The quest of the Domino problem

Guilhem Gamard

11th February 2021

Provtig theorems by patern recogufion 00

"In connection with the $\forall x \exists y \forall z$ case, an amusing combinatorial problem is suggested in Section 4.1."

- Hao Wang. Proving theorems by pattern recognition II. Bell Systems Technical Journal, XL(1), 1961.

ABA Formone

$$
\forall x, \exists y, \forall z: \Phi(x, y, z)
$$

Φ is quantifier-free and may contain symbols of constant and of relation
No equality, no function symbols
Problem:

> Find a model (ambient set, interpretations for symbols)

Example:

$$
\forall x, \exists y, \forall z: \neg(x<x) \wedge(x<y) \wedge(y<z \Longrightarrow x<z)
$$

Satisfiability:

$$
\begin{array}{cccccccc}
x<x & x<y & x<z & y<x & y<y & y<z & z<x & z<y \\
\hline \perp & \top & \top & & & z<z \\
\perp & \top & \top & \top & & & \\
\perp & \top & \perp & & \perp & & &
\end{array}
$$

Wang tilles

Wang tile:

Tileset:

Tiling of a square:

- Borders in contact have the same color
- Tiles can be repeated
- Tiles cannot be turned nor flipped

The Domfno problem

Theorem (Wang, 1964)
For all AEA formula F, there is a tileset T such that F has a model iff T has a tiling.

If F has a model, it is satisfiable. If T has a tiling, it is valid.

Problem definition

Domino

- Input: a tileset T
- Output: is T valid?

Let's find an algorithm for the Domino problem!
\Longrightarrow Automated theorem proving for AEA formulae!

Warmups the ild case (1/2)

In 1D, tiles have 2 sides and we tile the line.

Lemma

If T is a valid 1 D tileset, then it has a periodic tiling.

Infinitely many cells, finitely many colors: a color is repeated.

Warmups the ild case (1/2)

In 1D, tiles have 2 sides and we tile the line.

Lemma

If T is a valid 1 D tileset, then it has a periodic tiling.

Infinitely many cells, finitely many colors: a color is repeated.

Warmups the 10D case (1/R2)

In 1D, tiles have 2 sides and we tile the line.

Lemma

If T is a valid 1 D tileset, then it has a periodic tiling.

Infinitely many cells, finitely many colors: a color is repeated.

We can repeat periodically.

Warmups the 10D case (1/R2)

In 1D, tiles have 2 sides and we tile the line.

Lemma

If T is a valid 1D tileset, then it has a periodic tiling.

Infinitely many cells, finitely many colors: a color is repeated.

We can repeat periodically.

Warmups the ID case (2/2)

Given a 1D tileset T, we can build its graph.

- Nodes: colors
- Edges: tiles

A 1D tileset is valid iff its graph has a cycle.
\Longrightarrow Polynomial time algorithm!

Pexfodlcity to 2D

Back to 2D!
Weakly periodic tiling: one direction of periodicity.

Pexfodlefty to 2D

Back to 2D!
Weakly periodic tiling: one direction of periodicity.

Pexfodlcity to 2D

Back to 2D!
Weakly periodic tiling: one direction of periodicity.

Pexfodlcity in 2D

Back to 2D!
Weakly periodic tiling: one direction of periodicity.

Pexfodlcity in 2D

Back to 2D!
Weakly periodic tiling: one direction of periodicity.

Pexfodlcity to 2D

Back to 2D!

Weakly periodic tiling: one direction of periodicity.

Strongly periodic tiling: two (noncolinear) directions of periodicity \Longleftrightarrow repeating blocks.

Pexfodlcity to 2D

Back to 2D!

Weakly periodic tiling: one direction of periodicity.

Strongly periodic tiling: two (noncolinear) directions of periodicity \Longleftrightarrow repeating blocks.

If T has a weakly periodic tiling, then it has a strongly periodic tiling.

The compectness theorem

A tileset T is valid iff it tiles all finite squares.

The compectness theorem

Theorem

A tileset T is valid iff it tiles all finite squares.

- If T tiles the plane, it tiles all $n \times n$ squares (by restrictions)
- Let p_{0}, p_{1}, \ldots be a spiral covering \mathbb{Z}^{2} (say p_{0} is the origin)
- Let s_{n} be a T-tiling of the $n \times n$ square
- Each s_{n} assigns a tile to p_{0}
- Infinitely many s_{n} assign a same tile to p_{0}

- Let $s_{n}^{(1)}$ be an infinite sequence of tiled squares that agree on p_{0}
- Let $s_{n}^{(2)}$ be an infinite sequence of tiled squares that agree on p_{0} and p_{1}
- Et caetera

Wang's algofithm

Algorithm

(1) $n \leftarrow 1$
(2) Try all tilings of the $n \times n$ square

- If there is a repeatable tiled square
- Return true
- If there is no tiled square
- Return false
- Else
- $n \leftarrow n+1$
- Go to 2

Plot cuntst

The Domino problem is undecidable.

Plot cutst

Theorem (Berger, 1966)
The Domino problem is undecidable.

Wang's algorithm doesn't stop on some inputs.

Plot cutst

Theorem (Berger, 1966)
The Domino problem is undecidable.

Corollary
Wang's algorithm doesn't stop on some inputs.

Corollary
There exist aperiodic tilesets.
(Valid tilesets with only aperiodic tilings.)

The long list of aperforlis thlesets

Tilings:

- Berger, 1964
- Knuth, 1968
- Robinson, 1971
- Penrose, 1974
- Ammann, 1977
- Kari, 1996
- Kari-Culik, 1996
- Jeandel-Rao, 2015
- Labbé, 2018

Methods:

- Self-similarity
- Cut-and-project
- Computation on reals

Ontermission Subshifts of Flafte Type (SSFis)

Colors:

Configurations:

Proposition

Any tileset is an SFT.

Colors: Wang tiles
Forbidden patterns: Unmatched tiles

Patterns:

Amy Sivi is a thleset

Proposition

Any SFT is a tileset.

Suppose the largest forbidden pattern is $n \times n$.
Consider all $n \times n$ allowed patterns and make tiles as follows.

Any SFir is a ftleset

Proposition

Any SFT is a tileset.

Suppose the largest forbidden pattern is $n \times n$.
Consider all $n \times n$ allowed patterns and make tiles as follows.

Any SFir is a ftleset

Proposition

Any SFT is a tileset.

Suppose the largest forbidden pattern is $n \times n$.
Consider all $n \times n$ allowed patterns and make tiles as follows.

Any SFir is a ftleset

Proposition

Any SFT is a tileset.

Suppose the largest forbidden pattern is $n \times n$.
Consider all $n \times n$ allowed patterns and make tiles as follows.

Any SFir is a ftleset

Proposition

Any SFT is a tileset.

Suppose the largest forbidden pattern is $n \times n$.
Consider all $n \times n$ allowed patterns and make tiles as follows.

Domino wfth flxed ofigin

Definition

Fixed-origin Domino

- Input: a tileset T and a tile $t \in T$
- Output: is there a T-tiling with t at the origin?

Theorem

The Fixed-origin Domino problem is undecidable.

Fixed=origin Domfno is undecidable

Fix a Turing machine $M=(\Sigma, Q, \delta, \ldots)$.
Make a tileset such that every tiling is:

M after 3 steps
M after 2 steps
Initial configuration of M

- Let $Q^{\prime}=Q \sqcup\{\downarrow, ~ \mathbb{~}\}$
- Colors: $Q^{\prime} \times \Sigma$
- One head per line
- Forbid: q ; 4 ;
- Transitions OK
- Forbid all 3×2 patterns not allowed by δ

Fixed=origin Domino is undecidable

We have to ensure that the first line has state q_{0} and only 0 's on the tape

Suppose that M never reaches its initial state q_{0} again.

New rules:

- Let $Q^{\prime \prime}=Q^{\prime} \sqcup\left\{\boldsymbol{\bullet}_{0}, \boldsymbol{\iota}_{0}\right\}$
- Mixing $\left\{\boldsymbol{\rightharpoonup}_{0}, \boldsymbol{\iota}_{0}\right\}$ with $\{\boldsymbol{\bullet} \boldsymbol{\triangleleft}\}$ on a same line is forbidden
- $\left\{\boldsymbol{~}_{0}, \boldsymbol{\iota}_{0}\right\}$ ensure a single head like $\{\boldsymbol{\bullet}\}$ did
- We're on a $\left\{\boldsymbol{\rightharpoonup}_{0}, \boldsymbol{\iota}_{0}\right\}$-line iff the head is q_{0}
- If we're on a $\left\{\boldsymbol{~}_{0}, \boldsymbol{\hookrightarrow}_{0}\right\}$-line, every tape letter is 0

Fixed=origin Domino is undecidable

We have to ensure that the first line has state q_{0} and only 0 's on the tape

Suppose that M never reaches its initial state q_{0} again.

New rules:

- Let $Q^{\prime \prime}=Q^{\prime} \sqcup\left\{\boldsymbol{\bullet}_{0}, \boldsymbol{\iota}_{0}\right\}$
- Mixing $\left\{\boldsymbol{\rightharpoonup}_{0}, \boldsymbol{\iota}_{0}\right\}$ with $\{\boldsymbol{\bullet} \boldsymbol{\triangleleft}\}$ on a same line is forbidden
- $\left\{\boldsymbol{\rightharpoonup}_{0}, \boldsymbol{⿶}_{0}\right\}$ ensure a single head like $\{\boldsymbol{\bullet}, \boldsymbol{\triangleleft}\}$ did
- We're on a $\left\{\boldsymbol{\rightharpoonup}_{0}, \boldsymbol{\iota}_{0}\right\}$-line iff the head is q_{0}
- If we're on a $\left\{\boldsymbol{~}_{0}, \boldsymbol{\hookrightarrow}_{0}\right\}$-line, every tape letter is 0

Now ask $\left(q_{0}, 0\right)$ at the origin.

Fixed=origin Domfno is undecidable

But, wait! You're cheating! You only tile half of the plane!

That's why compactness is for, baby!

- If we tile a half-plane,
- then we tile any $n \times n$ square,
- so by compactness we tile all the plane.

Lemma

- If M halts in n steps, we don't tile $(n+1) \times(n+1)$ squares.
- If M doesn't halt, we tile the plane.

Free đitg
What happens with free origin?

∇^{1}	\bullet^{1}	\bullet^{1}	\checkmark^{1}	\square^{1}	\square^{1}	\square^{1}	\square^{1}	\square^{1}	${ }^{1}$	\checkmark^{1}	\checkmark^{1}	\wedge^{1}	\square^{1}	\square^{1}
∇^{1}	\wedge^{1}	\wedge^{1}	\wedge^{1}	\square^{1}	∇^{1}	\wedge^{1}	\wedge^{1}	${ }^{1}$	\triangleright^{1}	\wedge^{1}	∇^{1}	${ }^{1}$	\square^{1}	\square^{1}
\triangleright^{1}	\wedge^{1}	\square^{1}	\bullet^{1}	\square^{1}	\square^{1}	\square^{1}	${ }^{1}$	\square^{1}	\bullet^{1}	\square^{1}	\square^{1}	-	\square^{1}	${ }^{1}$
\triangleright^{1}	\wedge^{1}	\triangleright^{1}	\triangleright^{1}	\wedge^{1}	∇^{1}	∇^{1}	\triangleright^{1}	\triangleright^{1}	\triangleright^{1}	∇^{1}	∇^{1}	∇^{1}	\square^{1}	\checkmark
\square^{1}	\triangleright^{1}	\bullet^{1}	\triangleright^{1}	\square^{1}	\square^{1}	\bullet^{1}	\bullet^{1}	\bullet^{1}	\bullet^{1}	\bullet^{1}	\bullet^{1}	-	\square^{1}	-
∇^{1}	\triangleright^{1}	\triangleright^{1}	\triangleright^{1}	∇^{1}	∇^{1}	∇^{1}	∇^{1}	\triangleright^{1}	∇^{1}	∇^{1}	\triangleright^{1}	∇^{1}	\square^{1}	${ }^{1}$
\square^{1}	\triangleright^{1}	\bullet^{1}	\triangleright^{1}	\square^{1}	∇^{1}	\checkmark^{1}	${ }^{1}$	\square^{1}	\bullet^{1}	\bullet^{1}	\square^{1}	${ }^{1}$	\square^{1}	${ }^{1}$
∇^{1}	∇^{1}	∇^{1}	∇^{1}	∇^{1}	∇^{1}	\wedge^{1}	\wedge^{1}	\wedge^{1}	\wedge^{1}	∇^{1}	\triangleright^{1}	\checkmark	\square^{1}	\square^{1}
∇^{1}	∇^{1}	∇^{1}	∇^{1}	\triangleright^{1}	∇^{1}	\checkmark^{1}	\wedge^{1}	\checkmark^{1}	\triangleright^{1}	\checkmark^{1}	\checkmark^{1}	\checkmark^{1}	\square^{1}	\square^{1}
\triangleright^{1}	\triangleright^{1}	∇^{1}	\triangleright^{1}	∇^{1}	∇^{1}	∇^{1}	∇^{1}	\checkmark^{1}	∇^{1}	\checkmark^{1}	\square^{1}	\checkmark^{1}	\square^{1}	\square^{1}

Aperfodie tilesets

- We have "noncomputing" tilings
- They are all periodic
- Hence the link between aperiodic tilesets and undecidability

We need an aperiodic tileset to prove that the Domino problem is undecidable

Pictures in the next slides are courtesy Daria S. Pchelina

Robinson tilligs

Robinson tiling:
Fixed-point of that substitution

Proposition

Any Robinson tiling is aperiodic.

- Any periodicity vector would send each red square to another
- There are arbitrarily large squares
- The periodicity vector would have to be infinite

How to implement this substitution with tiles?

Robinsom files

Tiles: (colors)

+ Rotations

Rules: (forbidden patterns)

Offentations

Macrotlle of cenk 2

Maspotle of cenk 3

Macrottle of rank m\&l

Macrottle of rank m\&l

Macrottle of rank m\&l

Macrottle of rank nłll

Locel wiles force macrottles of rank 2

Local unles force mecroflles of rank 2

Locel wules force macrottles of rank 2

Locel wiles force macrottles of rank 2

Locel wiles force macrottles of rank 2

Locel rules force macroftles of renk 2

Locel rules force macroflles of rank 2

Locel wules force macrottles of rank 2

Locel wiles force macrottles of rank 2

Locel wiles force macrottles of rank 2

Locel wiles force macrottles of rank 2

Locel wiles force macrottles of rank 2

Local rules force merrotlles of rank n\&l

Cocell rules force macrothles of renk nłl

Cocell rules force macrothles of renk nłl

Cocell rules force macrothles of renk n\&l

Local rules force merrotlles of rank n\&l

Local rules force merrotlles of rank n\&l

Local rules force merrotlles of rank n\&l

Local rules foree mecrotles of renk nfl

Local rules force macrotlles of renk włl

Cocell rules force macrothles of renk nłl

Cocell rules force macrothles of renk n\&l

Cocell rules force macrothles of renk n\&l

Robinson

The Robinson tileset is aperiodic.

(It tiles the plane, but only aperiodically.)

- Already explained why no periodicity
- One tile \Longrightarrow a 2-macrotile
- An n-macrotile \Longrightarrow an ($n+1$)-macrotile
- This continues for arbitrarily large $n \Longrightarrow$ compactness \Longrightarrow tiles the plane

How to embark a Turing machine in there?

Extended Robtnson tifleset

Embarkfig Turtig machtnes

Use the middle space to run the Turing machine

- Not a single spacetime diagram anymore
- Arbitrarily large spacetime diagrams
- Still: arbitrarily large diagrams iff the machine doesn't halt

Therefore:

Conclusion

- AEA Formulae
- Domino problem decidable in 1D
- Weakly periodic \Longrightarrow strongly periodic
- Fixed-origin domino problem undecidable in 2D
- Substitutions
- Domino problem undecdiable in 2D

Thank you for your attention!

