The quest of the Domino problem

Guilhem Gamard

11th February 2021

Proving theorems by pattern recognition 00

"In connection with the $\forall x \exists y \forall z \text{ case}$, an amusing combinatorial problem is suggested in Section 4.1."

— Hao Wang. *Proving theorems by pattern recognition II.* Bell Systems Technical Journal, XL(1), 1961.

AEA Formulae

$$\forall x, \exists y, \forall z : \Phi(x, y, z)$$

 $\boldsymbol{\Phi}$ is quantifier-free and may contain symbols of constant and of relation

No equality, no function symbols

Problem:

Find a model (ambient set, interpretations for symbols)

Example:

$$\forall x, \exists y, \forall z : \neg(x < x) \land (x < y) \land (y < z \implies x < z)$$

Satisfiability:

Wang tiles

Wang tile:

Tileset:

Tiling of a square:

- Borders in contact have the same color.
- Tiles can be repeated
- Tiles cannot be turned nor flipped

The Domino problem

Theorem (Wang, 1964)

For all AEA formula F, there is a tileset T such that F has a model iff T has a tiling.

If F has a model, it is **satisfiable.** If T has a tiling, it is **valid.**

Problem definition

Domino

• **Input:** a tileset T

• Output: is T valid?

Let's find an algorithm for the Domino problem!

 \implies Automated theorem proving for AEA formulae!

In 1D, tiles have 2 sides and we tile the line.

Lemma

If T is a valid 1D tileset, then it has a periodic tiling.

Infinitely many cells, finitely many colors: a color is repeated.

In 1D, tiles have 2 sides and we tile the line.

Lemma

If T is a valid 1D tileset, then it has a periodic tiling.

Infinitely many cells, finitely many colors: a color is repeated.

In 1D, tiles have 2 sides and we tile the line.

Lemma

If T is a valid 1D tileset, then it has a periodic tiling.

Infinitely many cells, finitely many colors: a color is repeated.

We can repeat periodically.

In 1D, tiles have 2 sides and we tile the line.

Lemma

If T is a valid 1D tileset, then it has a periodic tiling.

Infinitely many cells, finitely many colors: a color is repeated.

We can repeat periodically.

Given a 1D tileset T, we can build its **graph**.

Nodes: colors

• Edges: tiles

Lemma

A 1D tileset is **valid** iff its graph has a **cycle**.

Polynomial time algorithm!

Perfocilately in 2D

Back to 2D!

Perfocilately in 2D

Back to 2D!

Perfocilately in 2D

Back to 2D!

Perfection in 2D

Back to 2D!

Perfection in 2D

Back to 2D!

Periodicity in 2D

Back to 2D!

Weakly periodic tiling: one direction of periodicity.

Strongly periodic tiling: two (noncolinear) directions of periodicity \iff repeating blocks.

Periodicity in 2D

Back to 2D!

Weakly periodic tiling: one direction of periodicity.

Strongly periodic tiling: two (noncolinear) directions of periodicity \iff repeating blocks.

Lemma

If T has a **weakly** periodic tiling, then it has a **strongly** periodic tiling.

The compactness theorem

Theorem

A tileset T is valid iff it tiles all finite squares.

The compactness theorem

Theorem

A tileset T is valid iff it tiles all finite squares.

- If T tiles the plane, it tiles all $n \times n$ squares (by restrictions)
- Let p_0, p_1, \ldots be a spiral covering \mathbb{Z}^2 (say p_0 is the origin)
- Let s_n be a T-tiling of the $n \times n$ square
- Each s_n assigns a tile to p_0
- Infinitely many s_n assign a same tile to p_0

- Let $s_n^{(1)}$ be an infinite sequence of tiled squares that agree on p_0
- Let $s_n^{(2)}$ be an infinite sequence of tiled squares that agree on p_0 and p_1
- Et caetera

Wang's algorithm

Algorithm

- \bullet $n \leftarrow 1$
- Try all tilings of the $n \times n$ square
- If there is a repeatable tiled square
 - Return true
- If there is no tiled square
 - Return false
- Else
 - $n \leftarrow n + 1$
 - Go to 2

• Finds **periodic** tilings

Plot twist

Theorem (Berger, 1966)

The Domino problem is undecidable.

Plot twist

Theorem (Berger, 1966)

The Domino problem is undecidable.

Corollary

Wang's algorithm doesn't stop on some inputs.

Plot twist

Theorem (Berger, 1966)

The Domino problem is undecidable.

Corollary

Wang's algorithm doesn't stop on some inputs.

Corollary

There exist aperiodic tilesets.

(Valid tilesets with only aperiodic tilings.)

The long list of aperiodic tilesets

Tilings:

- Berger, 1964
- Knuth, 1968
- Robinson, 1971
- Penrose, 1974
- Ammann, 1977
- Kari, 1996
- Kari-Culik, 1996
- Jeandel-Rao, 2015
- Labbé, 2018

Methods:

- Self-similarity
- Cut-and-project
- Computation on reals

Intermission: Subshifts of Finite Type (SFTs)

Colors:

Configurations:

Definition

A Subshift of Finite Type (**SFT**) is a set of configurations that avoids a finite set of **forbidden patterns**.

Proposition

Any tileset is an SFT.

Colors: Wang tiles

Forbidden patterns: Unmatched tiles

Patterns:

Proposition

Any SFT is a tileset.

Suppose the largest forbidden pattern is $n \times n$.

Proposition

Any SFT is a tileset.

Suppose the largest forbidden pattern is $n \times n$.

Proposition

Any SFT is a tileset.

Suppose the largest forbidden pattern is $n \times n$.

Proposition

Any SFT is a tileset.

Suppose the largest forbidden pattern is $n \times n$.

Proposition

Any SFT is a tileset.

Suppose the largest forbidden pattern is $n \times n$.

Domino with fixed origin

Definition

FIXED-ORIGIN DOMINO

• **Input:** a tileset T and a tile $t \in T$

• **Output:** is there a *T*-tiling with *t* at the origin?

Theorem

The FIXED-ORIGIN DOMINO problem is undecidable.

Fixed-origin Domino is undecidable

Fix a Turing machine
$$M = (\Sigma, Q, \delta, ...)$$
.
Make a tileset such that every tiling is:

M after 3 steps
M after 2 steps
M after 1 step
Initial configuration of M

• Let
$$Q' = Q \sqcup \{ \blacktriangleright, \blacktriangleleft \}$$

• Colors:
$$Q' \times \Sigma$$

- One head per line
 - Forbid: $q \triangleright$; $\triangleleft q$; $\triangleleft \triangleright$; $\triangleright \triangleleft$
- Transitions OK
 - Forbid all 3×2 patterns not allowed by δ

Fixed-origin Domino is undesidable

We have to ensure that the first line has state q_0 and only 0's on the tape

Suppose that M never reaches its initial state q_0 again.

New rules:

- Let $Q'' = Q' \sqcup \{ \blacktriangleright_0, \blacktriangleleft_0 \}$
- Mixing $\{ \triangleright_0, \blacktriangleleft_0 \}$ with $\{ \triangleright, \blacktriangleleft \}$ on a same line is forbidden
- $\{ \triangleright_0, \blacktriangleleft_0 \}$ ensure a single head like $\{ \triangleright, \blacktriangleleft \}$ did
- We're on a $\{\triangleright_0, \blacktriangleleft_0\}$ -line iff the head is q_0
- If we're on a $\{\triangleright_0, \blacktriangleleft_0\}$ -line, every tape letter is 0

Fixed-origin Domino is undesidable

We have to ensure that the first line has state q_0 and only 0's on the tape

Suppose that M never reaches its initial state q_0 again.

New rules:

- Let $Q'' = Q' \sqcup \{ \blacktriangleright_0, \blacktriangleleft_0 \}$
- Mixing $\{ \triangleright_0, \blacktriangleleft_0 \}$ with $\{ \triangleright, \blacktriangleleft \}$ on a same line is forbidden
- ullet $\{lackbox{$\blacktriangleright$}_0, lackbox{$\blacktriangleleft$}_0\}$ ensure a single head like $\{lackbox{$\blacktriangleright$}, lackbox{$\blacktriangleleft$}\}$ did
- We're on a $\{\triangleright_0, \blacktriangleleft_0\}$ -line iff the head is q_0
- If we're on a $\{\triangleright_0, \blacktriangleleft_0\}$ -line, every tape letter is 0

Now ask $(q_0, 0)$ at the origin.

Fixed-origin Domino is undecidable

But, wait! You're cheating! You only tile half of the plane!

That's why compactness is for, baby!

- If we tile a half-plane,
- then we tile any $n \times n$ square,
- so by compactness we tile all the plane.

Lemma

- If M halts in n steps, we don't tile $(n+1) \times (n+1)$ squares.
- If M doesn't halt, we tile the plane.

Free origin

What happens with free origin?

							:							
▶ 1	▶ 1	▶ 1	▶ 1	▶ 1	▶ 1									
▶ 1	▶ 1	▶ 1	▶ 1	▶ 1	▶ 1									
▶ 1	▶ 1	▶ 1	▶ 1	▶ 1	▶ 1									
▶ 1	▶ 1	▶ ¹	▶ 1	▶ 1	▶ 1									
1	▶ 1	▶ ¹	▶ 1	▶ ¹	▶ 1	▶ 1	1							
▶ 1	▶ ¹	▶ 1	▶ 1	▶ 1	▶ 1	1								
1	▶ 1	▶ 1	▶ ¹	▶ 1	▶ 1	1								
▶ 1	▶ ¹	▶ 1	▶ 1	▶ 1	▶ 1	1								
▶ 1	▶ 1	▶ 1	▶ 1	▶ 1	▶ 1									
▶ 1	1	▶ 1	▶ 1	1	▶ 1	▶ 1	1	▶ 1	▶ 1	1	▶ 1	▶ 1	▶ 1	▶ 1

20/42

Aperiodic tilesets

- We have "noncomputing" tilings
- They are all periodic
- Hence the link between aperiodic tilesets and undecidability

We need an aperiodic tileset to prove that the Domino problem is undecidable

Pictures in the next slides are courtesy Daria S. Pchelina

Robinson tillings

Robinson tiling:

Fixed-point of that substitution

Proposition

Any Robinson tiling is aperiodic.

- Any periodicity vector would send each red square to another
- There are arbitrarily large squares
- The periodicity vector would have to be infinite

How to implement this substitution with tiles?

Robinson tiles

Tiles: (colors)

+ Rotations

Rules: (forbidden patterns)

Orlangations

Macrotile of rank 2

Macrotile of rank 3

Robinson

Theorem

The Robinson tileset is aperiodic.

(It tiles the plane, but only aperiodically.)

- Already explained why no periodicity
- \bullet One tile \implies a 2-macrotile
- An *n*-macrotile \implies an (n+1)-macrotile
- ullet This continues for arbitrarily large $n \Longrightarrow {\sf compactness} \Longrightarrow {\sf tiles}$ the plane

How to embark a Turing machine in there?

Extended Robinson tileset

\Leftrightarrow	 						⇒			⇔				\Leftrightarrow			⇐						\Rightarrow			⇔	
$\Delta = \Delta \Delta$								₩	₩		₩	₩	Ω		₽	₩								₩	₩		4
(1)								ĵ	ĵţ		₿	Û	ĵţ		ĵ	ĵţ								ĵţ	ĵţ		1
\Leftrightarrow	⇐						\Longrightarrow			⇔				⇔			⇐						\Rightarrow			\Leftrightarrow	
\Leftrightarrow	⇐						\Rightarrow			♦				(₩						\Rightarrow			€	
1 1 1		~~						↔	î		fì	n	₩		Ω	₩	Н	~~				~~		₩	1		4
	Λ		Λ	Λ	Λ	7	Λ	Н	Ш		#	+	-		+	Н	Δ	7	Λ	Λ	Λ	7	Λ	4	Н		L
	ĵ		ĵ	1	ţ		ţ	Щ	Ш		\perp	Ш	Ш		1	Ш	ţ		ĵ	ĵ	ĵ		ĵ	Щ	Ш		
		⇔				⇔		Ш										\Leftrightarrow				\Leftrightarrow					
		((П									Г	€				€					
						⇔		Н	Ш						\top	П	Г	⇔				⇔		Ħ		П	П
	ĵ		ĵ	ĵ;	ĵ;		Û	H	Н		+	+	Н		+	Н	Û		ĵţ	ĵ	ĵ		ĵţ	₩	Н		H
	∜		∜	∜	∜		∜	Н	Ш		-	Н	Ш		+	Ш	∜		∜	∜	∜		∜	Н	Ш		H
1	Ш	₩				⇔		∜	∜		∜	\downarrow	∜		∜	∜	L	\Leftrightarrow				\Leftrightarrow		∜	∜		1
	⇐						\Longrightarrow			⇔				⇔			⇐						\Rightarrow			⇔	
⇔							\Rightarrow			♦				₿									\Rightarrow			(
								1	û		1	1	ĵ		ĵ	ĵ								ĵţ	ĵţ		1
							_	V	V	♦	♡	♡	V	€	♡	V	_							V	V		
\Leftrightarrow							_							1			-						=			⇔	
\Leftrightarrow	़						\Rightarrow			\Leftrightarrow				₿			₩						\Rightarrow			₩	
	⇐						\Rightarrow			\Leftrightarrow				⇔			⇐						\Rightarrow			⇔	
(1)								Î	î		\$	1	ĵ		()	Î								1	1		3
							_	V	V	⇔		V		₩			_								Y		Ľ
4	4						<u> </u>										4						É			_	H
$\hat{\Omega}$	⇐						\Rightarrow	_	_	\Leftrightarrow	↔	_	_	♦	_	↔	⇐						\Rightarrow	_			
		⇔				\Leftrightarrow		Î	Î		1	Î	Î		Î	Ш		\Leftrightarrow				\Leftrightarrow		Î	Î		
	Û		Ĵţ.	ĵ	Û		ĵţ	Ш									Û		ĵ	Û	Ĵţ		ĵţ				
1 100000	Ė	₩				€		П	П			П				П	Ė	♦				♦		Т			Г
	Н	(⇔		H	H		+	#	#		+	Н	Н	₩				♦		$^{+}$	ш	\vdash	П
	Н	_						₩	Н		+	Н	Н		╫	Н	Н	_						₩	Н	\vdash	Н
	_	€	_	_	_	€	_	Ш	Ш		4	4	Ш		4	Ш	_	\Leftrightarrow	_	_	_	€	^	4	Ш		L
	ĵţ		ĵţ	ĵţ	ĵţ		ţ	Ш									ĵ		ĵţ	î	ĵ		ĵţ				
		\Leftrightarrow				\Leftrightarrow		↓	U		∥	U	I Ü		↓	U		\Leftrightarrow				\Leftrightarrow		\parallel	U		1
	\						\Rightarrow		Ť	⇔			Ť	(Ť	(\Rightarrow		Ť	(
	_						_			⇔				€													
	-						_	Δ	Δ	7	Δ	Δ	Δ	1	Δ	Δ	7						F	4	4		4
(1)								1	ĵ		1	1	ĵ		ţ	ĵ								ĵţ	ĵ		K

Embarking Turing machines

Use the middle space to run the Turing machine

- Not a single spacetime diagram anymore
- Arbitrarily large spacetime diagrams
- Still: arbitrarily large diagrams iff the machine doesn't halt

Therefore:

Theorem

The Domino problem is undecidable

Conclusion

- AEA Formulae
- Domino problem decidable in 1D
- ullet Weakly periodic \Longrightarrow strongly periodic
- Fixed-origin domino problem undecidable in 2D
- Substitutions
- Domino problem undecdiable in 2D

Thank you for your attention!