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Abstract
We describe the heuristics used by the Shadoks team in the CG:SHOP 2023 Challenge. The Challenge
consists of 206 instances, each being a polygon with holes. The goal is to cover each instance polygon
with a small number of convex polygons. Our general strategy is the following. We find a big
collection of large (often maximal) convex polygons inside the instance polygon and then solve
several set cover problems to find a small subset of the collection that covers the whole polygon.
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1 Introduction

CG:SHOP Challenge is an annual geometric optimization challenge. The fifth edition in
2023 considers the problem of covering a polygon with holes P using a small set of convex
polygons S that lie inside P . In total, 206 polygons have been given as instances, ranging
from 24 to 109,360 vertices. The instances are of several different types, including orthogonal
polygons and polygons with many small holes. The team Shadoks won second place with
the best solution (among the 22 participating teams) to 128 instances. More details about
the Challenge and this year’s problem are available in the organizers’ survey paper [6].

Our general strategy consists of two distinct phases. First, we produce a large collection
C of large convex polygons inside P . Second, we find a small subset S ⊆ C that covers P ,

Figure 1 Solutions to maze_79_50_5_5, fpg-poly_400_h2, and cheese163 instances. The
instances have 64, 462, and 163 vertices and the solutions have 23, 172, and 68 polygons, respectively.
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Figure 2 Two collections with 162 and 160 large convex polygons are fed into the set cover solver
that respectively produces subsets with 74 and 72 that cover the input polygon. The two subsets
are united into a new collection and the set cover solver finally produces a solution with only 70
convex polygons for instance ccheese142.

which is returned as the solution. Figure 1 shows three small solutions and we can observe
that most convex polygons are maximal and often much larger than necessary. Our approach
is different from that of the winning team DIKU (AMW), that uses clique cover [1].

To construct the collection C in phase 1, we used either a modified version of the
Bron-Kerbosch algorithm or a randomized bloating procedure starting from a constrained
Delaunay triangulation (Section 2). To solve the set cover problem in phase 2, we used
integer programming and simulated annealing. The key element for the efficiency of phase 2
is to iteratively generate constraints as detailed in Section 3. Generally speaking, the initial
constraints ensure that all input vertices are covered and supplementary constraints ensure
that a point in each uncovered area is covered in the following iteration.

In fact, to obtain our best solutions, we repeat phase 2 using the union of the solutions
from independent runs of the first two phases as the collection C. An illustrative example is
presented in Figure 2. The results we obtained are discussed in Section 4.

2 Collections

We now describe phase 1 of our strategy: building a collection. Throughout, the instance
is a polygon with holes P with vertex set V . Formally speaking, a collection C is defined
exactly as a solution S: a finite set of convex polygons whose union is P . However, while
we want a solution S to have as few elements as possible, the most important aspect of a
collection C is that it contains a solution S ⊆ C with few elements. Ideally, |C| is also not too
big so the phase 2 solver is not overloaded, but the size of C is of secondary importance.

Before we describe two methods to build collections, we present a definition. Given a set
of points S, a convex polygon C ⊆ P is S-maximal if the vertices of C are in S and there
exists no point s ∈ S with conv(C ∪ {s}) ⊆ P . Next, we show how to build a collection with
all S-maximal convex polygons.

Bron-Kerbosch The Bron-Kerbosch algorithm [2] is a classic algorithm to enumerate all
maximal cliques in a graph (in our case the visibility graph) with good practical performance [5,
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Listing 1 Bron-Kerbosch algorithm to enumerate the maximal cliques in a graph. The
neighborhood of a vertex v is denoted N(v).
BronKerbosch (R, S, X):

if S and X are both empty:
report R
return

for each vertex v in S:
S’ ← S ∩ N(v)
X’ ← X ∩ N(v)

BronKerbosch (R ∪ {v}, S’, X’)

S ← S \ {v}
X ← X ∪ {v}

7]. The algorithm recursively keeps the following three sets and its pseudo-code is presented
in Listing 1.
R: Vertices in the current maximal clique. Initially, R = ∅.
S: Vertices that may be added to the current maximal clique (these must be adjacent to all

vertices in R). Initially, S = S.
X: Vertices that may not be added to the current maximal clique because otherwise the

same clique would be reported multiple times. Initially, X = ∅.

Next, we show how to adapt this algorithm to enumerate all S-maximal convex polygons.
As there are infinitely many P -maximal polygons, it is essential to restrict our set S. Different
sets S will be described later in this section.

If the polygon P has no holes and S, then there is a bijection between the maximal
cliques in the visibility graph of S on P and the S-maximal convex polygons. While this
statement is no longer true when P has holes, we can adapt the Bron-Kerbosch algorithm to
enumerate all S-maximal convex polygons as shown in Listing 2. Figure 4 shows how the
number of V -maximal convex polygons grows for different instances and that we can compute
all V -maximal convex polygons quickly for instances with around 10 thousand vertices.

V V ∪ S1 V ∪ S2

Figure 3 Definitions of V , S1, and S2.

Let S1 be the set of the endpoints of the largest segments inside P that contain each
edge of P (Figure 3). It is easy to see that |S1| ≤ 2|V |. However, as shown in Figure 5, we
are only able to compute all (V ∪ S1)-maximal convex polygons for instances with less than
one thousand vertices. It is possible that a modified version of the Bron-Kerbosch algorithm
gives better results, either by using a pivot or choosing a particular order for the points, but
we have not succeeded in obtaining significant improvements. Another natural set of points
is the set S2 ⊇ S1 defined as the intersection points (inside P ) of the lines containing the
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Listing 2 Modified Bron-Kerbosch algorithm to enumerate the S-maximal convex polygons.
BronKerbosch (R, S, X):

if S and X are both empty:
report conv(R)
return

if X ∩ conv(R) ̸= {}:
return // Only for improved performance

for each vertex v in S:
S’ ← X’ ← {}
for each vertex u in S:

if v ̸= u and conv(R ∪ {u,v}) ⊆ P:
S’ ← S’ ∪ {u}

for each vertex u in X:
if v ̸= u and conv(R ∪ {u,v}) ⊆ P:

X’ ← X’ ∪ {u}

BronKerbosch (R ∪ {v}, S’, X’)

S ← S \ {v}
X ← X ∪ {v}
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Figure 4 Number of V -maximal convex polygons and the time to enumerate them.
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Figure 5 Number of (V ∪ S1)-maximal convex polygons and the time to enumerate them.
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edges of P (Figure 3). The set S2 may however have size roughly |V |2. Hence, computing all
(V ∪ S2)-maximal convex polygons is only feasible for very small instances.

Random Bloating As a V -maximal convex polygon C is generally not P -maximal, we also
grow C with an operation we call bloating. Given a convex polygon C and a set of points S,
we construct an S-bloated convex polygon C ′ by iteratively trying to add a random point
from S to C and taking the convex hull, verifying at each step that C ′ lies inside the instance
polygon P . There are two sets of points that may compose S. First, S1(C) is the set of
endpoints of the largest segment in P that contains each edge of C. Second, S2(C) is the
union of S1(C) and the intersection points of the lines containing the edges of C, if the points
are inside P . Notice that |S1(C)| = O(|C|), but |S2(C)| = O(|C|2).

To start the bloating operation, we need a convex polygon C. One approach is to use
the V -maximal convex polygons produced by Bron-Kerbosch. A much faster approach for
large instances is to use a constrained Delaunay triangulation of the instance polygon. In
this case, we start by V -bloating the triangles into a convex polygon C, and then possibly
S1(C)-bloating or S2(C)-bloating the polygon C. Since the procedure is randomized, we can
replicate the triangles multiple times to obtain larger collections of large convex polygons.

3 Set Cover

We now describe phase 2 of our strategy. The input of phase 2 is a collection C of convex
polygons that covers the instance polygon P , and the goal is to find a small subset of C that
still covers P .

In contrast to the classic set cover problem, in our case P is an infinite set of points.
Nevertheless, it is easy to create a finite set of witnesses W , that satisfy that W is covered by
a subset S of C if and only if P is. To do that, we place a point inside each region (excluding
holes) of the arrangement of line segments defining the boundaries of the polygons in C and
P (Figure 6(a)). The size of such set W is however very large in practice and potentially
quadratic in the number of segments of C.

Producing small sets of witnesses has been studied in the context of art gallery problems [3].
However, we do not know if small sets of witnesses exist for our problem. Hence, we use a
loose definition of witness as any finite set of points W ⊂ P . In practice, we want W to be
such that if W is covered, then most of P is covered. Next, we show how to build such set of
witnesses and afterwards we describe how we solved the finite set cover problem.

Witnesses A set of witnesses W that gave very good results, which we call vertex witnesses,
consists of one witness inside each cell of the arrangement that contains a vertex of the
instance polygon P , as shown in Figure 6(b). This set guarantees that if W is covered,
then all points that are arbitrarily close to the vertices of P are covered. However, trivially
computing W requires building the arrangement of the collection C, which is too slow and
memory consuming for large C.

A set of witnesses W that also gives excellent results and is much faster to compute is
called quick vertex witnesses. For each vertex v of P , we consider all edges in C and also P

that are adjacent to v. We order these edges around v starting and ending with the edges
of P . For each pair of consecutive edges, we add a point w to W that is between the two
consecutive edges and infinitely close to v. Notice that the number of vertex witnesses is
linear in the number of edges of C and it can also be built in near linear time, avoiding
the construction of the whole arrangement of C. If P has not colinear points, then the
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(a) (b)

Figure 6 All the 82 V -maximal convex polygons for the socg_fixed60 instance with (a) the 1009
arrangement witnesses and (b) the 200 vertex witnesses.

(a) (b)

Figure 7 (a) A solution that covers all vertex witnesses of the socg_fixed60 instance but not
the whole polygon. Uncovered regions are marked in striped red. (b) The optimal solution obtained
from the previous one by merging the uncovered regions.

quick vertex witnesses give the same vertex coverage guarantee as the vertex witnesses. We
represent points that are arbitrarily close to v implicitly as a point and a direction.

Given a set S ′ of convex polygons that cover W , there are two natural options to produce
a valid solution S. The first option is to make S = S ′ ∪ R for a set R built as follows. The
uncovered region P \ ∪C∈S′C consists of a set U of disjoint polygons, possibly with holes
(Figure 7(a)). However, most of the time the polygons in U are in fact convex. For each
polygon U ∈ U , if U is convex, then we add U to R. Otherwise, we triangulate U and add
the triangles to R. Furthermore, we can greedily merge convex polygons in R to reduce their
number, as long as the convex hull of the union remains inside P , which works very well for
the SoCG logo solution shown in Figure 7(b).

A second option is normally preferable and is based on the constraint generation technique,
widely used in integer programming. We build the set R as before, but for each convex
polygon R ∈ R we add to W a point inside R. Then, we run the solver again and repeat
until a valid solution is found (or one with a very few uncovered regions). It is perhaps
surprising how few iterations are normally needed, as shown in Figure 8.
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Figure 8 Number of iterations to find a valid solution starting from quick vertex witnesses using
IP as the solver, setting C as (a) all V -maximal convex polygons and (b) 2 times triangulation
(V ∪ S2(C))-bloated convex polygons. Some large instances shown in (b) do not appear in (a)
because enumearting all V -maximal convex polygons would take too long.

Set Cover Solver A simple and often efficient way to solve a set cover problem (W, C) is to
model the problem as integer programming (IP) and then use the CPLEX solver [4]. Each
set in C becomes a binary variable and each witness point w ∈ W becomes a constraint
forcing the sum of the sets that contain w to be at least 1. The object is to minimize the sum
of the variables. As discussed in the next section, this approach can optimally solve fairly
large problems in seconds and give good approximation guarantees to some large problems.
However, for some other large problems the solution found is extremely bad (sometimes
worse than a greedy algorithm).

Another solver we used is based on simulated annealing. This solver is a good fallback
when the IP solver times out with a large gap between the lower bound and the solution
found. The solver starts from a greedy solution, obtained by adding to S the convex polygon
that covers the most uncovered witnesses at each step, breaking ties randomly. Anytime, if a
previously added convex polygon in S becomes unnecessary, we remove it from S. At each
step, we remove 3 random convex polygons from S and use the same greedy approach to
make the solution cover all W .

A larger solution is accepted with a certain probability that depends on the size difference
and decreases as we advance in the annealing procedure. To control this probability we set a
temperature t = 100/i for iteration number i. Let d be size of the previous solution minus the
size of the new solution, all divided by the size of the previous solution. The probability that
we accept the new solution is e100d/t. This simple procedure normally produces solutions
that are close to the IP solutions, and may produce much better solutions for some hard
instances. However, it is much slower than CPLEX when solving easy instances, since we
lack a mechanism to detect that an optimal solution has already been found.

4 Results

We now discuss the quality of the solutions obtained for each technique. Our C++ code
uses CGAL [9] and CPLEX [4] and is run on Fedora Linux on a Dell Precision 7560 laptop
with an Intel Core i7-11850H and 128GB of RAM. All times refer to a single core execution
with scheduling coordinated by GNU Parallel [8]. Our plots for a solution S use the relative
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solution size, defined as |S∗|/|S|, where S∗ is the best solution submitted among all teams.
This corresponds to the square root of the Challenge score of S.

Figure 9 compares the different techniques to obtain V -maximal convex polygons before
bloating them. As the figure shows, using 4 replications of each constrained Delaunay triangle
gives solutions that are almost as good as Bron-Kerbosch, but works on all instance sizes.
Hence, we use this setting for Figures 10 and 11.
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Figure 9 Solution sizes relative to the best Challenge solution. Data is based on a triangulation
replicated 1, 2, or 4 times and randomly bloated using V . Alternatively, we use Bron-Kerbosch (BK)
to obtain all V -maximal polygons, when the running time is not too long. Afterwards, all collections
have bloated again using V ∪ S2(C) and solved using IP.

Figure 10 shows the relative solution sizes using different bloating approaches and
comparing the simulated annealing and the IP solvers. You can see that the simulated
annealing solver is only slightly worse than IP for small instances, but better for large cheese
instances. We limited the running time of IP to 10 minutes per iteration. The total running
times of the solvers are compared in Figure 11.
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Figure 10 Solution sizes relative to the best Challenge solution. A solid line is used for the IP
solver and a dashed line for simulated annealing. Data is based on a triangulation randomly bloated
using V (red) and then bloated again using V ∪ S1(C) (green), or V ∪ S2(C) (blue).

A much better collection is obtained by using the union of several high quality solutions
as a collection. To produce the previous plots, we performed 3 independent runs for each
settings (showing the best result found). Figures 12 and 13 shows the solution sizes and
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Figure 11 Running times in seconds of the set cover solvers used to find the solutions of Figure 10.
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Figure 12 Relative solution sizes merging the k best solutions for different values of k.
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Figure 13 Running times in seconds to find the solutions of Figure 12.
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times obtained by using the best k solutions from these runs as the collection.

5 Open Problems

When solving phase 2, we noticed that the number of iterations is often very small. This
raises a few theoretical questions that we could not answer. First, is there a non-trivial upper
bound on the number of iterations using vertex witnesses?

If we allow arbitrary collections, it is easy to produce collections that require a quadratic
number of witnesses. However, we do not know if a quadratic number of witness is sometimes
necessary for the collection made of all V -maximal polygons.

The Bron-Kerbosch algorithm is a simple algorithm to enumerate all maximal cliques of
a given graph. While it has good practical performance, it is not an efficient enumeration
algorithm for several graph classes. Other algorithms with better theoretical guarantees are
know for many graph classes. Are there efficient enumeration algorithms for the V -maximal
convex polygons? Notice that, in the case of a polygon without holes, the problem is
equivalent to enumerating the maximal cliques of the visibility graph.
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