## DEEP NETWORKS WITH ADAPTIVE NYSTRÖM APPROXIMATION (IJCNN 2019)

Luc Giffon, Stéphane Ayache, Thierry Artières, Hachem Kadri Aix Marseille Université, Université de Toulon, CNRS, LIS, Marseille, France





éQuipe d'AppRentissage de MArseille / Marseille Machine Learning Team





### **INTRODUCTION**





## **Take Home Message**

Aix\*Marseille

#### We use an adaptive variant of the Nyström method for kernel approximation as a drop-in replacement for dense layers in Convolutional Neural Networks (CNN)





# Outline

- Non-linear mappings :
  - Dense (Fully-connected) neural network layers
  - Kernel methods

### Adaptive Nyström Layer

- Standard formulation
- Multiple Kernel Learning (MKL) formulation

### • Experiments

- Standard setting
- Small sample set
- Multiple Kernel Learning

### **NON-LINEAR MAPPINGS**





**Deep Networks with Adaptive Nyström Approximation**> Non-linear mappings

26/06/2019

## **Dense (Fully-connected) layers**

### Each dense layer of a neural network learns a non-linear mapping of its input



### **Kernel methods**

Aix\*Marseille

$$\forall i \ \mathbf{x}_i \in \mathbf{X} \qquad \qquad k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$$

$$\mathbf{K}_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j) = \langle \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_j) \rangle$$

Some kernel methods can give the feature map approximation  $\phi$  for a kernel.

$$k(\mathbf{x}, \mathbf{z}) \approx \langle \tilde{\phi}(\mathbf{x}) \cdot \tilde{\phi}(\mathbf{z}) \rangle$$

(to keep the notations light, we drop the ~ on  $\phi$  in the rest of the presentation)



## **Kernel methods : Random features**

### Fast-Food (FF) :

**FF is a fast approximation of the Gaussian kernel.** It is a variant of the RKS method, a general approximation method for RBF kernels.

$$\left| \phi_{FF}(\mathbf{x}) = [\cos(\mathbf{Vx}), \sin(\mathbf{Vx})] \right| \mathbf{V} = \frac{1}{\sigma\sqrt{d}} \mathbf{SHG\Pi HB} \stackrel{\bullet}{\bullet} \stackrel{\mathbf{S}, \mathbf{G} \text{ and}}{\bullet} \stackrel{\mathbf{H} \text{ Hadam}}{\bullet}$$

- **B** diagonal random
- n permutation
- ard matrix



(This mapping can be done multiple times In parallel then concatenated)



### **Kernel methods : Nyström method**

### Nyström method for kernel approximation :

Aix\*Marseille

The Nyström method gives a low rank approximation of a Kernel matrix. For this approximation, we can extract the feature map approximation of the kernel.



# **ADAPTIVE NYSTRÖM LAYER**





**Deep Networks with Adaptive Nyström Approximation**> Adaptive Nyström Layer

26/06/2019

## **Standard formulation**

### <u>CNN with Dense layer :</u>





Deep Networks with Adaptive Nyström Approximation > Adaptive Nyström Layer

26/06/2019

## **Standard formulation**

<u>CNN with Fast-food layer :</u> (Deep Fried Convnets – Yang et al. 2014)



## **Standard formulation**

Aix\*Marseille



 $(m \times h \times w)$ 

## **Standard formulation**

Aix\*Marseille



 $(m \times h \times w)$ 



# **Multiple Kernel Learning (MKL) formulation**

In the Multiple Kernel setting, we can learn several adaptive Nyström layers in parallel then merge them by concatenation or weighted sum.

Aix\*Marseille

$$\phi_{nys_{mkl}} = egin{bmatrix} \mathbf{W}_1 m{k}_{\mathbf{x},\mathbf{L}}^1 \ dots \ \mathbf{W}_l m{k}_{\mathbf{x},\mathbf{L}}^l \end{bmatrix}$$

Kernel function examples :

• Chi2 kernel

$$k(\mathbf{x}_i, \mathbf{x}_j) = \frac{||\mathbf{x}_i - \mathbf{x}_j||^2}{\mathbf{x}_i + \mathbf{x}_j}$$

• Linear kernel

$$k(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i \cdot \mathbf{x}_j \rangle$$

### <u>Weighted sum :</u>

$$\phi_{nys_{mkl}} = \sum_{i=1}^{l} \alpha_i \mathbf{W}_i \boldsymbol{k}_{\mathbf{x},\mathbf{L}}^i$$

Gaussian kernels with different sigmas

$$k(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\frac{||\mathbf{x}_i - \mathbf{x}_j||^2}{\sigma^2})$$

• Kernel on single feature map

$$k^{z}(\mathbf{x}_{i}, \mathbf{x}_{j}) = k(conv(\mathbf{x}_{i})_{z}, conv(\mathbf{x}_{j})_{z})$$

### **EXPERIMENTS**



## **Standard setting**

#### • Datasets :

Aix\*Marseille

| Dataset  | Input shape               | # classes | Training set size | Validation set size | Test set size |
|----------|---------------------------|-----------|-------------------|---------------------|---------------|
| MNIST    | $(28 \times 28 \times 1)$ | 10        | 40 000            | 10 000              | 10 000        |
| SVHN     | $(32 \times 32 \times 3)$ | 10        | 63 257            | 10 000              | 26 032        |
| CIFAR10  | $(32 \times 32 \times 3)$ | 10        | 50 000            | 10 000              | 10 000        |
| CIFAR100 | $(32 \times 32 \times 3)$ | 100       | 50 000            | 10 000              | 10 000        |

#### • Convolutional Architectures :

- LeNet for MNIST ;
- VGG19 for SVHN, CIFAR10 and CIFAR100.

#### • Number of learnable parameters :

- Range from 2 to 1024 hidden neurons in the dense hidden layer ;
- Range from 2 to 128 subsamble size for the <u>Nystrom layer ;</u>
- One stack of random features for the <u>Fast-food layer</u>.

## **Standard setting**

Aix\*Marseille

Our Nyström layer reaches dense layers accuracy with much less parameters. The adaptive variant performs better in most scenario.



## **Small sample set**

Aix\*Marseille

|                    | MNIST           |                   | SVHN              |                   | CIFAR10           |                   | CIFAR100          |                   |
|--------------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                    | 5               | 20                | 5                 | 20                | 5                 | 20                | 5                 | 20                |
| Dense              | <b>49.7</b> (4) | 94.4 (0.5)        | 65.6 (11.6)       | 81.7 (3.9)        | 39.1 (3.3)        | 87.1 (3.7)        | 19.2 (2.2)        | 35.7 (2.7)        |
| Adaptive-Deepfried | 12.4 (3.3)      | 12.4 (1.4)        | 16.7 (5)          | 21.0 (6.4)        | 28.3 (9.2)        | 41.2 (3.6)        | 3.9 (1.2)         | 6.4 (0.8)         |
| Adaptive-Nyström-L | 48.1 (5.5)      | 95.0 (0.5)        | 22.4 (6.9)        | 29.6 (13.5)       | 12.0 (5.6)        | 27.8 (7.6)        | 1.2 (0.6)         | 1.9 (0.8)         |
| Adaptive-Nyström-R | 41.2 (7.7)      | <b>95.5</b> (0.3) | 42.1 (29.6)       | 53.5 (33.6)       | <b>70.8</b> (4.4) | <b>92.2</b> (0.1) | <b>24.7</b> (2.6) | <b>62.1</b> (1.2) |
| Adaptive-Nyström-C | 26.4 (7.7)      | 92.3 (1.8)        | <b>89.6</b> (3.1) | <b>93.3</b> (1.3) | 67.1 (4.7)        | <b>92.2</b> (1)   | 20.2 (2.2)        | 55.4 (1.9)        |

## **Multiple Kernel Learning**

Multiple Gaussian kernel :



# **Multiple Kernel Learning**

Kernel on single feature maps : CIFAR100

| Model              | Accuracy (std)    | Architecture                        |
|--------------------|-------------------|-------------------------------------|
| Dense              | 68.0 (0.7)        | 1 hidden layer 1024 neurons         |
| Adaptive-Deepfried | 67.6 (0.5)        | 5 stacks                            |
| Adaptive-Nyström   | <b>69.1</b> (0.2) | 256 subsamples + 512 Linear Kernels |
| Adaptive-Nyström   | 67.6 (0.2)        | 16 subsamples + 512 Chi2 Kernels    |

# **2D representations : CIFAR10**



### **CONCLUSION**





### Conclusions

• Learns fewer parameters than standard Dense layers while not reducing the performance ;

• Total flexibility in the choice of the kernel function in contrast with the Deep Fried Convnets ;

• Modular and able to deal with Multiple Kernel Learning paradigm ;

• Simple to implement with Keras or Tensorflow

### **THANK YOU FOR YOUR ATTENTION**





### **Kernel methods : Nyström method**

Nyström method for kernel approximation :

The Nyström method gives a low rank approximation of a Kernel matrix. From this approximation, we can extract the feature map approximation of the kernel.

$$\mathbf{K} = \begin{bmatrix} \mathbf{K}_{11} & \mathbf{K}_{21}^T \\ \mathbf{K}_{21} & \mathbf{K}_{22} \end{bmatrix} \quad \forall i, j \in 1...m \ \mathbf{K}_{11i,j} = k(\mathbf{L}_i, \mathbf{L}_j); \ \mathbf{L} \subset \mathbf{X};$$

The Nyström method gives :

Aix\*Marseille

$$\mathbf{K} \simeq \tilde{\mathbf{K}} = \begin{bmatrix} \mathbf{K}_{11} \\ \mathbf{K}_{21} \end{bmatrix} \mathbf{K}_{11}^{-1} \begin{bmatrix} \mathbf{K}_{11} & \mathbf{K}_{21}^T \end{bmatrix} = \tilde{\mathbf{\Phi}} \tilde{\mathbf{\Phi}}^T$$

Then the Nyström feature map is :

$$\begin{split} \tilde{\boldsymbol{\Phi}} &= \begin{bmatrix} \mathbf{K}_{11} \\ \mathbf{K}_{21} \end{bmatrix} \mathbf{K}_{11}^{-\frac{1}{2}} \quad \Rightarrow \quad \forall i \ \tilde{\boldsymbol{\Phi}}_i = \phi_{nys}(\mathbf{x}_i) = \mathbf{k}_{\mathbf{x}_i, \mathbf{L}} \mathbf{K}_{11}^{-\frac{1}{2}} \\ & \mathbf{k}_{\mathbf{x}, \mathbf{L}} = [k(\mathbf{x}, \mathbf{L}_i, ), \ ..., \ k(\mathbf{x}, \mathbf{L}_m)] \end{split}$$



## **Kernel methods : Random features**

### Random Kitchen Sinks (RKS) :

Aix\*Marseille

### The RKS approximates a Radial Basis Function (RBF) kernel.

$$\phi_{RKS}(\mathbf{x}) = [\cos(\mathbf{Q}\mathbf{x}), \sin(\mathbf{Q}\mathbf{x})]$$

$$\mathbf{Q}_{i,j} \sim \mathcal{N}(\mu,\sigma)$$

(For the Gaussian kernel)



### **Kernel methods**

Aix\*Marseille

$$\forall i \ \mathbf{x}_i \in \mathbf{X} \qquad \qquad k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$$

$$\mathbf{K}_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j) = \langle \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_j) \rangle$$

Some kernel methods can give the feature map approximation  $ilde{\phi}$  for a kernel.

$$k(\mathbf{x}, \mathbf{z}) \approx \langle \tilde{\phi}(\mathbf{x}) \cdot \tilde{\phi}(\mathbf{z}) \rangle$$
  
 $\mathbf{K} \approx \tilde{\mathbf{K}} = \tilde{\mathbf{\Phi}} \tilde{\mathbf{\Phi}}^T \qquad \forall i \ \tilde{\mathbf{\Phi}}_i = \tilde{\phi}(\mathbf{x}_i)$ 

(to keep the notations light, we drop the ~ on  $\,\phi$  in the rest of the presentation)