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QUANTUM COMPUTING

o Quantum states (qudits) are unit vectors in Hilbert space CY.
) =Y Bili).
i€[d]
@ The measurement M in the standard yields a probabilistic
outcome,
PriM(|¢)) = 1] = |Bi*.
o Multi-qudit quantum systems are represented by a tensor

product |¢1, ¢2).

@ Quantum computers can apply unitary operations to states
and perform measurements.
o Hadamard gate:

H10) = \g(|o> 1), H1) = %uo
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QUANTUM COMPUTING

It is easy to create exponential sized superpositions,

H"0") = Z\

/E [27]
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What speedups do quantum computers offer over the best
known classical algorithms?

o Exponential speedups: Integer factoring, discrete logarithms
[Shor], sampling from solutions to structured sparse linear
systems. [Harrow, Hassidim and Lloyd].

Quadratic speedups: Finding a marked element in a database
of N items in time O(v/N) [Grover].

@ Significant polynomial speedups: Recommendation systems
[KP16], quantum machine learning, quantum optimization?

(]
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QUANTUM MACHINE LEARNING

@ Input encoding: How to encode a classical vector x € R" into
quantum state? How to encode matrices A € R"*"?

@ Quantum linear algebra: Given encodings, there are efficient
quantum linear algebra algorithms to obtain states
|Ax), |A=1x) and |Max) where MA(x) is the projection of x
onto Col(A).

@ Output extraction: How to obtain classical information from
the quantum state? (i) Measure in standard basis to sample.
(ii) Perform quantum state tomography with ¢, or 2 norm
guarantees.
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QRAM DATA STRUCTURES

e QRAM (Quantum Random Access Memory) is a powerful
memory model for quantum access to arbitrary datasets.

e Given x;,i € [N] stored in the QRAM, the following queries
require time polylog(N),

[1,0) = 11, xi)

o Weaker quantum memory models are applicable only for
well-structured datasets and are not suitable for general ML
problems.

DEFINITION

A QRAM data structure for storing a dataset D of size N is
efficient if it can be constructed in a single pass over the entries
(i,d;) for i € [N] and the update time per entry is O(polylog(N)).
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INPUT ENCODINGS

@ Encoding vectors: There are efficient QRAM data structures
for storing vector v € R" that allow |v) to be prepared in time
O(log? n).

@ Encoding matrices: A matrix A € R"*" is encoded as a
unitary block encoding, that is,

w_(N%M:)

@ How to construct block encodings for A and what p(A) can
be achieved?

@ The optimal value of u(A) > ||A||, any minor of a unitary
matrix has spectral norm at most 1.
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INPUT ENCODINGS

@ For quantum linear algebra, it is standard to normalize so that
Al =1.

TaeEOREM (KP16, KP17)

There are efficient QRAM data structures for storing A € R"™" |
such that with access to these data structures a block encoding for
A with u(A) < \/n can be implemented in time O(polylog(n)).

e We note that u(A) < v/n can be much less than O(y/n) for
low rank matrices and matrices with bounded ¢; norms for
rows/columns.
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QUANTUM LINEAR ALGEBRA

o Let kK(A) = Amax(A)/Amin(A) be the condition number of
matrix A.

o Given efficient block encodings for A, there are efficient
quantum linear algebra procedures. [KP16, KP17, CGJ18].

o Theorem: A state e-close to |Ax) or |[A~1x) in the £ norm
can be generated in time O(k(A)u(A)log(1/€)).

o Theorem: The norm ||Ax|| or |A71x|| can be estimated to
relative error € in time O(=~A% H(Au(A) )“(A) log(1/€)).

@ As p is sublinear, quantum Imear algebra provides large gains
in efficiency over the classical O(n®) for many classes of
matrices.
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OUTPUT EXTRACTION

o The quantum states |A~1x) are not the same as the output
for classical linear system solvers.

o If we measure |[A~!x) in the standard basis, we obtain a
sample from the squared /¢, distribution for the state.
[Recommendation systems].

o Using Chernoff bounds, with O(1/¢?) samples we can recover
an approximation [|x — X|| ., < e.

o There is an />-tomography algorithm with O(nlog n/€?) and
approximation ||x — X||, < e. [KP18].

@ The {3 tomography algorithm is used for quantum
optimization using the interior point method.
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INTERIOR POINT METHOD OVERVIEW

@ Interior point methods are widely used for solving Linear
programs (LP), Second Order Cone Programs (SOCP) and
Semidefinite Programs (SDP).

@ Running time for SDP algorithms will be given in terms of
dimension n, number of constraints m and error .

@ The classical IPM starts with feasible solutions (S, Y) to the
optimization problem and updates them
(S,Y) = (§+dS, Y + dY) iteratively.

e The updates (dS, dY’) are obtained by solving a O(n+ m)
dimensional linear system called the Newton linear system.

o After O(y/nlog(1/¢)) iterations, the method converges to
feasible solutions (S, Y) with duality gap at most ¢, that is
solutions are € close to the optimal.
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QUANTUM SDP ALGORITHMS

@ Does quantum linear algebra offer speedups for optimization
using IPMs?

@ Quantum SDP algorithms using multiplicative weights method
were proposed recently [Brandao-Svore 17].

o After many improvements, the best running time for a
quantum SDP algorithm [AG19] using this framework is,

o((vme () (2 )

@ For Max-Cut and scheduling LPs , the complexity is at least
O(n®) [AGGW17, Theorem 20].
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QUANTUM SDP ALGORITHMS

e We provided a quantum interior point method with
complexity O(%;m3 log(1/€)) for SDPs and
O(% p? log(1/)) for LPs . [KP18].

@ The output of our algorithm is a pair of matrices (S, Y) that
are e-optimal &-approximate SDP solutions.

o The parameter 1 is at most v/2n for SDPs and v/2n for LPs .

@ The parameter « is an upper bound on the condition number
of the intermediate solution matrices.

o If the intermediate matrices are 'well conditioned’, the running
time scales as O(n3®) and O(n?).

@ Does this provide speedups in practice?
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SECOND ORDER CONE PROGRAMS

@ The SOCP is an optimization problem over the product of
Lorentz cones Ly,

Lk = {x:(xo;}) € R¥ ‘ IX| gxo}.

@ The standard form of the SOCP is the following optimization

problem:
min cz—x1+~-c,Txr
X1seeesXr
s.t. AWx; +.. .+ Ax, = b (1)

x; € LM Yie]r],

@ The rank r is like the number of constraints while n is the
dimension of the solution vector, classical IPM for SOCP has

complexity O (y/rn* log(n/e)).
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QuaNTuM IPM FOr SOCP

e Starts with initial feasible solution (x, s, y) for primal-dual
SOCP pair and solves the (Newton system) to compute the
updates (Ax, Ay, As):

A 0 0 Ax b — Ax
0 AT / Ay| =|c—s—ATy|. (2
Arw(s) 0 Arw(x)| |As ope —xos

o The Newton linear system is much simpler than case of
general SDPs.

o Converges in O(y/rlog(1/¢)) iterations like the classical
algorithm. General analysis using Euclidean Jordan algebras.
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QuaNTuM IPM FOr SOCP

@ There is a quantum Algorithm that outputs a solution
x; € L™ that achieves an objective value that is within € of
the optimal value in time,

S

@ ¢ < /nis a factor that appears in quantum linear system
solvers.

@ k is an upper bound on the condition number of the matrices
arising in the interior point method for SOCPs.

@ The parameter ¢ is a lower bound on how close are the
intermediate iterates to the boundaries of the respective cones.

@ How does this perform in practice?
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SUPPORT VECTOR MACHINES

The ¢1-regularized SVM for m data points of dimension n is
the following optimization problem,

. 2
C
min_[wl* + C €]l

st. yO(wTx() 4 b)>1-¢, Vie[m] (3)
£>0.

If t = (t+ 1;t; w) is in the Lorentz cone, then
2t +1 > ||w||?, the norm constraint becomes linear in t.
The ¢1-SVM reduces to an instance of SOCP with rank
2m + 4 constraints and dimension 3m+ 2n+ 7.
Experiments on random SVMs: Generate data points and
separating hyperplane uniformly at random from [—1,1]". Flip
a p fraction of the labels. Shift by direction sampled from
N(0,21).

Iordanis Kerenidis , Anupam Prakash and Dan QML workshop, Marseille, 2019



EXPERIMENTAL RESULTS — ACCURACY AND DUALITY
GAP
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EXPERIMENTAL RESULTS — ACCURACY WITH
PROBLEM SIZE
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EXPERIMENTAL RESULTS — ASYMPTOTOC SPEEDUP
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CONCLUSIONS

@ The quantum SVM algorithm achieves an asymptotic speedup
on random SVM instances with running time O(n*%%7) as
opposed to the classical IPM with running time O(n3?).

o This also indicates the potential for similar asymptotic
speedups using quantum optimization for problems relevant in
practice.
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