D. We also say that X ∈ L locally maximally shatters a set
D if [X] shatters D but D is not shattered by [X ′] for any covector X ′ > X.

Lemma 11. Let M = (U,L) be a COM and X,Y ∈ L (not necessarily distinct). Then:

(i) if [X] and [Y ] shatter D, then the projections [X ◦ Y ] and [Y ◦X] also shatter D;
(ii) if X ̸= ±Y and [X] maximally shatters D and [Y ] shatters D, then [X ◦Y ] = [X] and F(X)

is not a facet of M;
(iii) if both [X] and [Y ] shatter D, then there exist covectors X ′ ≥ X,Y ′ ≥ Y such that [X ′]

and [Y ′] both maximally shatter D, and F(X ′) and F(Y ′) are parallel. In particular, if [X]
shatters D, then there exists a covector X ′ ≥ X such that [X ′] maximally shatters D.

Proof. Property (i): Since [X] and [Y ] shatter D, for any sign vector Z ∈ {±1}D we can find
two topes T ′ ∈ [X] and T ′′ ∈ [Y ], such that T ′

|D = Z = T ′′
|D. Since X ≤ T ′ and Y ≤ T ′′, from

T ′
|D = Z = T ′′

|D we conclude that (X ◦ Y )|D < Z and in [X ◦ Y ] we can find a tope T whose

restriction to D coincides with Z. This proves that [X ◦ Y ] shatters D, establishing (i).
Property (ii): If [X] maximally shatters D, then VC-dim(X) = |D| =: d. By property (i),

[X ◦ Y ] also shatters D. If F(X ◦ Y ) is a proper face of F(X), then we obtain a contradiction
with Lemma 5 applied to the OM M(X). Thus F(X ◦ Y ) = F(X), showing that X = X ◦ Y .
This establishes the first assertion. By Lemma 10, the faces F(X) and F(Y ◦X) are parallel and
therefore are connected by a geodesic gallery (F(X) = F(X0),F(X1), . . . ,F(Xk) = F(Y ◦X)). Then
either k = 0 and F(X) = F(Y ◦X) holds or F(X) and F(X1) are facets of a common face of L. In
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the first case, since X ̸= ±Y , we conclude that F(X) is a proper face of F(Y ), and thus is not a
facet of M. In the second case, F(X) is not a facet of M either. This proves (ii).

Property (iii): Let d = |D|. We can suppose that both X and Y locally maximally shatter
the set D. Indeed, if D is shattered by a proper face F(X ′) of F(X), then we can replace the pair
X,Y by the pair X ′, Y so that [X ′] and [Y ] still shatter D. Thus D is not shattered by any proper
faces of F(X) and F(Y ). Since by (i), D is shattered by [X ◦ Y ] and [Y ◦ X], we conclude that
X = X ◦ Y and Y = Y ◦X and thus the faces F(X) and F(Y ) are parallel.

It remains to show that [X] and [Y ] maximally shatter D. Suppose by way of contradiction that
[X] shatters a larger set D′ := D ∪ {e}. Consider the OM M′ = M(X) \ (U \D′). Note that M′

maximally shatters D′, i.e., VC-dim(M′) = d + 1. Since [X] shatters D′, the covectors of M′ are

{±1, 0}D′
. Let X ′′ be a cocircuit of M′ with X ′ = {e}. By Lemma 5 applied to M′, we conclude

that X ′′ has VC-dimension d. Hence, X ′′ must shatter the set D. By Lemma 1, there is a cocircuit
X ′ of F(X) such that X ′′ = X ′ \ (U \D′). Since X ′′ shatters D, X ′ also shatters D. Since X < X ′,
this contradicts our assumption that X locally maximally shatters D. The second assertion follows
by applying the first assertion with Y = X. This establishes (iii). □

3.2. Realizable and full samples as convex subgraphs. Let M = (U,L), where L ⊂ {±1, 0}U
is a system of sign vectors whose topes T induce an isometric subgraph G of Q(U). We denote by
Samp(M) = Samp(L) =

⋃
X∈L{S ∈ {±1, 0}U : S ≤ X} the set of realizable samples for M (this

is called the polar complex in neural codes [46]). Since for any X ∈ L there exists T ∈ T such that
X ≤ T , we have Samp(M) = Samp(T ), see Figure 4.

(++−) (+−−) (+−+) (−+−) (−−−) (−−+)

(++ 0) (+0−) (0 +−) (+− 0) (0−−) (+0+) (−+ 0) (0−+) (−0−) (−− 0) (−0+)

(+00) (0 + 0) (00−) (0− 0) (00+) (−00)

(000)

1

3

2

(+ − −)

(+ − +)(− − −)

(− − +)

H (+ + −)

(− + −)

Figure 4. Left: the tope graphG of the pc-restrictionM of the COM from Figure 1
to {1, 2, 3} and a convex subgraph H of G. Right: the realizable samples of M and
the interval I(H) (in orange).

Extending the notation for covectors and their faces, for a sample S ∈ Samp(M) we set F(S) =
{X ∈ L : S ≤ X} and let [S] be the subgraph of G induced by all topes T ∈ L from F(S). For
OMs, the set F(S) is called a supertope in [45]. For COMs, F(S) is called the fiber of S and it is
known that they are COMs [4]. Since for any S ∈ Samp(M) there exists T ∈ T such that S ≤ T ,
[S] ̸= ∅. Moreover, [S] is the intersection of halfspaces of G of the form G+

e if Se = +1 and G−
e if

Se = −1. Hence, [S] is a nonempty convex subgraph of G for all S ∈ Samp(M).
Any convex subgraphH of a partial cube G is the intersection of all halfspaces of G containingH.

Similarly to the fact that any polytope P in Euclidean space is the intersection of the halfspaces
defined by its facet-defining hyperplanes, any convex set H in a partial cube is the intersection
of the halfspaces defined by the Θ-classes in osc(H). Both for P and for H, this is a minimal
representation as the intersection of halfspaces. However, H can be represented in different ways
as the intersection of halfspaces. Indeed, any representation of H as an intersection of halfspaces of
G yields a realizable sample S, where Se = ±1 if G±

e participates in the representation and Se = 0
otherwise. Notice that the Θ-classes osculating with H have to be part of every representation of
H and the Θ-classes crossing H take part in no representation of H. This leads to two canonical
representations of H, one using only the halfspaces whose Θ-class osculates with H and one using
all halfspaces containing H:
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(S⊥)e =


−1 if e ∈ osc(H) and H ⊆ G−

e ,

+1 if e ∈ osc(H) and H ⊆ G+
e ,

0 otherwise.

and (S⊤)e =


−1 if H ⊆ G−

e ,

+1 if H ⊆ G+
e ,

0 otherwise.

Note that (S⊤)0 = cross(H) and (S⊥)
0 = U \ osc(H), i.e., (S⊥)

0 consists of all e such that Ee

crosses or is disjoint fromH. If S is a sample arising from the representation ofH as the intersection
of halfspaces, then S⊥ ≤ S ≤ S⊤. Moreover, any sample S from the order interval I(H) := [S⊥, S

⊤]
arises from a representation of H, i.e., [S] = [S⊥] = [S⊤] = H. Thus, for any convex subgraph H of
G the set of all S ∈ Samp(M) such that [S] = H is an interval I(H) = [S⊥, S

⊤] of (Samp(M),≤).
Note that the intervals I(H) partition Samp(M). See Figure 4 for an illustration of the above.
Moreover:

Lemma 12. If S, S′ ∈ Samp(L) and S ≤ S′, then [S′] ⊆ [S].

Definition 4 (Full samples). We say that a realizable sample S ∈ Samp(M) is full if the pc-
minor G′ = πS0(G(M)) obtained from G(M) by contracting the Θ-classes of S0 has VC-dimension
d = VC-dim(M). Let Sampf (M) denote the set of all full samples of M.

Note that all topes of M are full samples since their zero set is empty. A convex subgraph H of
G is full if the sample S⊥ is full, where recall I(H) = [S⊥, S

⊤]. The image of H in G′ (obtained
from G by contracting the Θ-classes of (S⊥)

0 = U \ osc(H)) is a single vertex vH and its degree
is |osc(H)|. If D ⊂ osc(vH) = osc(H) of size d is shattered by G′, since G′ is a pc-minor of G, D
is also shattered by G. Hence, a convex set H of G is full if and only if G shatters a subset D of
osc(H) of size d = VC-dim(G). Since for any S ∈ I(H) we have (S⊤)0 ⊆ S0 ⊆ (S⊥)

0, if H is a full
convex subgraph of a COM, then all samples in I(H) are full. However, if S is a full sample and
H = [S], then not necessarily all samples from I(H) are full:

Example 1. Let M = (U,L) be the COM with VC-dim(M) = 2 defined on U = {1, 2, 3, 4, 5} and
whose tope graph consists of one edge on each of whose ends there is a pending 4-cycle. Formally, M
has (−,−,−,−,−), (+,−,−,−,−), (−,+,−,−,−), (+,+,−,−,−), (+,+,+,−,−), (+,+,+,+,−),
(+,+,+,−,+), (+,+,+,+,+) as topes. The two 4-cycles are the convex sets H1 = [S1] and
H2 = [S2] defined by the samples S1 = (0, 0,−,−,−) and S2 = (+,+,+, 0, 0), while the middle
edge is the convex set H3 = [S3] where S3 = (+,+, 0,−,−). Consider the samples S⊥ and S⊤

for the convex set H1: S⊥ = (0, 0,−, 0, 0) and S⊤ = (0, 0,−,−,−) = S1. Notice that the sample
S1 = S⊤ is full since contracting S0

1 = {1, 2} does not affect the other 4-cycle H2. However, the
convex set H1 = [S1] is not full because the sample S⊥ is not full: contracting (S⊥)

0 = {1, 2, 4, 5},
both 4-cycles will be contracted, thus the VC-dimension will decrease. Morally, being full is a local
property in a COM.

We show next, that this problem does not arise in OMs.

Lemma 13. Let M = (U,L) be an OM of rank d and let G = G(M) be its tope graph. A sample
S ∈ Samp(M) is full if and only if the convex subgraph [S] is full.

Proof. First notice that since in OMs the rank and the VC-dimension are equal, a sample S is full
if and only if rank(M \ S0) = d. Let S be a full sample, H = [S], and recall that (S⊥)

0 equals
cross(H) plus the Θ-classes not osculating with H. We have to show that M\ (S⊥)

0 has rank d.
First, let M′ = M\ cross(H) and let G′ = πcross(H)(G) be its tope graph. Since cross(H) ⊆ S0 and
S is full, rank(M′) = d and hence VC-dim(G′) = d. The image of H in G′ is a single vertex vH . By
Lemma 6, osc(vH) = osc(H). By Lemma 9, osc(vH) contains a subset of size d shattered by M′.
Since osc(vH)∩ (S⊥)

0 = ∅ we conclude that H is full. Conversely, if H = [S] is a convex subgraph
of G that is full, then from the discussion preceding Example 1 we deduce that all samples from
I(H) (and in particular, S) are full. □
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3.3. The samples Ŝ and ̂̂S . For a covector X ∈ L of a COM M = (U,L), let Samp(F(X))
denote the samples of OM (U,F(X)), i.e., Samp(F(X)) =

⋃
Y ∈F(X){S ∈ {±1, 0}U : S ≤ Y }.

Clearly Samp(F(X)) ⊆ Samp(L). We also denote by Samp(M(X)) the samples of the simple

OM M(X) = (U \ X,F (X) \ X), i.e., Samp(M(X)) =
⋃

Y ∈F(X)\X{S ∈ {±1, 0}U\X : S ≤ Y }.
Finally, denote by Sampf (F(X)) the set of full samples from Samp(F(X)) and by Sampf (M(X))
the set of full samples from Samp(M(X)).

As we noticed already, F (X) is an OM, however it is not simple. Since all covectors from
F (X) have the values as X on the coordinates of X, from the definition of M(X) we conclude
that F (X) = (F (X) \ X) × X|X . This establishes a one-to-one correspondence φX between the
covectors of F (X) and the covectors of M(X) and between the topes of F(X) and the topes of
M(X). Recall that by Lemma 4 the tope graph [X] of F (X) is isomorphic to the tope graph
G(M(X)) of M(X). Therefore, [X] and G(M(X)) have the same sets of convex subgraphs. This
one-to-one correspondence φX also shows that any S ∈ Samp(F(X)) has the form S = S′ × S′′,
where S′ ∈ Samp(M(X)) and S′′ ∈ {±1, 0}X such that S′′ ≤ X|X .

The following samples Ŝ and ̂̂S will be important in what follows:

Definition 5 (Ŝ and ̂̂S ). For a sample S ∈ Samp(L) and a covector X ∈ L, set Ŝ := X ◦ S and̂̂S := Ŝ \X = S \X, where it will usually be clear which covector X ∈ L we are referring to.

From the definition it immediately follows that Ŝ and ̂̂S have the same zero sets: Ŝ0 = ̂̂S 0
. We

continue with the following properties of Ŝ and ̂̂S :

Lemma 14. Let X ∈ L, S ∈ Samp(M), and Sep(X,S) = ∅. Then Ŝ ∈ Samp(F(X)), ̂̂S ∈
Samp(M(X)), the convex subgraphs [Ŝ] of [X] and [ ̂̂S ] of G(M(X)) are U -isomorphic, and [Ŝ] =
[X] ∩ [S] ̸= ∅.

Proof. Since S ∈ Samp(M), there exists Y ∈ L such that S ≤ Y . Then Ŝ = X ◦S ≤ X ◦Y . Since

X◦Y ∈ F(X), we getX◦S ∈ Samp(F(X)). Since (X◦Y )\X ∈ M(X) and ̂̂S = Ŝ\X ≤ (X◦Y )\X,

we also deduce that ̂̂S ∈ Samp(M(X)). From the definition of the convex subgraphs [Ŝ] and [ ̂̂S ]
and the way how the bijection φX between the topes of [X] and the topes of G(M(X)) is defined,

we conclude that the convex subgraphs [ ̂̂S ] and [Ŝ] are U -isomorphic.

Now, we prove that [Ŝ] = [X] ∩ [S] ̸= ∅. Since Ŝ = X ◦ S, we have X ≤ Ŝ and by Lemma

12 we have [Ŝ] ⊆ [X]. Now we prove that [Ŝ] ⊆ [S]. Indeed, otherwise there exists a tope T of

L such that T ∈ [Ŝ] \ [S]. This implies that Ŝ ≤ T and there exists an element e ∈ U such that

Te ̸= Se ̸= 0. If Xe = 0, then Ŝe = (X ◦ S)e = Se ̸= 0. Since Ŝ ≤ T this implies that Se = Ŝe = Te,

a contradiction with the choice of e. Otherwise, if Xe ̸= 0, then Ŝe = (X ◦ S)e = Xe. This implies
that Te = Xe, which is impossible because Te ̸= Se ̸= 0 and we have Sep(X,S) = ∅. This proves

that [Ŝ] ⊆ [X] ∩ [S]. Consequently, [X] ∩ [S] ̸= ∅. To prove the converse inclusion [X] ∩ [S] ⊆ [Ŝ]

pick any tope T of L belonging to [X] ∩ [S]. Then X ≤ T and S ≤ T and thus Ŝ = X ◦ S ≤ T .

This implies that T ∈ [Ŝ] and we are done. □

Lemma 15. Let X ∈ L, S ∈ Samp(M), and Sep(X,S) = ∅. Then:

(i) osc([ ̂̂S ]) = osc([Ŝ]) = osc([S]) ∩ X0, where osc([Ŝ]) is considered in [X] and osc([ ̂̂S ]) in
G(M(X));

(ii) ̂̂S 0
= Ŝ0 = S0 ∩X0.

Proof. To prove (i), first notice that since [ ̂̂S ] and [Ŝ] are U -isomorphic by Lemma 14 and [X] and

G(M(X)) are U -isomorphic by Lemma 4, we obtain that osc([ ̂̂S ]) = osc([Ŝ]).

Now we show that osc([Ŝ]) ⊆ osc([S]) ∩ X0. Pick any e ∈ osc([Ŝ]). Since [Ŝ] ⊆ [X] and [X]
is isomorphic to G(M(X)) by Lemma 4, the Θ-class Ee necessarily crosses [X], whence e ∈ X0.
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Since e ∈ osc([Ŝ]), either e ∈ osc([S]) and we are done, or e ∈ cross([S]). Suppose by way of
contradiction that e ∈ cross([S]). Then there exist two edges T1T2 and T ′

1T
′
2 of Ee such that

T1 ∈ [Ŝ] and T2 ∈ [X] \ [Ŝ] and T ′
1, T

′
2 ∈ [S]. But then T2 belongs to the interval either between

T1 and T ′
2 or between T1 and T ′

1, contradicting the convexity of [S]. This proves that e ∈ osc([S]),

establishing the inclusion osc([Ŝ]) ⊆ osc([S]) ∩X0.
Conversely, pick any e ∈ osc([S]) ∩ X0. Then there exist two edges T1T2 and T ′

1T
′
2 of Ee,

such that T1, T2 ∈ [X] and T ′
1 ∈ [S], T ′

2 /∈ [S]. Since X ∈ L, [X] is gated. Denote by T ′′
1

and T ′′
2 the gates of respectively T ′

1 and T ′
2 in [X]: T ′′

1 = X ◦ T ′
1 and T ′′

2 = X ◦ T ′
2. Since T ′

1

and T ′
2 are adjacent, the topes T ′′

1 and T ′′
2 are either adjacent or coincide. Furthermore, since

T ′′
1 belongs to the interval I(T ′

1, T ) between T ′
1 and any T ∈ [S] ∩ [X] ̸= ∅, the convexity of

[Ŝ] = [S] ∩ [X] implies that T ′
1 ∈ [Ŝ]. Now, if T ′′

2 = T ′′
1 , since T ′

1 ∈ [S] and T ′
2 /∈ [S], the

convexity of [S] implies that T ′
1 is in the interval I(T ′

2, T
′′
2 ) = I(T ′

2, T
′′
1 ). Since T ′′

2 is in the intervals
I(T ′

2, T1) and I(T ′
2, T2), we conclude that T ′

1 also belongs to the intervals I(T ′
2, T1) and I(T ′

2, T2).
But this is impossible because the edges T ′

1T
′
2 and T1T2 belong to the same Θ-class Ee. This

proves that T ′′
1 and T ′′

2 are different and adjacent. Moreover, T ′′
1 ∈ I(T ′

1, T
′′
2 ) and T ′′

2 ∈ I(T ′
2, T

′′
1 ),

proving that the edge T ′′
1 T

′′
2 also belongs to the Θ-class Ee. Then we also have T ′

1 ∈ I(T ′
2, T

′′
1 )

and T ′
2 ∈ I(T ′

1, T
′′
2 ). Since T ′

1 ∈ [S] and T ′
2 /∈ [S], the convexity of [S] implies that T ′′

2 /∈ [S].

Consequently, T ′′
1 ∈ [S] ∩ [X] = [Ŝ] and T ′′

2 ∈ [X] \ [S] = [X] \ [Ŝ], establishing that e ∈ osc([Ŝ]).

This proves the inclusion osc([S]) ∩X0 ⊆ osc([Ŝ]) and concludes the proof of (i).

To prove (ii), first notice that ̂̂S 0
= Ŝ0 and that Ŝ0 ⊆ S0 ∩X0. To prove the converse inclusion,

pick any e ∈ S0 ∩ X0. Then there exist two edges T1T2 and T ′
1T

′
2 of Ee, such that T1, T2 ∈ [X]

and T ′
1, T

′
2 ∈ [S]. As in previous proof, let T ′′

1 and T ′′
2 be the gates of T ′

1 and T ′
2 in [X]. Then as

above we deduce that T ′′
1 T

′′
2 is an edge of Ee belonging to [X]. If T is a tope of [Ŝ] = [S] ∩ [X]

(such a tope exists by Lemma 14), then T ′′
1 ∈ I(T ′

1, T ) and T ′′
2 ∈ I(T ′

2, T ). Since [S] is convex and

T ′
1, T

′
2 ∈ [S], we conclude that T ′′

1 , T
′′
2 ∈ [S]. Consequently, T ′′

1 T
′′
2 is an edge of [Ŝ], hence e ∈ Ŝ0,

establishing (ii). □

3.4. Lower and upper covectors. Let M = (U,L) be a COM. We define lower and upper
covectors for samples of M. For a sample S ∈ Samp(M) of M consider the tope T ′ = S \ S0

of M′ := M \ S0. Any minimal non-zero covector X ′ of M′ such that T ′ ≥ X ′ is called a lower
covector for S. Since M′ is a COM and T ′ is a tope of M′, lower covectors X ′ for S exist. Any
covector of M such that X \ S0 = X ′ is called an upper covector for S. Again, upper covectors for
S exist because X ′ is the restriction of some covector X of M. Note that if M is an OM, then
the lower and upper covectors are always cocircuits, which we will sometimes call lower and upper
cocircuits for S. For lower covectors this follows by minimality, but for upper covectors this follows
from S being full and is part of Lemma 19.

Recall that we denote by M′(X ′) = M′ \ X ′ the simple OM defined by the face F(X ′) of M′

and by M(X) = M\X the simple OM defined by the face F(X) of M.

Lemma 16. If S ∈ Samp(M), X ′ is a lower covector for S, and X ∈ L is an upper covector for
S such that X \ S0 = X ′, then Sep(S,X) = ∅ and VC-dim(X) ≥ VC-dim(X ′). Furthermore, if
VC-dim(X) = VC-dim(X ′), then ̂̂S is a full sample of M(X).

Proof. Let X ′ be a lower covector for S. Since X ′ = X \ S0 and X ′ ≤ T ′ = S \ S0, for any tope T
of M such that T ′ = T \ S0 (such tope T exists since M is simple), we have S ≤ T and X ≤ T ,
yielding T ∈ [S] ∩ [X]. Thus Sep(S,X) = ∅.

Now we prove that VC-dim(X) ≥ VC-dim(X ′). Let VC-dim(X ′) = d. By Lemma 9, there exists
a setD ⊆ osc([T ′])∩X ′0 of size d shattered byM′(X ′). Since the tope graph ofM′(X ′) is a pc-minor
of G(M), D is shattered by M. Since D ⊆ X ′0 ⊆ X0 and [X] is a gated subgraph of the tope graph
of M, by Lemma 7, D is shattered by M(X). This shows that VC-dim(X) ≥ d = VC-dim(X ′).
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Now suppose that VC-dim(X) = d and we assert that ̂̂S is a full sample of M(X). By Lemma 13
applied to OMM(X), the sample ̂̂S is full if and only if the convex set [ ̂̂S ] is full. Since Sep(S,X) =
∅, by Lemma 15(i), osc([ ̂̂S ]) = osc([S]) ∩X0. Since D ⊆ osc([T ′]) ∩X ′0 and osc([T ′]) = osc([S])
(by Lemma 6), X ′0 ⊆ X0, we deduce that D ⊆ osc([ ̂̂S ]). Consequently, M(X) shatters a set
D ⊆ osc([ ̂̂S ]) of size d, establishing that the convex set [ ̂̂S ] is full in M(X). □

Lemma 17. Let S ∈ Samp(M), X ′ be a lower covector for S, and X ∈ L be an upper covector for

S such that X ′ = X \S0. Then M′(X ′) = M(X)\ ̂̂S 0
= M(X)\ Ŝ0. Consequently, VC-dim(X) ≥

VC-dim(X ′).

Proof. First we prove the following claim:

Claim 1. X ′ ∪ S0 = X ∪ Ŝ0.

Proof. To prove the inclusion X ′ ∪ S0 ⊆ X ∪ Ŝ0 notice that X ′ ⊆ X by the definition of X. If

e ∈ S0 \X, then e ∈ X0. By Lemma 15(ii), e ∈ S0 ∩X0 = Ŝ0, establishing that X ′ ∪S0 ⊆ X ∪ Ŝ0.

To prove the converse inclusion X ∪ Ŝ0 ⊆ X ′ ∪ S0 note that Ŝ0 ⊆ S0. If e ∈ X \ S0, then e ∈ X ′

because X ′ = X \ S0, and we are done. □

Denote by G(M), G(M′), and G(M(X)) the tope graphs of M,M′ = M \ S0, and M(X),

respectively. Denote also by G′ the tope graph of M′(X ′) and by G′′ the tope graph of M(X)\ Ŝ0.

To prove that M′(X ′) = M(X) \ Ŝ0 it suffices to establish that the tope graphs G′ and G′′

coincide. By Lemma 4, [X] is isomorphic to G(M(X)) = πX(G(M)). Furthermore, by the same

lemma, G′′ = G(M(X) \ Ŝ0) = π
Ŝ0(G(M(X)). Consequently, G′′ = π

X∪Ŝ0G(M). Analogously, by

Lemma 4, G′ = G(M′(X ′)) = πX′(G(M′)) and is isomorphic to [X ′]. Since G(M′) = πS0(G(M)),

we conclude that G′ = πS0∪X′(G(M)). By Claim 1, X ′ ∪ S0 = X ∪ Ŝ0. Since the pc-contractions
commute, we obtain that

G′ = πS0∪X′(G(M)) = π
X∪Ŝ0(G(M)) = G′′,

whence M′(X ′) = M(X) \ Ŝ0. Since ̂̂S 0
= Ŝ0, we obtain the equality M′(X ′) = M(X) \ Ŝ0 =

M(X) \ ̂̂S 0
. Since G′ = G′′ is a pc-minor of G(M(X)), also VC-dim(X) ≥ VC-dim(X ′) holds. □

In the following two results we suppose that M = (U,L) is an OM of VC-dimension d.

Lemma 18. For any tope T of M and e ∈ osc([T ]), there exists a cocircuit X of M such that
e ∈ X, X ≤ T , and M(X) has VC-dimension d− 1.

Proof. Since T is a tope and e ∈ osc([T ]), T is incident to an edge of Ee, i.e., there is a tope T ′ of
M such that Sep(T, T ′) = {e}. Let X be a cocircuit of M such that its face F(X) contains T but
not T ′. This cocircuit X exists, otherwise all cocircuits Y of M would have Ye = 0, contradicting
the assumption that M is simple. Now, since M has VC-dimension d, M(X) has VC-dim d−1 by
Lemma 5. Furthermore, as T ∈ [X] and T ′ /∈ [X], we immediately get that X ≤ T and e ∈ X. □

Lemma 19. For any full sample S of M and e ∈ osc([S]), there exists a lower cocircuit X ′ for S
such that e ∈ X ′. For any such X ′, there exists an upper cocircuit X for S. Any such cocircuit X
satisfies that VC-dim(X) = d− 1, e ∈ X, Sep(S,X) = ∅, and ̂̂S is a full sample of M(X).

Proof. Since S is a full sample, M′ = M \ S0 has rank d. Moreover, S \ S0 is a tope T ′ of
M′. By Lemma 6, e ∈ osc([S]) = osc([T ′]) and by Lemma 18 there exists a cocircuit X ′ of
M′ such that e ∈ X ′, X ′ ≤ T ′, and M(X ′) has VC-dim d − 1. Thus X ′ is a lower cocircuit
for S and hence there exists an upper covector X of M such that X ′ = X \ S0. By Lemma 17,
VC-dim(X) ≥ VC-dim(X ′) = d−1. If X was not a cocircuit, then F(X) is a proper face of F(Y ) for
some cocircuit Y ofM. Since in an OM the VC-dimension of any proper face is strictly smaller than
the VC-dimension of the face itself and since M has VC-dimension d, we obtain a contradiction.
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Thus X is a cocircuit of M (and an upper cocircuit for S) and VC-dim(X) = VC-dim(X ′) = d−1.
In particular, e ∈ X. By Lemma 16, Sep(S,X) = ∅ and ̂̂S is a full sample of M(X). □

4. The main result

The goal of this section is to prove the following theorem:

Theorem 3. The set T of topes of a complex of oriented matroids M = (U,L) of VC-dimension
d admits a proper labeled sample compression scheme of size d.

4.1. The main idea. Our labelled sample compression scheme takes any realizable sample S of
a COM M and removes the zero set of S. Consequently, S becomes the tope S \ S0 of the
COM M \ S0 =: M′. Then we consider a face F(X ′) of M′ defined by a minimal covector X ′

of M′ such that S \ S0 ≥ X ′ (i.e., by a lower covector for S). This face defines the simple OM
M′(X ′) = M′ \ X ′. The compressor α(S) is then defined by applying to M′(X ′) and its tope
S \ (S0 ∪X ′) the distinguishing lemma, which allows to distinguish the full samples of an OM M
of rank d by considering their restriction to subsets of size d. It constructs a function fM that
assigns such a subset to each full sample and is used by both compressor and reconstructor. The
localization lemma is used by the reconstructor and designates the set of all potential covectors
whose faces may contain topes T compatible with the initial sample S. These two lemmas are
proved in next two subsections. Compressor and reconstructor are given in the last subsection
and are illustrated by Example 2. The compressor generalizes the compressor for ample classes of
Moran and Warmuth [57]. However, the reconstructor is more involved than that for ample classes.

4.2. The distinguishing lemma. In this subsection, M = (U,L) is an OM of VC-dimension/rank
d. We continue with the definition of the function fM defined on the set Sampf (M) of full samples
of M. Fix a linear order on the ground set U = {1, . . . ,m} of M. For any subset U ′ = U \ A
of U we will consider the restriction of this linear order to U ′. Suppose recursively that we have
already defined the functions fM′ on the set Sampf (M′) of full samples of all proper (i.e., A ̸= ∅)
deletions M′ = (U \ A,L \ A) of M. Let S ∈ Sampf (M) be a full sample of M. If S is not

a tope of M, then we set fM(S) = fM\S0(S \ S0). Otherwise, if S is a tope of M, then we set
fM(S) = {eS , fM(X′)(S \ eS)}, where:

• eS is the smallest element of osc([S]);
• X ′ is the lexicographically minimal lower cocircuit for S in M such that eS ∈ X ′ and
X ′ ≤ S.

Equivalently, fM(S) can be defined recursively by setting fM(S) = {eS , fM′(X′)(S \ (S0 ∪ X ′))},
where M′ = M\ S0 and:

• eS is the smallest element of osc([S \ S0]) = osc([S]);
• X ′ is the lexicographically minimal lower cocircuit for S in M′ such that eS ∈ X ′ and
X ′ ≤ S \ S0.

Remark 2. Here we order sign vectors lexicographically by setting 0 < + < −. This choice is
needed in order to avoid freedom in the definition, but is arbitrary. Indeed, we will prove that
taking any lower cocircuit X ′ for S in M′ such that eS ∈ X ′ and X ′ ≤ S will work.

The equality osc([S]) = osc([S \ S0]) holds by Lemma 6. The cocircuit X ′ exists by Lemma 18.
Since S\(S0∪X ′) is a tope (and thus a full sample) of M′(X ′) and since M′(X ′) has VC-dimension
d− 1 by Lemma 18, by induction hypothesis fM′(X′)(S \ (S0 ∪X ′)) is well-defined. Furthermore,

fM(S) has size d, thus fM is a map from Sampf (M) to
(
U
d

)
.

Now, we define an equivalence relation ∼ on the set Sampf (M) of all full samples of M:
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Definition 6 (Equivalence classes of full samples). Two full samples S, S′ ∈ Sampf (M) are
equivalent (notation S ∼ S′) if fM(S) = fM(S′) and S|fM(S) = S′

|fM(S′) hold. Clearly, ∼ is an

equivalence relation on Sampf (M). Denote by Ω1, . . . ,Ωk the equivalence classes of Sampf (M).

The partition of Sampf (M) into equivalence classes can be also viewed in the following way.

For any set D ⊆ U of size d and any C ∈ {±1, 0}U with C = D, we denote by Ω(C,D) the set of
all S ∈ Sampf (M) such that fM(S) = D and S|fM(S) = C. Then Ω(C,D) is either empty or is
an equivalence class of (Sampf (M),∼).

We continue with the distinguishing lemma, which shows that fM distinguishes samples from
different equivalence classes of ∼ and defines for all samples from the same equivalence class a
nonempty convex set, which later in Definition 7 will be called the realizer and will be used by the
reconstructor.

Lemma 20. Let M = (U,L) be an OM of VC-dimension d. The function fM : Sampf (M) →
(
U
d

)
has the following properties for all S ∈ Sampf (M):

(i) fM(S) ⊆ osc([S]),
(ii) fM(S) is shattered by M,
(iii) for any equivalence class Ωi, i = 1, . . . , k of (Sampf (M),∼),

⋂
S∈Ωi

[S] ̸= ∅.

Proof. Let G := G(M) be the tope graph of M. We proceed by induction on d. If d = 1, then
U = {e} and G is an edge between the topes T1 = (−1) and T2 = (+1), which are the only full
samples of M. Then fM(T1) = fM(T2) = {e} and we obtain a function satisfying the conditions
(i)-(iii). Thus, let d ≥ 2.

Condition (i): By definition of fM(S), the element eS is chosen from osc([S \ S0]) = osc([S]).
Let T ′ = S \ S0. By induction hypothesis, the remaining elements of fM(S) will be chosen from
osc([T ′ \X ′]). Note that T ′′ = T ′ \X ′ = S \ (S0 ∪X ′) is a tope of M′(X ′) and osc([T ′′]) is defined
by the edges of the tope graph of M′(X ′) incident to T ′′. Since this is a subset of edges incident
to T ′ in the tope graph of M′, we conclude that osc([T ′′]) ⊆ osc([T ′]) = osc([S]). This proves that
fM(S) ⊆ osc([S]).

Condition (ii): Suppose that fM(S) is not shattered by M. Define D′ = fM′(X′)(T
′ \X ′), where

M′ = M\ S0, T ′ = S \ S0, and X ′ is any cocircuit of M′ such that eS ∈ X ′ and X ′ ≤ T ′, which
exists by Lemma 19. By the induction hypothesis, D′ is shattered by M′(X ′). By Lemma 19, there
exists a cocircuit X of M such that X \ S0 = X ′ and eS ∈ X ′. Since D′ is shattered by M′(X ′),
we get D′ ⊆ X ′0 ⊆ X0. Since fM(S) = D′ ∪ {eS} is not shattered by M, by Lemma 8 there is a
circuit Y of M such that Y ⊆ {eS} ∪D′ and eS ∈ Y . On the other hand, D′ ⊆ X0 and eS ∈ X,
thus |Y ∩X| = 1. Since X is a cocircuit and Y is a circuit, this contradicts orthogonality of circuits
and cocircuits in OMs, see Theorem 1.

Condition (iii): The case d = 1 was considered above, so let d ≥ 2. Suppose that Ωi = Ω(C,D)
for some C ∈ {±1, 0}U and D = C. Let Q,R be any two full samples of Ω(C,D) and denote
M′ = M\Q0 and M′′ = M\ R0. Thus fM(Q) = fM(R) = D and Q|fM(Q) = R|fM(R) = C. By

definition, fM(Q) = {eQ, fM′(X′
Q)(Q \ (Q0 ∪ X ′

Q))}, where eQ is the smallest element of osc([Q \
Q0]) = osc([Q]) andX ′

Q is a lower cocircuit for Q such that eQ ∈ X ′
Q andX ′

Q ≤ Q\Q0. Analogously,

fM(R) = {eR, fM′′(X′
R)(R\(R0∪X ′

R))}, where eR is the smallest element of osc([R\R0]) = osc([R])

and X ′
R is a lower cocircuit for R such that eR ∈ X ′

R and X ′
R ≤ R \ R0. Since fM(Q) = fM(R),

by the minimality in the choice of the elements eQ and eR, both are the smallest elements of
the respective sets fM(Q) and fM(R). Consequently, eQ = eR =: e and D = {e} ∪ D′, where
fM′(X′

Q)(Q \ (Q0 ∪X ′
Q)) = fM′′(X′

R)(R \ (R0 ∪X ′
R)) =: D′.
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By Lemma 19, there exists an upper cocircuit XQ of M such that XQ \ Q0 = X ′
Q, e ∈ XQ,

and VC-dim(XQ) = d − 1. Analogously, there exists an upper cocircuit XR of M such that
XR \ R0 = X ′

R, e ∈ XR, and VC-dim(XR) = d − 1. Furthermore, by the same Lemma 19 and
by Lemma 14, we have [Q] ∩ [XQ] ̸= ∅ and [R] ∩ [XR] ̸= ∅. Since both faces F(XQ) ∼= M(XQ)
and F(XR) ∼= M(XR) of M shatter the same set D′ ⊆ U , Lemma 11 implies that XQ = XR

or XQ = −XR. Indeed, let XQ ̸= ±XR. Since XQ, XR maximally shatter D′, by Lemma 11(ii)
XQ = XQ ◦ XR and XR = XR ◦ XQ. By Lemma 11(iii) there exists a geodesic gallery between
F(XQ) and F(XR). Since XQ and XR are cocircuits of M, F(XQ) and F(XR) are facets of M.
Therefore F(XQ) and F(XR) must be consecutive in the gallery and the face containing them as
facets must coincide with M. Thus, XQ = ±XR.

But if XQ = −XR holds, since e ∈ XQ∩XR, we have e ∈ Sep(XQ, XR). Since [Q]∩[XQ] ̸= ∅ and

[R]∩ [XR] ̸= ∅, for any two topes T ′ ∈ [Q]∩ [XQ] and T ′′ ∈ [R]∩ [XR] we will have T
′
e = −T ′′

e . Since
e ∈ osc([Q]) ∩ osc([R]), we get Qe = −Re, which contradicts the assumption Q|fM(Q) = R|fM(R).
Hence, XQ = XR. Since the equality XQ = XR holds for any Q,R ∈ Ω(C,D), there exists a
cocircuit X ofM such that for any S ∈ Ω(C,D), we have X\S0 = X ′

S , e ∈ X ′
S , VC-dim(X) = d−1,

and [S] ∩ [X] ̸= ∅.
By the induction hypothesis, the function fM(X) defined on the set Sampf (M(X)) of full

samples of M(X) satisfies the properties (i)-(iii) of the lemma. Let C ′ denote the restriction of
C to D′. Denote by Ω′(C ′, D′) the set of all Q′ ∈ Sampf (M(X)) such that fM(X)(Q

′) = D′ and
Q′

|D′ = C ′. For any Q ∈ Ω(C,D), we have [Q] ∩ [X] ̸= ∅, thus Sep(X,Q) = ∅. By Lemma 14,

[Q̂] = [Q] ∩ [X] ̸= ∅. By the same lemma, ̂̂Q ∈ Samp(M(X)) and [ ̂̂Q ] is U -isomorphic to

[Q̂]. By Lemma 19, ̂̂Q is a full sample of M(X), i.e., ̂̂Q ∈ Sampf (M(X)). We assert that̂̂Q ∈ Ω′(C ′, D′). Recall that X is an upper cocircuit for Q and X ′
Q is a lower cocircuit for Q

such that X \ Q0 = X ′
Q. By Lemma 17, M′(X ′

Q) = M(X) \ Q̂0 = M(X) \ ̂̂Q 0
. This implies

that fM(X)( ̂̂Q ) = fM′(X′
Q)(Q \ (Q0 ∪ X ′

Q)) = D′ and consequently that ̂̂Q |D′ = Q|D′ = C ′. This

establishes the inclusion { ̂̂Q : Q ∈ Ω(C,D)} ⊆ Ω′(C ′, D′). Since Ω(C,D) = Ωi ̸= ∅, the set
Ω′(C ′, D′) is nonempty and thus is an equivalence class of (Sampf (M(X)),∼). By the induction
hypothesis, in G(M(X)) we have

⋂
Q′∈Ω′(C′,D′)[Q

′] ̸= ∅. Denote this intersection by R′(C ′, R′).

Let R(C,R) denotes the (nonempty) set of topes T of G(M) of the form T = T ′×X|X for some
tope T ′ of M(X) belonging to the set R′(C ′, R′). By the one-to-one correspondence φX between
the topes of [X] and the topes of G(M(X)) we conclude that R(C,R) ⊆ [X]. Pick any sample
Q ∈ Ω(C,D). Since ̂̂Q ∈ Ω′(C ′, D′), we get T ′ ∈ R′(C ′, R′) ⊆ [ ̂̂Q ] (recall that [ ̂̂Q ] is considered

in G(M(X))). By the U -isomorphism between the convex subgraphs [Q̂] and [ ̂̂Q ] (Lemma 14),

we deduce that the tope T = T ′ × X|X belongs in G(M) to [Q̂]. Consequently, the inclusion

R(C,R) ⊆ [Q̂] ∩ [X] holds for any Q ∈ Ω(C,D). Since for any Q ∈ Ω(C,D), [Q̂] = [Q] ∩ [X]
by Lemma 14, we conclude that (

⋂
Q∈Ω(C,D)[Q]) ∩ [X] =

⋂
Q∈Ω(C,D)([Q] ∩ [X]) ⊇ R(C,R) ̸= ∅.

Consequently,
⋂

Q∈Ω(C,D)[Q] ̸= ∅. This concludes the proof of property (iii) and of the lemma. □

Definition 7 (Realizers). For an equivalence class Ωi = Ω(C,D) of (Sampf (L),∼), we call the
nonempty intersection R(C,D) =

⋂
S∈Ωi

[S] the realizer of Ω(C,D).

4.3. The localization lemma. The localization lemma designates for any realizable sample S of
a COM M the set of all potential covectors whose faces may contain topes of M which can be used
by the reconstructor.

Let M = (U,L) be a COM of VC-dimension d and let S ∈ Samp(M) be a realizable sample.
Consider the tope T ′ = S \ S0 of the COM M′ := M\ S0 and let X ′ be a minimal covector of M′

such that T ′ ≥ X ′. By Lemma 5, the OM M′(X ′) = M′ \X ′ has VC-dimension ≤ d. Let

HS,X′ := {X ∈ L : X \ S0 = X ′ and VC-dim(M(X)) = VC-dim(M′(X ′))}.
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For a set D ⊆ U , let

HD := {X ∈ L : M(X) maximally shatters D}.

Lemma 21. Let S ∈ Samp(M), X ′ be a minimal covector of M′ = M\ S0 such that S \ S0 =
T ′ ≥ X ′, and let D be a subset of S = U \S0 such that |D| = VC-dim(M′(X ′)) and D is shattered
by M′(X ′). Then ∅ ̸= HS,X′ = HD.

Proof. First, we prove that HS,X′ ⊆ HD. Pick any X ∈ HS,X′ . Since M′(X ′) shatters D and
G(M′(X ′)) is a pc-minor of G(M(X)) because X \ S0 = X ′, M(X) also shatters D. Since
VC-dim(M(X)) = VC-dim(M′(X ′)), M(X) maximally shatters D, yielding X ∈ HD.

Now we prove that the set HS,X′ is nonempty. By Lemma 1 there exists at least one covector
X ∈ L such that X \ S0 = X ′. For the same reason as above, M(X) shatters D. Suppose that
M(X) shatters a superset of D. By Lemma 11(iii), there exists a covector Y > X of M such that
M(Y ) maximally shatters D. Hence, Y \S0 ≥ X \S0 = X ′, but M′(Y \S0) and M′(X ′) have the
same VC-dimension since they both maximally shatter the set D. By Lemma 5, Y \ S0 = X ′ and
hence Y ∈ HS,X′ . This proves that HS,X′ ̸= ∅.

It remains to prove that HD ⊆ HS,X′ . Assume by way of contradiction that there exists Y ∈
HD \ HS,X′ and set Y ′ = Y \ S0. Since Y /∈ HS,X′ and M(Y ) maximally shatters D, we have
X ′ ̸= Y ′. Since M(Y ) maximally shatters D and D ⊆ S, also M′(Y ′) maximally shatters D. In
particular, D ⊆ X ′0 ∩ Y ′0 = (X ′ ◦ Y ′)0. By Lemma 10 the gates of [Y ′] in [X ′] are the topes of
F(X ′ ◦Y ′) ⊆ F(X ′). Thus, [X ′ ◦Y ′] is a gated subgraph of [X ′], and [X ′ ◦Y ′] is crossed by D (since
D ⊆ (X ′ ◦ Y ′)0 = cross([X ′ ◦ Y ′])), and D is shattered by [X ′]. By Lemma 7, the VC-dimension of
M′(X ′ ◦Y ′) is at least |D|, which is the VC-dimension of M′(X ′). Then Lemmas 11(i) and 5 yield
X ′ ◦ Y ′ = X ′. If Sep(X ′, Y ′) = ∅, then F(X ′) = F(X ′ ◦ Y ′) ⊆ F(Y ′). Since F(X ′) is a maximal
face of M′, we get X ′ = Y ′. Otherwise, if Sep(X ′, Y ′) ̸= ∅, then by Lemmas 11(iii) and 10 there
exists a geodesic gallery (F(X ′) = F(X0),F(X1), . . . ,F(Xk) = F(Y ′)) with k > 0 from F(X ′) to
F(Y ′) in M′. By the definition of a gallery, the union of F(X ′) and F(X1) is included in a face
F(Z) ⊋ F(X ′) of M′. Thus, F(X ′) is not a maximal face of M′, contradicting the assumption that
X ′ is a minimal covector of M′. □

4.4. The labeled compression scheme. Now, we describe the compression and the reconstruc-
tion and prove their correctness. The compression map generalizes the compression map for ample
classes of [57]. However, the reconstruction map is much more involved than the reconstruction
map for ample classes, since it uses both the distinguishing and the localization lemma.

Compression. Let M = (U,L) be a COM of VC-dimension d. For a sample S ∈ Samp(M) of
M, consider the tope T ′ = S \ S0 of M′ := M\ S0 and let X ′ be the lexicographically minimal
lower circuit for S, i.e., the lexicographically minimal support-minimal covector of M′ such that
T ′ ≥ X ′. Denote by M′(X ′) = M′ \X ′ the simple OM defined by the face F(X ′) of M′. Define
α(S)e = Se if e ∈ fM′(X′)(T

′) and α(S)e = 0 otherwise. The map α is well-defined since T ′ is a
tope of M′(X ′) and hence the sample T ′ is full in M′. Moreover, by definition we have α(S) ≤ S,
whence α(S) ∈ Samp(M). Finally, by Lemma 5 the OM M′(X ′) has VC-dimension at most d
and thus, by Lemma 20 α(S) has support of size ≤ d.

Reconstruction. To define β, pick any C ∈ {±1, 0}U in the image Im(α) of α and let D := C. Let
X be any covector from HD, i.e., X is a covector of L that maximally shatters D. By Lemma 21,
X exists. Let Ω(C,D) be the set of all full samples Q ∈ Sampf (M(X)) of the OM M(X) such
that fM(X)(Q) = D and Q|fM(X)(Q) = C. Lemma 22 below shows that Ω(C,D) is nonempty. Thus

Ω(C,D) is an equivalence class of (Sampf (M(X)),∼). By Lemma 20(iii), the realizer R(C,D) =⋂
Q∈Ω(C,D)[Q] of Ω(C,D) is a nonempty convex subgraph of G(M(X)). Then, let β(C) be any

tope T̃ of M of the form T̃ = T̃0 ×X|X , where T̃0 is any tope from R(C,D).
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Correctness. We prove that (α, β) defines a proper labeled sample compression scheme, namely,
we show that for all samples S ∈ Samp(M), we have (1) α(S) ≤ S and α(S) has support of
size ≤ d and (2) β(α(S)) is well-defined and β(α(S)) ≥ S. The assertion (1) has been already
established. Let C = α(S) and D = C. To prove that β is well-defined, we have to show that
Ω(C,D) is nonempty. This follows from the following result:

Lemma 22. ̂̂S = Ŝ \X = (X ◦ S) \X belongs to Ω(C,D).

Proof. By Lemma 14, ̂̂S ∈ Samp(M(X)). Since X ∈ HD, by Lemma 21, X satisfies X \S0 = X ′,
where X ′ is the minimal covector of M′ = M\S0 chosen in the definition of α(S). Since X \S0 =

X ′ ≤ T ′ = S \ S0, we have Sep(X,S) = ∅. By Lemma 14 [Ŝ] = [X] ∩ [S] is a nonempty convex

subgraph of [X] and [ ̂̂S ] is U -isomorphic to [Ŝ]. Since X \ Ŝ0 = X ′ and both M(X),M′(X ′) have
the same VC-dimension |D|, ̂̂S is a full sample of M(X) by the last assertion of Lemma 16.

By Lemma 17, M′(X ′) = M(X) \ Ŝ0 = M(X) \ ̂̂S 0
. By definition of α and fM(X), we have

α(S) = D = fM′(X′)(S) = fM(X)( ̂̂S ). It remains to show that ̂̂S |D = C|D. Pick any e ∈ D. Since

Ce ̸= 0 and C = α(S) ≤ S, we get Se = Ce. Since D ⊆ X0 and ̂̂S = (X ◦ S) \X, we conclude that̂̂S e = Ce, establishing the equality ̂̂S |D = C|D. This shows that ̂̂S indeed belongs to Ω(C,D). □

It remains to prove that β(α(S)) ≥ S. Since Lemma 14 implies [Ŝ] = [X] ∩ [S], we conclude

that Sep(X,S) = ∅ and consequently that Ŝ = X ◦ S ≥ S holds. By definition, β(α(S)) = β(C)

is any tope of the form T̃ = T̃0 ×X|X for a tope T̃0 of M(X) belonging to the realizer R(C,D) =⋂
Q∈Ω(C,D)[Q]. Since by Lemma 22, the sample ̂̂S belongs to Ω(C,D), the realizer R(C,D) is

included in [ ̂̂S ]. Consequently, T̃0 ≥ ̂̂S . Since Ŝ = ̂̂S × X|X and T̃ = T̃0 × X|X , we deduce that

T̃ ≥ Ŝ. Since Ŝ ≥ S, we obtain β(α(S)) = T̃ ≥ S. This concludes the proof of Theorem 3, the
main result of the paper.

Remark 3. Note that by Lemma 22 any tope T ≥ Ŝ or any tope of the form T̃ = T̃0 × X|X

for a tope T̃0 ≥ ̂̂S would be feasible. However, S and henceforth Ŝ and ̂̂S are not known to the
reconstructor. Thus, we have to rely on the realizer R(C,D) ⊆ [ ̂̂S ].

We conclude this section with two examples illustrating our compression scheme:

Example 2. Consider the tope graph G of a COM M of VC-dimension 3 and a realizable sample
S = (+ + −0 − 0 + 0) in Figure 5. [S] is induced by 7 topes drawn as white vertices of G.
Contracting the 3 dashed Θ-classes corresponding to {4, 6, 8} = S0, yields the tope graph G′ of
M′ = M \ S0. Then T ′ = S \ S0 = (+ + − − +). The compressor picks X ′ = (0 + − − +),
the lexicographically minimal lower circuit for S; X ′ corresponds to the thick red edge in G′,
and in covector representation M′(X ′) = ({1}, {(0), (+), (−)}). The compressor returns α(S) =
(+0000000) and D = {1}. The reconstructor receives C = (+0000000) = α(S), defines D = C =
{1} and constructs the set HD. There are six covectors of M belonging to HD corresponding to
the thick red edges in G. By the localization lemma, they are the covectors which have the same
VC-dimension as X ′ and agree with X ′ on {1, 2, 3, 5, 7} = S. The reconstructor picks an arbitrary
covector from HD, say X = (0+−−−−+−). The OM M(X) is composed of the covectors X and
the ends T1 and T2 of the corresponding red edge. Then, we get Ω(C,D) = {T1} and its realizer is
R(C,D) = [T1]. Thus, β(α(S)) is set to T1, which is a white vertex of G.

The previous example might suggest that indeed fM(S) = fM(S′) and S|fM(S) = S′
|fM(S′)

together imply [S] = [S′]. However, the next example shows that [S] and [S′] might not even be
contained in each other.

Example 3. Let M be the COM whose tope graph consists of a 4-cycle C with two edges pending
on the same vertex T . Let 1, 2 be the Θ-classes of C and 3, 4 the Θ-classes of the other two edges.
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(+ − − − +)

(+ + − + +)

(− + − − +) (− + + − +)

(+ + − − −)

(+ − − + + − ++)

(+ − − − + − ++)

(+ − − − − − ++)

(+ + − − − − ++)

(+ + − + − − ++)

(+ + − + + − ++)

(+ + − + − − −+)

(+ + − + − + −+)

(+ + − + − + −−)

(+ + − + − + ++)

(+ + − + − + +−)

(+ + − − − + ++)

T1 = (+ + − − − − +−)

(− + − − − − ++)

T2 = (− + − − − − +−)

(− + − + − − +−)

(− + − − − + ++)

(− + − + − + ++)

(− + − + − + +−) (− + + + − + +−)

(− + + − − + +−)(− + − − − + +−)

(+ + − + − − +−)

X′ = (0 + − − +)

T ′ = (+ + − − +)

(+ − − + +)

X = (0 + − − − − +−)

(+ + − + +)

G

G′

Figure 5. An illustration of Example 2.

Each of the two pending edges corresponds to a full sample S = (+ + +0) and S′ = (+ + 0+)
respectively. It is easy to see that fM(S) = fM(S′) = {1, 2} and S|fM(S) = S′

|fM(S′) = (++) but

[S]∩ [S′] = {T}. Further note that the tope graph of M can be easily embedded into a tope graph
of a uniform OM M′ of rank 3 in which C is a cocircuit, the samples S, S′ encode the two pending
edges (with possibly larger support) and still fM′(S) = fM′(S′) and S|fM′ (S) = S′

|fM′ (S′) while

[S] ∩ [S′] = {T} is a proper subset of both [S] and [S′].

5. Conclusion

We have presented proper labeled compression schemes of size d for COMs of VC-dimension d.
This is a generalization of the results of [57] for ample set systems, of [7] for affine arrangements
of hyperplanes, and of our result [19] for complexes of uniform oriented matroids. Even though
we made strong use of the structure of COMs, it is tempting to extend our approach to other
classes, e.g., bouquets of oriented matroids [22], strong elimination systems [4], or CW left-regular-
bands [54]. Our treatment of realizable samples as convex subgraphs suggests an angle at general
partial cubes.

Our results together with the approach of [18, 19] suggest a new approach at improper labeled
compression schemes of COMs. For this one needs to answer the question: Is it possible to extend
a given set system or a partial cube to a COM without increasing the VC-dimension too much?

In unlabeled sample compression schemes, the compressor α is less expressive since its image
is in 2U and has to satisfy α(S) ⊆ S. Unlabeled compression schemes exist for realizable affine
oriented matroids [7] and ample set systems with corner peelings [11, 49]. Recently, Marc [53]
designed unlabeled sample compression schemes for OMs. His construction uses Oriented Matroid
Programming and Lemma 20. Moreover, he shows there are unlabeled compression schemes for
COMs with corner peelings – a recent notion introduced in [48].
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