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Quantum Computing

Quantum states (qudits) are unit vectors in Hilbert space Cd .

|φ〉 =
∑
i∈[d ]

βi |i〉 .

The measurement M in the standard yields a probabilistic
outcome,

Pr[M(|φ〉) = i ] = |βi |2.
Multi-qudit quantum systems are represented by a tensor
product |φ1, φ2〉.
Quantum computers can apply unitary operations to states
and perform measurements.

Hadamard gate:

H |0〉 =
1√
2

(|0〉+ |1〉),H |1〉 =
1√
2

(|0〉 − |1〉).
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Quantum Computing

It is easy to create exponential sized superpositions,

Hn |0n〉 =
1√
2n

∑
i∈[2n]

|i〉 .

What speedups do quantum computers offer over the best
known classical algorithms?

Exponential speedups: Integer factoring, discrete logarithms
[Shor], sampling from solutions to structured sparse linear
systems. [Harrow, Hassidim and Lloyd].

Quadratic speedups: Finding a marked element in a database
of N items in time O(

√
N) [Grover].

Significant polynomial speedups: Recommendation systems
[KP16], quantum machine learning, quantum optimization?
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Quantum Machine Learning

Input encoding: How to encode a classical vector x ∈ Rn into
quantum state? How to encode matrices A ∈ Rn×n?

Quantum linear algebra: Given encodings, there are efficient
quantum linear algebra algorithms to obtain states
|Ax〉 , |A−1x〉 and |ΠAx〉 where ΠA(x) is the projection of x
onto Col(A).

Output extraction: How to obtain classical information from
the quantum state? (i) Measure in standard basis to sample.
(ii) Perform quantum state tomography with `∞ or `2 norm
guarantees.
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QRAM data structures

QRAM (Quantum Random Access Memory) is a powerful
memory model for quantum access to arbitrary datasets.

Given xi , i ∈ [N] stored in the QRAM, the following queries
require time polylog(N),

|i , 0〉 → |i , xi 〉

Weaker quantum memory models are applicable only for
well-structured datasets and are not suitable for general ML
problems.

Definition

A QRAM data structure for storing a dataset D of size N is
efficient if it can be constructed in a single pass over the entries
(i , di ) for i ∈ [N] and the update time per entry is O(polylog(N)).
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Input Encodings

Encoding vectors: There are efficient QRAM data structures
for storing vector v ∈ Rn that allow |v〉 to be prepared in time
O(log2 n).

Encoding matrices: A matrix A ∈ Rn×n is encoded as a
unitary block encoding, that is,

UA =

(
A/µ(A) .

. .

)
.

How to construct block encodings for A and what µ(A) can
be achieved?

The optimal value of µ(A) ≥ ‖A‖, any minor of a unitary
matrix has spectral norm at most 1.

Iordanis Kerenidis , Anupam Prakash and Dániel SzilágyiQML workshop, Marseille, 2019



Input Encodings

For quantum linear algebra, it is standard to normalize so that
‖A‖ = 1.

Theorem (KP16, KP17)

There are efficient QRAM data structures for storing A ∈ Rn×n ,
such that with access to these data structures a block encoding for
A with µ(A) ≤

√
n can be implemented in time O(polylog(n)).

We note that µ(A) <
√
n can be much less than O(

√
n) for

low rank matrices and matrices with bounded `1 norms for
rows/columns.
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Quantum linear algebra

Let κ(A) = λmax(A)/λmin(A) be the condition number of
matrix A.

Given efficient block encodings for A, there are efficient
quantum linear algebra procedures. [KP16, KP17, CGJ18].

Theorem: A state ε-close to |Ax〉 or |A−1x〉 in the `2 norm
can be generated in time O(κ(A)µ(A) log(1/ε)).

Theorem: The norm ‖Ax‖ or
∥∥A−1x

∥∥ can be estimated to

relative error ε in time O(κ(A)µ(A)
ε log(1/ε)).

As µ is sublinear, quantum linear algebra provides large gains
in efficiency over the classical O(n3) for many classes of
matrices.
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Output extraction

The quantum states |A−1x〉 are not the same as the output
for classical linear system solvers.

If we measure |A−1x〉 in the standard basis, we obtain a
sample from the squared `2 distribution for the state.
[Recommendation systems].

Using Chernoff bounds, with O(1/ε2) samples we can recover
an approximation ‖x − x̃‖∞ ≤ ε.
There is an `2-tomography algorithm with O(n log n/ε2) and
approximation ‖x − x̃‖2 ≤ ε. [KP18].

The `2 tomography algorithm is used for quantum
optimization using the interior point method.
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Interior Point Method overview

Interior point methods are widely used for solving Linear
programs (LP), Second Order Cone Programs (SOCP) and
Semidefinite Programs (SDP).

Running time for SDP algorithms will be given in terms of
dimension n, number of constraints m and error ε.

The classical IPM starts with feasible solutions (S ,Y ) to the
optimization problem and updates them
(S ,Y )→ (S + dS ,Y + dY ) iteratively.

The updates (dS , dY ) are obtained by solving a O(n + m)
dimensional linear system called the Newton linear system.

After O(
√
n log(1/ε)) iterations, the method converges to

feasible solutions (S ,Y ) with duality gap at most ε, that is
solutions are ε close to the optimal.
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Quantum SDP algorithms

Does quantum linear algebra offer speedups for optimization
using IPMs?

Quantum SDP algorithms using multiplicative weights method
were proposed recently [Brandao-Svore 17].

After many improvements, the best running time for a
quantum SDP algorithm [AG19] using this framework is,

Õ

((√
m +

√
n

(
Rr

ε

))(
Rr

ε

)4√
n

)
.

For Max-Cut and scheduling LPs , the complexity is at least
O(n6) [AGGW17, Theorem 20].
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Quantum SDP algorithms

We provided a quantum interior point method with
complexity Õ(n

2.5

ξ2 µκ
3 log(1/ε)) for SDPs and

Õ(n
1.5

ξ2 µκ
3 log(1/ε)) for LPs . [KP18].

The output of our algorithm is a pair of matrices (S ,Y ) that
are ε-optimal ξ-approximate SDP solutions.

The parameter µ is at most
√

2n for SDPs and
√

2n for LPs .

The parameter κ is an upper bound on the condition number
of the intermediate solution matrices.

If the intermediate matrices are ’well conditioned’, the running
time scales as Õ(n3.5) and Õ(n2).

Does this provide speedups in practice?
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Second Order Cone Programs

The SOCP is an optimization problem over the product of
Lorentz cones Lk ,

Lk =
{

x = (x0; x̃) ∈ Rk
∣∣∣ ‖x̃‖ ≤ x0

}
.

The standard form of the SOCP is the following optimization
problem:

min
x1,...,x r

cT
1 x1 + · · · cT

r x r

s.t. A(1)x1 + · · ·+ A(r)x r = b
x i ∈ Lni , ∀i ∈ [r ],

(1)

The rank r is like the number of constraints while n is the
dimension of the solution vector, classical IPM for SOCP has
complexity O

(√
rnω log(n/ε)

)
.
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Quantum IPM for SOCP

Starts with initial feasible solution (x , s, y) for primal-dual
SOCP pair and solves the (Newton system) to compute the
updates (∆x ,∆y ,∆s): A 0 0

0 AT I
Arw(s) 0 Arw(x)

∆x
∆y
∆s

 =

 b − Ax
c − s − ATy
σµe − x ◦ s

 . (2)

The Newton linear system is much simpler than case of
general SDPs.

Converges in O(
√
r log(1/ε)) iterations like the classical

algorithm. General analysis using Euclidean Jordan algebras.
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Quantum IPM for SOCP

There is a quantum Algorithm that outputs a solution
xi ∈ Lni that achieves an objective value that is within ε of
the optimal value in time,

T = Õ

(√
r log (µ0/ε) ·

nκζ

δ2
log

(
κζ

δ

))
.

ζ ≤
√
n is a factor that appears in quantum linear system

solvers.

κ is an upper bound on the condition number of the matrices
arising in the interior point method for SOCPs.

The parameter δ is a lower bound on how close are the
intermediate iterates to the boundaries of the respective cones.

How does this perform in practice?
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Support Vector Machines

The `1-regularized SVM for m data points of dimension n is
the following optimization problem,

min
w ,b,ξ

‖w‖2 + C ‖ξ‖1

s.t. y (i)(wTx (i) + b) ≥ 1− ξi , ∀i ∈ [m]
ξ ≥ 0.

(3)

If t = (t + 1; t; w) is in the Lorentz cone, then
2t + 1 > ‖w‖2, the norm constraint becomes linear in t.

The `1-SVM reduces to an instance of SOCP with rank
2m + 4 constraints and dimension 3m + 2n + 7.

Experiments on random SVMs: Generate data points and
separating hyperplane uniformly at random from [−1, 1]n. Flip
a p fraction of the labels. Shift by direction sampled from
N(0, 2I ).
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Experimental results – accuracy and duality
gap
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Experimental results – accuracy with
problem size
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Experimental results – asymptotoc speedup
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Conclusions

The quantum SVM algorithm achieves an asymptotic speedup
on random SVM instances with running time O(n2.557) as
opposed to the classical IPM with running time O(n3.5).

This also indicates the potential for similar asymptotic
speedups using quantum optimization for problems relevant in
practice.
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