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Abstract

Approximating convex bodies is a fundamental question in geometry and has a wide variety
of applications. Given a convex body K in Rd for fixed d, the objective is to minimize the
number of vertices (alternatively, the number of facets) of an approximating polytope for a
given Hausdorff error ε. The best known uniform bound, due to Dudley (1974), shows that
O((diam(K)/ε)(d−1)/2) facets suffice. While this bound is optimal in the case of a Euclidean
ball, it is far from optimal for “skinny” convex bodies.

A natural way to characterize a convex object’s skinniness is in terms of its relationship to
the Euclidean ball. Given a convex body K, define its surface diameter ∆d−1(K) to be the
diameter of a Euclidean ball of the same surface area as K. It follows from generalizations of
the isoperimetric inequality that diam(K) ≥ ∆d−1(K).

We show that, under the assumption that the width of the body in any direction is at least
ε, it is possible to approximate a convex body using O((∆d−1(K)/ε)(d−1)/2) facets. This bound
is never worse than the previous bound and may be significantly better for skinny bodies. The
bound is tight, in the sense that for any value of ∆d−1, there exist convex bodies that, up to
constant factors, require this many facets.

The improvement arises from a novel approach to sampling points on the boundary of a
convex body. We employ a classical concept from convexity, called Macbeath regions. We
demonstrate that Macbeath regions in K and K’s polar behave much like polar pairs. We then
apply known results on the Mahler volume to bound their number.
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1 Introduction

Approximating convex bodies by polytopes is a fundamental problem in computational and com-
binatorial geometry. (See Bronstein [24] for a survey.) Given a convex body K in Euclidean
d-dimensional space and a scalar ε > 0, the problem is to construct a polytope P of low combi-
natorial complexity that is ε-close to K according to some distance measure. There are various
ways to measure combinatorial complexity and various distance measures. In this paper, distances
are based on the Hausdorff metric and complexity is measured by the number of facets in the
approximating polytope. A polytope P is said to be an ε-approximation to K if the Hausdorff
distance [24] between K and P is at most ε. The approximation is outer if K ⊆ P and is inner if
P ⊆ K. Throughout, we assume that the dimension d is a constant, implying that our asymptotic
forms conceal constant factors that depend on d.

There are two common types of approximation bounds in the literature. In both cases a positive
parameter ε0 is given, and the bounds hold for all ε ≤ ε0. Bounds are said to be nonuniform if the
value of ε0 depends on properties of K, and otherwise they are said to be uniform. Nonuniform
bounds often hold subject to smoothness conditions on K’s boundary (e.g., K’s boundary is C2

continuous). Examples of nonuniform bounds appear in works by Gruber [34], Clarkson [28], and
others [14, 42, 51, 52]. In contrast, in uniform bounds the value of ε0 is independent of K (but
may depend on d). Such bounds hold without any additional smoothness assumptions. Examples
include the results of Dudley [31] and Bronshteyn and Ivanov [23]. Our results are of this latter
type.

Dudley [31] showed that any convex body K can be ε-approximated by a polytope P with
O((diam(K)/ε)(d−1)/2) facets, where diam(K) denotes K’s diameter and 0 < ε ≤ diam(K). Bron-
shteyn and Ivanov showed the same asymptotic bound holds for the number of vertices. Constants
hidden in the O-notation depend only on d. These results have many applications, for example, in
the construction of coresets [2, 5, 7].

As evidenced by the case where K is a Euclidean ball, the bounds given by both Dudley and
Bronshteyn-Ivanov are tight in the worst case up to constant factors [24]. However, these bounds
may be significantly suboptimal ifK is “skinny”. A convex body’s skinniness can be measured based
on its similarity to a Euclidean ball. We define the volume diameter of K, denoted ∆d(K), to be the
diameter of a Euclidean ball of the same volume as K. Its surface diameter, denoted ∆d−1(K), is
defined analogously for surface area. Up to constant factors, these quantities are closely related to
the classical concepts of quermassintegrals and of intrinsic volumes of the convex body [43,44]. It
follows from generalizations of the isoperimetric inequality that diam(K) ≥ ∆d−1(K) ≥ ∆d(K) [44].

In this paper, we strengthen Dudley’s bound by showing that the complexity of approximation
can be made sensitive to K’s skinniness as expressed in terms of surface diameter. Here is our main
result.

Theorem 1. Consider any convex body K in Rd and any ε > 0 such that the width of K in any
direction is at least ε. There exists an outer ε-approximating polytope P for K whose number of
facets is at most (

cd∆d−1(K)

ε

)d−1
2

,

where cd is a constant (depending on d) and ∆d−1(K) is K’s surface diameter.
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The bound can equivalently be stated in terms of K’s surface area as cd
√
area(K)/ε(d−1)/2.

The isoperimetric inequality implies that for a given diameter, the surface area is maximized for a
Euclidean ball, implying that (up to constant factors) area(K) ≤ diam(K)d−1. Thus, by taking K
to be a ball of radius r ≥ ε, the tightness of Dudley’s bound implies that, up to constant factors
depending on the dimension, the number of facets is at least (r/ε)(d−1)/2 ≈

√
area(K)/ε(d−1)/2.

Thus, as a function of surface area or surface diameter alone the bound of Theorem 1 is tight up
to constant factors.

The problem of shape-sensitive approximations was considered by Bonnet [19], who considered
the problem in the uniform setting (which he terms the non-asymptotic, non-smooth case). His
results are presented in terms of the intrinsic volume Vi(K), for 1 ≤ i ≤ d. Up to constant factors,
we can define ∆i(K) to be Vi(K)1/i. Expressed in our notation, his results imply that there exists
an ε-approximation to K with O((diam(K)δβ/ε)(d−1)/2) facets, where δ = ∆(d−1)/2(K)/diam(K)
and β is roughly 1/2d. (He conjectures that the results hold for β = 1 and with ∆d−1(K) in place
of ∆(d−1)/2(K), which basically matches the bound of Theorem 1.) We also considered the problem
of area-sensitive approximation in an earlier work [6]. The bound presented there was worse by a
factor of logO(1) ε. In Section 5 we will present a simple derivation of Theorem 1 in the nonuniform
setting.

The width requirement in Theorem 1 seems to be necessary. Consider, for example, a (d −
2)-dimensional unit ball B embedded within Rd, and let Bδ denote its Minkowski sum with a
d-dimensional ball of radius δ ≪ ε. By the optimality of Dudley’s bound for Euclidean balls,
Ω(1/ε(d−3)/2)) facets are needed to approximate B, and hence this bound applies to Bδ as well.
However, the surface area of Bδ can be made arbitrarily small as a function of δ. Of course, the
width condition can always be satisfied by first taking the Minkowski sum of K with a Euclidean
ball of radius ε/2.

An additional contribution of this paper, which may be of independent interest, involves our
approach. We show that the problem of generating a Hausdorff ε-approximation to a convex body
in Rd can be reduced to the problem of generating an ε-approximation to a convex function. More
precisely, let Ψ denote a convex subset of Rd−1 and consider a convex function f : Ψ → R. We say
that a function f̂ is a (lower) ε-approximation to f if f(x) − ε ≤ f̂(x) ≤ f(x), for all x ∈ Ψ. We
show (in Lemma 3) how to map any convex body K in Rd to a set of 2d functions and associated
domains {(f1,Ψ1), . . . , (f2d,Ψ2d)} such that any set of lower ε-approximations to these functions
can be combined to obtain a single outer ε-approximation to K. To achieve area sensitivity, our
reduction guarantees that, up to constant factors, area(Ψi) ≤ area(K). In Theorem 2 in Section 2.2,
we present an area-sensitive bound on the complexity of a piecewise-linear ε-approximation to such
a function. (Technically, our approximation applies to a subdomain that is infinitesimally close to
Ψi.)

In a recent paper, we presented a volume-sensitive bound by proving the existence of an ap-
proximation with O((∆d/ε)

(d−1)/2) facets [12]. As observed above, ∆d−1(K) ≥ ∆d(K), and hence
that bound subsumes the area-sensitive bound presented here. However, we believe that the area-
sensitive bounds are of intrinsic interest. By its nature, approximation applies near a body’s bound-
ary, and hence surface area is a relevant parameter. There are applications involving unbounded
objects, such as in the generation of space-efficient minimization diagrams for approximate nearest-
neighbor searching [1,36], where area-sensitivity is meaningful, but volume sensitivity is not. Also,
our function-based approach may have additional applications. Rote applied the functional per-
spective to convex approximation in R2, resulting in a bound that matches ours for the d = 2
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case [50, Theorem 3]. He posed the open problem of higher dimensional generalizations.

1.1 Notation and Assumptions

Throughout, K will denote a convex body in Rd, that is, a compact convex subset with nonempty
interior. Let us assume that K is positioned so that its centroid coincides with the origin. Let
vol(K) denote its d-dimensional Hausdorff measure, area(K) denote its surface area measure, and
∂K denote its boundary. We assume that the dimension d is a constant. For α ≥ 0, αK denotes a
uniform scaling of K about the origin, and for p ∈ Rd, K+p denotes the translation of K by p. Let
K⊕r denote the dilation of K by r, that is, the Minkowski sum of K and a Euclidean ball of radius
r centered at the origin. Let K ⊖ r denote the erosion of K by r, that is, the subset of K that lies
at distance at least r from ∂K. The dilation and erosion of a convex set are both convex. A convex
body is smooth, if at each boundary point, there exists a unique supporting hyperplane, and it is
strictly convex if its boundary contains no line segment. Throughout, we use ⟨·, ·⟩ to denote the
standard inner (dot) product, and use ∥ · ∥ =

√
⟨·, ·⟩ to denote the Euclidean norm.

Letting Ψ ⊆ Rd−1 be an open convex set, consider a function f : Ψ → R. This function’s graph
is the set {(u; v) ∈ Rd−1×R : v = f(u)}, and its epigraph is similarly defined where v ≥ f(u). If f
is a convex function, its epigraph is a convex set in Rd. To exploit the relationship between convex
sets and epigraphs, we will often express a point q ∈ Rd as a pair (u; v) ∈ Rd−1×R. If f is smooth,
let ∇f =

( ∂f
∂x1

, . . . , ∂f
∂xd−1

)
denote its gradient. Given a hyperplane y = ⟨a, x⟩ + b, define its lower

(resp., upper) halfspace to be the set of points q = (u; v) where v ≤ ⟨a, u⟩+ b (resp., v ≥ ⟨a, u⟩+ b).
If q = (u; v) is a point on f ’s graph and ∇f(u) is defined, then the tangent hyperplane for f at q is

hf (q) = {(x; y) ∈ Rd−1 × R : y = ⟨∇f(u), x− u⟩+ v}. (1)

Given ε > 0, we say that f̂ is an upper ε-approximation to f over a subdomain Ψ− ⊆ Ψ if
for all x ∈ Ψ−, f(x) ≤ f̂(x) ≤ f(x) + ε. A lower ε-approximation is defined analogously with
f(x)− ε ≤ f̂(x) ≤ f(x).

To avoid specifying many real-valued constants that arise in our analysis, we will often hide
them using asymptotic notation. For positive real x, we use the notation O(x) or “≲ x” to denote
a quantity whose value is at most cx for an appropriately chosen constant c. We use Ω(x) or “≳ x”
for a quantity that is at least cx. We use Θ(x) or “≈ x” to denote a quantity that lies within the
interval [cx, c′x] for appropriate constants c and c′. These constants may depend on the dimension
d, but not on K or ε. Therefore, all such bounds hold uniformly.

1.2 Overview of Methods

It is well known that computing a Hausdorff approximation of a convex body K by a polytope
can be reduced to sampling an appropriate set system involving surface patches on K’s boundary
(see, e.g., [22, 23, 27]). For example, an outer approximation can be obtained by first sampling a
sufficiently dense set of points from K’s boundary and then intersecting the halfspaces defined by
the supporting hyperplanes at each of these points. The definition of “sufficiently dense” can be
based on the concept of a hitting set for dual caps. Consider a point q′ that is at distance ε from
K, and let q be its closest point on the boundary of K (see Figure 1(a)). The set of points on the
boundary of K that are visible to q′ is called an ε-dual cap. (Dual caps will be defined formally
in Section 2.3.) We say that a set P of points on K’s boundary is a hitting set for dual caps if
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every ε-dual cap contains at least one point p ∈ P . It is easy to see that a polytope formed from
the supporting hyperplanes at these points yields an ε-approximation because every point that is
at distance at least ε from K (such as q′) is separated from its closest boundary point by at least
one of these supporting hyperplanes (such as the one at p).

(a) (b)

K

(c)

K

q

q′

p x

ε

K

q

ε

q′

Figure 1: Overview of methods: (a) ε-dual caps and hitting, (b) shrunken Macbeath region, and
(c) the base of a dual cap.

Prior attempts to obtain an area-sensitive approximation bound suffered from an additional
polylogarithmic factor due to a relatively inefficient sampling method based on ϵ-nets for halfspace
ranges [6]. In this paper, we develop a more efficient approach, which is based on Macbeath regions.
This is a classical concept from the theory of convexity [40]. Given a convex body K and a point
x ∈ K, a Macbeath region is a centrally symmetric body centered at a point of K that adheres
locally to K’s shape (see Figure 1(b)). One way to use Macbeath regions to build a hitting set is
to first generate a maximal set of disjoint shrunken Macbeath regions that lie within distance of
roughly ε of K’s boundary. A constant number of points are then sampled from the neighborhood
around each Macbeath region, and these points are projected onto K’s boundary. It can be shown
that this yields a valid hitting set and hence a valid approximating polytope.

Unfortunately, a direct application of this process does not yield a good bound on the complexity
of the approximation. While a packing argument can be applied to bound the number of Macbeath
regions of large volume, it is not easy to bound the number of Macbeath regions of small volume.
However, the number of small Macbeath regions can be bounded by appealing to polarity. An
interesting property of Macbeath regions is that Macbeath regions that have small volume in the
original body, correspond to Macbeath regions in the polar body that have large volume.

In order to exploit this property, we introduce two intermediate structures. First, we show that
K can be represented as the intersection of 2d unbounded convex sets, which we call support sets
(see Figure 2 in Section 2.1). Each of these sets can be interpreted as the epigraph of a convex
real-valued function over Rd−1. To achieve area-sensitivity, we make further refinements to these
functions. The result is a set of 2d functions and associated domains {(f1,Ψ1), . . . , (f2d,Ψ2d)},
which possess a number of nice properties. Each such function fi is smooth and strictly convex.
Each domain Ψi ⊂ Rd−1 is bounded, open, and convex, such that area(Ψi) ≲ area(K). Each
function has a dual representation in the form of its Legendre transform, denoted f∗

i , whose domain
is Rd−1. We show that each point on the graph of fi has a unique dual counterpart on the graph
of f∗

i . Finally, we show that by independently building approximations to each of these functions,
these multiple approximations can be combined to obtain a single approximation to K. We abstract
these properties in a concept, which we call a U-shaped set.

The notion of an ε-dual cap can be readily adapted to this functional context. We also define
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the notion of an ε-cap, and we show that the ε-dual cap induced by a point on the graph of
fi corresponds to the ε-cap of its dual counterpart in f∗

i . For each dual cap and each cap, we
introduce a (d − 1)-dimensional convex body called its base. A key result relating caps and dual
caps is presented in Lemma 8, where we show that, subject to a projection and scaling, the base
of a dual cap of fi is the polar of the base of the associated cap of f∗

i .
This polar relationship is a central ingredient in our construction because it allows us to apply

the classical concept of the Mahler volume, which implies that small dual caps in the epigraph of fi
correspond to large caps in the epigraph of the dual f∗

i . We show that this applies to the Macbeath
regions in the vicinity of these caps and dual caps. We employ a two-pronged approach to sampling
from both the primal and dual. Macbeath regions that are too small to be sampled from fi will
be sampled as large Macbeath regions in f∗

i . Observations in this spirit have been made in other
contexts (see, e.g., [4, 10, 47]), but the functional formulation given here is both cleaner and more
general.

The remainder of the paper is organized as follows. In Section 2 we introduce our functional
approach to approximation, where in Lemma 3 we prove that independent approximations to these
functions can be combined to obtain a single approximation for the original convex body. We
also present Lemma 4, which establishes how a hitting set for dual caps yields an approximation.
Next, in Section 3 we explore the dual relationships between caps and dual caps. There we present
Lemma 8, which shows that the projected bases of caps and dual caps are polars of each other.
In Section 4 we present our Macbeath-based sampling process. First in Section 4.2 we introduce
Macbeath regions, and we present an adaptation of a well known result about Macbeath regions,
called cap covering (which is proved later in Section 6). Then in Sections 4.3 and 4.4 we explain
how our Macbeath-based machinery can be employed to build hitting sets for large and small dual
caps, respectively. Finally, in Section 5 we present an additional result which shows that a bound
similar to ours can be derived in the nonuniform setting.

2 Approximation Through a Functional Lens

2.1 Support Sets

In our analysis, we will use approximations of convex functions as intermediaries when working
with approximations of convex bodies. We will employ a representation of our body K in Rd as
the intersection of 2d functions and associated domains {(f1,Ψ1), . . . , (f2d,Ψ2d)}. In this section,
we will describe this functional representation and its relevance to convex approximation.

Let Γd = [−1, 1]d denote a hypercube in Rd. This hypercube is bounded by 2d (closed) facets,
which can be identified with the elements of the set I± = {±1, . . . ,±d}. In particular, for each
i ∈ I±, facet Fi consists of the vectors whose ith coordinate is either +1 or −1 depending on
the sign of i, and all its other coordinates lie in the interval [−1, 1]. Given any vector u ∈ Rd,
let φK(u) = supx∈K⟨x, u⟩ denote the support function of K. Given any i ∈ I±, define Ki to
be the largest convex set whose support function agrees with K’s over the vectors in Fi, that is,
Ki = {x ∈ Rd : ⟨x, u⟩ ≤ φK(u), ∀u ∈ Fi} (see Figure 2). Intuitively, Ki is the intersection of all
the halfspaces that contain K and are orthogonal to an element of Fi. Because these facets cover
all the possible directions, K =

⋂
i∈I± Ki. Also, subject to an appropriate rotation, each set Ki

can be interpreted as the epigraph of a convex function over Rd−1.
For the remainder of this section, let us fix any i ∈ I±, and let Xi denote the (d−1)-dimensional
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K1

Kx2

x1

Kx2

x1

K2

K−1

Kx2

x1

K−2

x2

x1

K

Figure 2: Support sets.

linear subspace spanned by the basis vectors other than the ith basis vector. We may identify Xi

with Rd−1, and we may express any q = (q1, . . . , qd) ∈ Rd as a pair (u; v) ∈ Rd−1 × R, where
u = (qj)j ̸=|i| and v = −sign(i) · qi. Under this interpretation, Ki is the epigraph of a convex real-

valued function over Rd−1. Define q↓ = u to be the orthogonal projection of q onto Rd−1, and define
the projection of any set Q ⊆ Rd, denoted Q↓, analogously. (The meaning of Q↓ is dependent on
the choice of i ∈ I±, but whenever we use it, the value of i will be clear from the context.)

From the functional perspective, the interesting portion of a convex set is the portion of the
boundary that is visible from below. Define the lower boundary of a convex set Q, denoted ∂Q, to
be the set of boundary points of Q such that there exists a supporting hyperplane passing through
this point whose outward normal vector points downwards, meaning that it has a strictly negative
dot product with the vertical axis. Clearly, for every point p′ ∈ Q↓, there is a point p ∈ ∂Q such
that p′ = p↓.

2ε 2ε
K↓

(b)

K

(a) (c)

Ki

(d)

K ′
i K ′′

i Ui

Ψi

fi

K↓ ⊕ 2ε

Xi

Figure 3: Restricting and smoothing the support set.

The projection K↓
i covers all of Rd−1 (see Figure 3(a)), but for the sake of deriving area-sensitive

bounds, it will be necessary to restrict its projection to one whose area more closely matches K’s
surface area. For any α ≥ 0, recall that K↓⊕α denotes the subset of Rd−1 that lies within distance
α of K↓. To limit the horizontal extent, we intersect Ki with a vertical cylinder Ci whose horizontal
cross section is K↓ ⊕ 2ε. To limit the vertical extent we take the portion of this set lying below
a horizontal hyperplane that is sufficiently high to include the entire lower boundary of Ki ∩ Ci.
Call the resulting set K ′

i (see Figure 3(b)). Clearly, this set is bounded, but we also want its lower
boundary to be smooth. To do this, we apply a result due to Klee [38, Theorem 1.5], which shows
that there is a convex body K ′′

i ⊆ K ′
i that is arbitrarily close to K ′

i and whose boundary is smooth
and strictly convex (see Figure 3(c)). Klee defines closeness in terms of the Banach-Mazur distance
where the the origin may be placed anywhere within K ′

i, but since K ′
i is bounded, we may use

Hausdorff distance instead.
Define Ψi = (∂K ′′

i )
↓, that is, the vertical projection of the points on the lower boundary of K ′′

i .
Clearly, Ψi is bounded and convex. We will show below that it is also open. Let fi : Rd−1 → R
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denote the function over Ψi whose graph is ∂K ′′
i . It follows that fi is smooth, strictly convex, and

its range is bounded. From the definition of Ψi and the smoothness and strict convexity of fi, the
mapping x 7→ ∇fi(x) defines a homeomorphism between Ψi and Rd−1. Define Ui to be the epigraph
of fi (see Figure 3(d)).

These sets Ui and the associated functions fi will play a key role in our future constructions.
We encapsulate their principal properties in the following concept.

Definition 1 (U-Shaped Function/Set). Given a bounded open, convex domain Ψ ⊂ Rd−1, a
function f : Ψ → R is U-shaped if it is smooth, strictly convex, has a bounded range, and the
function x 7→ ∇f(x) is a homeomorphism between Ψ and Rd−1. A set U ⊂ Rd is U-shaped if it is
the epigraph of a U-shaped function.

U-shaped functions are closely related to the concept of convex functions of Legendre type, as
defined by Rockafellar [49].

For some of our results, we will require the additional property that the slope of our function
is bounded by a constant over almost all of its domain. Given two positive scalars δ and γ, we
say that a U-shaped function f over Ψ is (δ, γ)-slope restricted if for all x ∈ Ψ ⊖ δ, ∥∇f(x)∥ ≤ γ.
(Recall that Ψ⊖ δ is the erosion of Ψ by δ, and ∥ · ∥ is the Euclidean norm.) The following lemma
summarizes the salient properties of the above construction.

Lemma 1. Consider a convex body K in Rd and scalars δ > 0 and γ ≥ 2
√
d− 1. For each i ∈ I±,

there exists a (δ, γ)-slope restricted U-shaped function fi over the domain Ψi = K↓ ⊕ 2ε such that
fi is an upper δ-approximation to the function whose epigraph is Ki over the subdomain Ψi ⊖ δ.

Proof. The function fi, domain Ψi, and set Ui are as defined in the above construction. Since i
will be fixed throughout, to simplify notation, we will omit it throughout the proof. (Note that all
instances of K in the proof refer to Ki.)

We first show that Ψ and f satisfy the conditions of being U-shaped. By construction, Ψ is
bounded and convex, and f is smooth and strictly convex. By limiting the vertical extent in forming
K ′

i, its range is bounded. Since the lower boundary consists of points whose normal has a strictly
negative dot product with the vertical axis, the smoothness of K ′′ implies that Ψ is open. The
smoothness of f implies that for each x ∈ Ψ, there is a well defined gradient ∇f(x). The normal
vectors along the boundary of K ′′ vary continuously over all possible directions, and so it follows
that for each vector w ∈ Rd−1, there exists a point on ∂K ′′ such that the gradient of the associated
function is w. Continuity and uniqueness imply that this is a homeomorphism.

Next, to establish the slope restriction, let Ψ− denote the erosion Ψ ⊖ δ. We assume that
Klee’s construction yields a convex body K ′′ that is within Hausdorff distance δ′ of K ′, where
δ′ < δ/

√
5(d− 1).

The support-set construction implies that the vertical component of any outward unit normal
vector for any point on the boundary of K dominates all the other coordinates in absolute value.
If we view the boundary of K from a functional perspective and identify X with Rd−1, this implies
that if we move a distance δ′′ along any basis vector of Rd−1, the function value can increase by at
most δ′′. It follows that if we move a distance δ′′ in any direction in Rd−1, the function value can
increase by at most δ′′

√
d− 1.

We assert that for any point q = (u; v) ∈ ∂U , where u ∈ Ψ−, ∥∇f(u)∥ ≤ 2
√
d− 1 (see

Figure 4(a)). Suppose to the contrary that ∥∇f(u)∥ > 2
√
d− 1. To simplify notation, we will

use ∇f in place of ∇f(u) throughout the proof. The equation of the supporting hyperplane at
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point q is given by y = ⟨∇f, x − u⟩ + v. The upward-directed normal to this hyperplane in Rd

is (−∇f ; 1), which we denote by n. Let n̂ = n/∥n∥ be the associated unit normal. Note that
∥n∥ =

√
∥∇f∥2 + 1.

v

u

∂U

∂K

X

q

n

q′

q′′

q̂
v̂

v′′
v

v′

u u′′

∂U

∂K

Xδ

q

(a) (b)

Figure 4: Proof of Lemma 1.

Let q′ = (u; v′) be the point on the lower boundary of K that is vertically below q (see Fig-
ure 4(b)). Let u′′ be the point obtained by translating u by distance δ in the direction of ∇f . Since
u ∈ Ψ−, it follows from the triangle inequality that u′′ ∈ Ψ. Let q′′ = (u′′; v′′) and q̂ = (u′′; v̂) be
the points on the lower boundary of K and the supporting hyperplane at point q, respectively. We
assert that q′′ is at distance greater than δ′ from ∂U , in violation of Klee’s construction. This will
complete the proof by contradiction.

To prove the above assertion, recall from our earlier remarks that v′′ exceeds v′ by at most
δ
√
d− 1. Further, v̂ exceeds v by at least δ∥∇f∥. It follows that

v̂ − v′′ ≥ (v̂ − v′′)− (v − v′) = (v̂ − v)− (v′′ − v′) ≥ δ
(
∥∇f∥ −

√
d− 1

)
.

By convexity, ∂U lies entirely above the supporting hyperplane at q, and thus the distance between
q′′ and ∂U is at least as large as the distance of q′′ to the hyperplane, which is

v̂ − v′′

∥n∥
≥

δ
(
∥∇f∥ −

√
d− 1

)√
∥∇f∥2 + 1

.

It is easy to verify that the quantity on the right hand side increases monotonically with ∥∇f∥ in
the range ∥∇f∥ > 2

√
d− 1. Hence the distance between q′′ and ∂U is at least

δ
(
2
√
d− 1−

√
d− 1

)((
2
√
d− 1

)2
+ 1
)1/2 =

δ
√
d− 1

(4(d− 1) + 1)1/2
≥ δ

√
d− 1

(4(d− 1) + (d− 1))1/2

=
δ√
5

≥ δ√
5(d− 1)

> δ′,

as desired.
It remains to show that f is an upper δ-approximation to the function whose epigraph is K

over the subdomain Ψ⊖ δ. For this purpose, it suffices to show that the distance between q and q′

is at most δ. As observed earlier, ∂U lies entirely above the supporting hyperplane at q, and thus
the distance between q′ and ∂U satisfies

dist(q′, ∂U) ≥ v − v′

∥n∥
=

v − v′√
∥∇f∥2 + 1

.
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By Klee’s construction, dist(q′, ∂U) ≤ δ′. Since ∥∇f∥ ≤ 2
√
d− 1, we have

v − v′ ≤ δ′
√

∥∇f∥2 + 1 <
δ√

5(d− 1)

(
(2
√
d− 1)2 + 1

)1/2
≤ δ,

which completes the proof.

Since δ can be made arbitrarily small relative to ε, it will simplify our analysis to ignore its
impact in our various inequalities involving quantities that are on the order of ε or more. We
will abuse the term “infinitesimal” to refer to quantities that are functions of δ, independent of
ε. Since K ′′

i is infinitesimally close to K ′
i, it follows that Ψi = (∂K ′′

i )
↓ is infinitesimally close to

(K ′
i)
↓ = K↓ ⊕ 2ε.
The reason for restricting the extent of K↓ is to limit its projected area. The following lemma

shows that, under our assumption that K’s width is bounded below by ε, the projected area of each
Ui is, up to constant factors, bounded by the area of K itself. Recall that “≲” ignores constant
factors.

Lemma 2. If the width of K in any direction is at least ε, then for any i ∈ I±, area(Ψi) ≲ area(K).

Proof. By definition, area(Ψi) = area(K↓ ⊕ 2ε). Thus, it suffices to show that area(K↓ ⊕ 2ε) ≲
area(K). It is well-known that for any convex body, the ratio of the distances of the body’s centroid
from any pair of supporting hyperplanes is at most d (see, e.g., [35]). It follows that a ball of radius
ε/(d + 1) centered at the centroid of K is contained within K. Letting x denote this centroid,
the (d − 1)-dimensional ball of radius ε/(d + 1) centered at x↓ is contained within K↓. Thus, an
expansion of K↓ by a factor of

2ε+ ε/(d+ 1)

ε/(d+ 1)
= 2d+ 3

about x↓ contains K↓ ⊕ 2ε. Since projection can only decrease surface areas, we have

area(K↓ ⊕ 2ε) ≤ (2d+ 3)d−1 · area(K↓) ≲ area(K↓) ≤ area(K),

as desired.

2.2 Approximating Bodies and Functions

As mentioned earlier, our strategy for approximating K will be to represent its boundary as a set of
2d U-shaped functions as described in Section 2.1, construct approximations individually to these
functions, and combine them into a single global approximation. In this section we will present
further details.

Given ε > 0, recall the notion of a lower ε-approximation from Section 1.1. We say that a
function is polytopal, if it is the pointwise maximum of a finite set of linear functions over Ψ. Given
a U-shaped function f , we can generate such an approximation by sampling a sufficiently dense set
of points on the graph of f and taking the supporting hyperplanes at each point (see Figure 5).

For any i ∈ I±, the epigraph of a polytopal function f̂i can be interpreted as an (unbounded)
convex polytope in the original space Rd, subject to an appropriate transformation of the coordinate
axes. Given a set of such functions for all i ∈ I±, we define their intersection to be the intersection of
these transformed epigraphs. This effectively “undoes” the support-set decomposition, combining

10



f

Ψ

f̂

≤ ε

f

f̂Ψ⊖ ε

Figure 5: A polytopal lower ε-approximation to f over Ψ⊖ ε.

a set of 2d unbounded epigraphs into a single bounded convex body. The following lemma asserts
that if we can approximate each function fi to within a distance of ε of its domain’s boundary,
then their intersection yields an approximation to the original body.

Lemma 3. Let K be a convex body in Rd. For any ε > 0 and i ∈ I±, let f̂i be a polytopal lower
ε-approximation to fi over Ψi ⊖ ε. Then the intersection of these polytopal approximations results
in a polytope that ε-approximates K.

Proof. Let P denote the intersection of the epigraphs of the various approximations. Consider any
i ∈ I±. Since f̂i is a polytopal lower approximation, it is the maximum of a set of linear functions,
each of which is pointwise not greater than fi. This implies that the epigraph of f̂i contains the
epigraph of fi. Up to infinitesimal perturbations induced by the smoothing process, K ′

i is contained
within the epigraph of fi, and hence so is K. Therefore, up to infinitesimals, K is contained within
P .

To complete the proof, we show that any point s that lies at distance greater than ε from K
does not lie within P . Let q = (u; v) be the closest point of ∂K to s. Consider a ray emanating
from the origin along the direction s− q, and recalling the notation from Section 2.1, let Fi denote
the face of the unit hypercube [−1,+1]d that is hit by this ray, for some i ∈ I±. (If the ray hits
multiple faces, take any one of them.) Henceforth, projections will be taken orthogonal to Xi. Let
p = (a; b) denote the point on the segment sq, such that ∥p− q∥ = ε (see Figure 6).

Ui

p

q

≤ ε

s

p′

Ψi = K↓ ⊕ 2ε

K↓ ⊕ ε

ua

f̂i

K

fi

v
b′

b

Figure 6: Proof of Lemma 3.

Since orthogonal projection cannot increase distances, ∥u − a∥ ≤ ε. Since u ∈ K↓, we have
a ∈ K↓⊕ε. Recall that Ψi = K↓⊕2ε. Clearly, a ∈ Ψi and (disregarding the infinitesimals of Klee’s
rounding) is at distance at least ε from ∂Ψi. Thus, a ∈ Ψi ⊖ ε. Let p′ = (a; b′) denote the point of
∂Ui that is vertically above p.

11



By local minimality considerations, q is the closest point to p on ∂Ki. Since ∂Ki and ∂Ui differ
infinitesimally, the distance from p to ∂Ui is infinitesimally close to ε. Thus, the distance from p
to p′ exceeds ε, that is, b′ − b > ε. Since f̂i is a lower ε-approximation to fi, we have

b < b′ − ε = fi(a)− ε ≤ f̂i(a),

which implies that p lies below f̂i. Thus, q lies within the epigraph of f̂i and p lies outside it, and by
the convexity of the epigraph, s lies outside as well. Therefore, s is external to P , which completes
the proof.

Next, we show that such a polytopal approximation exists for the functions arising from our
support-set construction. The proof will be presented in Section 4 below.

Theorem 2. Given positive scalars γ, δ, and ε, where δ ≪ ε and γ ≥ 1, consider any (δ, γ)-slope
restricted U-shaped set in Rd defined by a function f over a domain Ψ such that the width of Ψ
in any direction is at least ε. There exists a polytopal lower ε-approximation to f over Ψ ⊖ ε of
complexity at most (

cdγ
d−1∆d−1(Ψ)

ε

)d−1
2

,

where cd is a constant (depending only on d) and ∆d−1(Ψ) is Ψ’s surface diameter.

To see that this implies Theorem 1, first observe that by Lemma 2, for each i ∈ I±, area(Ψi) ≲
area(K). This implies that ∆d−1(Ψi) ≲ ∆d−1(K). Therefore, the total number of facets in the
approximating polytope for K is equal to the sum over i ∈ I± of the complexities of the functional
approximations. By the above theorem, this yields an overall size of

∑
i∈I±

(
cd∆d−1(Ψi)

ε

) d−1
2

≲
∑
i∈I±

(
cd∆d−1(K)

ε

) d−1
2

=

(
c′d∆d−1(K)

ε

) d−1
2

,

where c′d = cd · (2d)2/(d−1). By Lemma 3 the intersection of these local approximations yields an
ε-approximation to K. This establishes Theorem 1. For the remainder of the paper, we focus on
proving Theorem 2.

2.3 Dual Caps and Approximation

In this section, we will show how the problem of computing a lower ε-approximation to a U-shaped
function can be reduced to computing a small set of points that hit a collection of cap-like objects.
Given a U-shaped set U , recall that ∂U denotes the lower boundary of U . Since its associated
function f is smooth, each q = (u; v) ∈ ∂U has a unique supporting hyperplane h(q) as given in
Eq. (1) of Section 1.1.

A key element of our construction is called a dual cap. For any point q = (u; v) ∈ Rd and γ ∈ R,
define q + γ = (u; v + γ) to be the vertical translate of q by distance γ. For any set H ⊆ Rd,
define H + γ analogously. Given a U-shaped set U and q ∈ ∂U , define the ε-dual cap induced by q,
denoted Dq(U), to be the portion of U ’s lower boundary that is “visible” to q− ε (see Figure 7(a)).
Formally, a point p ∈ ∂U is on Dq(U) if its supporting hyperplane h(p) separates q − ε from U .
Letting q = (u; v) and p = (a; b), we define

Dq(U) = {p ∈ ∂U : v − ε ≤ ⟨∇f(a), u− a⟩+ b}
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(see Figure 7(b)). Since we will be using the same value of ε for all dual caps henceforth, we will
often omit reference to ε when discussing dual caps.

(a)

U

Ψ
q − ε

q

Dq(U)

(b)

U

Ψ

q

Dq(U)

(c)

U

Ψ
q − ε

q

Dq(U)

εε

p
b

v − ε

ua

Figure 7: (a) ε-dual caps, (b) formal definition, and (c) useful dual caps.

It will be problematic to analyze dual caps for which the vertical projection of the defining point
is very close to the boundary of Ψ. Recalling that Ψ⊖ ε denotes the erosion of Ψ by ε, we restrict
attention to dual caps that are induced by points whose projection is ε-far from Ψ’s boundary (see
Figure 7(c)).

Definition 2 (Useful Point/Dual Cap). Given a U-shaped set U and ε > 0, we say that a point
q = (u; v) is useful if u ∈ Ψ ⊖ ε. We say that an ε-dual cap of U is useful if it is induced by a
useful point.

Given a U-shaped set U , ε > 0, and a set D of dual caps, we say that a discrete set Q ⊂ ∂U
is a hitting set for D if each dual cap of D contains at least one point of Q. Consider any hitting
set for the set of all useful dual caps. For each point q = (u; v) ∈ ∂U where u ∈ Ψ⊖ ε, q is useful
and therefore there exists a point p of the hitting set that lies within Dq(U). By the definition of
ε-dual cap, the supporting hyperplane at p separates q from q − ε. Thus we have the following.

Lemma 4. Let U be a U -shaped set in Rd. For any ε > 0, let Q ⊂ ∂U be any hitting set for the
set of all useful ε-dual caps of U . For each p ∈ Q, let H+(p) denote the closed upper halfspace
bounded by p’s supporting hyperplane. Then P =

⋂
p∈QH+(p) is a polytopal lower ε-approximation

to f over Ψ⊖ ε.

3 Caps and Dual Caps

With Lemmas 3 and 4, we have reduced the problem of computing an ε Hausdorff approximation
of any U-shaped set to that of hitting all of its useful ε-dual caps. In our analysis we will use
the fact that these sets are (δ, γ)-slope restricted, for arbitrarily small δ and constant γ. In the
remainder of the paper, we will focus exclusively on this latter problem. Our approach involves the
application of duality. In this section, we will explore the structure of U-shaped sets and dual caps
under duality.

3.1 Dual Transforms

Our results are based on two commonly used dual transforms in geometry. These transforms map
points to hyperplanes and vice versa, while preserving point-hyperplane incidences and convexity.

13



The first transform is the well known polar transform, and the second is an adaptation of the
Legendre transform to our setting.

Given a convex body K ⊆ Rd that contains the origin in its interior, its polar, denoted here
K◦, is defined to be {u ∈ Rd : ⟨u, v⟩ ≤ 1, ∀v ∈ K} (see Figure 8). Given α > 0, let αK◦ denote a
scaling of K◦ by a factor of α. Clearly, αK◦ = {u ∈ Rd : ⟨u, v⟩ ≤ α,∀v ∈ K}.

K◦
K

1

Figure 8: The polar body of K.

We will make use of an important result from the theory of convex sets, which states that, given
a convex body K, the product vol(K) · vol(K◦), which is called K’s Mahler volume, is bounded
below by a constant depending only on the dimension (see, e.g., [20,39,48]). Henceforth, we denote
this constant by µd.

Lemma 5 (Kuperberg [39]). Given a convex body K ⊆ Rd whose interior contains the origin,

vol(K) · vol(K◦) ≥
( π

2e

)d (d+ 1)d+1

(d!)2
.

Next, let us define the projective dual transform [26]. By expressing any q ∈ Rd as (u; v) ∈
Rd−1 × R, its projective dual is the hyperplane q∗ : y = ⟨u, x⟩ − v (see Figure 9(a)). The dual also
acts on (nonvertical) hyperplanes, mapping the hyperplane p∗ : y = ⟨a, x⟩ − b to the dual point
p = (a; b). It is easy to see that this transform preserves point-hyperplane incidences and it reverses
vertical distances, in the sense that point q is at vertical distance γ above a hyperplane p∗ if and
only if p is at vertical distance γ above q∗.

(b)(a)

p∗ : y = ⟨a, x⟩ − b

q = (u; v) p = (a; b)

q∗ : y = ⟨u, x⟩ − v

γ γ
q∗

U∗

f∗

∂U∗
p

U

Ψ

qf

∂U p∗
Rd−1

Figure 9: The projective dual.

This is closely related to the Legendre transform. Given a smooth real-valued function f over
an open domain in Rd−1 where ∇f is one-to-one, the Legendre transform of f is the function
f∗ : Rd−1 → R defined

f∗(a) = ⟨a, (∇f)−1(a)⟩ − f((∇f)−1(a)) (2)

(see, e.g., [49]). To see this relationship, consider a U-shaped set U that is defined as the epigraph
of a smooth, strictly convex function f over a domain Ψ. Given q = (u; v) on U ’s lower boundary,
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we have u ∈ Ψ and v = f(u). By Eq. (1), the unique supporting hyperplane for U at q can be
expressed as y = ⟨a, x⟩ − b, where a = ∇f(u) and b = ⟨a, u⟩ − f(u). Recall from the definition
of U-shaped sets that the gradient defines a homeomorphism between Ψ and Rd−1. Let f∗ be
the real-valued function over Rd−1, defined by f∗(a) = b, and let U∗ denote the epigraph of f∗

(see Figure 9(b)). Clearly, (∇f)−1 is well defined over Rd−1. Substituting u = (∇f)−1(a) into
f∗(a) = ⟨a, u⟩ − f(u) yields Eq. (2), which establishes the equivalence. Letting p = (a; b), we refer
to p as q’s dual counterpart and vice versa. The following lemma summarizes these observations.

Lemma 6. Let U be a U-shaped set defined as the epigraph of function f over a domain Ψ. The
above construction yields a smooth, strictly convex function f∗ : Rd−1 → R such that for each
q = (u; v) ∈ ∂U , there is a unique point p = (a; b) ∈ ∂U∗ (its dual counterpart), such that

(i) p∗ (resp., q∗) is the supporting hyperplane for U (resp., U∗) at q (resp., p),

(ii) ∇f(u) = a and ∇f∗(a) = u.

Proof. By convexity, for all points q′ = (u′; v′) ∈ ∂U , q lies on or above the supporting hyperplane
through q′. Letting y = ⟨a′, x⟩ − b′ denote this hyperplane, we have v ≥ ⟨a′, u⟩ − b′, or equivalently
b′ ≥ ⟨u, a′⟩ − v. Therefore, every point p′ = (a′; b′) ∈ ∂U∗ lies on or above q∗. Since q∗ passes
through p, it follows that q∗ is the supporting hyperplane for U∗ at p and ∇f∗(a) = u. The reverse
relationships hold symmetrically.

Note that U∗ is an unbounded convex set, and hence it is not U-shaped. We say that a point
p ∈ ∂U∗ and the cap it induces is useful if it is the dual counterpart of a useful point q ∈ ∂U .

3.2 Dual Caps and Caps in the Dual

In Section 2.2, we demonstrated the relevance of dual caps of U-shaped sets to approximation. In
this section, we explore how dual caps are manifest in the dual setting. Consider a U-shaped set
U and let q be any point on ∂U . Let U∗ be the corresponding dual set, and let p denote q’s dual
counterpart on ∂U∗. By Lemma 6(i), q∗ is the supporting hyperplane for U∗ at p. Let H denote
the closed lower halfspace bounded by q∗, and let H + ε denote the upwards vertical translate of
H by distance ε. Define the ε-cap induced by p, denoted Cp(U

∗), to be

Cp(U
∗) = ∂U∗ ∩ (H + ε).

(See Figure 10. In contrast to standard usage, our caps consist only of boundary points.) The
quantity ε is called the width of the cap. As with dual caps, unless otherwise specified, caps are of
width ε.

It is easy to see that the hyperplane bounding H + ε is the projective dual of q − ε, and so it
is natural to expect that the dual cap Dq(U) and the cap Cp(U

∗) are related. The next lemma
establishes this relationship.

Lemma 7. Given a positive real ε, a U-shaped set U , and a point q ∈ ∂U , let p ∈ ∂U∗ be q’s
dual counterpart. Then the points of the ε-cap Cp(U

∗) are the dual counterparts of the points of
the ε-dual cap Dq(U), and vice versa.

Proof. Let q = (u; v) and p = (a; b). By Lemma 6(i), the supporting line for U through q is
y = ⟨a, x⟩ − b, and the supporting line for U∗ through p is y = ⟨u, x⟩ − v. The halfspace H + ε in
the cap definition is defined by the inequality y ≤ ⟨u, x⟩ − v + ε.
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(a)

U

Ψ
q − ε

q

Dq(U)

(b)

H

U∗

p

Rd−1

H + ε

Cp(U
∗)

Figure 10: (a) An ε-dual cap in U and (b) its corresponding ε-cap in U∗.

Consider any pair of points q′ ∈ ∂U and p′ ∈ ∂U∗, where p′ is the dual counterpart of q′. Let
q′ = (u′; v′) and p′ = (a′; b′). By the definition of dual cap, q′ ∈ Dq(U) if and only if the supporting
hyperplane through q′ passes on or above q − ε, or equivalently

v − ε ≤ ⟨a′, u⟩ − b′ ⇐⇒ b′ ≤ ⟨u, a′⟩ − v + ε.

From the dual perspective, this is equivalent to saying that p′ ∈ H + ε. Therefore, q′ ∈ Dq(U) if
and only if p′ ∈ Cp(U

∗), as desired.

Next, we explore how caps and dual caps are related through the polarity. We first introduce
two related “flat” structures. Given q ∈ ∂U , let p be its dual counterpart. By Lemma 6(i), the
supporting hyperplane for U at q is p∗, and the supporting hyperplane for U∗ at p is q∗. Given the
dual cap Dq(U), define its base, denoted ∆q(U), to be p∗ ∩ conv(U ∪ (q − ε)) (see Figure 11(a)).
Define the base of the cap Cp(U

∗), denoted Γp(U
∗), to be U∗ ∩ (q∗ + ε) (see Figure 11(b)).

(a)

U

Ψ

q

(b)

q∗

U∗

p

Rd−1

q∗ + ε
Γp(U

∗)

O

[∆q(U)] ∆q(U)

O

[Γp(U
∗)]

p∗

Figure 11: (a) The base of q’s dual cap and its projection and (b) the base of p’s cap and its
projection. (Rather than showing the translation to the origin, we have shown the origin O at the
projected center point.)

The relationship between bases is most clearly established through their projections. Given
∆q(U) and Γp(U

∗) defined above, define [∆q(U)] = ∆q(U)↓ − q↓ and [Γp(U
∗)] = Γp(U

∗)↓ − p↓.
Intuitively, these take the vertical projections of the bases and then translate them so the origin
coincides with the vertical projection of the defining point (see Figure 11). The next lemma shows
that these two bodies are polars of each other, subject to a scale factor of ε.
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Lemma 8. Given a positive real ε, a U-shaped set U , and a point q ∈ ∂U , let p ∈ ∂U∗ be q’s dual
counterpart. Then [∆q(U)] = ε[Γp(U

∗)]◦.

Proof. To simplify notation, let ∆q = ∆q(U) and Γp = Γp(U
∗). Let q = (u; v) and p = (a; b), so

that q↓ = u and p↓ = a (see Figure 12). Thus, [∆q(U)] = ∆↓
q − u and [Γp(U

∗)] = Γ↓
p − a. It suffices

to show that ∆↓
q − u = ε(Γ↓

p − a)
◦
.

(a)

U

Ψ

q = (u; v)

(b)

q∗ : y = ⟨u, x⟩ − v

U∗

Rd−1

q∗ + ε : y = ⟨u, x⟩ − v + ε

u a

p∗ : y = ⟨a, x⟩ − b

q′ = (u′; v′)

(u; v − ε)

h : y = ⟨a′, x⟩ − b′

p′ = (a′; b′)

p = (a; b)

Figure 12: Proof of Lemma 8.

Recall the definition of the polar from Section 3.1. Because the polar transform is an involution,
it follows that w ∈ K if and only if ⟨w, z⟩ ≤ 1, for all z ∈ K◦. Thus, to show that ∆↓

q − u =

ε(Γ↓
p − a)

◦
, it suffices to show that q′ ∈ ∆q if and only if ⟨q′↓ − u, p′↓ − a⟩ ≤ ε, for all p′ ∈ Γp.

Letting q′ = (u′; v′) and p′ = (a′; b′), this is equivalent to

q′ ∈ ∆q ⇐⇒ ⟨u′ − u, a′ − a⟩ ≤ ε, ∀p′ ∈ Γp. (3)

The remainder of the proof is devoted to establishing this assertion.
Define Hq to be the set of all hyperplanes h that pass through q−ε such that U lies on or above

h. Let H∗
q denote the duals of the hyperplanes of Hq. We assert that H∗

q = Γp. To see this, for
each h ∈ Hq, where h : y = ⟨a′, x⟩ − b′, let p′ = h∗ = (a′; b′) denote its dual point. First, observe
that since every hyperplane h ∈ Hq passes through q − ε, by incidence preservation, its dual p′ lies
on the dual hyperplane (q− ε)∗ = q∗ + ε. The statement that U lies on or above h is equivalent to
saying that for all points s = (c; d) ∈ ∂U , s lies on or above h. That is,

d ≥ ⟨a′, c⟩ − b′, or equivalently b′ ≥ ⟨c, a′⟩ − d.

The latter is equivalent to saying that p′ lies on or above the hyperplane s∗ : y = ⟨c, x⟩ − d. Since
s ranges over all the points in ∂U , Lemma 6(i) implies that s∗ ranges over all the supporting
hyperplanes of ∂U∗. Thus, p′ lies on or above all the supporting hyperplanes of ∂U∗, which is
equivalent to saying that p′ ∈ U∗. In summary, we have shown that h ∈ Hq if and only if its dual
point p′ is in U∗ ∩ (q∗ + ε) = Γp. Hence, H

∗
q = Γp, as desired.

A point q′ = (u′; v′) lies on ∆q if and only if (i) it lies on q’s supporting hyperplane p∗, and (ii)
it lies in conv(U ∪ {q − ε}). Given that p∗ : y = ⟨a, x⟩ − b, condition (i) is equivalent to

v′ = ⟨a, u′⟩ − b. (4)

Since p∗ is the supporting hyperplane at q, we have v = ⟨a, u⟩ − b or equivalently b = ⟨a, u⟩ − v.
Combining this with Eq. (4), gives

v′ = ⟨a, u′⟩ − (⟨a, u⟩ − v) = ⟨a, u′ − u⟩+ v. (5)
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Next, let’s consider condition (ii). Clearly, conv(U ∪ {q − ε}) is equal to the intersection of all
the upper halfspaces of the hyperplanes in Hq, and so condition (ii) is equivalent to saying that q′

lies on or above all of the hyperplanes h ∈ Hq. Expressing h as y = ⟨a′, x⟩− b′, this is equivalent to

v′ ≥ ⟨a′, u′⟩ − b′, ∀h ∈ Hq.

Letting p′ = h∗ = (a′; b′) and by the earlier observation that H∗
q = Γp, we can rewrite this as

v′ ≥ ⟨a′, u′⟩ − b′, ∀p′ ∈ Γp. (6)

Since p′ lies on q∗ + ε, b′ = ⟨u, a′⟩ − v + ε. Combining this with Eq. (6), yields

v′ ≥ ⟨a′, u′⟩ − (⟨u, a′⟩ − v + ε) = ⟨a′, u′ − u⟩+ v − ε, ∀p′ ∈ Γp. (7)

By combining Eqs. (5) and (7), both v and v′ are eliminated, yielding

ε ≥ ⟨a′, u′ − u⟩ − ⟨a, u′ − u⟩ = ⟨u′ − u, a′ − a⟩, ∀p′ ∈ Γp.

Thus, we have
q′ ∈ ∆q =⇒ ⟨u′ − u, a′ − a⟩ ≤ ε, ∀p′ ∈ Γp.

Conversely, suppose that ⟨u′ − u, a′ − a⟩ ≤ ε, for all p′ = (a′; b′) ∈ Γp. Any point u′ ∈ ∆↓
q

arose from the projection of some point q′ = (u′; v′) on the supporting hyperplane p∗, and hence
v′ = ⟨a, u′⟩ − b. Such a point satisfies condition (i) above for being in ∆q. As observed earlier,
v = ⟨a, u⟩ − b, and subtracting these yields v′ − v = ⟨a, u′ − u⟩. Therefore,

ε ≥ ⟨u′ − u, a′ − a⟩ = ⟨a′ − a, u′ − u⟩ = ⟨a′, u′ − u⟩ − ⟨a, u′ − u⟩
= ⟨a′, u′ − u⟩ − (v′ − v), ∀p′ ∈ Γp,

or equivalently
v′ ≥ ⟨a′, u′ − u⟩+ v − ε, ∀p′ ∈ Γp.

This implies that q′ also satisfies condition (ii), and hence q′ ∈ ∆q as desired. This establishes
Eq. (3) and completes the proof.

3.3 Additional Properties

Before describing our approximation constructions, in this section we present a few additional
properties of caps and dual caps, which will be applied later in Section 4. The first two lemmas
involve the sizes of useful caps and dual caps. In order to deal with dual caps whose whose defining
point is very close to Ψ’s boundary, we introduced the notion of usefulness. Recall that a point
q = (u; v) ∈ ∂U is useful if u ∈ Ψ and is at distance at least ε from ∂Ψ. Also, recall that a U-shaped
set is (δ, γ)-slope restricted if for all x ∈ Ψ⊖ δ, ∥∇f(x)∥ ≤ γ. The following lemma shows that if a
point q ∈ ∂U is useful, then the projected dual base [∆q(U)] contains a ball whose radius is, up to
constant factors, at least ε.

Lemma 9. Given positive reals δ, ε, and γ where δ ≪ ε, let U be a (δ, γ)-slope restricted U-shaped
set over a domain Ψ, and let q be a useful point on ∂U . Then [∆q(U)] contains a ball of radius
ε/2(1 + γ) centered at the origin.
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Proof. To simplify notation, we will drop reference to U when referring to dual caps and their
bases. Let q = (u; v), and let f denote the function that defines the lower boundary of U . Consider
any point s = (us; vs) on ∂∆q (see Figure 13(a)). Since s lies on ∆q, a ray shot from q− ε through
s hits ∂U at some point q′ = (u′; v′), where u′ ∈ Ψ.

Let Ψ− = Ψ⊖δ. Clearly, u ∈ Ψ−. If u′ is also in Ψ−, let q′′ = q′. Otherwise, let u′′ = ∂Ψ−∩uu′

be the point where the segment uu′ leaves Ψ−, and let q′′ = (u′′; v′′) where v′′ = f(u′′).

(a)

q

u u′

v

v′
v′′

∆q

U

v − ε

s

q − ε

u′′

(b)

q

u us u′

∆q

U

q′

q − ε

q′

s

q′′

Ψ−

Ψ

v

v′

v − ε

vs

∆
↓
q

Figure 13: Proof of Lemma 9.

We first bound |v′′− v|. We can compute the vertical variation between q′′ and q by integrating
the directional derivative of f from u to u′′.

v′′ − v =

∫ u′′

u
⟨∇f(x), dx⟩.

By slope restriction, for all x ∈ Ψ−, ∥∇f(x)∥ ≤ γ. Therefore, by the Cauchy-Schwarz inequality
we have

|v′′ − v| ≤
(

sup
x∈Ψ−

∥∇f(x)∥
)
· ∥u′′ − u∥ ≤ γ · ∥u′′ − u∥.

Next, we bound ⟨∇f(u′), us − u⟩. We consider two cases. First, if u′ ∈ Ψ−, then ∥∇f(u′)∥ ≤ γ,
and again by Cauchy-Schwarz we have ⟨∇f(u′), us − u⟩ ≤ γ · ∥us − u∥.

Otherwise u′′ ∈ ∂Ψ− and by hypothesis, ∥u′′ − u∥ ≥ ε− δ. The supporting hyperplane through
q′ passes through q − ε = (u; v − ε), and thus its defining equation is y = ⟨∇f(u′), x− u⟩+ v − ε.
Since s lies on this hyperplane, we have

vs = ⟨∇f(u′), us − u⟩+ v − ε. (8)

Also, since u′′ lies between u and u′, q′′ lies on or above this hyperplane, and thus,

v′′ ≥ ⟨∇f(u′), u′′ − u⟩+ v − ε.

Combining this with our bound on |v′′ − v| and the fact that ∥u′′ − u∥ ≥ ε− δ ≥ ε/2, we have

⟨∇f(u′), u′′ − u⟩ ≤ (v′′ − v) + ε ≤ |v′′ − v|+ ε ≤ γ · ∥u′′ − u∥+ ε

≤ γ · ∥u′′ − u∥+ 2 · ∥u′′ − u∥ =
(
2 + γ

)
· ∥u′′ − u∥.
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Since s lies along the line between q − ε and q′, we can scale both sides of the above inequality by
∥us − u∥/∥u′′ − u∥ to obtain

⟨∇f(u′), us − u⟩ ≤
(
2 + γ

)
· ∥us − u∥. (9)

Observe that this bound applies in both cases.
The supporting hyperplane at q has the defining equation y = ⟨∇f(u), x− u⟩+ v, and since it

passes through s, we have
vs = ⟨∇f(u), us − u⟩+ v.

By combining this with Eq. (8), we obtain

ε = ⟨∇f(u′), us − u⟩ − ⟨∇f(u), us − u⟩.

Since u ∈ Ψ−, ∥∇f(u)∥ ≤ γ, and together with the Cauchy-Schwarz inequality, we have ⟨∇f(u), us−
u⟩ ≤ γ · ∥us − u∥. The triangle inequality and Eq. (9) yield

ε ≤ (2 + γ) · ∥us − u∥+ γ · ∥us − u∥ ≤ 2(1 + γ) · ∥us − u∥.

We conclude that
∥us − u∥ ≥ ε

2(1 + γ)
.

Since this applies to every point s ∈ ∂∆q(U), we conclude that ∆q(U)↓ contains a ball of radius
ε/2(1 + γ) centered at q↓, as desired.

By the polar relationship between caps and dual cap projections, we obtain a complementary
result for the projections of useful ε-caps. Recall that a cap is useful if its defining point p ∈ ∂U∗

is the dual counterpart of a useful point q ∈ ∂U .

Lemma 10. Given positive reals δ, ε, and γ where δ ≪ ε, let U be a (δ, γ)-slope restricted U-shaped
set over a domain Ψ, and let p be a useful point on ∂U∗. Then [Γp(U

∗)] is contained within a ball
of radius 2(1 + γ) centered at the origin.

Proof. Consider any point p ∈ ∂U∗ that induces a useful cap. By definition of usefulness, p is the
dual counterpart of some useful point q = (u; v) ∈ ∂U . Lemma 9 implies that [∆q(U)] contains a
ball of radius ε/2(1 + γ) centered at the origin, implying that [∆q(U)]/ε contains a ball of radius
1/2(1 + γ) centered at the origin. By Lemma 8, [∆q(U)]/ε = [Γp(U

∗)]◦. Due to the reciprocal
nature of the polar transformation, it follows that [Γp(U

∗)] is contained within a ball of radius
2(1 + γ) centered at the origin.

The next result of this section shows that for any dual cap of a U-shaped set U , there is an
ellipsoid of large volume that lies above the dual cap’s base and close to U ’s lower boundary. More
precisely, consider any point q ∈ ∂U and its associated dual cap. Let H− denote the lower halfspace
bounded by the supporting hyperplane at q (see Figure 14). The set U ∩ (H− + ε) is convex, and
hence by John’s Theorem [37], it contains an ellipsoid whose volume is within a constant factor of
vol(U ∩ (H−+ ε)). The following lemma strengthens this by showing that there is such an ellipsoid
whose vertical projection is contained within the vertical projection of the base of q’s dual cap.
Recall from Section 1.1 that “≳” ignores constant factors.
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Figure 14: Lemma 11.

Lemma 11. Given a positive real ε, a U-shaped set U , and a point q ∈ ∂U , let H− be the lower
halfspace bounded by the supporting hyperplane to U at q. There exists an ellipsoid E ⊆ U∩(H−+ε)
such that vol(E) ≳ vol(U ∩ (H− + ε)) ≳ ε · area(∆q(U)↓) and E↓ ⊆ ∆q(U)↓.

Proof. To simplify notation, let ∆q = ∆q(U). The proof is based on the following construction.
Let T = conv(∆q∩{q−ε}) or equivalently conv(U ∪{q−ε})∩H−, and let T ′ be a scaling of T by a
factor of 2 about q−ε (see Figure 15(a)). We will prove the following facts about this construction.

(i) T + ε ⊆ U ∩ (H− + ε) ⊆ T ′.

(ii) vol(U ∩ (H− + ε)) ≳ ε · area(∆↓
q).

(iii) T ↓ = ∆↓
q .

q − ε

∆q
H−

H− + ε
q

U

T

T ′

(a)

q − ε
H−

H− + ε
q

U

T

(b)

p

p′ w

p + ε

T + ε T + ε

Figure 15: Proof of Lemma 11.

We begin by showing the first containment of (i). Since T ⊆ H−, we have T + ε ⊆ H− + ε.
Thus, it suffices to show that T + ε ⊆ U . We will show that for all p ∈ T , p + ε ∈ U (see
Figure 15(b)). Consider the first point p′ where a vertical ray shot up from p intersects U , that is,
p′ = minβ {p+βε ∈ U}. (Here, we are treating ε as if it were a vertical vector of length ε.) Letting
β denote this minimum value, we will show that β < 1, implying that p+ ε ∈ U .

Clearly, p′ ∈ ∂U . Since q is also on ∂U , it follows from strict convexity that if we shoot a
ray from q through p′, every point beyond p′ on this ray is external to U . That is, for all γ > 1,
q + γ(p′ − q) /∈ U . Letting w = p− (q − ε), for all γ > 1, U does not contain the point

q + γ((p+ βε)− q) = q + γ(p− (q − ε) + (β − 1)ε) = (q − ε) + γw + ((1− γ) + γβ)ε. (10)
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By definition of T , the extension of every ray from q− ε through p intersects U . Thus, there exists
a real α > 1 such that (q − ε) + αw ∈ U . Since α > 1, it follows from Eq. (10) that U does not
contain the point (q − ε) + αw + ((1 − α) + αβ)ε. But, as (q − ε) + αw ∈ U , we conclude that
(1− α) + αβ < 0, which implies that β < (α− 1)/α < 1, as desired.

To prove the second containment of (i), observe that T ′ is the intersection of H− + ε and the
generalized cone defined as the intersection of the upper halfspaces of the supporting hyperplanes
of U that pass through the apex q − ε. Clearly, this contains U ∩ (H− + ε).

To prove (ii), observe that by the first containment of (i), we have vol(U ∩ (H− + ε)) ≥ vol(T )
and by basic geometry, vol(T ) is proportional to the product of the vertical distance between the
vertex q − ε and the triangle’s base, which is ε, and the area of the vertical projection of its base
∆↓

q .
Finally, (iii) follows from the fact that T = conv(∆q ∪ {q − ε}). Since q ∈ ∆q, (q − ε) lies

vertically below the base, which implies that T ↓ = ∆↓
q .

Returning to the proof, let E be the maximum volume ellipsoid contained in T + ε. By (i),
E ⊆ T +ε ⊆ U ∩(H−+ε). By John’s Theorem [37], vol(E) ≥ vol(T )/dd. By (i), U ∩(H−+ε) ⊆ T ′.
Since T ′ is a factor-2 scaling of T , vol(T ) = vol(T ′)/2d. Therefore, by setting c = 1/(2d)d, we have

vol(E) ≥ vol(T )

dd
=

vol(T ′)

(2d)d
≥ vol(U ∩ (H− + ε))

(2d)d
= c · vol(U ∩ (H− + ε)).

Also, combining the fact that E ⊆ T + ε and (iii) implies that E↓ ⊆ ∆↓
q .

4 Hitting Sets and Approximation

Armed with the tools developed in the previous section, in this section we will present the construc-
tions to establish Theorem 2. Let us start with a high level description of how our construction
works. Recall that we are given a U-shaped set U and ε > 0. U is the epigraph of a smooth,
strictly convex function f defined over a bounded, open, convex domain Ψ. We assume that f
is (δ, γ)-slope constrained, where δ > 0 can be made arbitrarily small and γ is a constant. By
Lemma 4, it suffices to show the existence of a set of points on ∂U that hit all the useful ε-dual
caps of U . Recall that a dual cap is useful if it is induced by a point q = (u; v) ∈ ∂U such that
u ∈ Ψ and is at distance at least ε from ∂Ψ.

How do we select a small set of points to hit all these dual caps for each U? We will em-
ploy a classical structure from the study of convex bodies, called Macbeath regions (presented in
Section 4.2 below). To generate the hitting set, we construct Macbeath regions along the lower
boundary of U , select a small number of points from each region, and project each point vertically
onto U ’s lower boundary.

The Macbeath-based approach will be efficient for hitting dual caps that are “large,” meaning
that the projected area of their base is sufficiently large. More precisely, these are the dual caps
defined by points q ∈ ∂U such that area([∆q(U)]) is larger than some given threshold parameter.
This will be presented in Section 4.3 below.

To handle the remaining “small” dual caps, we will exploit the polar connection between caps
and dual caps in the primal and dual settings. Let p denote q’s dual counterpart in U∗. Lemma 8
states that [∆q(U)] is related through the polar to the projected base of p’s cap [Γp(U

∗)]. Now, the
Mahler volume bound of Lemma 5 can be applied to show that if q induces a small dual cap, then
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p induces a relatively large cap (in Section 4.1 below). This means that we can efficiently apply the
Macbeath-based sampling in the dual setting, and transfer the sampled points back to the primal
setting. This construction will be presented in Section 4.4 below.

4.1 Hitting the Large and the Small

We begin by showing that small dual caps correspond to large caps in the dual. Let U be as defined
above over the domain Ψ. Given any useful point q ∈ ∂U , recall that Dq(U) denotes q’s ε-dual
cap, ∆q(U) denotes its base, and [∆q(U)] denotes the projection of the base, centered so the origin
coincides with q↓. Define t0 =

√
area(Ψ)·ε(d−1)/2. We say that Dq(U) is large if area([∆q(U)]) ≥ t0,

and otherwise it is small.
By Lemma 6, each q has a unique dual counterpart p ∈ ∂U∗. We say that the associated

ε-cap, Cp(U
∗) is large if area([Γp(U

∗)]) ≥ µd−1ε
d−1/t0. (Recall that µd is the dimension-dependent

constant from Lemma 5.) Our next lemma establishes this size relationship between dual caps and
caps.

Lemma 12. Given a positive real ε, a U-shaped set U in Rd, and a point q ∈ ∂U that induces a
small ε-dual cap, then q’s dual counterpart p induces a large ε-cap in U∗.

Proof. Let ∆q denote the base of q’s dual cap in U , and let Γp denote the base of p’s cap in U∗.
By Lemma 8, [∆q] = ε[Γp]

◦. Noting that these are (d− 1)-dimensional sets, scaling by ε alters the
area by a factor of εd−1. Thus,

area([∆q]) = area(ε · [Γp]
◦) = εd−1 · area([Γp]

◦).

Since Dq is small, area([∆q]) ≤ t0, and hence area([Γp]
◦) ≤ t0/ε

d−1. By Lemma 5,

area([Γp]) · area([Γp]
◦) ≥ µd−1,

and therefore area([Γp]) ≥ µd−1ε
d−1/t0, as desired.

We will describe the process for building hitting sets in Sections 4.3 and 4.4 below, but assuming
these results for now, let us see how we use them to prove Theorem 2.

In Lemma 14 below, we will show that for any t > 0, there exists a set of O(area(Ψ)/t) points
that hits all dual caps Dq(U) where area([∆q(U)]) ≥ t. By setting t = t0 and observing that
∆d−1(Ψ) ≈ area(Ψ)1/(d−1), it follows that the resulting set Q ⊂ ∂U hits all the large dual caps,
where

|Q| = O

(
area(Ψ)

t0

)
= O

(√
area(Ψ)

ε(d−1)/2

)
= O

(
∆d−1(Ψ)

ε

)d−1
2

.

Next, to hit the small dual caps, we will prove in Lemma 15 below that for any t∗ > 0, there
exists a set of O(1/t∗) points that hits all useful ε-caps of U∗ for which area([Γp(U

∗)]) ≥ t∗. Setting
t∗ = µd−1ε

d−1/t0, it follows that the resulting set hits all the large, useful ε-caps in U∗. Let Q′ ⊂ ∂U
denote the dual counterparts of the points in this set. By Lemmas 7 and 12, each large cap in U∗

is dually equivalent to a small dual cap in U . It follows that Q′ hits all the small, useful ε-dual
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caps in U and has size

|Q′| = O

(
t0

µd−1εd−1

)
= O

(√
area(Ψ) · ε(d−1)/2

εd−1

)
= O

(√
area(Ψ)

ε(d−1)/2

)

= O

(
∆d−1(Ψ)

ε

)d−1
2

.

Therefore, the union Q ∪ Q′ is a set of size O((∆d−1(Ψ)/ε)(d−1)/2) that hits all the useful ε-
dual caps of U . By Lemma 4, the intersection of the upper supporting halfspaces bounded by the
supporting hyperplanes at these points yields an ε-approximation to f . This completes the proof
of Theorem 2. All that remains is to present the constructions of the hitting sets, which will be
given in the subsequent sections.

4.2 Macbeath Regions

As discussed previously, our construction of hitting sets will employ a classical concept from the
theory of convex sets called Macbeath regions (or M-regions). Given a convex body K, a point
x ∈ K, and a real parameter λ ≥ 0, the Macbeath region Mλ

K(x) (also called an M -region) is
defined as

Mλ
K(x) = x+ λ((K − x) ∩ (x−K)).

It is evident that M1
K(x) represents the largest centrally symmetric body centered at x and con-

tained within K (see Figure 16(a)). Alternatively, it can be characterized as the intersection of
K with the body obtained by reflecting K about x. When used in covering and packing appli-
cations, it is common to apply a constant scaling factor about the region’s center point (see Fig-
ure 16(a)). When the body K is clear from context, we will omit explicit reference to it, defining
Mλ(x) ≡ Mλ

K(x).

K

(a)

x

MK(x)

(c)

K

M

M ′

(b)

K

M

M
1/2
K (x)

C

Figure 16: Macbeath regions.

This concept was introduced by Macbeath [40]. Macbeath regions have found numerous uses in
the theory of convex sets and the geometry of numbers [17], and they have been applied to several
problems in the field of computational geometry, including lower bounds [11,13,21], combinatorial
complexity [4,8,10,32,46], approximate nearest neighbor searching [9], and computing the diameter
and ε-kernels [7]. One of these applications involves the packing and covering of a collection of
caps. (In contrast to our earlier usage, we are using “cap” in its traditional form as the intersection
of a halfspace and a convex body.) This has been extensively explored in the works of Ewald,
Larman, and Rogers [33], Bárány and Larman [18], Bárány [15, 16], Brönnimann et al. [21] and
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Arya et al. [8]. We will need a variant of the covering lemma, which is presented next. The proof is
a straightforward adaptation of Lemma 3.1 in [8], and for the sake of completeness, it is presented
in Section 6. Recall that the notation “≈” denotes equality up to constant factors, which may
depend on d but not on K.

Lemma 13 (Cap Covering). Given a convex body K ⊂ Rd and any collection C of caps of K, there
exist two collections of convex bodies, M and M′, such that the bodies of M are contained within
K and are pairwise disjoint (see Figure 16(b)). Each M ∈ M is associated with a corresponding
body in M′, denoted M ′, such that M ⊆ M ′. M ′ is called M ’s expanded body. These sets satisfy
the following:

(i) For all M ∈ M, vol(M ′) ≈ vol(M).

(ii) For any cap C ∈ C, there exists M ∈ M such that M ⊆ C ⊆ M ′, where M ′ is M ’s expanded
body (see Figure 16(c)).

4.3 Hitting Large Dual Caps

In this section, we will explain how to apply the Macbeath region machinery to hit all the large
dual caps. Broadly speaking, we will invoke Lemma 13 to construct a collection of regions covering
the lower boundary of U , sample a constant number of points from each region, and then project
these points onto U ’s lower boundary. We will show that these points hit all large dual caps. When
combined with the points that hit all the small dual caps, Lemma 4 implies that the supporting
hyperplanes at the resulting combined set of points will form the basis of the final approximation.

We bound the number of points needed by bounding the number of Macbeath regions. We will
do this by recalling Lemma 11, which established the existence of an ellipsoid close to the boundary
of U whose projection lies within the shadow of the dual cap’s base. This will be combined with a
classical sampling technique from computational geometry, based on the concept of ϵ-nets (described
below).

Our next lemma is the main result of this section. It states that there exists a small set of points
that hits all sufficiently large ε-dual caps of U . The notion of “large” is based on the projected
area of the dual cap’s base and a threshold parameter t.

Lemma 14. Given positive reals ε and t and a U-shaped set U in Rd over a domain Ψ, there exists
a set of O(area(Ψ)/t) points Q ⊂ ∂U that hits all ε-dual caps Dq(U), where area([∆q(U)]) ≥ t.

The rest of this section is devoted to giving the proof. To simplify notation, we will omit
references to U when specifying dual caps and their bases. Since U is unbounded, we cap it on top
by intersecting it with a horizontal halfspace that is sufficiently high to contain all of the points
within vertical distance ε of ∂U . (The existence of such a halfspace is guaranteed by the fact that
U-shaped functions have bounded domains and ranges.) Let U ′ denote the resulting convex body
(see Figure 17(a)). We first apply Lemma 13 to U ′, where C is the collection of ε-caps induced by
any point q ∈ ∂U , such that area([∆q]) ≥ t. Let M and M′ denote the resulting collections of
bodies. For each M ∈ M, if M does not lie entirely within vertical distance ε of ∂U ′ = ∂U , then
discard M from further consideration. For all the surviving regions M , let M ′ ∈ M′ denote M ’s
expanded body as described in Lemma 13(ii).

Before proceeding, let us recall some classical results in the theory of sampling and ϵ-nets (see,
e.g., [41, 45]). A set system is a pair (X,F), where X is a (possibly infinite) set and F is a

25



(a)

U ′

Ψ

(b) (c)

U ′

Ψ

M

M ′

U ′

q

q − ε

∆q

H−

H− + ε
E

p

p′

∈ N

Figure 17: Proof of Lemma 14.

collection of subsets of X. Let µ be a measure over X. Given a set system (X,F) and a parameter
ϵ > 0 (not to be confused with the ε used for approximation), a set N ⊆ X is an ϵ-net of (X,F)
if for each F ∈ F with µ(F ) ≥ ϵ · µ(X), F contains at least one point of N . The complexity
of a set system can be described by a quantity called its VC-dimension [3]. We need only two
facts regarding this concept. First, any set system of constant VC-dimension has an ϵ-net of size
O
(
1
ϵ log

1
ϵ

)
[3, 41], and second, the set system (Ω, E), where Ω is a bounded convex body in Rd

endowed with the Lebesgue measure and E is the set of ellipsoids contained in Ω has VC-dimension
at most

(
d+2
d

)
= O(d2) [41, Proposition 10.3.2].

Let c′′ denote a constant whose value will be specified later. For each M ′ ∈ M′, let N ⊂ M ′

be an ϵ-net [45] chosen such that any ellipsoid contained within M ′ of volume at least c′′ · vol(M ′)
contains at least one point of the net (see Figure 17(b)). By the above remarks, the number of points
in the net is a constant. Project each point of N vertically downward onto ∂U (see Figure 17(b)),
and add the resulting point to Q. Repeating this process for all M ∈ M yields the set Q.

To establish correctness, consider any ε-dual cap Dq such that area([∆q]) ≥ t. Let H− denote
the lower halfspace bounded by the supporting hyperplane at q (see Figure 17(c)). Recall that
“≳” denotes “≥” with constant factors ignored. By applying Lemma 11 there exists an ellipsoid
E ⊆ U ∩ (H− + ε) such that

vol(E) ≳ vol(U ∩ (H− + ε)) ≳ ε · area(∆↓
q),

and E↓ ⊆ ∆↓
q . By Lemma 13(ii), there exists M ∈ M such that M ⊆ U ∩ (H− + ε) ⊆ M ′. Note

that M could not have been discarded in the construction process, since it lies within H− + ε and
hence is entirely within vertical distance ε of ∂U . By the above inclusions and Lemma 13(i), we
have

vol(E) ≳ vol(U ∩ (H− + ε)) ≳ vol(M) ≳ vol(M ′),

and so by choosing the constant c′′ in the net construction appropriately, there exists a point p of
the net that lies in the interior of E. Thus, the vertical projection p′ of this point onto ∂U will be
included in Q. Since p↓ ∈ E↓ ⊆ ∆↓

q , p′ hits Dq, as desired.
Finally, we bound the number of points in Q. To do this, consider the set of points of U that

lie within vertical distance ε of its lower boundary. The volume of this region is clearly ε · area(Ψ).
Also, by the above inclusions and Lemma 11, we have

vol(M) ≳ vol(M ′) ≳ vol(U ∩ (H− + ε)) ≳ ε · area(∆↓
q) = ε · area([∆q]) ≥ εt.
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The bodies of M are pairwise disjoint, and (after the discarding process) each of them lies within
vertical distance ε of ∂U . Therefore, by a simple packing argument, the number of such bodies is

O

(
ε · area(Ψ)

εt

)
= O

(
area(Ψ)

t

)
,

as desired.

4.4 Hitting Large Caps in the Dual

In this section we consider the task of bounding the size of hitting sets for large ε-caps in the dual
U∗. The construction is similar to the one given in the previous section, but since (U∗)↓ covers all
of Rd−1 some additional effort is required to show that the region of interest can be bounded.

Recall that a point q = (u; v) ∈ ∂U is useful if u ∈ Ψ and dist(u, ∂Ψ) ≥ ε, and a point p ∈ ∂U∗

and its associated ε-cap Cp(U
∗) are useful if p is the dual counterpart of such a point q. The

following lemma shows how to apply the Macbeath-region machinery to hit all the useful ε-caps of
U∗ whose bases have sufficiently large area.

Lemma 15. Given positive reals δ, ε, and γ where δ ≪ ε and γ ≥ 1, let U be a (δ, γ)-slope
restricted U-shaped set over a domain Ψ. For any t∗ > 0, there exists a set of O(γd−1/t∗) points
P ⊂ ∂U∗ that hits all useful ε-caps Cp(U

∗) where area([Γp(U
∗)]) ≥ t∗.

Proof. Let Ψ denote U ’s domain. Let p = (a; b) ∈ ∂U∗ be any useful point. To simplify notation,
we will omit explicit reference to U∗ when discussing caps and cap bases. By Lemma 10, [Γp] is
contained within a ball of radius 2(1 + γ) centered at the origin. Since p is useful, it is the dual
counterpart of some useful point q = (u; v) ∈ ∂U . By definition of usefulness, u is at distance at
least ε from the boundary of Ψ. Since δ < ε, slope restriction implies that ∥∇f(u)∥ ≤ γ. Since p
is the dual counterpart of q, by Lemma 6(ii) we have a = ∇f(u). This implies that a lies within

distance γ of the origin. Since [Γp] = Γ↓
p − a, it follows from the triangle inequality that Γ↓

p lies
within a ball of radius 2(1 + γ) + γ ≤ 5γ of the origin, which we denote by B. Since p is a generic
useful point, it follows that the vertical projection of all useful ε-caps of U∗ lie within B.

Therefore, for the purposes of approximation, we may restrict attention to the portion of U∗ that
lies above B. We can convert the unbounded set U∗ into a convex body by intersecting it with the
vertical cylinder whose cross section is B and then bounding it on top by any horizontal hyperplane
that is sufficiently high that it does not intersect ∂U∗. (The existence of such a hyperplane follows
from the facts that we need only cover points (a; b) ∈ ∂U∗, where a ∈ B together with the fact that
∥∇f∗(a)∥ = ∥u∥, which is bounded since u ∈ Ψ.)

We apply Lemma 13 to this restriction of U∗, where C is the collection of useful caps described
in the statement of the lemma. Let M and M′ denote the resulting collections of bodies. For each
M ∈ M, if M does not lie entirely within vertical distance ε of ∂U∗, then discard M from further
consideration (see Figure 18(a)). For each surviving body M , select an arbitrary point from it (say
its center), project this point vertically downward onto ∂U∗, and add the resulting point to P .
Repeating this process for all M ∈ M yields the set P .

To establish correctness, consider any useful ε-cap Cp such that area([Γp]) ≥ t∗. Let H− denote
the lower halfspace bounded by p’s supporting hyperplane (see Figure 18(b)). By Lemma 13(ii),
there exists M ∈ M such that M ⊆ U∗ ∩ (H− + ε) ⊆ M ′. We claim that M could not have been
discarded in the construction process. First, it lies within H− + ε and hence is entirely within
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Figure 18: Proof of Lemma 15.

vertical distance ε of ∂U∗. Second, by Lemma 10, the vertical projection of any useful ε-cap is
contained within the ball B, and so this applies to M as well. Since M lies within U∗ ∩ (H− + ε),
the vertical projection of any point p′ ∈ M onto ∂U∗ hits Cp, as desired.

In order to bound the number of points in P , consider the set of points of U∗ ∩ B that lie
within vertical distance ε of ∂U∗. Ignoring constant factors, the volume of this region is clearly
ε · area(B) ≲ εγd−1. Also, for each body M , by the above inclusions and Lemma 13(i), we have

vol(M) ≳ vol(M ′) ≥ vol(U∗ ∩ (H− + ε)).

The set U∗ ∩ (H− + ε) lies within the intersection of an infinite vertical cylinder whose horizontal

cross section is Γ↓
p and the slab (H−+ ε) \H− of vertical height ε. This set’s volume is ε · area(Γ↓

p).
Thus, we have

vol(M) ≳ ε · area(Γ↓
p) = ε · area([Γp]) ≥ εt∗.

The bodies of M are pairwise disjoint, and (after discarding) each of them lies within vertical
distance ε of ∂U∗. Therefore, by a simple packing argument, the number of such bodies is

O

(
εγd−1

εt∗

)
= O

(
γd−1

t∗

)
,

as desired.

Having established Lemmas 14 and 15, the proof of Theorem 2 given in Section 2.2 is now
complete.

5 Nonuniform Area-Based Bounds

In this section we note that a nonuniform bound very similar to ours can be derived from a result
due to Gruber [34], who showed that ifK is a strictly convex body and ∂K is twice differentiable (C2

continuous), then there exists a constant kd (depending only on the dimension d) and ε0 depending
on K, such that for any 0 < ε ≤ ε0, the number of bounding halfspaces needed to achieve an
ε-approximation to K is at most

kd

(
1

ε

)d−1
2
∫
∂K

κ(x)
1
2dσ(x), (11)
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where κ and σ denote the Gaussian curvature of K and ordinary surface area measure, respec-
tively. (Böröczky showed that the requirement that K be “strictly” convex can be eliminated [14].)
Because the square root function is concave and

∫
∂K dσ(x) = area(K), we may apply Jensen’s

inequality to obtain

1

area(K)

∫
∂K

κ(x)
1
2dσ(x) ≤

(
1

area(K)

∫
∂K

κ(x)dσ(x)

) 1
2

.

Thus, ∫
∂K

κ(x)
1
2dσ(x) ≤

(
area(K)

∫
∂K

κ(x)dσ(x)

) 1
2

.

By the Gauss-Bonnet theorem [30], the total Gaussian curvature of K is bounded by some quantity
ζd, depending only on d. Also, letting αd−1 denote the surface area of the unit (d− 1)-sphere, we
have area(K) = αd−1(∆d−1(K)/2)d−1. Therefore,∫

∂K
κ(x)

1
2dσ(x) ≤ (ζd · area(K))

1
2 =

(
ζdαd−1

2d−1

) 1
2

(∆d−1(K))
d−1
2 .

Substituting the above quantity into Eq.(11) and setting cd to the constant kd(ζdαd−1/2
d−1)1/2, we

obtain the following.

Theorem 3. For any integer d ≥ 2, there exists a constant cd (depending on d) such that for any
convex body K ⊆ Rd whose boundary is C2 smooth, there exists ε0 depending on K, such that for
any 0 < ε ≤ ε0, there exists an ε-approximating polytope P whose number of facets is at most

cd

(
∆d−1(K)

ε

) d−1
2

.

where cd is a constant (depending on d) and ∆d−1(K) is K’s surface diameter.

Note that the bound in this theorem matches the uniform bound of Theorem 1. However, this
approach cannot be used to produce a uniform bound. To see why, suppose to the contrary that
such a bound existed, even in R2. That is, there exists a constant k2 and positive ε0 such that for
all ε ≤ ε0 and all convex bodies K (of width at least ε in every direction) in R2, there exists an
ε-approximating polygon whose number of sides satisfies Eq. (11). Consider any ε ≤ min(ε0, 1/9),
and let 0 < δ ≤ ε be a sufficiently small value (chosen below). Set m = ⌊1/

√
δ⌋, and define Kδ to

be the Minkowski sum of a regular m-gon inscribed in a unit circle and a Euclidean ball of radius
δ (see Figure 19(a)). Observe that since m ≥ 3 and δ ≤ 1/9, Kδ satisfies the minimum width
requirements. It consists of m straight edges, each of length Θ(

√
δ), connected by m circular arcs,

each of radius δ and subtending an angle of 2π/m. Since δ ≤ ε, it is straightforward to show that
any convex polygon Kε that ε-approximates Kδ requires Ω(1/

√
ε) sides (see Figure 19(b)). (As δ

decreases relative to ε, Kδ approaches a unit disk, and it is easy to show that in order to maintain
a distance of at most ε, each side can have of length at most c

√
ε, for some constant c.)

Boundary points along the flat sides of Kδ have zero curvature, and boundary points within
each each circular arc have curvature 1/δ. Since the circular arcs together cover a distance of 2πδ
of the boundary, it follows that∫

∂Kδ

κ(x)1/2dσ(x) =
2πδ√
δ

= Θ
(√

δ
)
.
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Figure 19: Why Theorem 3 cannot be used to generate a uniform bound.

Therefore, the hypothesized uniform bound would imply the existence of an ε-approximating poly-
gon with O

(√
δ/ε
)
sides, contradicting the lower bound of Ω(1/

√
ε) for all sufficiently small δ.1

6 Proof of the Cap-Covering Lemma

In this section, we present a proof of Lemma 13 on cap covering from Section 4.2. Our proof is
similar in spirit to the proofs of related covering lemmas by Bárány and Larman [18], Bárány [16],
and Arya et al. [8]. Before proceeding with the proof, we recall some standard definitions. Given a
cap C defined as the nonempty intersection of K with a halfspace H, let h denote the hyperplane
bounding H. Define C’s base to be h∩K, and define its width to be the distance between h and C’s
opposing parallel supporting hyperplane (see Figure 20(a)). Given any cap C of width w and a real
parameter λ ≥ 0, we define its λ-expansion, denoted Cλ, to be the cap of K cut by a hyperplane
parallel to and at distance λw from this supporting hyperplane. Note that Cλ = K, if λw exceeds
the width of K along the defining direction.

K

(a)

C

h

width

C2

(b)

C

x

y

Figure 20: Proof of the Cap-Covering lemma.

Throughout this section, we assume that K is a convex body scaled to have unit volume, and
ν0 is a sufficiently small constant depending only on d. We begin with some important properties
of Macbeath regions which were proved in [33] or [21].

The following lemma summarizes the basic properties of Macbeath regions that will be used in
our proof. Claim (i) is a variant of Lemma 1 of [33] and was established by Brönnimann, Chazelle,

1Note that we cannot apply Gruber’s or Böröczky’s theorems directly to Kδ, since its boundary is not twice
differentiable. In particular, the second derivative is discontinuous at the joints where each edge meets a circular
arc. We can easily fix this by creating a sufficiently small gap at each joint and introducing a smooth polynomial
spline of constant degree to fill the gap. Although the resulting body is not strictly convex, Böröczky showed that
this assumption is not necessary for the bound to hold.
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and Pach [21, Lemma 2.5]. Claim (ii) is a straightforward adaptation of Lemma 2.8 in [8] and is
based on ideas from [33, Lemma 2] and [21, Lemma 2.6]. Claim (iii) is an immediate consequence
of the definition of Macbeath regions.

Lemma 16. Given a convex body K in Rd and a cap C of K:

(i) For x, y ∈ K, if M1/5(x) ∩M1/5(y) ̸= ∅, then M1/5(x) ⊆ M(y).

(ii) If C has volume at most ν0, then for any λ ≥ 1, Cλ ⊆ M3d(2λ−1)(x), where x is the centroid
of the base of C.

(iii) For any x ∈ C, M(x) ⊆ C2.

Our proof of the cap covering lemma is based on the following lemma, which establishes a
relationship between scalings of Macbeath regions and caps (see Figure 20(b)).

Lemma 17. Let C be a cap of K with volume at most ν0. Let x denote the centroid of the base of
the cap C1/2. For any point y ∈ K such that M1/5(x) ∩M1/5(y) ̸= ∅,

M1/5(y) ⊆ C ⊆ M45d(y).

Proof. Since M1/5(x) ∩M1/5(y) ̸= ∅, Lemma 16(i) implies that M1/5(y) ⊆ M(x) and M1/5(x) ⊆
M(y). Also, by Lemma 16(iii), M(x) ⊆ (C1/2)2 = C. Combining these, we obtain

M1/5(y) ⊆ M(x) ⊆ C,

which establishes the first inclusion.
To prove the second inclusion, we apply Lemma 16(ii) setting C to C1/2 and λ to 2. We obtain

C = (C1/2)2 ⊆ M3d(2λ−1)(x) = M9d(x).

Recall that M1/5(x) ⊆ M(y). Scaling both of these centrally symmetric bodies by any positive
factor about their respective centers preserves the inclusion (see, e.g., Bárány [15]), and hence

M9d(x) = (M1/5(x))45d ⊆ M45d(y).

Putting these together, we obtain C ⊆ M9d(x) ⊆ M45d(y), as desired.

We are now ready to present the proof of Lemma 13. Before considering the general case, let
us assume that all the caps in C have volume at most ν0. Let M be any maximal set of disjoint
Macbeath regions of the form M1/5(x), where x is the centroid of the base of the cap C1/2 for some
C ∈ C. For each Macbeath region M1/5(x), define its expanded body M ′ to be M45d(x). We will
show that M and M′ satisfy the properties given in the lemma. Property (i) is straightforward
since M ′ is related to M by a constant scaling factor of 45d/(1/5) = 225d. To show Property (ii),
consider any cap C ∈ C. Let x denote the centroid of the base of C1/2. By the maximality of M,
there is a Macbeath region M1/5(y) ∈ M such that M1/5(x) ∩M1/5(y) ̸= ∅. Applying Lemma 17,
it follows that M1/5(y) ⊆ C ⊆ M45d(y). This establishes Property (ii) and thus proves the lemma
for the special case when all caps have volume at most ν0.

We now discuss the modifications required for handling the general case. For each cap C ∈ C
whose volume exceeds ν0, we replace it by the cap Cλ, where λ < 1 is chosen such that the volume
of Cλ is exactly ν0. Otherwise we retain the original cap C. Let C′ represent the resulting set of
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caps. We construct the sets M and M′ for the set C′ exactly as described in the special case above.
Finally, for each expanded body M ′ ∈ M′, if its volume is at least ν0, we replace it by the convex
body K. Otherwise, we retain the same body M ′. Let M′′ denote the resulting set of expanded
bodies. We claim that the sets M and M′′ satisfy the properties given in the lemma for the set C.

First, note that the argument given for the special case implies that the sets M and M′ satisfy
these properties for C′. As we replace the expanded body only if its volume is at least constant ν0,
it follows that Property (ii) holds for M and M′′ (the ratio of the volume of M ’s expanded body
to the volume of M increases by a factor of at most 1/ν0).

To establish Property (ii), consider a cap C ∈ C. If the volume of C is at most ν0, then the
argument given in the special case shows that there exists a body M ∈ M such that M ⊆ C ⊆ M ′,
where M ′ is M ’s expanded body in M′. Regardless of whether M ′ is retained or replaced by K in
constructing M′′, this property continues to hold. On the other hand, if the volume of C exceeds
ν0, then recall that it is replaced by a cap Cλ, where λ < 1 is chosen such that the volume of Cλ is
exactly ν0. The argument given in the special case shows that there exists a body M ∈ M such that
M ⊆ Cλ ⊆ M ′, where M ′ is M ’s expanded body in M′. It follows that vol(M ′) ≥ vol(Cλ) = ν0.
Thus M ′ must be replaced by K in constructing M′′. In other words, M ’s expanded body in M′′

is K. Clearly, Property (ii) holds since M ⊆ C ⊆ K. This completes the proof of Lemma 13.

7 Concluding Remarks

In this paper, we have proved the existence of an ε-approximation to a convex body K in Rd,
whose size is sensitive to the shape of the body expressed in terms of its surface diameter. Our
result yields a uniform bound, meaning that the result holds for all ε ≤ ε0, where ε0 does not
depend on K. We have shown that this bound is tight up to constant factors (depending on the
dimension) as a function of surface diameter. Our approach is based on first decomposing K’s
boundary into a collection of surfaces, each of which is represented by a smooth, strictly convex
function, and then exploiting properties of the Legendre transform and Macbeath regions to guide
a sampling process and analyze its complexity. The connection between approximations convex
bodies and approximations of convex functions in a computational context has been observed
elsewhere [1,9,36,50], and the techniques developed here may be of interest to future applications.

There are a number of interesting additional questions raised by our work. The surface diameter,
∆d−1, (or alternatively the (d − 1)st intrinsic volume) is but one way of introducing a measure of
shape-sensitivity. As mentioned earlier, in another work, we have demonstrated a bound based
on the volume diameter ∆d, which is asymptotically superior to the bound presented here [12].
The approach presented here is very different from that one, and it may be applicable in contexts
where the volume-sensitive approach is not, for example, approximating convex surface patches.
An important question is what are the most robust measures of a body’s ease of approximation,
and which approximation techniques are most widely applicable. The ultimate goal would be a
construction that yields the polytope of minimum combinatorial complexity that approximates
a given body. Unfortunately, existing hardness results suggest that this may not be solvable in
polynomial time [29].

The issue of how to compute the approximation has not been a focus of this paper, but we remark
that all the elements of our construction can be implemented. Assuming that K is represented as
the intersection of n halfspaces, we conjecture that the approximation can be constructed by a
randomized algorithm in expected time O

(
n+1/εO(d)

)
. The idea is to first reduce the size of K by
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computing an ε
2 approximation to K with O

(
1/εO(d)

)
facets. Letting K ′ denote this approximation,

we then compute an ε
2 approximation to K ′ using the construction presented in this paper. The

polytope K ′ can be computed in time O
(
n+1/εO(d)

)
by standard methods [7,25]. We believe that

the elements of our construction (support functions, polar bodies, Macbeath regions, ϵ-nets) can
all be computed (or approximated to the necessary precision) in time that is a polynomial function
of ε and the number of facets of K ′. Note that computing the ϵ-net involves random sampling. We
conjecture that, given K ′, the entire construction can be performed in time O

(
1/εO(d)

)
. We leave

open the question of whether there is a construction whose running time is sensitive to K’s surface
diameter.
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