TD nº 9

Machines de Turing

BIJECTIONS

Exercice 9.1. Soient A et B deux ensembles, une fonction $f: A \to B$ est

- injective ssi $\forall a, a' \in A : f(a) = f(a') \Rightarrow a = a'$ (ou la contraposee),
- surjective ssi $\forall b \in B : \exists a \in A : b = f(a)$,
- bijective ssi elle est à la fois injective et surjective.
- 1. Donner une bijection de \mathbb{N} dans $\mathbb{N} \times \mathbb{N}$, de \mathbb{N} dans $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$, et de Σ^* dans \mathbb{N} .

PROGRAMMER AVEC DES MACHINES DE TURING

Exercice 9.2.

Objectif: voir que l'on peut sauvegarder un symbole (ou plusieurs) dans l'état.

Soit $M = (Q, \Sigma, \Gamma, \delta, q_0, B, q_F)$ la machine de Turing où

- $-Q = \{q_0, q_a, q_b, q_F\},\$
- $\Sigma = \{a, b\}, \Gamma = \{a, b, B\},\$
- $-\delta$ est donnée par

$$\begin{array}{cccc} (q_0,a) \mapsto (q_a,a,R) & (q_0,b) \rightarrow (q_b,b,R) \\ (q_a,a) \mapsto (q_a,a,R) & (q_a,b) \mapsto (q_a,b,R) & (q_b,a) \rightarrow (q_b,a,R) \\ (q_a,B) \mapsto (q_F,a,R) & (q_b,B) \rightarrow (q_F,b,R) \end{array}$$

- 1. Dessiner cette machine sous la forme d'un automate.
- 2. Dans quelle configuraiton est-on à la fin de l'exécution de M sur le mot d'entrée abab?
- 3. Quelle fonction est calculée par cette machine?

Exercice 9.3.

Objectif: voir que l'on peut facilement faire un décalage avec une MT.

Soit $\Sigma = \{a, b\}$, et la fonction $f : \Sigma^* \to \Sigma^*$ définie par

pour tout
$$w \in \Sigma^*$$
 on a $f(w) = aw$

Le but étant de décaler tous les symboles d'une case sur la droite (afin de réutiliser cette machine ensuite).

1. Dessiner l'automate d'une machine qui calcule f.

Exercice 9.4.

Objectif: voir qu'une MT peut utiliser (simuler) une autre MT.

Soit $\Sigma = \{a, b\}$, et la fonction $g : \Sigma^* \to \Sigma^*$ définie par

pour tout
$$w_0w_1...w_{2k} \in \Sigma^*$$
 on a $g(w) = w_0...w_{k-1}aw_k...w_{2k}$

Pour simplifier on supposera que les entrées sont toujours de longueur impaire.

1. Dessiner l'automate d'une machine qui calcule g.

PROPRIETES DE CLOTURE

Exercice 9.5. Démontrer les résultats suivants.

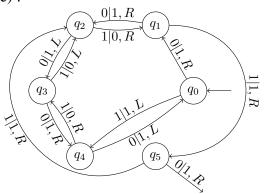
1. la famille des langages récursifs est close par complémentation;

- 2. les familles des langages récursifs et r.e. sont closes par union et intersection ;
- 3. Un langage $L \subseteq \Sigma^*$ est récursif si et seulement si L et $\Sigma^* \setminus L$ sont r.e.

BUSY BEAVER

Exercice 9.6. Considérons des machines de Turing sur l'alphabet binaire $\Gamma = \{1,0\}$ (0 est le symbole blanc) dont la fonction de transition est $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L,R\}$. Le concours du castor affairé consiste à, pour un nombre fixé d'états, trouver la machine de Turing qui, partant d'un ruban vide (que des 0), écrit le plus grand nombre de 1 avant de s'arrêter (c'est bien sûr très important que la machine s'arrête pour compter son score).

- 1. Sauriez-vous obtenir le score 6 dans la catégorie à 3 états ?
- 2. Voici le meilleur candidat connu pour 6 états. Pouvez-vous estimer son score (combien de 1 sont écrits sur le ruban quand elle s'arrête)?



Plus de programmation avec des Machines de Turing

Exercice 9.7.

Objectif : voir que l'on peut encoder plusieurs rubans en un seul (en augmentant l'alphabet). Nous allons définir une machine de Turing qui reconnait le langage

$$L = \{w \in \{a, b\}^* \mid w = w_0 w_1 \dots w_{2k} \text{ pour } k \in \mathbb{N}, \text{ et } w_k = a\}.$$

L'idée est la suivante. On utilise un ruban sur deux lignes :

- la seconde ligne contient w
- sur la première nous utilisons un marqueur $\sqrt{}$ ou le symbole B.

Inialement il n'y a que des B sur le premier ruban, et un mot $u_1u_2...u_j$ sur le second ruban. Nous allons marquer la case u_0 , puis u_j , puis u_j , puis u_{j-1} , puis u_2 , etc, jusqu'à trouver le milieu! Il ne reste alors qu'à dire si c'est bien un symbole a.

- 1. Donner les alphabets d'entrée et de ruban pour cette machine.
- 2. Dessiner l'automate d'une machine qui reconnait ce langage.

Exercice 9.8.

Objectif: voir que l'on peut utiliser d'autres conventions.

- 1. Peut-on calculer exactement les mêmes fonctions / décider exactement les mêmes langages si la tête de lecture est initialement placée sur la case la plus à droite du mot d'entrée ? (Justifier)
- 2. Peut-on calculer les mêmes fonctions / décider les mêmes langages si l'on autorise des transitions pour lesquelles la tête de lecture/écriture ne bouge pas (ni L ni R) ? (Justifier)
- 3. Peut-on calculer les mêmes fonctions / décider les mêmes langages si l'on ajoute la restriction $\Sigma = \{0, 1\}$? Et si en plus $\Gamma = \{0, 1, B\}$? (Justifier)