Some news about coverability

Guilhem Gamard, Gwenaël Richomme

SDA2 Days, 4th July 2016

- $\Sigma = finite alphabet$
- $\mathbf{w} \in \Sigma^{\mathbb{N}}$
- **Factor:** finite block of w
- **Special factor u:** $u \cdot a$ and $u \cdot b$ occur in w

- $\Sigma = finite alphabet$
- $\mathbf{w} \in \Sigma^{\mathbb{N}}$
- **Factor:** finite block of w
- **Special factor u:** $u \cdot a$ and $u \cdot b$ occur in w
- **Periodic:** $\mathbf{w} = u \cdot u \cdot u \cdots$ for some finite word u

aba aba aba aba aba aba aba aba . . .

q-Coverable: each position of w is in an occurrence of q

ab aba ab ab aba ab ab ab aba ab . . .

- $\Sigma = finite alphabet$
- $\mathbf{w} \in \Sigma^{\mathbb{N}}$
- **Factor:** finite block of w
- **Special factor u:** $u \cdot a$ and $u \cdot b$ occur in w
- **Periodic:** $\mathbf{w} = u \cdot u \cdot u \cdot \cdots$ for some finite word u

aba aba aba aba aba aba aba aba . . .

q-Coverable: each position of w is in an occurrence of q

- $\Sigma = finite alphabet$
- $\mathbf{w} \in \Sigma^{\mathbb{N}}$
- **Factor:** finite block of w
- **Special factor u:** $u \cdot a$ and $u \cdot b$ occur in w
- **Periodic:** $\mathbf{w} = u \cdot u \cdot u \cdot \cdots$ for some finite word u

aba aba aba aba aba aba aba aba . . .

q-Coverable: each position of w is in an occurrence of q

- $\Sigma = finite alphabet$
- $\mathbf{w} \in \Sigma^{\mathbb{N}}$
- **Factor:** finite block of w
- **Special factor u:** $u \cdot a$ and $u \cdot b$ occur in w
- **Periodic:** $\mathbf{w} = u \cdot u \cdot u \cdots$ for some finite word u

aba aba aba aba aba aba aba aba . . .

q-Coverable: each position of w is in an occurrence of q

- ▶ Σ = finite alphabet
- $\mathbf{w} \in \Sigma^{\mathbb{N}}$
- **Factor:** finite block of w
- **Special factor u:** $u \cdot a$ and $u \cdot b$ occur in w
- **Periodic:** $\mathbf{w} = u \cdot u \cdot u \cdot \cdots$ for some finite word u

aba aba aba aba aba aba aba aba . . .

q-Coverable: each position of w is in an occurrence of q

- $\Sigma = finite alphabet$
- $\mathbf{w} \in \Sigma^{\mathbb{N}}$
- **Factor:** finite block of w
- **Special factor** u: $u \cdot a$ and $u \cdot b$ occur in w
- **Periodic:** $\mathbf{w} = u \cdot u \cdot u \cdot \cdots$ for some finite word u

aba aba aba aba aba aba aba aba . . .

q-Coverable: each position of w is in an occurrence of q

ab aba ab ab aba ab ab ab aba ab . . .

- $\Sigma = finite alphabet$
- $\mathbf{w} \in \Sigma^{\mathbb{N}}$
- **Factor:** finite block of w
- **Special factor u:** $u \cdot a$ and $u \cdot b$ occur in w
- **Periodic:** $\mathbf{w} = u \cdot u \cdot u \cdot \cdots$ for some finite word u

aba aba aba aba aba aba aba aba . . .

q-Coverable: each position of w is in an occurrence of q

$$ab aba ab ab aba ab ab ab ab aba ab ...$$

- $\Sigma = finite alphabet$
- $\mathbf{w} \in \Sigma^{\mathbb{N}}$
- **Factor:** finite block of w
- **Special factor u:** $u \cdot a$ and $u \cdot b$ occur in w
- **Periodic:** $\mathbf{w} = u \cdot u \cdot u \cdot \cdots$ for some finite word u

aba aba aba aba aba aba aba aba . . .

q-Coverable: each position of w is in an occurrence of q

- $\Sigma = finite alphabet$
- $\mathbf{w} \in \Sigma^{\mathbb{N}}$
- **Factor:** finite block of w
- **Special factor u:** $u \cdot a$ and $u \cdot b$ occur in w
- **Periodic:** $\mathbf{w} = u \cdot u \cdot u \cdot \cdots$ for some finite word u

aba aba aba aba aba aba aba aba . . .

q-Coverable: each position of w is in an occurrence of q

- $\Sigma = finite alphabet$
- $\mathbf{w} \in \Sigma^{\mathbb{N}}$
- **Factor:** finite block of w
- **Special factor u:** $u \cdot a$ and $u \cdot b$ occur in w
- **Periodic:** $\mathbf{w} = u \cdot u \cdot u \cdot \cdots$ for some finite word u

aba aba aba aba aba aba aba aba . . .

q-Coverable: each position of w is in an occurrence of q

- $\Sigma = finite alphabet$
- $\mathbf{w} \in \Sigma^{\mathbb{N}}$
- **Factor:** finite block of w
- **Special factor u:** $u \cdot a$ and $u \cdot b$ occur in w
- **Periodic:** $\mathbf{w} = u \cdot u \cdot u \cdot \cdots$ for some finite word u

aba aba aba aba aba aba aba aba . . .

• **q-Coverable:** each position of \mathbf{w} is in an occurrence of q

A normal form for coverable words

Remark

The word **w** is *aba*-coverable iff $\mathbf{w} \in \{ab, aba\}^{\omega}$.

ab aba ab ab aba ab ab ab aba ab . . .

A normal form for coverable words

Remark

The word \mathbf{w} is *aba*-coverable iff $\mathbf{w} \in \{ab, aba\}^{\omega}$.

ab aba ab ab aba ab ab ab aba ab . . .

Theorem (Mouchard 2000) Let $q \in \Sigma^*$ and $(r_i), (\ell_i)$ and (b_i) be all the words such that

$$q = \ell_i b_i = b_i r_i.$$

Then **w** is q-coverable iff $\mathbf{w} \in {\ell_1, \ldots, \ell_k}^{\omega}$.

Coverability implies "nothing"

Pick your favorite "bad word" $\mathbf{w}:$

- Not uniformly recurrent
- High topological entropy
- No uniform frequencies for factors
- ▶ ...
- High Turing degree

and consider its image by the following morphism:

$$a \mapsto ab \quad b \mapsto aba$$

then you get a "bad coverable word".

(Cf. Marcus, Monteil 2006.)

A stronger coverability notion...

Definition

A word is **multi-scale coverable** if it has infinitely many covers.

Examples:

- Periodic words
- Fixed-points of $a \mapsto ab, b \mapsto aba$ and the like
- Most Sturmian words (Cf. Levé, Richomme 2004.)

... with better dynamical properties

Theorem (Marcus, Monteil 2006)

Let \mathbf{w} be a multi-scale word. Then \mathbf{w} is uniformly recurrent, has uniform factor frequencies and has 0 topological entropy.

... with better dynamical properties

Theorem (Marcus, Monteil 2006)

Let w be a multi-scale word. Then w is uniformly recurrent, has uniform factor frequencies and has 0 topological entropy.

Theorem (G, R 2015)

Let \mathbf{w} be a \mathbb{Z}^2 -word. If \mathbf{w} is multi-scale, then it has uniform factor frequencies and 0 topological entropy.

... with better dynamical properties

Theorem (Marcus, Monteil 2006)

Let w be a multi-scale word. Then w is uniformly recurrent, has uniform factor frequencies and has 0 topological entropy.

Theorem (G, R 2015)

Let \mathbf{w} be a \mathbb{Z}^2 -word. If \mathbf{w} is multi-scale, then it has uniform factor frequencies and 0 topological entropy.

Motivation: connect multi-scale coverability with self-similarity (infinitely many de-substitutions, cf. tilings)

But try to connect these things in \mathbb{N} -words first!

Our main tool I

Proposition 1 Let $\mathbf{w} \in \Sigma^{\mathbb{N}}$ and set $p_n = \mathbf{w}[1 \dots n]$. Suppose p_i is a cover of \mathbf{w} . Then p_{i+1} is a cover iff p_i is *not* right special.

Our main tool I

Proposition 1 Let $\mathbf{w} \in \Sigma^{\mathbb{N}}$ and set $p_n = \mathbf{w}[1 \dots n]$. Suppose p_i is a cover of \mathbf{w} . Then p_{i+1} is a cover iff p_i is *not* right special.

Proof.

If p_i is *not* right special, any occurrence of p_i extends to p_{i+1} . Conversely, suppose $p_{i+1} = p_i \cdot a$ cover and $p_i \cdot b$ factor of **w**.

Combinatorial arguments yield a = b.

Our main tool II

Proposition 2

Let $\mathbf{w} \in \Sigma^{\mathbb{N}}$ and set $p_n = \mathbf{w}[1 \dots n]$. Suppose p_i is a cover of \mathbf{w} . Then p_{i-1} is *not* a cover iff p_i^2 is a factor of \mathbf{w} and p_{i-1} is not an internal factor of $p_i \cdot p_{i-1}$.

Our main tool II

Proposition 2

Let $\mathbf{w} \in \Sigma^{\mathbb{N}}$ and set $p_n = \mathbf{w}[1 \dots n]$. Suppose p_i is a cover of \mathbf{w} . Then p_{i-1} is *not* a cover iff p_i^2 is a factor of \mathbf{w} and p_{i-1} is not an internal factor of $p_i \cdot p_{i-1}$.

Proof.

Here is the only situation when p_{i-1} is not a cover:

where there are no other occurrences of p_{i-1} .

Given w and a cover p_i , we know whether p_{i-1} and p_{i+1} are covers.

Given w and a cover p_i , we know whether p_{i-1} and p_{i+1} are covers.

- Consequence 1: simpler proof of characterization of covers of the Fibonacci word ¹
- Consequence 2: counter-example to show multi-scale #> self-similar

¹Christou, Crochemore, Iliopoulos 2002 and Levé, Richomme 2004 and Mousavi, Schaeffer, Shallit 2015.

Multi-scale \implies self-similar

Remember: any aba-coverable word is the image by the morphism

$$a \mapsto ab \quad b \mapsto aba$$

of some other word.

This generalizes to any cover (morphism depending on the cover).

Multi-scale \implies self-similar

Remember: any aba-coverable word is the image by the morphism

$$a\mapsto ab\quad b\mapsto aba$$

of some other word.

This generalizes to any cover (morphism depending on the cover).

Intuition: a multi-scale word can be de-substituted ∞ many times.

Multi-scale \implies self-similar

Remember: any aba-coverable word is the image by the morphism

$$a \mapsto ab \quad b \mapsto aba$$

of some other word.

This generalizes to any cover (morphism depending on the cover).

Intuition: a multi-scale word can be de-substituted ∞ many times.

Wrong! The counter-example is a carefully chosen morphic word. The proof uses Propositions 1 and 2.

Various (counter-)examples

Proposition (G, R 2015)

...

- 1. \exists a multi-scale word s.t. no de-substituted word is coverable.
- 2. \exists a multi-scale word with no coverable covers.
- 3. \exists a multi-scale word s.t. the $n + 1^{\text{th}}$ cover is coverable by the n^{th} cover.

New examples of multi-scale words. Same techniques for design and proof. Let's move on to a surprise...

Let's move on to a surprise...

Theorem

A word w is periodic iff $\exists n \in \mathbb{N} \text{ s.t. all prefixes longer than } n \text{ are covers.}$

Proof.

- 1. Periodic \implies all prefixes longer than the period are covers
- 2. Converse: no right special prefixes longer than n

(Not the surprise yet)

Question: maximal set of covers?

Idea 1: extension of a right special prefix cannot be a cover.

Idea 2: in aperiodic words, infinitely many prefixes are not covers.

Question: maximal set of covers?

Idea 1: extension of a right special prefix cannot be a cover.

Idea 2: in aperiodic words, infinitely many prefixes are not covers.

Could we have this situation? Could we have an aperiodic word with a "maximal" set of covers? Answer: yes.

Answer: yes.

Surprise!

Theorem (G, R 2016)

The aperiodic words with a maximal set of covers are **exactly** the standard Sturmian words.

(A word w is standard Sturmian if it has n + 1 factors of length n and its prefixes are all left special.)

Thank you!

- Coverable: just a coding
- Multi-scale: good dynamical properties (also in 2D)
- Method to study covers of a given word
- Multi-scale \implies self-similar in 1D
- Other interesting (counter-)examples of multi-scale words
- Covers characterize periodicity
- Covers characterize standard Sturmian words!
- **Perspective:** extension to \mathbb{Z} -words and \mathbb{Z}^2 -words

Thank you for your attention!