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1: Presentation of the team

❍ Merging of PCiAI and PATP

Sadri Benkadda

Peter Beyer

Mohammed Koubiti

Nathaniel Saura

David Garrido

❍ Active collaboration with CEA, Osaka University, American
University of Beyrouth

❍ Future collaboration with Tokyo University, University of Seattle, ...
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Plasma and fusion

❍ Instead of nuclear fission, nuclear fusion ⇒ more energy, less
radioactivity but: extreme conditions, non-linearity, turbulence...

❍ Tokamak: fusion reactor. Strong magnetic fields instead of gravity.

❍ Confinement: keeping the plasma’s central region sufficiently hot
and dense for nuclear fusion.

❍ Achieving efficient nuclear fusion: maintaining high confinement
mode ⇒ more energy produced

❍ Impurities: weakly ionized (“cold”) atoms torn from the Tokamak
walls due to its interactions with the hot plasma

❍ Impurities migrate from wall to core this breaks the confinement
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Our topics

Our main focus

- Applying AI to overcoming the fusion’s barriers

❍ Towards understanding the origin of the degradation of the
confinement

Remove signal corruption to enhance measurement devices
Better identify “cold elements” coming from the edge ⇒ control
Speed up simulations and/or develop models

- Non-linear physics (Astrochemistry, Fluid mechanics)

Secondary topics

- Application of AI in Ecology
- Modeling energy community evolution using game theory
- Automatic molecular identification
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Improving the identification of ions in the presence of
strong noise

❍ In spectroscopy, the noise degrades the accuracy and confidence of
element recognition methods

Corrupts data
Challenges the usability of signal processing methods

❍ CNN have been widely used in the context of noisy images

Disentangling noise and signal to keep the coherent part
Auto-encoder (CAE) vs Denoising CNN (DnCNN) based on residual

Use and compare CNN architectures to improve the ion identification

Considering strongly corrupted signals:

Improve the PSNMF identification confidence using the two
approaches

Compare the noise removing capacity and the learning strategy
induced by the architecture
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DnCNN and CAE

Figure 1: DnCNN [? ] and the enhanced one [? ] featuring a residual connection.

Figure 2: CNN Encoder-decoder architecture example [? ]
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Signal denoising comparisons (N0; SNR= −1)

Figure 3: Denoising comparisons for N0
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Signal denoising comparisons (W2; SNR= −1)

Figure 4: Denoising comparisons for W2
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PSNMF improvement (SNR= −1)

Figure 5: Noise described by SNR= −1
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PSNMF improvement (SNR= −5)

Figure 6: Noise described by SNR= −5
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AiPoG - Global Framework

Figure 7: Framework: how to tackle PDEs

Learning the dynamics of a system

Using a well-designed neural network, we can learn the time rate
evolution of a system
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Dynamical system: Predator-Prey

Figure 8: Training to learn the system’s dynamics

Figure 9: Comparison between phase portraits
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Example of AiPoG on Hasegawa-Wakatani

Figure 10: Training to learn the ODE systems obtained from the Galerkin Projection
onto the extracted POD modes



14/16

Presentation of the team Working with spectra AI applied to ODEs and PDEs Conclusion

Example of AiPoG on Hasegawa-Wakatani

Figure 11: Comparison of expected and predicted fields
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Ongoing and future works

❍ Improving AiPoG application to chaotic systems and other PDEs

❍ Predicting particle cluster with specific properties

❍ Enhancing spectroscopic analysis (CEA)

❍ Developing a machine-learning-based interatomic potentials
(Osaka University)

❍ Automatic identification of a molecule and its atomic composition
(ASTRO, Osaka University)

❍ Application of Game Theory to enhance interpretability of NN

❍ And more
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Greetings

Thank you for your attention
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