A 2D extension of the Lyndon-Schützenberger theorem

<u>Guilhem Gamard*</u>, Gwenaël Richomme, Jeffrey Shallit, Taylor J. Smith

*ENS Lyon

Workshop on bidimensional languages June 2019

Theorem (special case of Lyndon-Schützenberger)

Let x, y be finite words. We have xy = yx iff x and y are both powers of some word z.

Theorem (special case of Lyndon-Schützenberger)

Let x, y be finite words. We have xy = yx iff x and y are both powers of some word z.

Induction over k = |x| + |y|. If $k \le 2$, then OK.

Theorem (special case of Lyndon-Schützenberger)

Let x, y be finite words. We have xy = yx iff x and y are both powers of some word z.

Induction over k = |x| + |y|. If $k \le 2$, then OK.

Otherwise, xy = yx, and wlog |x| > |y|.

Theorem (special case of Lyndon-Schützenberger)

Let x, y be finite words. We have xy = yx iff x and y are both powers of some word z.

Induction over k = |x| + |y|. If $k \le 2$, then OK.

Otherwise, xy = yx, and wlog |x| > |y|.

Theorem (special case of Lyndon-Schützenberger)

Let x, y be finite words. We have xy = yx iff x and y are both powers of some word z.

Induction over k = |x| + |y|. If $k \le 2$, then OK.

Otherwise, xy = yx, and wlog |x| > |y|.

Theorem (special case of Lyndon-Schützenberger)

Let x, y be finite words. We have xy = yx iff x and y are both powers of some word z.

Induction over k = |x| + |y|. If $k \le 2$, then OK.

Otherwise, xy = yx, and wlog |x| > |y|.

We have x'y = yx' so $x' = z^m$ and $y = z^n$. Therefore $x = yx' = z^{m+n}$.

Theorem (Defect theorem)

Let w, x, y be finite words. If w may be written in two different ways over $\{x, y\}$, then x, y are both powers of some z.

(Essentially a reduction to the previous result.)

2 Going two-dimensional

A world of blocks

If x, y are **blocks**, then we have:

$$x \oplus y = \boxed{\begin{array}{c|c} x & y \end{array}}$$

A world of blocks

If x, y are **blocks**, then we have:

$$x \oplus y = \boxed{\begin{array}{c|c} x & y \end{array}}$$

 $y^{m\times 1} = y \oplus y \oplus \ldots \oplus y$

y

у

у

y

$$x \ominus y = \boxed{\begin{array}{c} x \\ y \end{array}}$$

$$y^{1\times n}=y\ominus y\ominus\ldots\ominus y$$

Let x, y be blocks with same height. We have

$$x \oplus y = y \oplus x \iff x = z^{m \times 1}$$
 and $y = z^{n \times 1}$

for a block z and natural integers m, n.

Same for the vertical version.

Proof.

Use columns as letters and view it in 1D.

Anything better?

Definition

A pattern is a finite 2D word with any shape.

Definition

A pattern is a finite 2D word with any shape.

Definition

Let *w* be a pattern and x_1, \ldots, x_k be blocks. The x_i 's **tile** *w* iff *w* can be partitionned into copies of the x_i 's.

(No rotations, no reflections.)

A 2D defect theorem

Theorem

Let w be a pattern and x, y blocks. Then x, y tile w in 2 different ways iff x, y are powers of some z.

Remark: it generalizes the easy 2D theorem.

A 2D defect theorem

Theorem

Let w be a pattern and x, y blocks.

Then x, y tile w in 2 different ways iff x, y are powers of some z.

Remark: it generalizes the easy 2D theorem.

Proof.

Outline:

- Assume not
- Take w counterexample with minimal |w|
- Also take x, y such that |x| + |y| is minimal
- Find something even more minimal

...could be anything.

The cell \bullet is covered by x in a tiling and y in another.

The cell \bullet is covered by x in a tiling and y in another.

Assume x is taller than y, wlog.

Cut x at the height of y, let x' denote the result.

Cut x at the height of y, let x' denote the result.

Consider the zone above the dotted line as an 1D word (letters = columns).

It decomposes over x', y in 2 ways, so we have $x' = z^m$ and $y = z^n$.

In 2D terms, $x' = z^{m \times 1}$ and $y = z^{n \times 1}$.

• Assume a counterexample with |w| and |x| + |y| minimal

Proof (recep)

- Assume a counterexample with |w| and |x| + |y| minimal
- Let $x = x' \ominus x''$ with height(x') = height(y)

Proof (recep)

- Assume a counterexample with |w| and |x| + |y| minimal
- Let $x = x' \ominus x''$ with height(x') = height(y)
- We proved that $x' = z^{m \times 1}$ and $y = z^{n \times 1}$ for some z, m, n

Proof (recep)

- Assume a counterexample with |w| and |x| + |y| minimal
- Let $x = x' \ominus x''$ with height(x') = height(y)
- We proved that $x' = z^{m \times 1}$ and $y = z^{n \times 1}$ for some z, m, n
- Decompose w over z and x'': we have |z| + |x''| < |x| + |y|

z	Ζ	z
---	---	---

\implies Contradiction!

Let w be a pattern and x, y blocks. Then x, y tile w in 2 different ways iff x, y are powers of some z.

Let w be a pattern and x, y blocks. Then x, y tile w in 2 different ways iff x, y are powers of some z.

Definition

A block x is **primitive** if $x = y^{m \times n}$ implies m = n = 1.

Let w be a pattern and x, y blocks. Then x, y tile w in 2 different ways iff x, y are powers of some z.

Definition

A block x is **primitive** if $x = y^{m \times n}$ implies m = n = 1.

Corollary

For all block x, there is a unique primitive y such that $x = y^{m \times n}$.

(Suppose we had y and y'; apply theorem.)

Computing the primitive root of a block

Let x denote a block. What is its primitive root?

Algorithm

Let (m, n) be the size of x.

- $r_i \leftarrow$ primitive root of row *i*
- $c_i \leftarrow$ primitive root of column *i*

•
$$p \leftarrow \mathsf{lcm}(|r_1|, \ldots, |r_m|)$$

•
$$q \leftarrow \mathsf{lcm}(|c_1|, \ldots, |c_m|)$$

• return
$$x[1, ..., p; 1, ..., q]$$
.

Let w be a pattern and x, y blocks. Then x, y tile w in 2 different ways iff x, y are powers of some z.

- Natural generalization of a well-known 1D result
- $\bullet\,$ Fails with 3 blocks instead of 2
- Allows to work with primitive roots

Let w be a pattern and x, y blocks. Then x, y tile w in 2 different ways iff x, y are powers of some z.

- Natural generalization of a well-known 1D result
- Fails with 3 blocks instead of 2
- Allows to work with primitive roots

Thank you for your attention!