TD 01 - Cardinalité et machines de Turing

<u>Rappel</u>: soient A et B deux ensembles, une fonction $f:A\to B$ est

- injective ssi $\forall a, a' \in A : f(a) = f(a') \implies a = a'$ (ou la contraposée),
- surjective ssi $\forall b \in B : \exists a \in A : b = f(a)$,
- bijective ssi elle est à la fois injective et surjective.

<u>Utile</u>: Théorème de Cantor-Schröder-Bernstein: soient A et B deux ensembles, si il existe une fonction injective de A vers B (intuitivement $|A| \le |B|$), et une fonction injective de B vers A (intuitivement $|B| \le |A|$), alors il existe une bijection entre A et B (intuitivement |A| = |B|).

Exercice 1.

Ensembles infinis dénombrables

- **1.** Donner cinq éléments de l'ensemble $\mathbb{N} \times \{0, 1, a\}$.
- **2.** Donner une bijection de $\mathbb{N} = \{0, 1, 2, \ldots\}$ dans $2\mathbb{N} = \{0, 2, 4, \ldots\}$.
- **3.** Donner une bijection de $\mathbb{N} = \{0, 1, 2, ...\}$ dans $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$.
- **4.** Donner une bijection de $\mathbb{N} \times \mathbb{N}$ dans \mathbb{N} .
- **5.** En déduire que $|\mathbb{Q}| = |\mathbb{N}|$?
- **6.** Donner un bijection de $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ dans \mathbb{N} .
- 7. Pour un alphabet fini Σ fixé, donner une bijection de Σ^* dans \mathbb{N} .

Exercice 2.

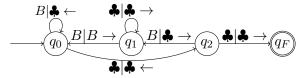
Ensembles infinis indénombrables

- **1.** Donner une bijection de $\mathcal{P}(\mathbb{N})$ (l'ensemble des parties de \mathbb{N}) dans [0,1].
- **2.** Donner une bijection de l'ensemble des langages sur un alphabet fini Σ dans [0,1].
- **3.** Donner une fonction injective de [0,1] dans \mathbb{R} . Donner une fonction injective de \mathbb{R} dans [0,1]. Que dit alors le théorème de Cantor-Schröder-Bernstein?

Définition. Une **machine de Turing** déterministe est définie par $M = (Q, \Gamma, \Sigma, \delta, q_0, B, q_F)$, où :

- Q est un ensemble fini d'états,
- Γ est un **alphabet de ruban** fini,
- $\Sigma \subset \Gamma$ est l'alphabet d'entrée,
- δ: $(Q \setminus \{q_F\}) \times \Gamma \rightarrow Q \times \Gamma \times \{\leftarrow, \rightarrow\}$ est la fonction de transition,
- $q_0 \in Q$ est l'état initial,
- $B \in \Gamma \setminus \Sigma$ est le symbole blanc,
- $q_F \in Q$ est l'état final.

Exemple. $Q = \{q_0, q_1, q_2, q_F\}, \Gamma = \{B, \clubsuit\}, \Sigma = \{\clubsuit\}.$



Calcul sur le mot d'entrée ***:

$B \mid B \mid \clubsuit \mid \clubsuit \mid B \mid B \mid B \mid q_0$	t=0
$B \mid B \mid \clubsuit \mid \clubsuit \mid B \mid B \mid B \mid q_2$	t=1
$B \clubsuit \clubsuit B B G$	t=2
	t=3
	t=4
	t=5
	t=6
	t=7
	t=8
	t=9
	t = 10

Exercice 3.

Soit $M = (Q, \Gamma, \Sigma, \delta, q_0, B, q_F)$ la machine de Turing où

$$-- Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_F\},\,$$

$$\Sigma = \{a, i, l, n, p, s\}, \Gamma = \{a, i, l, n, p, s, B\},$$

 $-\delta$ est donnée par

$$\longrightarrow \underbrace{q_0} \overset{s|s \to}{\underset{l|l \to}{}} \underbrace{q_1} \overset{a|a \to}{\underset{l}{}} \underbrace{q_2} \overset{p|p \to}{\underset{l}{}} \underbrace{q_3} \overset{i|i \to}{\underset{l}{}} \underbrace{q_4} \overset{n|n \to}{\underset{l}{}} \underbrace{q_5} \overset{B|B \to}{\underset{l}{}} \underbrace{q_F}$$

1. Quel est le langage L(M) reconnu par cette machine de Turing, c'est-à-dire l'ensemble des mots de Σ^* pour lesquels la machine atteind son état final?

Exercice 4.

États d'une MT = mémoire finie

Objectif: voir que l'on peut sauvegarder des informations (en quantité finie) dans les états. Soit $M = (Q, \Gamma, \Sigma, \delta, q_0, B, q_F)$ la machine de Turing où

$$-Q = \{q_0, q_a, q_b, q'_a, q'_b, q_F\},$$

$$\Sigma = \{a, b\}, \Gamma = \{a, b, B\}$$

$$\begin{split} & - \Sigma = \{a,b\}, \Gamma = \{a,b,B\}, \\ & - \delta \text{ est donn\'ee par } \quad (q_0,a) \mapsto (q_a,a,\rightarrow) \qquad (q_0,b) \mapsto (q_b,b,\rightarrow) \\ & \qquad (q_a,a) \mapsto (q_a,a,\rightarrow) \qquad (q_b,a) \mapsto (q_b,a,\rightarrow) \\ & \qquad (q_a,b) \mapsto (q_a,b,\rightarrow) \qquad (q_b,b) \mapsto (q_b,b,\rightarrow) \\ & \qquad (q_a,B) \mapsto (q_a',B,\leftarrow) \qquad (q_b,B) \mapsto (q_b',B,\leftarrow) \\ & \qquad (q_a',a) \mapsto (q_F,a,\rightarrow) \qquad (q_b',b) \mapsto (q_F,b,\rightarrow) \end{split}$$

- 1. Dessiner cette machine sous la forme d'un automate.
- **2.** Quel est le langage L(M) reconnu par cette machine de Turing, c'est-à-dire l'ensemble des mots de Σ^* pour lesquels la machine atteind son état final?
- 3. Est-ce que le calul de cette machine de Turing s'arrête à partir de toute entrée dans Σ^* ?

Exercice 5. MT

Pour chacun des langages suivants, donner une machine de Turing déterministe qui le reconnaît, et qui de plus s'arrête sur toute entrée (argumenter brièvement).

1.
$$L = \{wbac \mid w \in \Sigma^*\}$$
 avec $\Sigma = \{a, b, c\}$.

2.
$$L = \{w \in \Sigma^* \mid |w| \equiv 0 \mod 3\} \text{ avec } \Sigma = \{a\}.$$

3.
$$L = \{a^nb^n \mid n \in \mathbb{N}\}$$
 avec $\Sigma = \{a, b\}$.