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“Local-to-Global ?”

Distributed Computing

I Local observations/actions
I Detection of global properties/Performing a global

computation
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“Local-to-Global ?”

Metric Graph Theory

I Graphs defined by metric properties similar to existing
properties of classical metric geometries

I When can we check these properties locally ?
I Similar results exist in geometry: Cartan-Hadamard

theorem
I These classes of graphs appear in other fields:

concurrency theory, learning theory, phylogeny, geometric
group theory
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Metric Graph Theory

I Graphs defined by metric properties similar to existing
properties of classical metric geometries

I When can we check these properties locally ?
I Similar results exist in geometry: Cartan-Hadamard

theorem
I These classes of graphs appear in other fields:

concurrency theory, learning theory, phylogeny, geometric
group theory

A common tool
The notion of coverings is fundamental in both cases
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Graph Exploration
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Graph Exploration

I An agent is moving along the edges of a graph
I Goal: visit all the nodes and stop
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How to navigate in the graph?
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I Anonymous graph
I Port-numbering
I The agent knows its incoming port number
I It has an infinite memory

02/10/2020 Local-to-Global Aspects in Metric Graph Theory and Distributed Computing 5/47



Exploration without information

Exploration of a graph G

Visit every node of G and stop

Question
What graphs can we explore without information?

An algorithm A is an exploration algorithm for a family F
I for every graph G, if A stops, then the agent has visited all

the nodes of G
I for every graph G ∈ F , A visits all nodes of G and stops
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Known Results [Folklore]

If nodes can be marked :

I every graph is explorable by DFS in O(m) moves

If nodes cannot be marked :

I Trees can be explored by DFS in O(n) moves
I Non tree graphs: it is impossible to detect when all nodes

have been visited
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Graph Coverings

Definition
A graph covering is a locally bijective homomorphism
ϕ : G→ H
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Lifting Lemma

Lifting Lemma (from Angluin)

If G is a graph cover of H, then an agent cannot decide if it
starts on v ∈ V (G) or on ϕ(v) ∈ V (H)
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Corollary

If an exploration algorithm A stops in r steps in H, r ≥ |V (G)|
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Explorable graphs without global information

G is explorable
⇐⇒ G has a unique graph cover (itself)
⇐⇒ G has no infinite graph cover
⇐⇒ G is a tree
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Mobile Agent with Binoculars

I the agent sees the subgraph induced by its neighbors

I One can detect triangles
I Graph covering is no longer the good notion
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Clique complexes

Definition
The clique complex X (G) of G is a simplicial complex s.t. the
simplices of X (G) are the cliques of G

G X (G )

G is the 1-skeleton of X (G)
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Coverings of Simplicial Complexes

Definition
A covering is a locally bijective simplicial map ψ : X → X ′

Lifting Lemma

If X (G) is a cover of X (H), then an agent with binoculars
cannot decide if it starts on v ∈ V (G) or on ϕ(v) ∈ V (H)
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Universal covers

Theorem (from Topology)

I Any complex X has a universal cover X̃ such that if Y is a
cover of X then X̃ is a cover of Y

I X̃ = X ⇐⇒ X is simply connected

I X (G) is simply connected if all cycles of G are contractible
I a cycle is contractible if it can be contracted to a point by a

sequence of elementary deformations:
I Pushing across a triangle
I Deleting a pending edge
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Exploration with binoculars: Characterization

Theorem (C., Godard, Naudin ’15)

G is explorable with binoculars ⇐⇒ X̃ (G) is finite
In particular, G is explorable if X (G) is simply connected

I a large family of graphs: chordal graphs, (weakly) bridged
graphs, Helly graphs, cop-win graphs,
triangulations of the (projective) plane, . . .

I a Universal Exploration Algorithm
I No efficient universal exploration algorithm: the exploration

time cannot be bounded by a computable function

What subclasses can be explored efficiently ?

Theorem (C., Godard, Naudin ’17)

Weetman graphs can be explored in linear time

I chordal graphs, (weakly) bridged graphs, Helly graphs
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Local-to-Global
Characterizations of
Classes of Graphs
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Helly Property

Definition
A family F of subsets of a ground set X has the Helly Property
if for any F ′ ⊆ F ,

∀S,S′ ∈ F ′,S ∩ S′ 6= ∅ ⇐⇒
⋂

S∈F ′

S 6= ∅

I Intervals on R

I Axis-parallel boxes in Rd
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Helly, 1-Helly and clique-Helly Graphs

Definitions

I A graph G is (ball-)Helly if its family of balls
{Br (v) | v ∈ V (G), r ∈ N} has the Helly property

I A graph G is 1-Helly if its family of unit balls
{B1(v) | v ∈ V (G)} has the Helly property

I A graph G is clique-Helly if the family of maximal cliques of
G has the Helly property
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Helly, 1-Helly and clique-Helly graphs

Remarks

I Helly =⇒ 1-Helly
I 1-Helly =⇒ clique-Helly
I being 1-Helly or clique-Helly is a local property
I being Helly is a global property

I trees are Helly graphs
I cycles Cn are not Helly when n ≥ 4 but they are

clique-Helly and even 1-Helly when n ≥ 7.
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Local-to-Global Characterization

We cannot characterize Helly graphs using only local
properties.
I locally a cycle and a long path look the same

Theorem (C., Chepoi, Hirai, Osajda ’17)

G is Helly ⇐⇒ G is clique-Helly and X (G) is simply connected

We characterize a global metric condition by local conditions
and a global topological condition

This answers a question of
[Prisner ’92; Larrión, Pizaña, Villarroel-Flores ’10, Chepoi]
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Characterization of Helly Graphs

Theorem
For a graph G, the followings are equivalent
(1) G is Helly
(2) G is 1-Helly and weakly modular [Bandelt Pesch’89]
(3) G is clique-Helly and cop-win [Bandelt-Prisner’91]
(4) G is clique-Helly and X (G) is simply connected

The difficult part of the proof is (4) =⇒ (2)

Proposition

If G is a clique-Helly graph, the 1-skeleton G̃ of X̃ (G) is weakly
modular and 1-Helly

02/10/2020 Local-to-Global Aspects in Metric Graph Theory and Distributed Computing 21/47



Characterization of Helly Graphs

Theorem
For a graph G, the followings are equivalent
(1) G is Helly
(2) G is 1-Helly and weakly modular [Bandelt Pesch’89]
(3) G is clique-Helly and cop-win [Bandelt-Prisner’91]
(4) G is clique-Helly and X (G) is simply connected

The difficult part of the proof is (4) =⇒ (2)

Proposition

If G is a clique-Helly graph, the 1-skeleton G̃ of X̃ (G) is weakly
modular and 1-Helly

02/10/2020 Local-to-Global Aspects in Metric Graph Theory and Distributed Computing 21/47



Proposition

If G is a clique-Helly graph, the 1-skeleton G̃ of X̃ (G) is weakly
modular and 1-Helly

We build inductively the universal cover X̃ (G) of X (G) from a
basepoint ṽ

ṽ
S̃i B̃i−1

w̃

v

X (G )

X̃ (G )

w

We prove some properties w.r.t ṽ and use the unicity of X̃ (G)
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Other Local-to-Global Characaterizations

Previous characterizations proved via disk diagrams:
� Median graphs [Chepoi ’00]
4 (Weakly) Bridged graphs [Chepoi ’00; Chepoi, Osajda ’15]

Characterizations proved via universal covers:
4� Basis graphs of matroids [C., Chepoi, Osajda ’15]

(conjectured by [Maurer ’73])

4� (Weakly) modular graphs [C., Chepoi, Hirai, Osajda ’17]
4 Helly graphs [C., Chepoi, Hirai, Osajda ’17]
4 Prime pre-median graphs [C., Chepoi, Hirai, Osajda ’17]
4� Dual-Polar graphs [C., Chepoi, Hirai, Osajda ’17]
4� Bucolic graphs [Brešar, C., Chepoi, Gologranc, Osajda ’13]
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Median Graphs and Event
Structures
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Median graphs

Definition
A graph G = (V ,E) is median if for all u, v ,w ∈ V , there exists
a unique x ∈ V lying on a (u, v)-shortest path, a (u,w)-shortest
path, and a (v ,w)-shortest path
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Hyperplanes [Sageev]

In a median graph G, the Djoković-Winkler relation Θ is defined
as follows:
I e1Θ1e2 if e1 and e2 are two opposite edges of a square
I Θ = Θ∗1
I a hyperplane of G is an equivalence class of Θ
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Median Graphs and Event Structures

Event structures are a model of concurrent computation

Theorem (Barthélémy and Constantin ’93)

I the domain of an event structure is a pointed median graph
I Any pointed median graph is the domain of an event

structure
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Domains of Regular Event Structures

An event structure E is regular if in its domain D(E), the degree
is bounded and there is a finite number of equivalence classes
of futures

Idea: when considering the executions of a finite state system
(like finite state automata or 1-safe Petri nets), there should be
some regularity
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Regular Nice Labelings

A nice labeling λ is a coloring of the edges of D(E)

I two edges with the same origin have distinct colors
I two opposite edges of a square have the same color

A nice labeling is regular if in D(E), there is a finite number of
equivalence classes of labeled futures

b b b b b
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x x x x

x x x x
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Thiagarajan’s regularity conjecture

Thiagarajan’s regularity conjecture ’96 (reworded)

Any regular event structure admits a regular nice labeling

Our results (C., Chepoi ’17 & ’19)

I The conjecture is false
I A characterization of event structures admitting a regular

nice labeling
I We disprove another conjecture of Thiagarajan about the

decidability of the MSO theory of regular labeled event
structures

02/10/2020 Local-to-Global Aspects in Metric Graph Theory and Distributed Computing 30/47



Thiagarajan’s regularity conjecture

Thiagarajan’s regularity conjecture ’96 (reworded)

Any regular event structure admits a regular nice labeling

Our results (C., Chepoi ’17 & ’19)

I The conjecture is false
I A characterization of event structures admitting a regular

nice labeling
I We disprove another conjecture of Thiagarajan about the

decidability of the MSO theory of regular labeled event
structures

02/10/2020 Local-to-Global Aspects in Metric Graph Theory and Distributed Computing 30/47



CAT(0) cube complexes

A cube complex is a cell complex where each cell is a cube and
when two cubes intersect, they intersect on a common face.

02/10/2020 Local-to-Global Aspects in Metric Graph Theory and Distributed Computing 31/47



CAT(0) cube complexes
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CAT(0) cube complexes

A cube complex is a cell complex where each cell is a cube and
when two cubes intersect, they intersect on a common face.

A cube complex X is CAT(0) if
I X is nonpositively curved (NPC) [Gromov]
I X is simply connected

Theorem (Chepoi ’00)

Median graphs are exactly the 1-skeletons of CAT(0) cube
complexes
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Constructing Event Structures from NPC complexes

I Starting from a finite NPC cube complex X , its universal
cover X̃ is a CAT(0) cube complex

I We have a finite number of equivalence classes of vertices
in X̃ up to isomorphism

I Problem: we need to have some orientation on the edges
to get the domain of an event structure
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Directed NPC complexes

A directed NPC complex is a complex such that each edge is
directed in such a way that two opposite edges of a square
have the same direction
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Constructing Regular Event Structures

I Starting from a finite directed NPC complex X , we
construct its universal cover X̃

I We have a finite number of classes of futures
I But vertices can have an infinite past . . .

b b b b b
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a

a

a

02/10/2020 Local-to-Global Aspects in Metric Graph Theory and Distributed Computing 34/47



Constructing Regular Event Structures

I Starting from a finite directed NPC complex X , we
construct its universal cover X̃

I We have a finite number of classes of futures
I We cut along hyperplanes

e

Future(e)Past(e)
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Constructing Regular Event Structures

I Starting from a finite directed NPC complex X , we
construct its universal cover X̃

I We have a finite number of classes of futures
I We cut along hyperplanes
I We have constructed a pointed CAT(0) cube complex X̃v0 ,

i.e., the domain of an event structure
I The number of classes of futures is bounded by |V (X )|
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Wise’s directed NPC complex X

A colored directed NPC complex with 1 vertex, 2 “horizontal”
edges (x and y ), 3 “vertical” edges (a,b, and c), 6 squares

x

x

a b

y

y

a b

x

y

c c

x

y

b a

y

x

c a

y

x

b c

I it is a directed NPC square complex
I Colors have nothing to do with a nice labeling
I We encode the colors by a trick to get a (colorless)

directed NPC complex W
I We construct the domain W̃v of a regular event structure
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An aperiodic tiling in the universal cover X̃ of X

In the universal cover X̃ of X , the quarter of plane defined by
yω and cω is aperiodic

Proposition (Wise ’96)

All horizontal words starting on the side of the quarter of plane
are distinct
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An aperiodic tiling in the universal cover X̃ of X

In the universal cover X̃ of X , the quarter of plane defined by
yω and cω is aperiodic

Theorem (C., Chepoi ’17)

W̃v does not admit a regular nice labeling
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On the positive side: special cube complexes

A NPC complex is special if its hyperplanes behave nicely
[Haglund, Wise ’08]

(a) no self-intersection
(b) no 1-sided hyperplane
(c) no direct self-osculation
(d) no interosculation
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On the positive side: special cube complexes

A NPC complex is special if its hyperplanes behave nicely
[Haglund, Wise ’08]

Theorem (C., Chepoi ’19)

I If X is a finite special cube complex, then X̃v has a regular
nice labeling

I If a domain D(E) has a regular nice labeling, then
D(E) ' X̃v for some finite special cube complex X
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Cop and Robber Game and
Hyperbolicity
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Cop & Robber Game with Speeds

A game between one cop C moving at
speed s′ and one robber R moving at
speed s
Initialization:

I C chooses a vertex
I R chooses a vertex

Step-by-step:
I C traverses at most s′ edges
I R traverses at most s edges

Winning Condition:
I C wins if it is on the same vertex as R
I R wins if it can avoid C forever

C

I C has speed s′ = 1
I R has speed s = 2
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(s,s′)-Cop-win Graphs

A graph G is (s,s′)-cop-win if C (moving at speed s′) can win
whatever R (moving at speed s) does
I If s = s′ = 1, this is the classical Cop and Robber game

[Nowakowski and Winkler ’83; Quilliot ’83]
I cop-win graphs are exactly the dismantlable graphs
I chordal, (weakly) bridged, Helly graphs are cop-win

I If s = s′, this is the classical game played in Gs

I If s < s′, every graph is (s,s′)-cop-win

Question
What are the (s,s′)-cop-win graphs with s > s′?

I A characterization of (s,s′)-cop-win graphs
[C., Chepoi, Nisse, Vaxès ’11]

(in the same spirit as the characterization of cop-win
graphs when s = s′ = 1)
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δ-hyperbolic graphs [Gromov]

A graph (or a metric space) is δ-hyperbolic if for every four
points a,b, c,d ,

d(a,b) + d(c,d) ≤ max{d(a, c) + d(b,d),d(a,d) + d(b, c)}+ 2δ

The hyperbolicity δ∗(G) of a graph G is the minimal value of δ
such that G is δ-hyperbolic

a

b

d

c

≤ δ
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A graph (or a metric space) is δ-hyperbolic if for every four
points a,b, c,d ,

d(a,b) + d(c,d) ≤ max{d(a, c) + d(b,d),d(a,d) + d(b, c)}+ 2δ

The hyperbolicity δ∗(G) of a graph G is the minimal value of δ
such that G is δ-hyperbolic

Remark
Many definitions of δ-hyperbolicity;
equivalent up to a multiplicative factor
δ∗(G) measures how G is metrically close
from a tree

≤ δ

≤ δ ≤ δ
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Hyperbolic graphs are (s,s′)-cop-win graphs

Proposition (from Chepoi, Estellon ’07)

Any δ-hyperbolic graph is (2s, s + 2δ)-cop-win

Theorem (C., Chepoi, Papasoglu, Pecatte ’14)

G is (s, s − 1)-cop-win =⇒ G is 64s2-hyperbolic

We use the following theorem

Theorem (Gromov)

Hyperbolic graphs are the graphs satisfying a linear
isoperimetric inequality

If we consider the small cycles of G as 2-dimensional cells,
each cycle of G can be contracted to a point with a linear
number of elementary deformations
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Approximating δ∗(G)

Theorem (C., Chepoi, Papasoglu, Pecatte ’14)

One can compute a O(1)-approximation of δ∗(G) in O(n2)

I a “local” algorithm once a BFS has been computed
I the approximation factor is large (1569)
I existing algorithms had a better approximation factor, but a

worse complexity
I a (2 + ε)-approx. in O( 1

εn2.38) [Duan ’14]

Theorem (C., Chepoi, Dragan, Ducoffe, Mohammed,
Vaxès ’18)

One can compute an 8-approximation of δ∗(G) in O(n2)

I a simple algorithm also based on a BFS, but not “local”
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Open Questions
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Distributed Computing

Graph Exploration with binoculars

I What happens if we enlarge the vision of the agent?
I we believe the results would be qualitatively the same

I Find large subclasses that can be explored more efficiently
(with a linear or polynomial number of moves)
I Weakly modular graphs, basis graphs of matroids
I δ-hyperbolic graphs
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Distributed Computing

What properties can be computed locally with a BFS

I With a BFS at hand, one can distinguish 1569δ-hyperbolic
graphs from non δ-hyperbolic graphs by looking at a
O(δ)-ball around each node

I Can we approximate δ∗(G) in such a way ?
I What other global properties can we verify once a BFS has

been computed?
I recognition of Helly graphs and bridged graphs
I What about other classes of graphs?
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Metric classes of graphs

I Can we find other local-to-global characterizations
I For a class containing weakly modular graphs and basis

graphs of matroids?
I For graphs with convex balls? (4D)

I For several classes, we can associate cell complexes of
higher dimension and establish some nice properties
I Can we associate a canonical cell complex of higher

dimension to a weakly modular graph?
I When are the cell complexes contractible?
I When are the groups acting on such complexes

(bi)automatic?
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Regular Event Structures

I Nice connections between event structures and NPC
complexes
I CAT(0) cube complexes correspond to event structures
I finite special cube complexes correspond to event

structures with a regular nice labeling
I Do finite NPC complexes correspond to regular event

structures?

I Do event structures with hyperbolic domains admits a
regular nice labeling?
I true when the domain is context-free

[Badouel, Darondeau, Raoult ’99]
I true for the domains X̃v obtained from finite NPC

complexes X with a hyperbolic universal cover X̃ [Agol ’13]
I Can we decide if a regular event structure admits a regular

nice labelling?

Thank you! Questions?

02/10/2020 Local-to-Global Aspects in Metric Graph Theory and Distributed Computing 47/47



Regular Event Structures

I Nice connections between event structures and NPC
complexes
I CAT(0) cube complexes correspond to event structures
I finite special cube complexes correspond to event

structures with a regular nice labeling
I Do finite NPC complexes correspond to regular event

structures?
I Do event structures with hyperbolic domains admits a

regular nice labeling?
I true when the domain is context-free

[Badouel, Darondeau, Raoult ’99]
I true for the domains X̃v obtained from finite NPC

complexes X with a hyperbolic universal cover X̃ [Agol ’13]

I Can we decide if a regular event structure admits a regular
nice labelling?

Thank you! Questions?

02/10/2020 Local-to-Global Aspects in Metric Graph Theory and Distributed Computing 47/47



Regular Event Structures

I Nice connections between event structures and NPC
complexes
I CAT(0) cube complexes correspond to event structures
I finite special cube complexes correspond to event

structures with a regular nice labeling
I Do finite NPC complexes correspond to regular event

structures?
I Do event structures with hyperbolic domains admits a

regular nice labeling?
I true when the domain is context-free

[Badouel, Darondeau, Raoult ’99]
I true for the domains X̃v obtained from finite NPC

complexes X with a hyperbolic universal cover X̃ [Agol ’13]
I Can we decide if a regular event structure admits a regular

nice labelling?

Thank you! Questions?

02/10/2020 Local-to-Global Aspects in Metric Graph Theory and Distributed Computing 47/47



Regular Event Structures

I Nice connections between event structures and NPC
complexes
I CAT(0) cube complexes correspond to event structures
I finite special cube complexes correspond to event

structures with a regular nice labeling
I Do finite NPC complexes correspond to regular event

structures?
I Do event structures with hyperbolic domains admits a

regular nice labeling?
I true when the domain is context-free

[Badouel, Darondeau, Raoult ’99]
I true for the domains X̃v obtained from finite NPC

complexes X with a hyperbolic universal cover X̃ [Agol ’13]
I Can we decide if a regular event structure admits a regular

nice labelling?

Thank you! Questions?
02/10/2020 Local-to-Global Aspects in Metric Graph Theory and Distributed Computing 47/47


