barbatti.org

Machine learning for
theoretical chemistry

Mario Barbatti
Aix Marseille Université, CNRS, Institut.de Chimie Radicalaire
Institut Universitaire de France




Who are we?




The Light & Molecules group



The Light & Molecules Group

w» Methods Software Applications
Nonadiabatic dynamics NEWTON-X Photoprocesses in
Nuclear ensembles platform + Fundamental PhysChem

* Molecular biology
« Organic devices

e Environment

LIGHT AND
MOLECULES



The Light & Molecules Group

Current members

Mario Barbatti (PI)

Baptiste Demoulin (IT researcher)

Josene M Toldo (postdoc)
Saikat Mukherjee (postdoc)
Bidhan Garain (postdoc) ”

Rafael Mattos (PhD candidate)
Matheus Bispo (PhD candidate)

"Dedicated to ML projects

Recent past members

Mariana T do Casal
Ritam Mansour

Shuming Bai
Lijljana Stojanovic
Carlos E de Moura
Fabris Kossoski
Prateek Goel

Max Pinheiro Jr~
Moumita Kar

LIGHT AND
MOLECULES



Marseille-Xiamen consortium



Marseille (ICR)

Mario Barbatti Nuclear ensembles
Nonadiabatic dynamics
newtonx.org Unsupervised ML

Xiamen Univ

Pavlo Dral
Atomistic supervised ML

Pinheiro Jr et al. Sci Data 2023, 10, 95

Zhang et al., In Quantum Chemistry in the Age of ML, 2023
Pinheiro Jr and Dral., In Quantum Chemistry in the Age of ML, 2023
Barbatti et al. JCTC 2022, 18, 6851

Dral: Barbatti. Nat Rev Chem 2021, 5, 388

Pinheiro Jr et al. Chem Sci 2021, 12, 14396

Dral et al. Top Curr Chem 2021, 379, 27

Xue; Barbatti; Dral. J Phys Chem A 2020, 124, 7199

Dral; Barbatti; Thiel. J Phys Chem Lett 2018, ?, 5660 MIbII?EHCTU'tEg




Marseille (ICR)
Mario Barbatti Nuclear ensembles
Nonadiabatic dynamics
newtonx.org Unsupervised ML

Xiamen Univ (" -t \

Pavlo Dral
Atomistic supervised ML

\_MLatom.com /

Marseille (LIS) [ )
Thierry Artieres
Hachem Kadori

Data science expertise

LIGHT AND

MOLECULES






Newtonian Dynamics LIGHT AND

MOLECULES

NX

newtonx.org Close to the X'Seam

 Surface hopping & Nuclear ensemble simulations
* Freeware

* Open source

Barbatti et al. JCTC 2022, 18, 6851 Baptiste Demoulin
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NX

whveell Close to the X-Seam

« Simulations with MRCI, MCSCF, CASPT2, ADC(2), TDDFT,
TD-DFTB, Semiempirical/Cl, Analytical models, ML potentials

* Interfaces to Columbus, Turbomole, Gaussian, Bagel, Gamess,
CP2K, DFTB+, Mopac (Pisa), ORCA, Open Molcas, MNDO, MLatom

Barbatti et al. JCTC 2022, 18, 6851



Newton-X Platform
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What is theoretical chemistry?




Qua cules




Schrodinger equation for the molecule (including electrons and nuclei)

nY _ Py
ot

Following Born and Oppenheimer’s approach, this problem simplifies to

Electrons (r) Nuclei (R)
Electronic Schrodinger equation Nuclear Newton’s equation
(adiabatic approximation) (Classical approximation)
2
(T (1) +V (nR))0(r:R) = E(R)o(r:R) M, e =, E(R)

The core quantity is the potential energy surface E(R)
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—» dissociation

equilibrium
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E transition
state
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Potential energy surfaces E(R) have 3N_.-6 dimensions

For fulvene, N, = 12, E(R) has 30 dimensions

CHo

fulvene
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Nonadiabatic molecular dynamics
(NAMD)



Energy
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Reaction coordinate
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Energy

Reaction coordinate
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Reaction coordinate
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How can we simulate
nonadiabatic molecular dynamics?
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Mixed quantum-classical methods

1. Nuclei are treated via classical trajectories
2. Electrons are treated quantum mechanically

3. A nonadiabatic algorithm introduces post Born-Oppenheimer effects

Crespo-Otero; Barbatti. Chem Rev 2018, 118, 7026 LIGHT AND
MOLECULES
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Why do we need Al?




Al for theoretical chemistry has been used to
« Search the chemical space of compounds
e Perform dimensionality reduction, clustering, and pattern recognition
* Improve or accelerate quantum chemical methods

* Predict properties as a surrogate approach

Dral (Ed.). Quantum Chemistry in the Age of ML, Elsevier, 2023
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Nonadiabatic dynamics
Classical EOM

e e
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Quantum EOM
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Dynamics may be expensive

ﬂtotal ~ NTrajectories ><|\ISingIe Points ><TSingIe Point\

A\

How much does dynamics cost? tinyurl.com/dyncost

How many trajectories should we run? tinyurl.com/trajs SUOIL ZaS Lo
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Dynamics may be expensive

T
chem process
~ : D
ﬂtotal NTraJectorles ( AT j ><TSingIe Point\

NTrajectories = 100 trajectories
TSingIe Point =6 min = 0.1 CPUh
z-Chem process - 500,000 fS - 05 ns
At =05fs

T —~10 MCPUh

total

Price 1 CPUh  =0.02 € (France)

Qrice 10 MCPUh = 200 k€ /

How much does dynamics cost? tinyurl.com/dyncost

How many trajectories should we run? tinyurl.com/trajs SUOIL ZaS Lo
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Dynamics leaves a huge carbon footprint
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10 MCPUh = 13 tCO,e
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www.green-algorithms.org

N

%\&\1 1.51CO,e/year
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http://www.green-algorithms.org/

What is the current status of
ML for chemistry?







Nonparametric

[

]

Parametric

A 4

[ Kernel Methods (KM)]

A 4

[ Neural Networks (NN) ]
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Pinheiro Jr et al. Chem Sci 2021, 12, 14396
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Simulating excited states is much more challenging:
1. They usually correspond to electronic densities that are difficult to compute
2. They are strongly anharmonic

3. They cluster in state bundles, mixing with each other
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ML can simulate excited states for the ground state equilibrium

If a dataset spawning the 3N_,-6 dimensions is available, ML can deliver
excellent fittings

However, for sparse datasets, robust ML protocols are still missing

LIGHT AND
MOLECULES




Matheus Bispo

The challenge



Effect of force uncertainty

>

Geometry
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Geometrical accuracy
We want results better than 0.2 A

Effect of force uncertainty

>

Geometry

Time

« A-SBH 33D
« dynamics on E,
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We must Qredict forces better than
0.5 eV/A (0.001 Hartree/Bohr)

(Maximum absolute error)
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Max Pihheiro Jr

ML-NAMD test cases
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Problem 1: Training set size
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40k points are too
expensive to adopt as
routine protocol
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Problem 2: Lack of robustness

1.0 +—rrrrees
0.8
5 Using the same ML
-+ 4 .
® 0.6 model with the same
S training set size for
S 04 another molecule may
s not give adequate results
0.2
0.0 ALLiiicr
0 25 50 75 100 125 150 175 200
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To address both problems, we are testing active learning:

1.

2.

We train multiple machines with an initially small number of points
Then, we run dynamics until the prediction between machines diverges

The geometries showing divergence are included in the training set,
and the machine is retrained

Repeat the procedure until no divergence is observed
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Funding & running projects




Sep 19

Subnano
(ERC AdG)

Goal: ML potentials for
dynamics in long timescale

72 months postdoc
1 PhD

Aug 24

Apr 24 Mar 25

(Award)

Goal: ML potentials NAMD of
large chromophores
* 12 months postdoc

Jan 24

MLChem
(A*Midex 2022 Res. & Training)
Goal: Establish an international

Al center for chemistry at AMU
« 3x36 months postdoc

* 1PhD LIGHT AND

MOLECULES






(Aix Marseille
universite
Socialement engagée

ic’ L1 5 MLChem aims to establish
Institut Chimie Radicalaire D‘NF:RS“:SATTE‘TAUE; an international AI Center

: for chemistry at AMU
G ® o
« Barbatti * Artieres
e Ferré ® Kadri

JEF I Al 2
i J
w4/ College of Chemistry and Chemical Engineering, Xiamen University




MLChem mission 1: ML showcase

* Developing new methodologies for computational chemistry using ML
for energy and charge propagation in organic crystals

* Implementing unsupervised-learning approaches for analyzing
computational chemistry data

« Creating open data protocols for sharing ML results in a dedicated
system server

LIGHT AND
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MLChem mission 2: Al culture

« Offering project-tailored consulting on using Al solutions for chemistry
groups at AMU
1. help to identify preexistent software and hardware available
2. help writing grant proposals to secure funds to implement those
solutions.

« Offering courses and tutorials on ML for chemistry at several levels

1. Two virtual ML schools
2. Courses for ED250
3. ML at master programs

LIGHT AND
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Outlook




Supervised ML has great potential for accelerating excited-state potential
energy predictions.

However, no robust protocol has been published
(If the model and training procedure worked for a molecule, it does not mean
they will also work for another one)

Problems boil down to the high accuracy required in the predictions in highly
multidimensional spaces
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Our experience developing methods, benchmarks, and programs for ML for

theoretical chemistry can be a seed for creating a culture of Al for chemistry at
AMU
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Our main challenge may not be scientific.

It is our need for career attractiveness for
young researchers.
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www.barbatti.org

mario.barbatti@univ-amu.fr
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