A 2D extension of the Lyndon-Schützenberger theorem

Guilhem Gamard*, Gwenaël Richomme, Jeffrey Shallit, Taylor J. Smith
*ENS Lyon

Workshop on bidimensional languages June 2019

Warm aps abit of 1D

Theorem (special case of Lyndon-Schützenberger)
Let x, y be finite words.
We have $x y=y x$ iff x and y are both powers of some word z.

Wanm aps abit of 1D

Theorem (special case of Lyndon-Schützenberger)
Let x, y be finite words.
We have $x y=y x$ iff x and y are both powers of some word z.

Induction over $k=|x|+|y|$. If $k \leq 2$, then OK.

Warm aps abit of 1D

Theorem (special case of Lyndon-Schützenberger)

Let x, y be finite words.
We have $x y=y x$ iff x and y are both powers of some word z.

Induction over $k=|x|+|y|$. If $k \leq 2$, then OK.
Otherwise, $x y=y x$, and wlog $|x|>|y|$.

Warm aps abit of 1D

Theorem (special case of Lyndon-Schützenberger)

Let x, y be finite words.
We have $x y=y x$ iff x and y are both powers of some word z.

Induction over $k=|x|+|y|$. If $k \leq 2$, then OK.
Otherwise, $x y=y x$, and wlog $|x|>|y|$.

y	x^{\prime}	y

y	x

Warm aps abit of 1D

Theorem (special case of Lyndon-Schützenberger)

Let x, y be finite words.
We have $x y=y x$ iff x and y are both powers of some word z.

Induction over $k=|x|+|y|$. If $k \leq 2$, then OK.
Otherwise, $x y=y x$, and wlog $|x|>|y|$.

y	x^{\prime}	y

y	y	x^{\prime}

Wanm aps @Bft of 1D

Theorem (special case of Lyndon-Schützenberger)

Let x, y be finite words.
We have $x y=y x$ iff x and y are both powers of some word z.

Induction over $k=|x|+|y|$. If $k \leq 2$, then OK.
Otherwise, $x y=y x$, and wlog $|x|>|y|$.

y	x^{\prime}	y

y	y	x^{\prime}

We have $x^{\prime} y=y x^{\prime}$ so $x^{\prime}=z^{m}$ and $y=z^{n}$.
Therefore $x=y x^{\prime}=z^{m+n}$.

Warm aps abit of 1D

> Theorem (Defect theorem)
> Let w, x, y be finite words.
> If w may be written in two different ways over $\{x, y\}$, then x, y are both powers of some z.

(Essentially a reduction to the previous result.)

(1) Introduction

(2) Going two-dimensional

(3) Primitivity

4 Conclusion

A world of Blocks

If x, y are blocks, then we have:

A world of blocks

If x, y are blocks, then we have:

$$
y^{m \times 1}=y \oplus y \oplus \ldots \odot y
$$

y
y
y
y

The easy 2D theorem

Theorem

Let x, y be blocks with same height. We have

$$
x \oplus y=y \oplus x \Longleftrightarrow x=z^{m \times 1} \text { and } y=z^{n \times 1}
$$

for a block z and natural integers m, n.

Same for the vertical version.

Proof.

Use columns as letters and view it in 1D.

Anything better?

Deaompostiom

Definition

A pattern is a finite 2D word with any shape.

$$
\begin{array}{lllll}
a & c & b & a & \\
b & a & c & b & a \\
c & b & a & c & b \\
& c & b & a & c
\end{array}
$$

Decompositions

Definition

A pattern is a finite 2D word with any shape.

$$
\begin{array}{l|l|lll|l|}
\hline a & c & b & a & \\
& \hline a & c & b & a \\
c & b & a & c & b \\
& \begin{array}{llll|}
& c & b & a
\end{array} \\
\hline
\end{array}
$$

Definition

Let w be a pattern and x_{1}, \ldots, x_{k} be blocks.
The x_{i} 's tile w iff w can be partitionned into copies of the x_{i} 's.
(No rotations, no reflections.)

A 2D defeck theorem

Theorem

Let w be a pattern and x, y blocks.
Then x, y tile w in 2 different ways iff x, y are powers of some z.

Remark: it generalizes the easy 2D theorem.

A 2D defect theorem

Theorem

Let w be a pattern and x, y blocks.
Then x, y tile w in 2 different ways iff x, y are powers of some z.

Remark: it generalizes the easy 2D theorem.

Proof.

Outline:

- Assume not
- Take w counterexample with minimal $|w|$
- Also take x, y such that $|x|+|y|$ is minimal
- Find something even more minimal

Proof

The shape of $w . .$.

...could be anything.

Proof

The shape of w...

The cell \bullet is covered by x in a tiling and y in another.

Proof

The shape of $w . .$.

The cell • is covered by x in a tiling and y in another.

Proof

The shape of $w . .$.

Assume x is taller than y, wlog.

Proof

The shape of $w . .$.

Cut x at the height of y, let x^{\prime} denote the result.

Proof

The shape of $w . .$.

Cut x at the height of y, let x^{\prime} denote the result.

Proof

The shape of $w . .$.

Consider the zone above the dotted line as an 1D word (letters $=$ columns).

Proof

The shape of $w . .$.

It decomposes over x^{\prime}, y in 2 ways, so we have $x^{\prime}=z^{m}$ and $y=z^{n}$.

Proof

The shape of $w . .$.

In 2D terms, $X^{\prime}=z^{m \times 1}$ and $y=z^{n \times 1}$.

Proof (reagp)

- Assume a counterexample with $|w|$ and $|x|+|y|$ minimal

Proof (readp)

- Assume a counterexample with $|w|$ and $|x|+|y|$ minimal
- Let $x=x^{\prime} \ominus x^{\prime \prime}$ with height $\left(x^{\prime}\right)=\operatorname{height}(y)$

Proof (readp)

- Assume a counterexample with $|w|$ and $|x|+|y|$ minimal
- Let $x=x^{\prime} \ominus x^{\prime \prime}$ with height $\left(x^{\prime}\right)=\operatorname{height}(y)$
- We proved that $x^{\prime}=z^{m \times 1}$ and $y=z^{n \times 1}$ for some z, m, n

Proof (readp)

- Assume a counterexample with $|w|$ and $|x|+|y|$ minimal
- Let $x=x^{\prime} \ominus x^{\prime \prime}$ with height $\left(x^{\prime}\right)=\operatorname{height}(y)$
- We proved that $x^{\prime}=z^{m \times 1}$ and $y=z^{n \times 1}$ for some z, m, n
- Decompose w over z and $x^{\prime \prime}$: we have $|z|+\left|x^{\prime \prime}\right|<|x|+|y|$

\Longrightarrow Contradiction!
(1) Introduction
(2) Going two-dimensional
(3) Primitivity

4 Conclusion

Prubuftivity

Theorem

Let w be a pattern and x, y blocks.
Then x, y tile w in 2 different ways iff x, y are powers of some z.

Prubuftivity

Theorem

Let w be a pattern and x, y blocks.
Then x, y tile w in 2 different ways iff x, y are powers of some z.

Definition

A block x is primitive if $x=y^{m \times n}$ implies $m=n=1$.

Pritufficity

Theorem

Let w be a pattern and x, y blocks.
Then x, y tile w in 2 different ways iff x, y are powers of some z.

Definition

A block x is primitive if $x=y^{m \times n}$ implies $m=n=1$.

Corollary

For all block x, there is a unique primitive y such that $x=y^{m \times n}$.
(Suppose we had y and y^{\prime}; apply theorem.)

Comprothg the primitive root of ablock

Let x denote a block. What is its primitive root?

Algorithm

Let (m, n) be the size of x.

- $r_{i} \leftarrow$ primitive root of row i
- $c_{i} \leftarrow$ primitive root of column i
- $p \leftarrow \operatorname{lcm}\left(\left|r_{1}\right|, \ldots,\left|r_{m}\right|\right)$
- $q \leftarrow \operatorname{lcm}\left(\left|c_{1}\right|, \ldots,\left|c_{m}\right|\right)$
- return $x[1, \ldots, p ; 1, \ldots, q]$.

(1) Introduction

(2) Going two-dimensional
(3) Primitivity

4 Conclusion

Conclustion

Theorem

Let w be a pattern and x, y blocks.
Then x, y tile w in 2 different ways iff x, y are powers of some z.

- Natural generalization of a well-known 1D result
- Fails with 3 blocks instead of 2
- Allows to work with primitive roots

Conctusion

Theorem

Let w be a pattern and x, y blocks.
Then x, y tile w in 2 different ways iff x, y are powers of some z.

- Natural generalization of a well-known 1D result
- Fails with 3 blocks instead of 2
- Allows to work with primitive roots

Thank you for your attention!

