Examen – Calculabilité avancée (SINB40A)

Durée : 2 heures (Barème indicatif)

Documents: non autorisés

Exercice 1. *Réductions (11 points)*

Soit $L_{\forall \downarrow} = \{ \langle M \rangle \mid \forall w : M(w) \downarrow \}$ l'ensemble des codes de machines de Turing qui s'arrêtent sur toutes les entrées,

et soit $L_* = \{\langle M \rangle \mid L(M) = \Sigma^*\}$ l'ensemble des codes de machines de Turing qui acceptent tous les mots.

- 1. Appliquer le théorème de Rice pour montrer que L_* n'est pas un langage décidable.
- **2.** Est-ce que $L_{\forall \downarrow} \subseteq L_*$? Est-ce que $L_* \subseteq L_{\forall \downarrow}$? Justifier.
- 3. Proposer une transformation calculable pour la réduction $L_{\forall \downarrow} \leq_m^T L_*$ (sans justification).
- **4.** Proposer une transformation calculable pour la réduction $L_* \leq_m^T L_{\forall \downarrow}$ (sans justification).

Soit $L_{\downarrow} = \{(\langle M \rangle, w) \mid M(w) \downarrow \}$ l'ensemble des couples composés d'un code de machine de Turing et d'une entrée tels que la machine s'arrête sur cette entrée,

et soit $L_{\uparrow} = \{(\langle M \rangle, w) \mid M(w) \uparrow\}$ l'ensemble des couples composés d'un code de machine de Turing et d'une entrée tels que la machine ne s'arrête pas sur cette entrée.

Rappel : L_{\downarrow} est semi-décidable, mais pas décidable.

- 5. En supposant que L_{\uparrow} et L_{\downarrow} sont complémentaires (ce qui est presque exact), que peut-on en déduire (à partir du rappel) sur la décidabilité et la semi-décidabilité de L_{\uparrow} ?
- **6.** Montrer que $L_{\downarrow} \leq_m^T L_{\forall \downarrow}$.
- 7. Montrer que $L_{\uparrow} \leq_m^T L_{\forall \downarrow}$.

Indication : utiliser la taille de l'entrée pour tester de plus en plus d'étapes.

Suite au verso 🔿

Exercice 2.

Automate cellulaire élémentaire (3 points)

On s'intéresse dans cet exercice aux automate cellulaire en dimension d=1, avec deux états $Q=\{0,1\}$ et voisinage $\{-1,0,1\}$ (la cellule elle-même et ses deux plus proches voisines).

- 1. Quel est le type de la règle locale d'un tel automate cellulaire? (c'est-à-dire, la règle locale est une fonction de quel ensemble vers quel ensemble?)
- 2. Donner la règle locale de l'automate cellulaire élémentaire 30 (sous la forme d'un tableau).

Un automata cellulaire en dimension d=1 est permutatif-gauche lorsque pour toutes configurations $x,y\in Q^{\mathbb{Z}}$ égales partout sauf en position $i\in\mathbb{Z}$ (c'est-à-dire $x(i)\neq y(i)$, et x(j)=y(j) pour tout $j\in\mathbb{Z}\setminus\{i\}$), on a $F(x)(i+1)\neq F(y)(i+1)$.

3. Montrer que l'automate cellulaire élémentaire 30 est permutatif-gauche.

Exercice 3. λ -calcul (3 points)

<u>Rappel</u>: un λ -terme $t = (\lambda x.t')$ t'' se β -réduit en t'[x := t''], et peut être α -converti en t[x := y].

$$n = \lambda f. \lambda x. (f \dots (f x) \dots)$$

$$\star = \lambda m. \lambda n. \lambda f. (m (n f))$$

- **1.** β -réduire le λ -terme suivant : \star 2 2.
- **2.** Proposer un λ -terme dont la β -réduction ne termine pas.

Exercice 4. Incomplétude (3 points)

On dit qu'un système formel est *décidable* s'il existe un algorithme qui, étant donné un énoncé, décide s'il admet une démonstration ou s'il n'en admet pas.

- **1.** Montrer que si un système formel est *complet* (pour tout énoncé E, soit E soit E est démontrable), alors il est décidable.
- **2.** En déduire que si les énoncés d'un système formel permettent exprimer la notion de calcul et d'arrêt des machines de Turing, alors ce système formel ne peut pas être à la fois complet et *correct* (tout énoncé démontré est vrai).

Indication : utiliser vos connaissances sur le problème de l'arrêt des machines de Turing.