Coverability as local rule

Guilhem Gamard

Higher School of Economics, Moscow

Workshop on aperiodicity and hierarchical structures in tilings 26 September 2017

Controdnction

- Σ an alphabet, e.g. $\{\square, \square\}$
- Colorings of groups
- In my case, \mathbb{Z} and \mathbb{Z}^{2}

Comeroduction

- Σ an alphabet, e.g. $\{\square, \square\}$
- Colorings of groups
- In my case, \mathbb{Z} and \mathbb{Z}^{2}
- Local rules
- Wang tiles
- Forbidden patterns

Controdnction

- Σ an alphabet, e.g. $\{\square, \square\}$
- Colorings of groups
- In my case, \mathbb{Z} and \mathbb{Z}^{2}
- Local rules
- Wang tiles
- Forbidden patterns
- Notions of regularity
- Periodicity
- Repetitivity
- Existence of frequencies
- Entropy

Controdnction

- Σ an alphabet, e.g. $\{\square, \square\}$
- Colorings of groups
- In my case, \mathbb{Z} and \mathbb{Z}^{2}
- Local rules
- Wang tiles
- Forbidden patterns
- Notions of regularity
- Periodicity
- Repetitivity
- Existence of frequencies
- Entropy

- Coverability

Warning

Quasiperiodic has different meanings in different communities.
Combinatorics on words: quasiperiodic $=$ coverable Tilings and dynamics: quasiperiodic $=$ repetitive

I coined the term "coverable" to resolve this ambiguity.
But it is not standard in the literature.

Plan

(1) Introduction
(2) Coverability in \mathbb{Z}
(3) Coverability in \mathbb{Z}^{2}

4 Forcing entropy with covers
(5) Multi-scale coverability

(1) Introduction

(2) Coverability in \mathbb{Z}
(3) Coverability in \mathbb{Z}^{2}

4 Forcing entropy with covers
(5) Multi-scale coverability

Coverability

Let w, q be words (q is finite).

Definition

The word q is a cover of w if w is covered with copies of q.

- w finite or infinite
- $q \neq w$
- q prefix of w

Coverability

Let w, q be words (q is finite).

Definition

The word q is a cover of w if w is covered with copies of q.

- w finite or infinite
- $q \neq w$
- q prefix of w

Definition

Coverable = has a cover
Superprimitive $=$ no covers

Prevtous work ow coverebilitiy

Text algorithms (1990's)

- Definition
- Detection algorithms
- Normal form

Infinite words (2000's)

- Definition, questions
- Independence results
- Multi-scale case

Characterization of covers...

Combinatorics (2016)

- Tools to determine covers
- Characterize periodic words
- ...and standard Sturmian words

On $\mathbb{Z}^{2}(2015,2017)$

- Knowing "trivial" covers
- Independence results
- Multi-scale case

Normel form of coverable words

Normel form of coverable words

Two possibilities:
(1) $\overbrace{\square \square \square \square \square}^{q} \underbrace{\square \square \square \square \square}_{q}$
(2) $\overbrace{\square \square \underbrace{\square \square \square \square \square}_{q}}^{q}$

Normel form of coverable words

Two possibilities:

Normel form of coverable words

Two possibilities:

Theorem (Mouchard, 2000)
A word is q-coverable iff it is a concatenation of q-antiborders, starting with q.

- Border: prefix + suffix
- Antiborder: right complement of a border

Substitutions from covers

Fix a word q, say with n antiborders.

Definition

$\mu_{q}(i)$ is the $i^{\text {th }}$ antiborder of q
(by decreasing size)

Example

$$
\begin{aligned}
q & =\square \square \square \square \square \square \square \square \\
\mu_{q}(0) & =\square \square \square \square \square \square \square \square \\
\mu_{q}(1) & =\square \square \square \square \square \square \square \\
\mu_{q}(2) & =\square \square \square \square \square
\end{aligned}
$$

Substfiutfons from covers

Fix a word q, say with n antiborders.

Definition

$\mu_{q}(i)$ is the $i^{\text {th }}$ antiborder of q
(by decreasing size)

Now view μ_{q} as a substitution $\{0, \ldots, n-1\}^{*} \rightarrow \Sigma^{*}$.

Example

$$
\begin{aligned}
q & =\square \square \square \square \square \square \square \square \\
\mu_{q}(0) & =\square \square \square \square \square \square \square \square \\
\mu_{q}(1) & =\square \square \square \square \square \square \square \\
\mu_{q}(2) & =\square \square \square \square \square
\end{aligned}
$$

Substitutfons from covers

Fix a word q, say with n antiborders.

Definition

$\mu_{q}(i)$ is the $i^{\text {th }}$ antiborder of q
(by decreasing size)

Now view μ_{q} as a substitution $\{0, \ldots, n-1\}^{*} \rightarrow \Sigma^{*}$.

Example

$$
\begin{aligned}
q & =\square \square \square \square \square \square \square \square \\
\mu_{q}(0) & =\square \square \square \square \square \square \square \square \\
\mu_{q}(1) & =\square \square \square \square \square \square \square \\
\mu_{q}(2) & =\square \square \square \square \square
\end{aligned}
$$

Theorem (Mouchard, 2000)
A word \mathbf{w} is q-coverable iff $\exists \mathbf{u}$ such that $\mathbf{w}=\mu_{q}(0 \cdot \mathbf{u})$

Ouregulap coverable words

Remark

For most q, μ_{q} preserves interesting properties

For instance,

- Non-repetitivity
- Positive entropy
- Divergence of frequencies

Thus we can create irregular coverable words

Orregular coverable words

Remark

For most q, μ_{q} preserves interesting properties

For instance,

- Non-repetitivity
- Positive entropy
- Divergence of frequencies

Thus we can create irregular coverable words

- Coverable [Marcus, Monteil 2006]

CTHAVAal" Covers

If $q=\square$, there is only one q-coverable word: $\square^{\mathbb{Z}}$.

CTiftualp covers

If $q=\square$, there is only one q-coverable word: $\square^{\mathbb{Z}}$.

Theorem

If μ_{q} is not injective (on infinite words) then $\forall \mathbf{u}, \mu_{q}(\mathbf{u})=q^{\mathbb{Z}}$.

We have a dichotomy:

- either there exist irregular q-coverable words,
- or all q-coverable words are periodic.

Besides, injectivity of μ_{q} is equivalent to an easy combinatorial condition on q. (More on this later.)

(1) Introduction

(2) Coverability in \mathbb{Z}
(3) Coverability in \mathbb{Z}^{2}

4 Forcing entropy with covers
(5) Multi-scale coverability

Coverability to 2 dimensions

A configuration is a coloring of \mathbb{Z}^{2}. A block is a coloring of a finite rectangle.

Definition

Let q be a block.
A configuration \mathbf{w} is q-coverable if it is covered with copies of q.

Notions of regularity

Definitions

- Block complexity
$P_{\mathrm{w}}(m, n)=\#$ blocs (m, n) in \mathbf{w}
- Entropy
$\operatorname{Ent}(\mathbf{w})=\lim \log \left(P_{\mathbf{w}}(n, n)\right) / n^{2}$
- Block frequencies
$f_{\mathrm{w}}(b)=$ average number of b-occurrences per cell
- Repetitivity

Each block occurs ∞ often with bounded gaps

Plan

Show that coverability is independent of these...
... but we have no more normal form!

Rullag ofs cqutueli avvers

The cover \square only allows $\square \mathbb{Z}^{2}$.

Rullag of chiviell covers

The cover \square only allows $\square \mathbb{Z}^{2}$.
Theorem (Richomme and G .)
Let q be a block.
There exists an aperiodic, q-coverable configuration iff the primitive root of q has a nonempty border.

Rulting యt ctifladi aovers

The cover \square only allows $\square \mathbb{Z}^{2}$.

Theorem (Richomme and G .)

Let q be a block.
There exists an aperiodic, q-coverable configuration iff the primitive root of q has a nonempty border.

Border
Block in two opposite corners

Primitive root
Unique minimal v
such that $u=v^{m \times n}$ $15 / 32$

Rulting యt ctifladi aovers

The cover \square only allows $\square \mathbb{Z}^{2}$.

Theorem (Richomme and G .)

Let q be a block.
There exists an aperiodic, q-coverable configuration iff the primitive root of q has a nonempty border.

Border
Block in two opposite corners

Primitive root
Unique minimal v
such that $u=v^{m \times n}$ 15/32

Rullug ors Meftela covers

The cover \square only allows $\square \mathbb{Z}^{2}$.

Theorem (Richomme and G .)

Let q be a block.
There exists an aperiodic, q-coverable configuration iff the primitive root of q has a nonempty border.

Ideas of the proof

(1) If the root has no border, all overlaps are multiples of the root
(2) Build tiles from q and freely tile the plane

Border
Block in two opposite corners

Primitive root
Unique minimal v
such that $u=v^{m \times n}$ 15/32

The tfles

Coverable aonfigurations

Remark

$f(\mathbf{w})$ is defined for $\mathbf{w} \in\{a, b, c, d\}^{\mathbb{Z}^{2}}$ only if \mathbf{w} satisfies some local rules (More about this on the next slide)

Proposition (Richomme and G .)

$\forall \mathbf{w}, f(\mathbf{w})$ is q-coverable if it exists
Moreover, f preserves

- periodicity
- repetitivity
- existence of frequencies

Local cules and extropy

Local rules

Remark

There are configurations

- aperiodic
- non-repetitive
- without frequencies and matching these rules.

Remark

The rules force zero entropy.

Which covers allow positive entropy?
(1) Introduction
(2) Coverability in \mathbb{Z}
(3) Coverability in \mathbb{Z}^{2}

4 Forcing entropy with covers
(5) Multi-scale coverability

Foring emtropy wit ๔overs

Fix some block q.

What we want

Conditions on q implying
(1) zero entropy for all configurations
(2) positive entropy for some configurations
which are q-coverable.

Tool: interchangeable pairs

Foring emtropy wit ๔overs

Fix some block q.
What we want

Conditions on q implying
(1) zero entropy for all configurations
(2) positive entropy for some configurations
which are q-coverable.

Tool: interchangeable pairs

Definition

An interchangeable pair is a pair of q-coverable patterns with the same shape.
(Not always rectangles.)

Definition

An interchangeable pair is valid if its shape can tile the plane.

Coterchangeable patts

Fix a cover q and let $h=\max \{\operatorname{Ent}(\mathbf{w}), \mathbf{w}$ is q-coverable $\}$.

Theorem

If there is a valid pair for q, then $h>0$.

If there is no valid pair for q, then $h=0$.

Let \mathbf{u} be a configuration with positive entropy. Consider $\mu(\mathbf{u})$.

- Let v be an $n \times n$-square in a q-coverable configuration \mathbf{w}.
- Let \bar{v} be the smallest q-coverable pattern in \mathbf{w} containing v.
- Then v is determined by the shape of \bar{v} and coordinates.
- We have less than $|\Sigma|^{4 n|q|} \times n^{2}$ possibilities.

Covers ellowing positive entropy

Lemma 1

Any cover with full-width or full-height border allows positive entropy.

Covers ellowing positive emfropy

Lemma 1

Any cover with full-width or full-height border allows positive entropy.

Lemma 2
Any cover with one of these shapes

a	b
b	a

allows positive entropy.

Covers ellowing positive emfropy

Lemma 1

Any cover with full-width or full-height border allows positive entropy.

Lemma 2
Any cover with one of these shapes

a	b
b	a

allows positive entropy.

A suffleent condfito for zero entropy

Theorem (Richomme and G.)
If q has a corner without borders, then any q-coverable configuration has zero entropy.

Example

Suppose there are no overlaps like:

What occurrences are covering the α 's?

A suffleent condtion for zero entropy

Theorem (Richomme and G.)
If q has a corner without borders, then any q-coverable configuration has zero entropy.

Example

Suppose there are no overlaps like:

There are three cases.

A suffleent condtion for zero entropy

Theorem (Richomme and G.)
If q has a corner without borders, then any q-coverable configuration has zero entropy.

Example

Suppose there are no overlaps like:

What occurrences are covering the α 's?

A suffleent condtion for zero entropy

Theorem (Richomme and G.)

If q has a corner without borders, then any q-coverable configuration has zero entropy.

Example

Suppose there are no overlaps like:

The occurrence covering α is unique in all cases.

A suffleent condtion for zero entropy

Theorem (Richomme and G.)
If q has a corner without borders, then any q-coverable configuration has zero entropy.

Example

Suppose there are no overlaps like:

The occurrence covering α is unique in all cases.
\Longrightarrow the shape of a q-coverable pattern determines the pattern itself

A suffleent condtion for zero entropy

Theorem (Richomme and G.)
If q has a corner without borders, then any q-coverable configuration has zero entropy.

Example

Suppose there are no overlaps like:

The occurrence covering α is unique in all cases.
\Longrightarrow the shape of a q-coverable pattern determines the pattern itself \Longrightarrow no interchangeable pairs

Amother condtion

Lemma

Suppose q has no pairs of borders (a, b) such that

$$
\begin{aligned}
w(a)+w(b) & \geq w(q) \quad \text { or } \\
h(a)+h(b) & \geq h(q)
\end{aligned}
$$

then any q-coverable configuration has zero entropy.

Amother condtion

Lemma

Suppose q has no pairs of borders (a, b) such that

$$
\begin{aligned}
w(a)+w(b) & \geq w(q) \quad \text { or } \\
h(a)+h(b) & \geq h(q)
\end{aligned}
$$

then any q-coverable configuration has zero entropy.

Reaap @out extropy

We have

Not quite an "if and only if", but we're getting close.

Remark

The duality in 1D does not apply in 2D: the cover aperiodic configurations, but all with zero entropy.
(1) Introduction
(2) Coverability in \mathbb{Z}
(3) Coverability in \mathbb{Z}^{2}
4. Forcing entropy with covers
(5) Multi-scale coverability

Munflecale coverability

Definition

A \{word, configuration is multi-scale coverable
if it has infinitely many covers
(growing in all directions).

Mrofitecale coverability

Definition

A \{word, configuration\} is multi-scale coverable if it has infinitely many covers (growing in all directions).

- Multi-scale implies:
- Repetitivity
- Zero Entropy
- Existence of frequencies

[Marcus, Monteil 2006]

Mrofitecale coverability

Definition

A \{word, configuration\} is multi-scale coverable if it has infinitely many covers (growing in all directions).

- Multi-scale implies:
- Repetitivity
- Zero Entropy
- Existence of frequencies
- Good notion of regularity

[Marcus, Monteil 2006]

Munti-scele coverability to 2D

Reminder (Marcus and Monteil)
Any 1D multi-scale word has

- Repetitivity
- Zero entropy
- Existing frequencies

Question

What about multi-scale configurations?

Muntiscele coverability to 2D

Reminder (Marcus and Monteil)
Any 1D multi-scale word has

- Repetitivity
- Zero entropy
- Existing frequencies

Question

What about multi-scale configurations?

Theorem (Richomme and G .)
Any multi-scale configuration has
(1) Zero entropy
(2) Existing frequencies

Muntiscele coverability to 2D

Reminder (Marcus and Monteil)

Any 1D multi-scale word has

- Repetitivity
- Zero entropy
- Existing frequencies

Theorem (Richomme and G .)
Any multi-scale configuration has
(1) Zero entropy
(2) Existing frequencies

Question

What about multi-scale

 configurations?
Proof sketch

(1) Direct adaptation of 1D proof
(2) Lots of calculations

Repeffitivity of mulit-saele conftemettoms

Repetfitivity of mulli-scale ๔owftgurettoms

Conctusion

- Coverability comes from the study of finite and \mathbb{Z}-words
- On \mathbb{Z}^{2} : characterization of trivial covers
- Ongoing characterization of covers forcing zero entropy
- Multi-scale coverability is a good notion of regularity

Many possible extensions:

- as a local rule
- as a notion of regularity

Thank you for your attention!

