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Short Bio

 PhD — Physics — Medical Imaging (2006)
 HDR - Physics — MR metrology (2014)
* CNRS researcher

e Research focusing on MRI physics and applications



ASMRIPysics
Objectives

e Overview of (N)MRI multi-physics

* MR Images and Al
— The depth of MRI contrasts
— Traditional tasks that Al can solve

* MR raw signals and Al
— The nature of MRI raw data
— Overview of MRI acceleration strategies
— Recent deep-learning reconstruction approach
— Parallel imaging as a CNN super-resolution problem
— Models to classify motion corrupted raw data



Velodtymeasurement
Morpho functional simulator of

upper and central airways

* R-Mod project (2001-2005), collaboration with Air Ligquide

Diagnostic tool
=== Particle deposition
Inhaled drugs

Segmentation CFD
Patient-based model

1. Fodil et al., ITBM-RBM, 26:72 2005. Hyperpolarized gas  validation



de Rochefort et al., JAP 2007

Vitesse (ms™)

Simulation




ASMRIPysics
Few physical aspects

* Nucleus (3He) — hyperpolarization
— Quantum physics (spin, polarization)
— NMR

* MRI velocity mapping

— MRI pulse sequences

 Fluid mechanics

— Navier Stokes equation



Quantifying magnetic susceptibility

T2*W Amplitude

-'

Magnetic source Internal field




The forward problem

Magnetostatic equation approximation, a partial derivative

relationship AB, _ A 92y

B, 3 922

Harmonic solutions
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Fast field calculation
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1. Haacke et al., 2005, MRI 23.
2. Salomir et al., 2003, CMRB, 19.
3. Marques et al., 2005, CMRB, 25.




The inverse problem

* Under-determined inverse problem,
— Limited spatial and spectral information

e Various inversion approaches

— inverse filter design?

— minimization, prior knowledge?3
: 2 P
min HW(D;{ — B_ /B, )H2 + ||L;(||p
1. Shmueli et al., MRM 2009

2. de Rochefort et al., MRM 2008
3. de Rochefort et al., MRM 2010



ASMRIPysics
Few physical aspects

* Nucleus (*H)

— Quantum physics (spin, polarization)

* MRI physics

— magnetic field mapping

* Magnetism
— Magnetostatic
— inverse problem

* Biophysics

— Brain lron



Totalliquidventiiation
ABYSS

* Collaborative project (2011-2014) with Bertin technology, and
Ecole vétérinaire de Maison-Alfort

* Ultra-fast induction of hypothermia in the context of rescucitated
cardiac arrest, provides cardio- and neuro-protection’

e Total Liquid Ventilation (TLV)

e using inert perfluorocarbons (PFC)
* maintain gas exchanges

* enable ultra-fast hypothermia

From ABYSS (1989), James Cameron

1. Tissier R, et al., J Am Coll Cardiol. 2007; 49:601



Towlliquidventlaion
Perfluorocarbon imaging

* T,~1s/T,~50 ms-1s / J-coupling
 Complex spectrum for imaging
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perfluorooctylbromide (PFOB) Perfluorooctane (PFO)



ASMRIPysics
Few physical aspects

* Nucleus (*°F)

— Quantum physics (spin, polarization)
— Homonuclear NMR - J-coupling

* NMR relaxation
— pulse sequences
— Relaxation time (coherence time)

*  Fluid mechanics
— Incompressible, fluid structure coupling
— System engineering

* Biophysics
— Ventilation
— Heat transfer



NMR for guantum computing

* Liquid NMR has been used for quantum computing

* Large Fluorine molecules with J-coupling can be used as n-qubit
systems (up to ~10)
* (Can be used as testbed for quantum algorithms (ex. Grover)

» Rising research topic : guantum ML for MRI?

1. Nielsen and Chuang, Quantum Computation and Quantum Information, 2010
Ch.7.7



ASMRIPysics
Objectives

e Overview of (N)MRI multi-physics

* MR Images and Al
— The depth of MRI contrasts
— Traditional tasks that Al can solve

* MR raw signals and Al
— The nature of MRI raw data
— Overview of MRI acceleration strategies
— Recent deep-learning reconstruction approach
— Parallel imaging as a CNN super-resolution problem
— Models to classify motion corrupted raw data



Nuclear origin

Electronic Nuclear spin



ASMRIPhss
Magnetization

Magnetization (Boltzmann equilibrium)
Proportional to the magnetic field B, (at thermal equilibrium)



ASMRIPhsics
Larmor frequency - excitation

f =11

om )))

Tv ~ 42 58MHz /T
2T

Resonance - difference between energy levels



ASMRIPhsics
Radiofrequency coil

Low frequency
Quasi-static approximation
(Biot and Savart law)




ASMRIPhsics
Tuned for a given nucleus

Nucleus v/21t (MHZ/T) aboﬁg;fg;(%) sle{i?ttii\\/]iiy
H 42.58 99,98 100
19 40,03 100 83

3He 32,43
31p 17,23 100 6,6

2Na 11,26 100 9,3
B3C 10.70 1.1 1,6. 1072




Flipping the magnetization
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ASMRIPhsics
Back to thermal equilibrium

A
2T

Tu ~ 42 58MHz /T
2T




AsMRIPhsies
Magnetization vector




ASMRIPysics
Bloch equations

/ Mx (t)/TZ \

dM(t)  —— —— | M)
— = yM(®) x B(©) y /T2

\(Mz(t) — MO)/TZ/

* Several tools can be used to handle ‘rotations’
— 3D/4D Matrix description
— Spinors, quaternions, ‘configuration states’, ...
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ASMRIPhsics
Free induction decay
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ASMRIPysics
Objectives

* Overview of (N)MRI multi-physics

* MR Images and Al

— The depth of MRI contrasts
— Traditional tasks that Al can solve

* MR raw signals and Al
— The nature of MRI raw data
— Overview of MRI acceleration strategies
— Recent deep-learning reconstruction approach
— Parallel imaging as a CNN super-resolution problem
— Models to classify motion corrupted raw data



The depth of MRI contrats

T1W T2W FLAIR DWI
anatomy mobile water Removing CSF Restricted diffusion

* MRl uses water molecules as a sensors

* |t provides a variety of contrasts

* |tis sensitive to tissue structure and content

» Can be used as inputs to various data models for image-related tasks



Traditional tasks in Image domain

%

Multiband Interleaving Ghosting

the different artifacts that the

QC-Automat

Image denoising” quality control®

lEstienne et al., Front Comput Neurosci 2020,

2Akkus et al., J. Digit Imaging, 2017, doi: 10.1007/s10278-017-9983-4
3Nagaraj et al., Sensors, 2020, doi: 10.3390/s20113243

4Kidoh et al., MRMSci 2020, doi:10.2463/mrms.mp.2019-0018

>Samani et al 2020 Front Neurosci, doi: 10.3389/fnins.2019.01456

®Pham et al, Comp Med Im Graph, 2019, doi:10.1016/j.compmedimag.2019

Susceptibility Herringbone

Input

Patch-wise CNN Segmentation

Convolutional / Fully Conr

B Activation

LR Image

B

Spline Interpolation

Pooling [ Ko

ILR Image Residual

i
|

3D convolution + RelLU
3D convolution + ReLU
3D convolution

Skip Connection

Fig. 1. 3D deep neural network for single brain MRI super-resolution.

super-resolution®




Spatial resolution vs acquisition times

 MRI generates highly resolved 3D data (at UHF) providing exquisite details of
brain structure and function

 However, the acquisition process takes time
» Not feasible for all desired contrasts, and sensitive to motion



MRImagesandAl
Spatial resolution vs acquisition times

e L R

Limited motion artifacts Large motion artifacts

» Motion reduced image quality and resolution
» Problematic in many clinical applications
» Reducing acquisition time is a major issue



MRImagesandAl
Spatial resolution vs acquisition times

* Need for methods in order to:
» Shorten scan time without sacrificing resolution

» Correct for motion for long scans

» Can Al models do it?
» How to adapt Al models to the nature of MRI data?



Accelerstingbrain MRIWRh 1A
Objectives

* MR Images and Al

— The depth of MRI contrasts
— Traditional tasks that Al can solve

* MR raw signals and Al
— The nature of MRI raw data
— Overview of MRI acceleration strategies
— Recent deep-learning reconstruction approach
— Parallel imaging as a CNN super-resolution problem
— Models to classify motion corrupted raw data



MRrawsignalsand Al
MRI data is complex

Magnitude Phase

M(x,y,z :‘M X, ), z)expliglx,y,z



MRrawsignalsandAl
MRI raw data is acquired in k-space

Fourier | et g
transform| oL

Image space k-s.pgc.e
(representation) (acquisition)



MRrawsignalsand Al
k-space is sampled sequentially




MRrawsignalsandAl
MRI raw data is using several sensors




MRrawsignalsand Al
MRI data is intrinsically Big

e 3D k-space typically 2563
 Complex data — (float 32 bits)
e Coils (sensors) typically 20-64
e Contrasts — typically 4-8

* Time—20-32

» Between ~100 Gb to ~2 Tb if sampled exhaustively !

» With a high degree of redundancy



Accelerstingbrain MRIWRh 1A
Objectives

* MR Images and Al
— The depth of MRI contrasts
— Traditional tasks that Al can solve

* MR raw signals and Al
— The nature of MRI raw data
— Overview of MRI acceleration strategies
— Recent deep-learning reconstruction approach
— Parallel imaging as a CNN super-resolution problem
— Models to classify motion corrupted raw data



MRrawsignalsand Al
Overview - MRI acceleration strategies

Body coil 8-channel cardiac coil

Shared general principles:

1 — undersampled k-space = reduce acquisition time
2 —add knowledge and make use of redundant information



Image reconstruction with Al
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Automap, model based on a full knowledge of the acquisition process / imaging setup

Zhu, Nature 2018, doi: 10.1038/nature25988.




Accelerstingbrain MRIWRh 1A
Objectives

* MR Images and Al
— The depth of MRI contrasts
— Traditional tasks that Al can solve

* MR raw signals and Al
— The nature of MRI raw data
— Overview of MRI acceleration strategies
— Recent deep-learning reconstruction approach
— Parallel imaging as a CNN super-resolution problem
— Models to classify motion corrupted raw data



Machine learning to accelerate acquisition and reconstruction of
multiparametric brain Magnetic Resonance Imaging"

CIMB

CRMBM-CEMEREM UMR 7339

Aix--Marseille Université

Swetali NIMJE, PhD thesis

Supervision:
T. Artieres (QARMA, LIS)
L. de Rochefort (CRMBM)




MRrawsgnalsand Al
Parallel imaging

20 complex input

~ ] 20 Complex Convolution
3x2 GRAPPA kernel

3 Readout points

2 Phase Encodmg ine
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Parallel imaging is equivalent to a training a CNN data model based on examples
to solve a super-resolution task in k-space
Griswold MA et al. Magn Reson Med. 2002 Jun;47(6);1202-10.



MRrawsgnalsand Al
Complex convolution layers

Complex Convolution

Real Convolution

*Convolving a 3 x 3 real kernel over
a 4 x 4 real input using unit strides




MRrawsignalsand Al
Scan-specific data models

[ ] 2D Convolution

Relu

(d, ifd=>0
(| 0, otherwise

RelLU(d) =

Imaginary  Real

Akcakaya , Magn. Reson. Med 2019, 10.1002/mrm.27420



Scan-specific data models

[ ] 2D complex input
| | 2D Complex Convolution

Complex Relu

CReLU (d) = ReLU(Re{d}) + iReLU(Im{d})

Complex formulation




MRrawsignalsand Al
Scan-specific data models

T2W 2D FSE on a volunteer

Typical acceleration in practice
R=2,3




Non-Linear component of crRAKI

T . . B ™




MRrawsignalsand Al
Scan-specific data models

a) GROUND TRUTH

T1POST

rRAKI(NL)

crRAKI(NL)




Scan-specific data models - conclusions

Scan-specific complex-CNN models can be trained

* Considering one acquisition embedding the training data

* Exploiting intrinsic redundancy

* Adapting model architectures and training strategies to this specific problem

* Results indicate the possibility to reduce scan time as compared to traditional
approaches



Accelerstingbrain MRIWRh 1A
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Correction of motion using deep-learning

CIMB

CRMBM-CEMEREM UMR 7339

Jérémy Beaumont, post-doctoral researcher

Supervision:
T. Troalen (Siemens Healthineers)
L. de Rochefort (CRMBM)




MRrawsignalsandAl
Motion correction using TAKE

TAKE is a technique that uses:

- data consistency between neighbors

- expressed as local convolution filter

- an Hankel structure

- perform a singular value decomposition
- and detects iteratively large residuals

3

- that are locally inconsistent

»In many ways, it is similar to CNN models learning redundancy in the data,
with residual connections, and binary classification (Motion / no motion)
» Al is thus pertinent to be adapted/used to perform this classification task

Trimmed autocalibrating k-space estimation based on structured matrix completion

Bydder et al, Magn Reson Imagong, 2017, 10.1016/j.mri.2017.07.015



Models for the detection of motion corrupted line

Raw k-space Estimated k-space Residuals

Robust TAKE

Phase encodings]

Beaumont et al, ISMRM 2022



T2W 2D FSE on a volunteer

Robust TAKE
correction

Ground truth Motion corruption

Reduction of motion artifacts



Conclusion

* High resolution / multiple contrasts / long scan
* High sensitivity to motion / cannot be sampled exhaustively

* Tasks that MRI-specific Al models can solve:

* Scan-specific (considering one scan as the training database)
* Adapted to the nature of MRI (high dimensions, space, contrasts, sensors, time, ...)
* Highly redundant

A\

Super-resolution in k-space

A\

Classification of motion-corrupted data
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