Applying Al to non-linear Physics

Nathaniel Saural

Journée IA et sciences physiques

1- Laboratoire PIIM, Aix-Marseille Université, UMR 7345, France



Presentation of the team
@00

1: Presentation of the team

o Merging of PCiAl and PATP
e Sadri Benkadda
o Peter Beyer
e Mohammed Koubiti
o Nathaniel Saura

e David Garrido

o Active collaboration with CEA, Osaka University, American
University of Beyrouth

o Future collaboration with Tokyo University, University of Seattle, ...
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Plasma and fusion

o Instead of nuclear fission, nuclear fusion = more energy, less
radioactivity but: extreme conditions, non-linearity, turbulence...

o Tokamak: fusion reactor. Strong magnetic fields instead of gravity.

o Confinement: keeping the plasma’s central region sufficiently hot
and dense for nuclear fusion.

o Achieving efficient nuclear fusion: maintaining high confinement
mode = more energy produced

o Impurities: weakly ionized (“cold”) atoms torn from the Tokamak
walls due to its interactions with the hot plasma

o Impurities migrate from wall to core this breaks the confinement
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Our topics

Our main focus
- Applying Al to overcoming the fusion's barriers

o Towards understanding the origin of the degradation of the
confinement
o Remove signal corruption to enhance measurement devices
o Better identify “cold elements” coming from the edge = control
o Speed up simulations and/or develop models

- Non-linear physics (Astrochemistry, Fluid mechanics)

A\

Secondary topics

- Application of Al in Ecology

- Modeling energy community evolution using game theory
- Automatic molecular identification

.
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Improving the identification of ions in the presence of

strong noise

o In spectroscopy, the noise degrades the accuracy and confidence of
element recognition methods

o Corrupts data
o Challenges the usability of signal processing methods

o CNN have been widely used in the context of noisy images

o Disentangling noise and signal to keep the coherent part
o Auto-encoder (CAE) vs Denoising CNN (DnCNN) based on residual

Use and compare CNN architectures to improve the ion identification

Considering strongly corrupted signals:

o Improve the PSNMF identification confidence using the two
approaches

@ Compare the noise removing capacity and the learning strategy
induced by the architecture
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DnCNN and CAE
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Figure 1: DnCNN [? ] and the enhanced one [? ] featuring a residual connection.
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Figure 2: CNN Encoder-decoder architecture example [? ]
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Signal denoising comparisons (NO; SNR=
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Figure 3: Denoising comparisons for NO
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Signal denoising comparisons (W2; SNR= —1)
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Figure 4: Denoising comparisons for W2
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PSNMF improvement (SNR= —1)
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Figure 5: Noise described by SNR= —1
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PSNMF improvement (SNR= —5)
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Figure 6: Noise described by SNR= —5
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AiPoG - Global Framework

Collection of snapshots coming POD (proper orthogonal
from the PDE decomposition)
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Figure 7: Framework: how to tackle PDEs

Learning the dynamics of a system

Using a well-designed neural network, we can learn the time rate
evolution of a system
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Dynamical system: Predator-Prey
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Figure 8: Training to learn the system’s dynamics
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Figure 9: Comparison between phase portraits
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Example of AiPoG on Hasegawa-Wakatani

== 0 (True) w2 (NODE) === 5 (True)

w0 (NODE) == 3 (True) === 5 (NODE)

== 1(True) === 3 (NODE) = = 5 (True) === Train (NODE) Test (NODE)
w1 (NODE) == = 4 (True) s 5 (NODE)

= 2 (True) w4 (NODE)

Mode amplitude

520 530 540 0 100 200 300
Time Epoch

Figure 10: Training to learn the ODE systems obtained from the Galerkin Projection
onto the extracted POD modes
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Example of AiPoG on Hasegawa-Wakatani
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Conclusion

Ongoing and future works

o Improving AiPoG application to chaotic systems and other PDEs
o Predicting particle cluster with specific properties
o Enhancing spectroscopic analysis (CEA)

Developing a machine-learning-based interatomic potentials
(Osaka University)

o Automatic identification of a molecule and its atomic composition
(ASTRO, Osaka University)

o Application of Game Theory to enhance interpretability of NN

o

o And more
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Greetings

Thank you for your attention J
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