Faculté des Sciences Aix*Marseille Université

Année universitaire 2023/2024

Site : \square Luminy \square St-Charles \square St-Jérôme \square Cht-Gombert \square Aix-Montperrin \square Aubagne-SATIS

Sujet de : \boxtimes 1 er semestre \square 2 ème semestre \square Session 2 Durée de l'épreuve : 2h

Examen de : M2 Nom du diplôme : Master IMD

Code du module : SMACUA4 Libellé du module : Modèles de calcul et systèmes dynamiques

 ${\bf Calculatrices~autoris\acute{e}s:NON} \qquad {\bf Documents~autoris\acute{e}s:OUI}$

Les exercices sont indépendants et peuvent donc être traités dans n'importe quel ordre. On attend des réponses justifiées et aussi formelles que possible.

Exercice 1. (Réseaux d'automates et systèmes dynamiques finis)

Soit f le réseau d'automates booléens déterministe de taille n=3 défini par les fonctions locales :

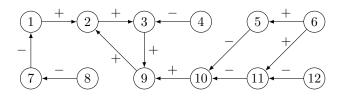
$$f_1(x) = x_1 \wedge x_3$$

$$f_2(x) = \neg x_1 \lor \neg x_2 \lor x_3$$

$$f_3(x) = (x_2 \wedge x_3) \vee (x_2 \wedge \neg x_3)$$

- 1. Donner le graphe d'interaction signé de f.
- 2. Donner une borne supérieure à $|\{x \in \{0,1\}^n \mid f(x) = x\}|$ en appliquant un résultat vu en cours (préciser l'inégalité utilisée).
- 3. Donner la dynamique de f suivant le mode de mise à jour parallèle.
- 4. Dénombrer les points fixes et cycles limites de la dynamique obtenue à la question précédente.
- 5. Donner la dynamique de f suivant le mode de mise à jour déterministe périodique $\mu = (\{1, 2, 3\}, \{2, 3\})$.
- 6. Dénombrer les points fixes et cycles limites de la dynamique obtenue à la question précédente.

Soit g un réseau d'automates booléens déterministe dont on connaît seulement le graphe d'interaction signé G_q :



- 7. Expliquer pour quoi la dynamique de g suivant le mode de mise à jour parallèle a comme attracteurs :
 - soit deux points fixes et deux cycles limites de longueur trois,
 - soit un unique point fixe.

Exercice 2. (Automates cellulaires, pavages et indécidabilité)

Pour cet exercice, on pourra utiliser le fait que le problème suivant est indécidable :

Domino Problem

Entrée : τ un jeu de tuiles de Wang Sortie : Est-ce que τ pave le plan \mathbb{Z}^2 ?

On s'intéresse au problème suivant, donné pour une dimension fixée d:

 $FIXPOINT_d$

Entrée : $\mathcal{A} = (d, \{0, 1\}, N, f)$ un automate cellulaire de dimension d sur l'alphabet $\{0, 1\}$ On appelle G la fonction globale de \mathcal{A}

Sortie : Existe-t-il $c \in \{0,1\}^{\mathbb{Z}^d}$ tel que G(c) = c?

- 1. Montrer que le problème FIXPOINT₂ est indécidable
- 2. En déduire que pour tout $d \ge 2$, FIXPOINT_d est indécidable
- 3. Le problème FIXPOINT2 est-il récursivement énumérable? Co-récursivement énumérable?
- 4. Montrer que le problème FIXPOINT₁ est décidable

Exercice 3. (Automates cellulaires)

- 1. Déterminer si les règles globales suivantes sont des automates cellulaires.
 - (a) $F_1: x \in \{0,1\}^{\mathbb{Z}} \mapsto y \in \{0,1\}^{\mathbb{Z}} \text{ avec } y_n = x_{2n}$
 - (b) $F_2: x \in \{0,1\}^{\mathbb{Z}} \mapsto y \in \{0,1\}^{\mathbb{Z}} \text{ avec } y_n = 1 x_{n+4}$
 - (c) $F_3: x \in \{0,1\}^{\mathbb{Z}} \mapsto \begin{cases} 1^{\mathbb{Z}} \text{ s'il existe } i \neq j \text{ tels que } x_i = x_j = 1 \\ 0^{\mathbb{Z}} \text{ sinon} \end{cases}$

On rappelle que pour une lettre $a, a^{\mathbb{Z}}$ est la configuration telle que $(a^{\mathbb{Z}})_n = a$ pour tout $n \in \mathbb{Z}$.

Un automate cellulaire est *injectif* (rep. surjectif, bijectif) si sa fonction globale est une fonction injective (resp. surjective, bijective). Le but de cet exercice est de lier ces propriétés entre elles, ainsi que celles des fonction restreintes aux configurations finies (G_F) et totalement périodiques (G_P) .

- 3. Les automates cellulaire élémentaires suivants sont-ils injectifs? Surjectifs?
 - (a) 225
 - (b) 142

Soit G un automate cellulaire de dimension d, possédant un état quiescent q.

- 5. Montrer que si G est injective, alors G_P et G_F le sont aussi.
- 6. Montrer que si G_P est surjective, alors G l'est aussi.
- 7. Montrer que si G_F est surjective, alors G l'est aussi.
- 8. Montrer que si G_P est injective, alors elle est surjective, et en déduire le théorème suivant :

Théorème. Un automate cellulaire est bijectif si et seulement si il est injectif.