The λ -calculus: from simple types to non-idempotent intersection types Days 4–5: Non-idempotent intersection types for the λ -calculus

Giulio Guerrieri

34th European Summer School in Logic, Language and Information (ESSLLI 2023) Ljubljana (Slovenia), 7-11 August 2023

Outline

1 Non-idempotent intersection types for the λ -calculus

2 Characterizing head normalization in NI

3 Conclusion, exercises and bibliography

Outline

1 Non-idempotent intersection types for the λ -calculus

2 Characterizing head normalization in NI

3 Conclusion, exercises and bibliography

The λ -calculus between simple types and the untyped one

The simply typed λ -calculus:

- has very nice operational properties (e.g. normalization, confluence);
- a has a clear logical meaning (Curry-Howard correspondence);
- is not very expressive (recursion cannot be represented, Turing-completeness fails).

The untyped λ -calculus:

- I has some very nice properties (e.g. confluence, Turing-completeness);
- e) misses some nice properties (e.g. normalization);
- a has no logical meaning;
- contains diverging terms without any meaning (e.g. $\delta\delta$).

Questions.

- Is there a more liberal type system which only takes the pros of the two worlds?
- (a) Can it characterize all and only the "meaningful" terms of the untyped λ -calculus?

The λ -calculus between simple types and the untyped one

The simply typed λ -calculus:

- In has very nice operational properties (e.g. normalization, confluence);
- has a clear logical meaning (Curry-Howard correspondence);
- **()** is not very expressive (recursion cannot be represented, Turing-completeness fails).

The untyped λ -calculus:

- Is has some very nice properties (e.g. confluence, Turing-completeness);
- Initial end of the second s
- a has no logical meaning;
- contains diverging terms without any meaning (e.g. $\delta\delta$).

Questions.

- Is there a more liberal type system which only takes the pros of the two worlds?
- (a) Can it characterize all and only the "meaningful" terms of the untyped λ -calculus?

The λ -calculus between simple types and the untyped one

The simply typed λ -calculus:

- In has very nice operational properties (e.g. normalization, confluence);
- has a clear logical meaning (Curry-Howard correspondence);
- **()** is not very expressive (recursion cannot be represented, Turing-completeness fails).

The untyped λ -calculus:

- I has some very nice properties (e.g. confluence, Turing-completeness);
- Initial end of the second s
- a has no logical meaning;
- contains diverging terms without any meaning (e.g. $\delta\delta$).

Questions.

- Is there a more liberal type system which only takes the pros of the two worlds?
- **a** Can it characterize all and only the "meaningful" terms of the untyped λ -calculus?

The syntax for non-idempotent intersection types

We fix a countably infinite set of atoms, denoted by X, Y, Z, \ldots

Linear types: $A, B ::= X \mid M \multimap A$ Multi types: $M, N ::= [A_1, \dots, A_n]$ (with $n \in \mathbb{N}$)(Non-idempotent intersection) types: $S, T ::= A \mid M$

where $[A_1, \ldots, A_n]$ with $n \in \mathbb{N}$ is a finite multiset ([] is the empty multiset for n = 0).

Idea. $[A_1, \ldots, A_n]$ stands for a conjunction $A_1 \wedge \cdots \wedge A_n$ where \wedge is:

- commutative $A \wedge B \equiv B \wedge A$ (multisets do not take order into account);
- associative $A \land (B \land C) \equiv (A \land B) \land C$ (multisets are associative);
- non-idempotent $A \land A \not\equiv A$ (multisets take multiplicites into account).

Def. A judgment is a sequent of the form $\Gamma \vdash t : T$ where

- t is a term, T is a type, Γ is a type context, that is,
- **a** Γ is a map from variables to multi types such that the set $\{x \mid \Gamma(x) \neq []\}$ is finite.

Notation. \uplus is the multiset union (e.g. $[A, B] \uplus [A] = [A, A, B] \neq [A, B]$) whose unit is []. Extended to type contexts pointwise: $(\Gamma \uplus \Delta)(x) = \Gamma(x) \uplus \Delta(x)$.

The syntax for non-idempotent intersection types

We fix a countably infinite set of atoms, denoted by X, Y, Z, \ldots

Linear types: $A, B ::= X \mid M \multimap A$ Multi types: $M, N ::= [A_1, \dots, A_n]$ (with $n \in \mathbb{N}$)(Non-idempotent intersection) types: $S, T ::= A \mid M$

where $[A_1, \ldots, A_n]$ with $n \in \mathbb{N}$ is a finite multiset ([] is the empty multiset for n = 0).

Idea. $[A_1, \ldots, A_n]$ stands for a conjunction $A_1 \wedge \cdots \wedge A_n$ where \wedge is:

- commutative $A \wedge B \equiv B \wedge A$ (multisets do not take order into account);
- associative $A \land (B \land C) \equiv (A \land B) \land C$ (multisets are associative);
- non-idempotent $A \land A \not\equiv A$ (multisets take multiplicites into account).

Def. A judgment is a sequent of the form $\Gamma \vdash t$: T where

- t is a term, T is a type, Γ is a type context, that is,
- **(a)** Γ is a map from variables to multi types such that the set $\{x \mid \Gamma(x) \neq []\}$ is finite.

Notation. \uplus is the multiset union (e.g. $[A, B] \uplus [A] = [A, A, B] \neq [A, B]$) whose unit is []. Extended to type contexts pointwise: $(\Gamma \uplus \Delta)(x) = \Gamma(x) \uplus \Delta(x)$.

The syntax for non-idempotent intersection types

We fix a countably infinite set of atoms, denoted by X, Y, Z, \ldots

Linear types: $A, B ::= X \mid M \multimap A$ Multi types: $M, N ::= [A_1, \dots, A_n]$ (with $n \in \mathbb{N}$)(Non-idempotent intersection) types: $S, T ::= A \mid M$

where $[A_1, \ldots, A_n]$ with $n \in \mathbb{N}$ is a finite multiset ([] is the empty multiset for n = 0).

Idea. $[A_1, \ldots, A_n]$ stands for a conjunction $A_1 \wedge \cdots \wedge A_n$ where \wedge is:

- commutative $A \wedge B \equiv B \wedge A$ (multisets do not take order into account);
- associative $A \land (B \land C) \equiv (A \land B) \land C$ (multisets are associative);
- non-idempotent $A \land A \not\equiv A$ (multisets take multiplicites into account).

Def. A judgment is a sequent of the form $\Gamma \vdash t : T$ where

- **1** t is a term, T is a type, Γ is a type context, that is,
- **2** Γ is a map from variables to multi types such that the set $\{x \mid \Gamma(x) \neq []\}$ is finite.

Notation. $\ensuremath{\exists}$ is the multiset union (e.g. $[A, B] \ensuremath{\exists} [A] = [A, A, B] \neq [A, B]$) whose unit is []. Extended to type contexts pointwise: $(\Gamma \ensuremath{\uplus} \Delta)(x) = \Gamma(x) \ensuremath{\uplus} \Delta(x)$.

Notation. A context Γ is denoted by $x_1: M_1, \dots, x_n: M_n$ if: variables x_1, \dots, x_n are pariwise distinct and $\Gamma(x) = \begin{cases} M_i & \text{if } x = x_i \text{ for some } 1 \le i \le n, \\ [] & \text{otherwise.} \end{cases}$

Typing rules for NI: $\overline{x: [A] \vdash x: A}^{va}$

$$\frac{\Gamma, x: M \vdash t: A}{\Gamma \vdash \lambda x.t: M \multimap A} \lambda \qquad \frac{\Gamma \vdash s: M \multimap A}{\Gamma \uplus \Delta \vdash st: A} @ \qquad \frac{(\Gamma_i \vdash t: A_i)_{1 \le i \le n} \quad n \in \mathbb{N}}{\bigcup_{i=1}^n \Gamma_i \vdash t: [A_1, \dots, A_n]}$$

Idea. A term typed t : [A, A, B] means that, during evaluation, t can be used:
once as a data of type B, and
twice as a data of type A.

Notation. $\mathcal{D} \bowtie_{NI} \Gamma \vdash t : T$ means that \mathcal{D} is a derivation in NI with conclusion $\Gamma \vdash t : T$. $\Gamma \vdash_{NI} t : T$ means that there is a derivation $\mathcal{D} \bowtie_{NI} \Gamma \vdash t : T$.

Rmk. $\vdash_{NI} t$: [] for every term t (take ! with no premises).

Def. The size $|\mathcal{D}|$ of a derivation \mathcal{D} is the number of its rules, not counting the rules !. $|\mathcal{D}|_{var}$ (resp. $|\mathcal{D}|_{\lambda}$; $|\mathcal{D}|_{\emptyset}$) is the number of rules var (resp. λ ; @) in \mathcal{D} .

Notation. A context Γ is denoted by $x_1: M_1, \dots, x_n: M_n$ if: variables x_1, \dots, x_n are pariwise distinct and $\Gamma(x) = \begin{cases} M_i & \text{if } x = x_i \text{ for some } 1 \le i \le n, \\ [] & \text{otherwise.} \end{cases}$

Typing rules for NI: $\overline{x: [A] \vdash x: A}^{v}$

$$\overline{\mathbf{x} : [A] \vdash \mathbf{x} : A}^{\text{var}}$$

 $\frac{\Gamma, x: M \vdash t: A}{\Gamma \vdash \lambda x. t: M \multimap A} \lambda \qquad \frac{\Gamma \vdash s: M \multimap A}{\Gamma \uplus \Delta \vdash st: A} @ \qquad \frac{(\Gamma_i \vdash t: A_i)_{1 \le i \le n} \quad n \in \mathbb{N}}{\bigcup_{i=1}^n \Gamma_i \vdash t: [A_1, \dots, A_n]} !$

Idea. A term typed t : [A, A, B] means that, during evaluation, t can be used:
once as a data of type B, and
twice as a data of type A.

Notation. $\mathcal{D} \triangleright_{NI} \Gamma \vdash t : T$ means that \mathcal{D} is a derivation in NI with conclusion $\Gamma \vdash t : T$. $\Gamma \vdash_{NI} t : T$ means that there is a derivation $\mathcal{D} \triangleright_{NI} \Gamma \vdash t : T$.

Rmk. $\vdash_{NI} t$: [] for every term t (take ! with no premises).

Def. The size $|\mathcal{D}|$ of a derivation \mathcal{D} is the number of its rules, not counting the rules !. $|\mathcal{D}|_{var}$ (resp. $|\mathcal{D}|_{\lambda}$; $|\mathcal{D}|_{\emptyset}$) is the number of rules var (resp. λ ; @) in \mathcal{D} .

Notation. A context Γ is denoted by $x_1: M_1, \dots, x_n: M_n$ if: variables x_1, \dots, x_n are pariwise distinct and $\Gamma(x) = \begin{cases} M_i & \text{if } x = x_i \text{ for some } 1 \leq i \leq n, \\ [] & \text{otherwise.} \end{cases}$

Typing rules for NI: $\overline{x: [A] \vdash x: A}^{\text{var}}$

$$\frac{\Gamma, x: M \vdash t: A}{\Gamma \vdash \lambda x, t: M \multimap A} \lambda \qquad \frac{\Gamma \vdash s: M \multimap A}{\Gamma \uplus \Delta \vdash st: A} @ \qquad \frac{(\Gamma_i \vdash t: A_i)_{1 \le i \le n} \quad n \in \mathbb{N}}{|\downarrow|_{i=1}^n \Gamma_i \vdash t: [A_1, \dots, A_n]}!$$

Idea. A term typed t : [A, A, B] means that, during evaluation, t can be used:
once as a data of type B, and
twice as a data of type A.

Notation. $\mathcal{D} \bowtie_{NI} \Gamma \vdash t : T$ means that \mathcal{D} is a derivation in NI with conclusion $\Gamma \vdash t : T$. $\Gamma \vdash_{NI} t : T$ means that there is a derivation $\mathcal{D} \bowtie_{NI} \Gamma \vdash t : T$.

Rmk. $\vdash_{NI} t$: [] for every term t (take ! with no premises).

Def. The size $|\mathcal{D}|$ of a derivation \mathcal{D} is the number of its rules, not counting the rules !. $|\mathcal{D}|_{var}$ (resp. $|\mathcal{D}|_{\lambda}$; $|\mathcal{D}|_{\emptyset}$) is the number of rules var (resp. λ ; @) in \mathcal{D} .

Notation. A context Γ is denoted by $x_1: M_1, \ldots, x_n: M_n$ if: variables x_1, \ldots, x_n are pariwise distinct and $\Gamma(x) = \begin{cases} M_i & \text{if } x = x_i \text{ for some } 1 \le i \le n, \\ [] & \text{otherwise.} \end{cases}$

Typing rules for NI: $\overline{x: [A] \vdash x: A}$

$$\overline{x: [A] \vdash x: A}$$
 var

$$\frac{\Gamma, x: M \vdash t: A}{\Gamma \vdash \lambda x.t: M \multimap A} \lambda \qquad \frac{\Gamma \vdash s: M \multimap A}{\Gamma \uplus \Delta \vdash st: A} @ \qquad \frac{(\Gamma_i \vdash t: A_i)_{1 \le i \le n} \quad n \in \mathbb{N}}{\bigcup_{i=1}^n \Gamma_i \vdash t: [A_1, \dots, A_n]}$$

Idea. A term typed t : [A, A, B] means that, during evaluation, t can be used:
once as a data of type B, and
twice as a data of type A.

Notation. $\mathcal{D} \bowtie_{NI} \Gamma \vdash t : T$ means that \mathcal{D} is a derivation in NI with conclusion $\Gamma \vdash t : T$. $\Gamma \vdash_{NI} t : T$ means that there is a derivation $\mathcal{D} \bowtie_{NI} \Gamma \vdash t : T$.

Rmk. $\vdash_{NI} t$: [] for every term t (take ! with no premises).

Def. The size $|\mathcal{D}|$ of a derivation \mathcal{D} is the number of its rules, not counting the rules !. $|\mathcal{D}|_{var}$ (resp. $|\mathcal{D}|_{\lambda}$; $|\mathcal{D}|_{\emptyset}$) is the number of rules var (resp. λ ; @) in \mathcal{D} .

G. Guerrieri (AMU) λ -calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 6 / 20

Ex. Find all the derivations with conclusion $\vdash \lambda x.x : C$, for any linear type C.

Ex. Find all the derivations with conclusion $\vdash \lambda x.xx : C$, for any linear type C.

Ex. Find all the derivations with conclusion $\vdash \lambda x.x : C$, for any linear type C.

$$\mathcal{D}'_{A} = \frac{\overbrace{x : [A] \vdash x : A}^{\mathsf{var}}}{\vdash \lambda x. x : [A] \multimap A} \qquad \text{for any linear type } A.$$

Ex. Find all the derivations with conclusion $\vdash \lambda x.xx : C$, for any linear type C.

Ex. Find all the derivations with conclusion $\vdash \lambda x.x : C$, for any linear type C.

$$\mathcal{D}'_{A} = \frac{\overline{x : [A] \vdash x : A}}{\vdash \lambda x.x : [A] \multimap A}^{\text{var}} \text{ for any linear type } A.$$

Ex. Find all the derivations with conclusion $\vdash \lambda x.xx : C$, for any linear type C.

Ex. Find all the derivations with conclusion $\vdash \lambda x.x : C$, for any linear type C.

$$\mathcal{D}'_{A} = \frac{\overbrace{x : [A] \vdash x : A}^{\text{var}}}{\vdash \lambda x.x : [A] \multimap A} \text{ for any linear type } A.$$

Ex. Find all the derivations with conclusion $\vdash \lambda x.xx : C$, for any linear type C.

$$\mathcal{D}_{A_{0},\ldots,A_{n}}^{\delta,n} = \frac{x:[[A_{1},\ldots,A_{n}]\multimap A]\vdash x:[A_{1},\ldots,A_{n}]\multimap A_{0}}{x:[[A_{1},\ldots,A_{n}]\multimap A_{0},A_{1},\ldots,A_{n}]\vdash x:[A_{1},\ldots,A_{n}]\vdash x:[A_{1},\ldots,A_{n}]}_{(a)} \left[\frac{x:[[A_{1},\ldots,A_{n}]\multimap A_{0},A_{1},\ldots,A_{n}]\vdash x:A_{0}}{\vdash \lambda x.xx:[[A_{1},\ldots,A_{n}]\multimap A_{0},A_{1},\ldots,A_{n}]\multimap A_{0}}\lambda\right]^{(a)}}$$

for any $n \in \mathbb{N}$ and any linear types A_0, \ldots, A_n (in particular, for $n = 0, \vdash \lambda x.x : [[] \multimap A_0] \multimap A_0$).

Ex. Find all the derivations with conclusion $\vdash (\lambda x.x)\lambda y.y : C$, for any linear type C.

Ex. Find a derivation with conclusion $\vdash (\lambda x.xx)\lambda y.y : C$, for some linear type C.

Rmk. In the derivation \mathcal{D}_{A}^{ll} (resp. $\mathcal{D}_{A}^{\delta,l}$) the rule ! has 1 premise (resp. 2 premises) because 1 copy (resp. 2 copies) of $\lambda y.y$ is (resp. are) needed in the evaluation $(\lambda x.x)\lambda y.y \rightarrow_{h\beta} \lambda y.y$ (resp. $(\lambda x.xx)\lambda y.y \rightarrow_{h\beta} (\lambda y.y)\lambda y.y$).

G. Guerrieri (AMU)

 λ -calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 8 / 20

Ex. Find all the derivations with conclusion $\vdash (\lambda x.x)\lambda y.y: C$, for any linear type C.

$$\mathcal{D}_{A}^{\prime\prime} = \frac{\overbrace{x:[[A] \multimap A] \vdash x:[A] \multimap A}^{\text{var}}}{\vdash \lambda x.x:[[A] \multimap A] \multimap [A] \multimap A} \lambda \qquad \frac{\overbrace{y:[A] \vdash y:A}^{\text{var}}}{\vdash \lambda y.y:[A] \multimap A} \lambda \qquad \frac{\overbrace{z:[A] \vdash y:A}^{\text{var}}}{\vdash \lambda y.y:[A] \multimap A} \lambda \qquad \frac{\overbrace{z:[A] \vdash y:A}^{\text{var}}}{\vdash \lambda y.y:[A] \multimap A} \lambda \qquad \frac{\overbrace{z:[A] \vdash y:A}^{\text{var}}}{\vdash \lambda y.y:[A] \multimap A} \lambda \qquad \frac{\overbrace{z:[A] \vdash y:A}^{\text{var}}}{\vdash \lambda y.y:[A] \multimap A} \lambda \qquad \frac{\overbrace{z:[A] \vdash y:A}^{\text{var}}}{\vdash \lambda y.y:[A] \multimap A} \lambda \qquad \frac{\overbrace{z:[A] \vdash y:A}^{\text{var}}}{\vdash \lambda y.y:[A] \multimap A} \lambda \qquad \frac{\overbrace{z:[A] \vdash y:A}^{\text{var}}}{\vdash \lambda y.y:[A] \multimap A} \lambda \qquad \frac{\overbrace{z:[A] \vdash y:A}^{\text{var}}}{\vdash \lambda y.y:[A] \multimap A} \lambda \qquad \frac{\overbrace{z:[A] \vdash y:A}^{\text{var}}}{\vdash \lambda y.y:[A] \multimap A} \lambda \qquad \frac{\overbrace{z:[A] \vdash y:A}^{\text{var}}}{\vdash \lambda y.y:[A] \multimap A} \lambda \qquad \frac{\overbrace{z:[A] \vdash y:A}^{\text{var}}}{\vdash \lambda y.y:[A] \multimap A} \lambda \qquad \frac{\overbrace{z:[A] \vdash y:A}^{\text{var}}}{\vdash \lambda y.y:[A] \multimap A} \lambda \qquad \frac{1}{\vdash \lambda y.y:[A] \lor A} \lambda \qquad \frac{1}{\vdash$$

Ex. Find a derivation with conclusion $\vdash (\lambda x.xx)\lambda y.y: C$, for some linear type C.

Rmk. In the derivation $\mathcal{D}_{\mathcal{A}}^{ll}$ (resp. $\mathcal{D}_{\mathcal{A}}^{\delta,l}$) the rule ! has 1 premise (resp. 2 premises) because 1 copy (resp. 2 copies) of $\lambda y.y$ is (resp. are) needed in the evaluation $(\lambda x.x)\lambda y.y \rightarrow_{h\beta} \lambda y.y$ (resp. $(\lambda x.xx)\lambda y.y \rightarrow_{h\beta} (\lambda y.y)\lambda y.y$).

G. Guerrieri (AMU)

λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 8 / 20

Ex. Find all the derivations with conclusion $\vdash (\lambda x.x)\lambda y.y: C$, for any linear type C.

$$\mathcal{D}_{A}^{\prime\prime} = \underbrace{\begin{array}{c} & & & & \\ & & \mathcal{D}_{[A] \to A}^{\prime} \\ & & & \\ & & \frac{\vdash \lambda x.x : [[A] \to A] \to [A] \to A] \to [A] \to A}{(\lambda x.x)\lambda y.y : [A] \to A} \xrightarrow{\left[\vdash \lambda y.y : [[A] \to A \right]}_{\mathbb{Q}} & \text{for any linear type } A. \end{array}$$

Ex. Find a derivation with conclusion $\vdash (\lambda x.xx)\lambda y.y: C$, for some linear type C.

Rmk. In the derivation \mathcal{D}_{A}^{ll} (resp. $\mathcal{D}_{A}^{\delta,l}$) the rule ! has 1 premise (resp. 2 premises) because 1 copy (resp. 2 copies) of $\lambda y.y$ is (resp. are) needed in the evaluation $(\lambda x.x)\lambda y.y \rightarrow_{h\beta} \lambda y.y$ (resp. $(\lambda x.xx)\lambda y.y \rightarrow_{h\beta} (\lambda y.y)\lambda y.y$).

Ex. Find all the derivations with conclusion $\vdash (\lambda x.x)\lambda y.y: C$, for any linear type C.

Ex. Find a derivation with conclusion $\vdash (\lambda x.xx)\lambda y.y: C$, for some linear type C.

Rmk. In the derivation \mathcal{D}_{A}^{ll} (resp. $\mathcal{D}_{A}^{\delta,l}$) the rule ! has 1 premise (resp. 2 premises) because 1 copy (resp. 2 copies) of $\lambda y.y$ is (resp. are) needed in the evaluation $(\lambda x.x)\lambda y.y \rightarrow_{h\beta} \lambda y.y$ (resp. $(\lambda x.xx)\lambda y.y \rightarrow_{h\beta} (\lambda y.y)\lambda y.y$).

Ex. Find all the derivations with conclusion $\vdash (\lambda x.x)\lambda y.y : C$, for any linear type C.

$$\mathcal{D}_{A}^{\prime\prime} = \underbrace{\begin{array}{c} & & & \\ & \mathcal{D}_{[A] \to A}^{\prime} \\ & & \\ & -\frac{\lambda x.x : [[A] \to A] \to [A] \to [A] \to A}{(\lambda x.x)\lambda y.y : [A] \to A} \xrightarrow{\left[\begin{array}{c} \lambda y.y : [A] \to A \\ \hline & \lambda y.y : [[A] \to A \end{array}\right]}_{\mathbb{Q}} \end{array}}_{\mathbb{Q}} \text{ for any linear type } A.$$

Ex. Find a derivation with conclusion $\vdash (\lambda x.xx)\lambda y.y: C$, for some linear type C.

$$\mathcal{D}_{A}^{\delta,l} = \underbrace{\begin{array}{c} & \mathcal{D}_{[A] \to A, [A] \to A}^{\delta,\mathbf{1}} \\ & + \lambda x.xx : [[[A] \to A] \to [A] \to A, [A] \to A \\ & + \lambda y.y : [[A] \to A] \to [A] \to A \\ & + \lambda y.y : [[A] \to A] \to [A] \to A \\ & + \lambda y.y : [[A] \to A \\ & + \lambda y.y : [[A] \to A \\ & + \lambda y.y : [[A] \to A \\ & + \lambda y.y : [[A] \to A \\ & + \lambda y.y : [[A] \to A \\ & + \lambda y.y : [[A] \to A \\ & + \lambda y.y : [[A] \to A \\ & + \lambda y.y : [A]$$

for any linear type A (actually, all derivations for $(\lambda x.xx)\lambda y.y$ have the form above).

Rmk. In the derivation \mathcal{D}_{A}^{ll} (resp. $\mathcal{D}_{A}^{\delta,l}$) the rule ! has 1 premise (resp. 2 premises) because 1 copy (resp. 2 copies) of $\lambda y.y$ is (resp. are) needed in the evaluation $(\lambda x.x)\lambda y.y \rightarrow_{h\beta} \lambda y.y$ (resp. $(\lambda x.xx)\lambda y.y \rightarrow_{h\beta} (\lambda y.y)\lambda y.y$).

G. Guerrieri (AMU)

Ex. Find a derivation with conclusion $\vdash (\lambda x.xx)((\lambda y.y)\lambda z.z) : C$, for some linear type C.

Rmk. In the derivation $\mathcal{D}_{A}^{\delta,ll}$, the rule ! has 2 premises because 2 copies of $(\lambda y.y)\lambda z.z$ are needed in the evaluation $(\lambda x.xx)((\lambda y.y)\lambda z.z) \rightarrow_{h\beta} ((\lambda y.y)\lambda z.z)((\lambda y.y)\lambda z.z)$. In turn, in each of the derivations $\mathcal{D}_{[A] \rightarrow A] \rightarrow [A] \rightarrow [$

Ex. Find a derivation with conclusion $\vdash (\lambda x.xx)((\lambda y.y)\lambda z.z) : C$, for some linear type C.

$$\mathcal{D}_{A}^{\delta,II} = \underbrace{\frac{\mathcal{D}_{[A] \to A, [A] \to A}^{\delta,1}}{(A_{A}) \to A_{A}}}_{\vdash (\lambda x.xx) : [[[A] \to A] \to [A] \to A, [A] \to A] \to [A] \to A} \underbrace{\frac{\mathcal{D}_{[A] \to A, [A] \to A}^{II}}{(A_{A}, A_{A}) \to A_{A}}}_{\vdash (\lambda y.y) \lambda z.z : [[A] \to A] \to [A] \to A, [A] \to A} \underbrace{\frac{\mathcal{D}_{[A] \to A}^{II}}{(A_{A}, A_{A}) \to A_{A}}}_{(A_{A}, A_{A}) \to A_{A}} \underbrace{\frac{\mathcal{D}_{[A] \to A}^{II}}{(A_{A}, A_{A}) \to A_{A}}}_{(A_{A}, A_{A}) \to A_{A}} \underbrace{\frac{\mathcal{D}_{[A] \to A}^{II}}{(A_{A}, A_{A}) \to A_{A}}}_{(A_{A}, A_{A}) \to A_{A}} \underbrace{\frac{\mathcal{D}_{[A] \to A}^{II}}{(A_{A}, A_{A}) \to A_{A}}}_{(A_{A}, A_{A}) \to A_{A}} \underbrace{\frac{\mathcal{D}_{[A] \to A}^{II}}{(A_{A}, A_{A}) \to A_{A}}}_{(A_{A}, A_{A}) \to A_{A}} \underbrace{\frac{\mathcal{D}_{[A] \to A}^{II}}{(A_{A}, A_{A}) \to A_{A}}}_{(A_{A}, A_{A}) \to A_{A}} \underbrace{\frac{\mathcal{D}_{[A] \to A}^{II}}{(A_{A}, A_{A}) \to A_{A}}}_{(A_{A}, A_{A}) \to A_{A}} \underbrace{\frac{\mathcal{D}_{[A] \to A}^{II}}{(A_{A}, A_{A}) \to A_{A}}}_{(A_{A}, A_{A}) \to A_{A}} \underbrace{\frac{\mathcal{D}_{[A] \to A}^{II}}{(A_{A}, A_{A}) \to A_{A}}}_{(A_{A}, A_{A}) \to A} \underbrace{\frac{\mathcal{D}_{[A] \to A}^{II}}{(A_{A}, A_{A}) \to A_{A}}}_{(A_{A}, A_{A}) \to A} \underbrace{\frac{\mathcal{D}_{[A] \to A}^{II}}{(A_{A}, A_{A}) \to A_{A}}}_{(A_{A}, A_{A}) \to A} \underbrace{\frac{\mathcal{D}_{[A] \to A}^{II}}{(A_{A}, A_{A}) \to A_{A}}}_{(A_{A}, A_{A}) \to A} \underbrace{\frac{\mathcal{D}_{[A] \to A}^{II}}}{(A_{A}, A_{A}) \to A}}$$

for any linear type A (actually, all derivations for $(\lambda x.xx)((\lambda y.y)\lambda z.z)$ have that form).

Rmk. In the derivation $\mathcal{D}_{A}^{\delta,H}$, the rule ! has 2 premises because 2 copies of $(\lambda y.y)\lambda z.z$ are needed in the evaluation $(\lambda x.xx)((\lambda y.y)\lambda z.z) \rightarrow_{h\beta} ((\lambda y.y)\lambda z.z)((\lambda y.y)\lambda z.z)$. In turn, in each of the derivations $\mathcal{D}_{[A] \rightarrow A] \rightarrow [A] \rightarrow A}^{H}$ and $\mathcal{D}_{[A] \rightarrow A}^{H}$ the rule ! has 2 premises, hence the derivation $\mathcal{D}_{A}^{\delta,H}$ has 4 subderivations with conclusion $\lambda x.x$, because 4 copies of $\lambda x.x$ are needed in the evaluation $(\lambda x.xx)((\lambda y.y)\lambda z.z) \rightarrow_{h\beta} ((\lambda y.y)\lambda z.z)((\lambda y.y)\lambda z.z)$.

Ex. Find a derivation with conclusion $\vdash (\lambda x.xx)((\lambda y.y)\lambda z.z) : C$, for some linear type C.

$$\mathcal{D}_{A}^{\delta,II} = \underbrace{\frac{\mathcal{D}_{[A] \to A, [A] \to A}^{\delta,1}}{(A \to A, [A] \to A, [A] \to A] \to [A] \to A}}_{\vdash (\lambda x. xx) ((\lambda y. y) \lambda z. z: [I] \to A] \to [A] \to A} \underbrace{\frac{\mathcal{D}_{[A] \to A, [A] \to A}^{II}}{(A \to A] \to [A] \to A}}_{\vdash (\lambda y. y) \lambda z. z: [I[A] \to A] \to [A] \to A} \underbrace{\frac{\mathcal{D}_{[A] \to A}^{II}}{(A \to A] \to [A] \to A}}_{\vdash (\lambda y. y) \lambda z. z: [I[A] \to A] \to [A] \to A}} \underbrace{\frac{\mathcal{D}_{[A] \to A}^{II}}{(A \to A] \to [A] \to A}}_{\vdash (\lambda y. y) \lambda z. z: [I[A] \to A] \to [A] \to A}}$$

for any linear type A (actually, all derivations for $(\lambda x.xx)((\lambda y.y)\lambda z.z)$ have that form).

Rmk. In the derivation $\mathcal{D}_{A}^{\delta,H}$, the rule ! has 2 premises because 2 copies of $(\lambda y.y)\lambda z.z$ are needed in the evaluation $(\lambda x.xx)((\lambda y.y)\lambda z.z) \rightarrow_{h\beta} ((\lambda y.y)\lambda z.z)((\lambda y.y)\lambda z.z)$. In turn, in each of the derivations $\mathcal{D}_{[[A] \rightarrow A] \rightarrow [A] \rightarrow A}^{H}$ and $\mathcal{D}_{[A] \rightarrow A}^{H}$ the rule ! has 2 premises, hence the derivation $\mathcal{D}_{A}^{\delta,H}$ has 4 subderivations with conclusion $\lambda x.x$, because 4 copies of $\lambda x.x$ are needed in the evaluation $(\lambda x.xx)((\lambda y.y)\lambda z.z) \rightarrow_{h\beta} ((\lambda y.y)\lambda z.z)((\lambda y.y)\lambda z.z)$.

Ex. Find a derivation with conclusion $\vdash (\lambda x.xx)((\lambda y.y)\lambda z.z) : C$, for some linear type C.

$$\mathcal{D}_{A}^{\delta,II} = \underbrace{\frac{\mathcal{D}_{[A] \to A, [A] \to A}^{\delta,1}}{(A \to A, [A] \to A] \to [A] \to A}}_{\vdash (\lambda x. x x) ((\lambda y. y) \lambda z. z : [[A] \to A] \to [A] \to A} \underbrace{\frac{\mathcal{D}_{[A] \to A, [A] \to A}^{II}}{(A \to A] \to [A] \to A}}_{\vdash (\lambda y. y) \lambda z. z : [[A] \to A \to (\lambda y. y) \lambda z. z : [A] \to A} \underbrace{\frac{\mathcal{D}_{[A] \to A}^{II}}{(A \to A] \to [A] \to A}}_{\vdash (\lambda y. y) \lambda z. z : [[A] \to A] \to [A] \to A} \underbrace{\frac{\mathcal{D}_{[A] \to A}^{II}}{(A \to A] \to [A] \to A}}_{\vdash (\lambda y. y) \lambda z. z : [[A] \to A] \to [A] \to A} \underbrace{\frac{\mathcal{D}_{[A] \to A}^{II}}{(A \to A] \to [A] \to A}}_{\vdash (\lambda y. y) \lambda z. z : [A] \to A}$$

for any linear type A (actually, all derivations for $(\lambda x.xx)((\lambda y.y)\lambda z.z)$ have that form).

Rmk. In the derivation $\mathcal{D}_{A}^{\delta,H}$, the rule ! has 2 premises because 2 copies of $(\lambda y.y)\lambda z.z$ are needed in the evaluation $(\lambda x.xx)((\lambda y.y)\lambda z.z) \rightarrow_{h\beta} ((\lambda y.y)\lambda z.z)((\lambda y.y)\lambda z.z)$. In turn, in each of the derivations $\mathcal{D}_{[[A] \rightarrow A] \rightarrow [A] \rightarrow A}^{H}$ and $\mathcal{D}_{[A] \rightarrow A}^{H}$ the rule ! has 2 premises, hence the derivation $\mathcal{D}_{A}^{\delta,H}$ has 4 subderivations with conclusion $\lambda x.x$, because 4 copies of $\lambda x.x$ are needed in the evaluation $(\lambda x.xx)((\lambda y.y)\lambda z.z) \rightarrow_{h\beta} ((\lambda y.y)\lambda z.z)((\lambda y.y)\lambda z.z)$.

Ex. Find a derivation with conclusion $\vdash (\lambda x.xx)((\lambda y.y)\lambda z.z) : C$, for some linear type C.

$$\mathcal{D}_{A}^{\delta,II} = \underbrace{\frac{\mathcal{D}_{[A] \to A, [A] \to A}^{\delta,1}}{(A \to A, [A] \to A] \to [A] \to A}}_{\vdash (\lambda x. x x) ((\lambda y. y) \lambda z. z : [[A] \to A] \to [A] \to A} \underbrace{\frac{\mathcal{D}_{[A] \to A, [A] \to A}^{II}}{(A \to A] \to [A] \to A}}_{\vdash (\lambda y. y) \lambda z. z : [[A] \to A \to (\lambda y. y) \lambda z. z : [A] \to A} \underbrace{\frac{\mathcal{D}_{[A] \to A}^{II}}{(A \to A] \to [A] \to A}}_{\vdash (\lambda y. y) \lambda z. z : [[A] \to A] \to [A] \to A} \underbrace{\frac{\mathcal{D}_{[A] \to A}^{II}}{(A \to A] \to [A] \to A}}_{\vdash (\lambda y. y) \lambda z. z : [[A] \to A] \to [A] \to A} \underbrace{\frac{\mathcal{D}_{[A] \to A}^{II}}{(A \to A] \to [A] \to A}}_{\vdash (\lambda y. y) \lambda z. z : [A] \to A}$$

for any linear type A (actually, all derivations for $(\lambda x.xx)((\lambda y.y)\lambda z.z)$ have that form).

Rmk. In the derivation $\mathcal{D}_{A}^{\delta,H}$, the rule ! has 2 premises because 2 copies of $(\lambda y.y)\lambda z.z$ are needed in the evaluation $(\lambda x.xx)((\lambda y.y)\lambda z.z) \rightarrow_{h\beta} ((\lambda y.y)\lambda z.z)((\lambda y.y)\lambda z.z)$. In turn, in each of the derivations $\mathcal{D}_{[[A] \rightarrow A] \rightarrow [A] \rightarrow A}^{H}$ and $\mathcal{D}_{[A] \rightarrow A}^{H}$ the rule ! has 2 premises, hence the derivation $\mathcal{D}_{A}^{\delta,H}$ has 4 subderivations with conclusion $\lambda x.x$, because 4 copies of $\lambda x.x$ are needed in the evaluation $(\lambda x.xx)((\lambda y.y)\lambda z.z) \rightarrow_{h\beta} ((\lambda y.y)\lambda z.z)((\lambda y.y)\lambda z.z)$.

Ex. Find a derivation with conclusion $\vdash (\lambda x.xx)\lambda y.yy : C$, for some linear type C.

Good luck!

Ex. Find all the derivations with conclusion $\lambda x.x((\lambda y.yy)\lambda z.zz)$: C for any linear type C.

Ex. Find a derivation for $A = \lambda a \cdot \lambda f \cdot f(aaf)$ and one for $\Theta = AA$.

Ex. Find all the derivations with conclusion $\lambda x.x((\lambda y.yy)\lambda z.zz)$: C for any linear type C.

$$\mathcal{D}_{A}^{l,\delta\delta} = \frac{\overline{x:[[] \multimap A] \vdash x:[] \multimap A}^{\text{var}} \quad \overline{\vdash (\lambda y.yy)\lambda z.zz:[]}}{x:[[] \multimap A] \vdash x((\lambda y.yy)\lambda z.zz):A} \frac{x:[[] \multimap A] \vdash x((\lambda y.yy)\lambda z.zz):A}{\vdash \lambda x.x((\lambda y.yy)\lambda z.zz):[[] \multimap A] \multimap A}^{\lambda}$$

Ex. Find a derivation for $A = \lambda a \cdot \lambda f \cdot f(aaf)$ and one for $\Theta = AA$.

Ex. Find all the derivations with conclusion $\lambda x.x((\lambda y.yy)\lambda z.zz)$: C for any linear type C.

$$\mathcal{D}_{A}^{I,\delta\delta} = \frac{\overline{x:[[] \multimap A] \vdash x:[] \multimap A}^{\text{var}} \quad \overline{\vdash (\lambda y.yy)\lambda z.zz:[]}}{x:[[] \multimap A] \vdash x((\lambda y.yy)\lambda z.zz):A} \frac{x:[[] \multimap A] \vdash x((\lambda y.yy)\lambda z.zz):A}{\vdash \lambda x.x((\lambda y.yy)\lambda z.zz):[[] \multimap A] \multimap A}^{\lambda}$$

Ex. Find a derivation for $A = \lambda a \cdot \lambda f \cdot f(aaf)$ and one for $\Theta = AA$.

Ex. Find all the derivations with conclusion $\lambda x.x((\lambda y.yy)\lambda z.zz)$: C for any linear type C.

$$\mathcal{D}_{A}^{I,\delta\delta} = \frac{\overline{x:[[]\multimap A]\vdash x:[]\multimap A}^{\text{var}} \quad \overline{\vdash (\lambda y.yy)\lambda z.zz:[]}}{x:[[]\multimap A]\vdash x((\lambda y.yy)\lambda z.zz):A} \frac{x:[[]\multimap A]\vdash x((\lambda y.yy)\lambda z.zz):A}{\vdash \lambda x.x((\lambda y.yy)\lambda z.zz):[[]\multimap A]\multimap A}$$

Ex. Find a derivation for $A = \lambda a \cdot \lambda f \cdot f(aaf)$ and one for $\Theta = AA$.

This is a good exercise, old man!

Outline

Non-idempotent intersection types for the λ -calculus

2 Characterizing head normalization in NI

3 Conclusion, exercises and bibliography

What can we do with non-idempotent intersection types?

Goal. We want to characterize the all and only the $h\beta$ -normalizing terms via NI. Motivation. There are many theoretical reasons to say "meaningful" = $h\beta$ -normalizing.

To achieve this qualitative characterization, we need to prove two properties.

- **②** Correctness: if a term is typable in NI then it is $h\beta$ -normalizing.
- ② Completeness: if a term is $h\beta$ -normalizing then it is typable in NI.

Bonus. We can extract some quantitative information from NI about:

- **(1)** the length of evaluation (the number of $h\beta$ -steps to reach the $h\beta$ -normal form);
- **(a)** the size of the output (i.e. of the $h\beta$ -normal form).

What can we do with non-idempotent intersection types?

Goal. We want to characterize the all and only the $h\beta$ -normalizing terms via NI. Motivation. There are many theoretical reasons to say "meaningful" = $h\beta$ -normalizing.

To achieve this qualitative characterization, we need to prove two properties.

- **Q** Correctness: if a term is typable in NI then it is $h\beta$ -normalizing.
- **2** Completeness: if a term is $h\beta$ -normalizing then it is typable in NI.

Bonus. We can extract some quantitative information from NI about:

- **(**) the length of evaluation (the number of $h\beta$ -steps to reach the $h\beta$ -normal form);
- **2** the size of the output (i.e. of the $h\beta$ -normal form).

Ingredients to prove correctness

Def. The head size $|t|_{h\beta}$ of a term t is defined by induction on t as follows:

 $|x|_{heta} = 0$ $|\lambda x.t|_{heta} = 1 + |t|_{heta}$ $|st|_{heta} = 1 + |s|_{heta}$

Lemma (Typing $h\beta$ -normal forms)

Let t be $h\beta$ -normal. If $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma \vdash t : A$ then $|t|_{h\beta} \leq |\mathcal{D}|$.

Proof. Every $h\beta$ -normal term is of the form $t = \lambda x_n \dots \lambda x_1 . yt_1 \dots t_m$ for some $m, n \in \mathbb{N}$. The lemma is proved by induction on $(m, n) \in \mathbb{N}^2$ with the lexicographical order.

Notation. For a finite multiset M over a set X, its cardinality is $|M| = \sum_{x \in X} M(x) \in \mathbb{N}$.

Lemma (Substitution)

If $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma, x : M \vdash t : A$ and $\mathcal{D}' \triangleright_{\mathsf{NI}} \Delta \vdash s : M$, then there is $\mathcal{D}'' \triangleright_{\mathsf{NI}} \Gamma \uplus \Delta \vdash t\{s/x\} : A$ with $|\mathcal{D}''| = |\mathcal{D}| + |\mathcal{D}'| - |M|$.

Proof. By structural induction on \mathcal{D} . The base case is when the last rule of \mathcal{D} is var. The other cases follow easily from the inductive hypothesis.

Ingredients to prove correctness

Def. The head size $|t|_{h\beta}$ of a term t is defined by induction on t as follows:

 $|x|_{heta}=0$ $|\lambda x.t|_{heta}=1+|t|_{heta}$ $|st|_{heta}=1+|s|_{heta}$

Lemma (Typing $h\beta$ -normal forms)

Let t be $h\beta$ -normal. If $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma \vdash t : A$ then $|t|_{h\beta} \leq |\mathcal{D}|$.

Proof. Every $h\beta$ -normal term is of the form $t = \lambda x_n \dots \lambda x_1 . yt_1 \dots t_m$ for some $m, n \in \mathbb{N}$. The lemma is proved by induction on $(m, n) \in \mathbb{N}^2$ with the lexicographical order.

Notation. For a finite multiset M over a set X, its cardinality is $|M| = \sum_{x \in X} M(x) \in \mathbb{N}$.

Lemma (Substitution)

If $\mathcal{D} \triangleright_{NI} \Gamma, x : M \vdash t : A$ and $\mathcal{D}' \triangleright_{NI} \Delta \vdash s : M$, then there is $\mathcal{D}'' \triangleright_{NI} \Gamma \uplus \Delta \vdash t\{s/x\} : A$ with $|\mathcal{D}''| = |\mathcal{D}| + |\mathcal{D}'| - |M|$.

Proof. By structural induction on \mathcal{D} . The base case is when the last rule of \mathcal{D} is var. The other cases follow easily from the inductive hypothesis.

Like natural deduction, derivations in NI can be depicted by a tree-like structure where:

- edges are labeled by typed terms, nodes are the typing rules,
- leaves form the context, the root types the subject.

Lemma (Substitution)

If $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma, x : [A_1, \ldots A_k] \vdash t : A$ (with $k \in \mathbb{N}$) and $\mathcal{D}' \triangleright_{\mathsf{NI}} \Delta \vdash s : [A_1, \ldots A_k]$, then there is $\mathcal{D}'' \triangleright_{\mathsf{NI}} \Gamma \uplus \Delta \vdash t\{s/x\} : A$ with $|\mathcal{D}''| = |\mathcal{D}| + |\mathcal{D}'| - k$.

Like natural deduction, derivations in NI can be depicted by a tree-like structure where:

- edges are labeled by typed terms, nodes are the typing rules,
- leaves form the context, the root types the subject.

$$\vdots \mathcal{D}$$

x₁: [A₁₁,..., A_{1k1}],..., x_n: [A_{n1},..., A_{nkn}] \vdash t : T

Lemma (Substitution)

If $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma, x : [A_1, \ldots, A_k] \vdash t : A$ (with $k \in \mathbb{N}$) and $\mathcal{D}' \triangleright_{\mathsf{NI}} \Delta \vdash s : [A_1, \ldots, A_k]$, then there is $\mathcal{D}'' \triangleright_{\mathsf{NI}} \Gamma \uplus \Delta \vdash t\{s/x\} : A$ with $|\mathcal{D}''| = |\mathcal{D}| + |\mathcal{D}'| - k$.

Like natural deduction, derivations in NI can be depicted by a tree-like structure where:

- edges are labeled by typed terms, nodes are the typing rules,
- leaves form the context, the root types the subject.

Lemma (Substitution)

If $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma, x : [A_1, \ldots A_k] \vdash t : A$ (with $k \in \mathbb{N}$) and $\mathcal{D}' \triangleright_{\mathsf{NI}} \Delta \vdash s : [A_1, \ldots A_k]$, then there is $\mathcal{D}'' \triangleright_{\mathsf{NI}} \Gamma \uplus \Delta \vdash t\{s/x\} : A$ with $|\mathcal{D}''| = |\mathcal{D}| + |\mathcal{D}'| - k$.

Like natural deduction, derivations in NI can be depicted by a tree-like structure where:

- edges are labeled by typed terms, nodes are the typing rules,
- leaves form the context, the root types the subject.

Lemma (Substitution)

If $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma, x : [A_1, \ldots A_k] \vdash t : A$ (with $k \in \mathbb{N}$) and $\mathcal{D}' \triangleright_{\mathsf{NI}} \Delta \vdash s : [A_1, \ldots A_k]$, then there is $\mathcal{D}'' \triangleright_{\mathsf{NI}} \Gamma \uplus \Delta \vdash t\{s/x\} : A$ with $|\mathcal{D}''| = |\mathcal{D}| + |\mathcal{D}'| - k$.

Like natural deduction, derivations in NI can be depicted by a tree-like structure where:

- edges are labeled by typed terms, nodes are the typing rules,
- leaves form the context, the root types the subject.

Lemma (Substitution)

If $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma, x : [A_1, \ldots, A_k] \vdash t : A$ (with $k \in \mathbb{N}$) and $\mathcal{D}' \triangleright_{\mathsf{NI}} \Delta \vdash s : [A_1, \ldots, A_k]$, then there is $\mathcal{D}'' \triangleright_{\mathsf{NI}} \Gamma \uplus \Delta \vdash t\{s/x\} : A$ with $|\mathcal{D}''| = |\mathcal{D}| + |\mathcal{D}'| - k$.

Like natural deduction, derivations in NI can be depicted by a tree-like structure where:

- edges are labeled by typed terms, nodes are the typing rules,
- leaves form the context, the root types the subject.

Lemma (Substitution)

If $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma, x : [A_1, \dots, A_k] \vdash t : A$ (with $k \in \mathbb{N}$) and $\mathcal{D}' \triangleright_{\mathsf{NI}} \Delta \vdash s : [A_1, \dots, A_k]$, then there is $\mathcal{D}'' \triangleright_{\mathsf{NI}} \Gamma \uplus \Delta \vdash t\{s/x\} : A$ with $|\mathcal{D}''| = |\mathcal{D}| + |\mathcal{D}'| - k$.

Proposition (Quantitative subject reduction)

If $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma \vdash t : A$ and $t \rightarrow_{h\beta} t'$, then there is $\mathcal{D}' \triangleright_{\mathsf{NI}} \Gamma \vdash t' : A$ with $|\mathcal{D}| > |\mathcal{D}'|$.

Proof. By induction on the definition $t \to_{h\beta} t'$. The only non-trivial case is when $t = (\lambda x.u)s \to_{h\beta} u\{s/x\} = t'$: then, \mathcal{D} must have the form below, with $\Gamma = \Gamma' \uplus \Gamma''$. $\vdots \mathcal{D}_u$ By substitution lemma, there is $\mathcal{D}' \triangleright_{NI} \Gamma \vdash u\{s/x\} : A$ $\mathcal{D} = \frac{\Gamma' x : M \vdash u : A}{\frac{\Gamma' \vdash \lambda x.u : M \multimap A}{\Gamma' \uplus \Gamma'' \vdash (\lambda x.u)s : A}} \bigotimes_{Q} with |\mathcal{D}'| = |\mathcal{D}_u| + |\mathcal{D}_s| - |M| < |\mathcal{D}_u| + |\mathcal{D}_s| + 2 = |\mathcal{D}|.$

Rmk. The quantitative aspect of subject reduction (i.e. $|\mathcal{D}| > |\mathcal{D}'|$) is false:

- if $t \rightarrow_{\beta} t'$ instead of $t \rightarrow_{h\beta} t'$, e.g. $\lambda x.x(\delta \delta) \rightarrow_{\beta} \lambda x.x(\delta \delta)$ with $\delta = \lambda z.zz$, see p. 10;
- if \mathcal{D} and \mathcal{D}' are derivations in the simply typed λ -calculus, instead of NI.

Proposition (Quantitative subject reduction)

If $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma \vdash t : A$ and $t \rightarrow_{h\beta} t'$, then there is $\mathcal{D}' \triangleright_{\mathsf{NI}} \Gamma \vdash t' : A$ with $|\mathcal{D}| > |\mathcal{D}'|$.

Proof. By induction on the definition $t \to_{h\beta} t'$. The only non-trivial case is when $t = (\lambda x.u)s \to_{h\beta} u\{s/x\} = t'$: then, \mathcal{D} must have the form below, with $\Gamma = \Gamma' \uplus \Gamma''$. $\vdots \mathcal{D}_u$ By substitution lemma, there is $\mathcal{D}' \triangleright_{NI} \Gamma \vdash u\{s/x\} : A$ $\mathcal{D} = \frac{\Gamma' \times : M \vdash u : A}{\prod' \vdash \lambda x.u : M \multimap A} \lambda \prod' \vdash \mathcal{D}_s$ with $|\mathcal{D}'| = |\mathcal{D}_u| + |\mathcal{D}_s| - |M| < |\mathcal{D}_u| + |\mathcal{D}_s| + 2 = |\mathcal{D}|$. \Box

Rmk. The quantitative aspect of subject reduction (i.e. $|\mathcal{D}| > |\mathcal{D}'|$) is false:

- if $t \rightarrow_{\beta} t'$ instead of $t \rightarrow_{h\beta} t'$, e.g. $\lambda x.x(\delta \delta) \rightarrow_{\beta} \lambda x.x(\delta \delta)$ with $\delta = \lambda z.zz$, see p. 10;
- if \mathcal{D} and \mathcal{D}' are derivations in the simply typed λ -calculus, instead of NI.

Proposition (Quantitative subject reduction)

If $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma \vdash t : A$ and $t \rightarrow_{h\beta} t'$, then there is $\mathcal{D}' \triangleright_{\mathsf{NI}} \Gamma \vdash t' : A$ with $|\mathcal{D}| > |\mathcal{D}'|$.

Proof. By induction on the definition $t \to_{h\beta} t'$. The only non-trivial case is when $t = (\lambda x.u)s \to_{h\beta} u\{s/x\} = t'$: then, \mathcal{D} must have the form below, with $\Gamma = \Gamma' \uplus \Gamma''$. $\vdots \mathcal{D}_u$ By substitution lemma, there is $\mathcal{D}' \triangleright_{NI} \Gamma \vdash u\{s/x\} : A$ $\mathcal{D} = \frac{\Gamma'x: M \vdash u: A}{\prod' \vdash \lambda x.u: M \multimap A} \lambda \prod'' \vdash s: M \atop \mathcal{D}_s e$ (a)

Rmk. The quantitative aspect of subject reduction (i.e. $|\mathcal{D}| > |\mathcal{D}'|$) is false:

- if $t \rightarrow_{\beta} t'$ instead of $t \rightarrow_{h\beta} t'$, e.g. $\lambda x.x(\delta \delta) \rightarrow_{\beta} \lambda x.x(\delta \delta)$ with $\delta = \lambda z.zz$, see p. 10;
- if \mathcal{D} and \mathcal{D}' are derivations in the simply typed λ -calculus, instead of NI.

Proof. By induction on $|\mathcal{D}|$.

Proposition (Quantitative subject reduction)

If $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma \vdash t : A$ and $t \rightarrow_{h\beta} t'$, then there is $\mathcal{D}' \triangleright_{\mathsf{NI}} \Gamma \vdash t' : A$ with $|\mathcal{D}| > |\mathcal{D}'|$.

$$\Gamma' \uplus \Gamma'' \vdash (\lambda x.u)s : A$$

Rmk. The quantitative aspect of subject reduction (i.e. $|\mathcal{D}| > |\mathcal{D}'|$) is false:

- if $t \rightarrow_{\beta} t'$ instead of $t \rightarrow_{h\beta} t'$, e.g. $\lambda x.x(\delta \delta) \rightarrow_{\beta} \lambda x.x(\delta \delta)$ with $\delta = \lambda z.zz$, see p. 10;
- if \mathcal{D} and \mathcal{D}' are derivations in the simply typed λ -calculus, instead of NI.

Proof. By induction on $|\mathcal{D}|$. If t is $h\beta$ -normal, then the claim follows from the lemma about typing $h\beta$ -normal forms, taking s = t and k = 0.

Proposition (Quantitative subject reduction)

 $\text{If } \mathcal{D} \triangleright_{\mathsf{NI}} \Gamma \vdash t : A \text{ and } t \rightarrow_{h\beta} t' \text{, then there is } \mathcal{D}' \triangleright_{\mathsf{NI}} \Gamma \vdash t' : A \text{ with } |\mathcal{D}| > |\mathcal{D}'|.$

Proof. By induction on the definition $t \to_{h\beta} t'$. The only non-trivial case is when $t = (\lambda x.u)s \to_{h\beta} u\{s/x\} = t'$: then, \mathcal{D} must have the form below, with $\Gamma = \Gamma' \uplus \Gamma''$.

 $\mathcal{D} = \underbrace{ \begin{array}{c} \mathcal{D}_{u} \\ \mathcal{D} = \underbrace{\Gamma'x : M \vdash u : A}_{\Gamma' \vdash \lambda x. u : M \multimap A} \lambda \\ \frac{\Gamma' \vdash \lambda x. u : M \multimap A}{\Gamma' \uplus \Gamma'' \vdash (\lambda x. u) s : A} \end{array}^{\Gamma'' \vdash s : M} \mathfrak{O}_{s}$ By substitution lemma, there is $\mathcal{D}' \triangleright_{\mathsf{NI}} \Gamma \vdash u\{s/x\} : A$ with $|\mathcal{D}'| = |\mathcal{D}_{u}| + |\mathcal{D}_{s}| - |M| < |\mathcal{D}_{u}| + |\mathcal{D}_{s}| + 2 = |\mathcal{D}|.$

Rmk. The quantitative aspect of subject reduction (i.e. $|\mathcal{D}| > |\mathcal{D}'|$) is false:

- if $t \rightarrow_{\beta} t'$ instead of $t \rightarrow_{h\beta} t'$, e.g. $\lambda x.x(\delta \delta) \rightarrow_{\beta} \lambda x.x(\delta \delta)$ with $\delta = \lambda z.zz$, see p. 10;
- if \mathcal{D} and \mathcal{D}' are derivations in the simply typed λ -calculus, instead of NI.

Theorem (Correctness of NI) If $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma \vdash t$: A then there is $s \ h\beta$ -normal such that $t \xrightarrow{k \ h\beta$ -steps} s and $|\mathcal{D}| \ge k + |s|_{h\beta}$.

Proof. By induction on $|\mathcal{D}|$. If t is $h\beta$ -normal, then the claim follows from the lemma about typing $h\beta$ -normal forms, taking s = t and k = 0. Otherwise, $t \rightarrow_{h\beta} t'$ and by quantitative subject reduction there is $\mathcal{D}' \triangleright_{NI} \Gamma \vdash t' : A$ with $|\mathcal{D}| > |\mathcal{D}'|$. By induction hypothesis, $t' \rightarrow_{h\beta}^* s$ in k $h\beta$ -steps for some $h\beta$ -normal s with $|\mathcal{D}'| \ge k + |s|_{h\beta}$. Hence, $t \rightarrow_{h\beta}^* s$ in k+1 $h\beta$ -steps and $|\mathcal{D}| \ge |\mathcal{D}'| + 1 \ge k + 1 + |s|_{h\beta}$.

Ingredients to prove completeness

Rmk. Completeness is the converse of correctness, so their needed ingredients are "dual".

Lemma (Typability of $h\beta$ -normal forms)

If t is $h\beta$ -normal, then there is $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma \vdash t$: A with $|\mathcal{D}| = |t|_{h\beta} + 1 = |\mathcal{D}| + |\mathcal{D}|_{\mathsf{var}}$.

Proof. Every $h\beta$ -normal term is of the form $t = \lambda x_n \dots \lambda x_1.yt_1 \dots t_m$ for some $m, n \in \mathbb{N}$. For n = 0, we prove (by induction on $m \in \mathbb{N}$) the stronger property that, for every $k \in \mathbb{N}$ and formula A, there is $\mathcal{D} \triangleright_{\text{NI}} y : [A_k] \vdash yt_1 \dots t_m : A_k$ with $|\mathcal{D}| = m + 1 = m + |\mathcal{D}|_{\text{var}}$ and $\lim_{k \text{ times } [1]} |\mathcal{D}| = m + 1 = m + |\mathcal{D}|_{\text{var}}$

$$A_k = \overbrace{[] \multimap \cdots \multimap []} \multimap A$$
 (note that $|yt_1 \ldots t_m|_{h\beta} = m$).

The statement of the lemma is then proved by induction on $n \in \mathbb{N}$.

Lemma (Anti-substitution)

If $\mathcal{D} \triangleright_{NI} \Gamma \vdash t\{s/u\} : A$, then there are contexts Γ' and Γ'' , a multi type M and derivations $\mathcal{D}' \triangleright_{NI} \Gamma', x : M \vdash t : A$ and $\mathcal{D}'' \triangleright_{NI} \Gamma'' \vdash s : M$ such that $\Gamma = \Gamma' \uplus \Gamma''$ and $|\mathcal{D}| = |\mathcal{D}'| + |\mathcal{D}''| - |M|$.

Proof. By structural induction on t. The base case is when t is a variable (either x or other than x). The other cases follow easily from the inductive hypothesis.

Ingredients to prove completeness

Rmk. Completeness is the converse of correctness, so their needed ingredients are "dual".

Lemma (Typability of $h\beta$ -normal forms)

If t is $h\beta$ -normal, then there is $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma \vdash t : A$ with $|\mathcal{D}| = |t|_{h\beta} + 1 = |\mathcal{D}| + |\mathcal{D}|_{\mathsf{var}}$.

Proof. Every $h\beta$ -normal term is of the form $t = \lambda x_n \dots \lambda x_1.yt_1 \dots t_m$ for some $m, n \in \mathbb{N}$. For n = 0, we prove (by induction on $m \in \mathbb{N}$) the stronger property that, for every $k \in \mathbb{N}$ and formula A, there is $\mathcal{D} \triangleright_{\text{NI}} y : [A_k] \vdash yt_1 \dots t_m : A_k$ with $|\mathcal{D}| = m + 1 = m + |\mathcal{D}|_{\text{var}}$ and $k \in \mathbb{N}$

$$A_k = \overbrace{[] \multimap \cdots \multimap []} \multimap A$$
 (note that $|yt_1 \dots t_m|_{h\beta} = m$)

The statement of the lemma is then proved by induction on $n \in \mathbb{N}$.

Lemma (Anti-substitution)

If $\mathcal{D} \triangleright_{NI} \Gamma \vdash t\{s/u\} : A$, then there are contexts Γ' and Γ'' , a multi type M and derivations $\mathcal{D}' \triangleright_{NI} \Gamma', x : M \vdash t : A$ and $\mathcal{D}'' \triangleright_{NI} \Gamma'' \vdash s : M$ such that $\Gamma = \Gamma' \uplus \Gamma''$ and $|\mathcal{D}| = |\mathcal{D}'| + |\mathcal{D}''| - |M|$.

Proof. By structural induction on t. The base case is when t is a variable (either x or other than x). The other cases follow easily from the inductive hypothesis.

Ingredients to prove completeness

Rmk. Completeness is the converse of correctness, so their needed ingredients are "dual".

Lemma (Typability of $h\beta$ -normal forms)

If t is $h\beta$ -normal, then there is $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma \vdash t : A$ with $|\mathcal{D}| = |t|_{h\beta} + 1 = |\mathcal{D}| + |\mathcal{D}|_{\mathsf{var}}$.

Proof. Every $h\beta$ -normal term is of the form $t = \lambda x_n \dots \lambda x_1.yt_1 \dots t_m$ for some $m, n \in \mathbb{N}$. For n = 0, we prove (by induction on $m \in \mathbb{N}$) the stronger property that, for every $k \in \mathbb{N}$ and formula A, there is $\mathcal{D} \triangleright_{NI} y : [A_k] \vdash yt_1 \dots t_m : A_k$ with $|\mathcal{D}| = m + 1 = m + |\mathcal{D}|_{var}$ and $k \in \mathbb{N}$ times []

$$A_k = \overbrace{[] \multimap \cdots \multimap []} \multimap A$$
 (note that $|yt_1 \dots t_m|_{h\beta} = m$)

The statement of the lemma is then proved by induction on $n \in \mathbb{N}$.

Lemma (Anti-substitution)

If $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma \vdash t\{s/u\} : A$, then there are contexts Γ' and Γ'' , a multi type M and derivations $\mathcal{D}' \triangleright_{\mathsf{NI}} \Gamma', x : M \vdash t : A$ and $\mathcal{D}'' \triangleright_{\mathsf{NI}} \Gamma'' \vdash s : M$ such that $\Gamma = \Gamma' \uplus \Gamma''$ and $|\mathcal{D}| = |\mathcal{D}'| + |\mathcal{D}''| - |M|$.

Proof. By structural induction on t. The base case is when t is a variable (either x or other than x). The other cases follow easily from the inductive hypothesis.

Proposition (Quantitative subject expansion)

If $\mathcal{D}' \triangleright_{\mathsf{NI}} \Gamma \vdash t' : A$ and $t \rightarrow_{h\beta} t'$, then there is $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma \vdash t : A$ with $|\mathcal{D}| > |\mathcal{D}'|$.

Proof. By induction on the definition $t \to_{h\beta} t'$. The only non-trivial case is when $t = (\lambda x.u)s \to_{h\beta} u\{s/x\} = t'$: by the anti-substitution lemma, since $\mathcal{D}' \triangleright_{NI} \Gamma \vdash t' : A$, $\vdots \mathcal{D}_u$ $\mathcal{D} = \frac{\Gamma' x : M \vdash u : A}{\frac{\Gamma' \vdash \lambda x.u : M \multimap A}{\Gamma'' \vdash (\lambda x.u)s : A}} \overset{:}{\underset{D}{\otimes} \mathcal{D}_s}$ there are $\mathcal{D}_u \triangleright_{NI} \Gamma', x : M \vdash u : A$ and $\mathcal{D}_s \triangleright_{NI} \Gamma'' \vdash s : M$ such that $\Gamma = \Gamma' \uplus \Gamma''$ and $|\mathcal{D}'| = |\mathcal{D}_u| + |\mathcal{D}_s| - |M|$. Hence, for $\mathcal{D} \triangleright_{NI} \Gamma \vdash (\lambda x.u)s : A$ on the left, $|\mathcal{D}| = |\mathcal{D}_u| + |\mathcal{D}_s| + 2 > |\mathcal{D}_u| + |\mathcal{D}_s| - |M| = |\mathcal{D}'|$.

Rmk. We have seen (in day 1) that subject expansion fails with simple types.

Notation. Given $k \in \mathbb{N}$, we write $t \to_{h\beta}^k s$ if $t \to_{h\beta} \cdots \to_{h\beta} s$ (thus $t \to_{h\beta}^0 s$ means t = s).

Theorem (Completeness of NI)

If $t \to_{h\beta}^k s$ with s $h\beta$ -normal, then there is $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma \vdash t$: A with $|\mathcal{D}| \ge k + |s|_{h\beta}$.

Proof. By induction on $k \in \mathbb{N}$.

Proposition (Quantitative subject expansion)

If $\mathcal{D}' \triangleright_{\mathsf{NI}} \Gamma \vdash t' : A$ and $t \rightarrow_{h\beta} t'$, then there is $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma \vdash t : A$ with $|\mathcal{D}| > |\mathcal{D}'|$.

Rmk. We have seen (in day 1) that subject expansion fails with simple types.

Notation. Given $k \in \mathbb{N}$, we write $t \to_{h\beta}^k s$ if $t \to_{h\beta} \cdots \to_{h\beta} s$ (thus $t \to_{h\beta}^0 s$ means t = s).

Theorem (Completeness of NI)

If $t \to_{h\beta}^k s$ with s $h\beta$ -normal, then there is $\mathcal{D} \triangleright_{\mathsf{NI}} \mathsf{\Gamma} \vdash t$: A with $|\mathcal{D}| \ge k + |s|_{h\beta}$

Proof. By induction on $k \in \mathbb{N}$.

Proposition (Quantitative subject expansion)

If $\mathcal{D}' \triangleright_{\mathsf{NI}} \Gamma \vdash t' : A$ and $t \rightarrow_{h\beta} t'$, then there is $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma \vdash t : A$ with $|\mathcal{D}| > |\mathcal{D}'|$.

Rmk. We have seen (in day 1) that subject expansion fails with simple types.

Notation. Given $k \in \mathbb{N}$, we write $t \to_{h\beta}^k s$ if $t \to_{h\beta}^{k h\beta \text{-steps}} s$ (thus $t \to_{h\beta}^0 s$ means t = s).

Theorem (Completeness of NI)

If $t \to_{h\beta}^k s$ with $s h\beta$ -normal, then there is $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma \vdash t : A$ with $|\mathcal{D}| \ge k + |s|_{h\beta}$.

Proof. By induction on $k \in \mathbb{N}$.

Proposition (Quantitative subject expansion)

If $\mathcal{D}' \triangleright_{\mathsf{NI}} \Gamma \vdash t' : A$ and $t \rightarrow_{h\beta} t'$, then there is $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma \vdash t : A$ with $|\mathcal{D}| > |\mathcal{D}'|$.

Proof. By induction on the definition $t \to_{h\beta} t'$. The only non-trivial case is when $t = (\lambda x.u)s \to_{h\beta} u\{s/x\} = t'$: by the anti-substitution lemma, since $\mathcal{D}' \triangleright_{NI} \Gamma \vdash t' : A$, $\lim_{\substack{i \in \mathcal{D}_u \\ \hline \Gamma' + \lambda x.u : M \to A \\ \hline \Gamma' \oplus \Gamma'' \vdash (\lambda x.u)s : A \end{bmatrix}} \mathbb{D}_s$ there are $\mathcal{D}_u \triangleright_{NI} \Gamma', x : M \vdash u : A$ and $\mathcal{D}_s \triangleright_{NI} \Gamma'' \vdash s : M$ such that $\Gamma = \Gamma' \oplus \Gamma''$ and $|\mathcal{D}'| = |\mathcal{D}_u| + |\mathcal{D}_s| - |M|$. Hence, for $\mathcal{D} \triangleright_{NI} \Gamma \vdash (\lambda x.u)s : A$ on the left, $|\mathcal{D}| = |\mathcal{D}_u| + |\mathcal{D}_s| + 2 > |\mathcal{D}_u| + |\mathcal{D}_s| - |M| = |\mathcal{D}'|$.

Rmk. We have seen (in day 1) that subject expansion fails with simple types.

Notation. Given $k \in \mathbb{N}$, we write $t \to_{h\beta}^k s$ if $t \to_{h\beta}^{k \ h\beta \text{-steps}} s$ (thus $t \to_{h\beta}^0 s$ means t = s).

Theorem (Completeness of NI)

If $t \to_{h\beta}^k s$ with $s h\beta$ -normal, then there is $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma \vdash t : A$ with $|\mathcal{D}| \ge k + |s|_{h\beta}$.

Proof. By induction on $k \in \mathbb{N}$. If k = 0, then t = s and typability of $h\beta$ -normal concludes.

Proposition (Quantitative subject expansion)

If $\mathcal{D}' \triangleright_{\mathsf{NI}} \Gamma \vdash t' : A$ and $t \rightarrow_{h\beta} t'$, then there is $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma \vdash t : A$ with $|\mathcal{D}| > |\mathcal{D}'|$.

Proof. By induction on the definition $t \to_{h\beta} t'$. The only non-trivial case is when $t = (\lambda x.u)s \to_{h\beta} u\{s/x\} = t'$: by the anti-substitution lemma, since $\mathcal{D}' \triangleright_{NI} \Gamma \vdash t' : A$, $\lim_{\substack{i \in \mathcal{D}_u \\ \hline \Gamma' + \lambda x.u : M \to A \\ \hline \Gamma' \oplus \Gamma'' \vdash (\lambda x.u)s : A \end{bmatrix}} \mathbb{D}_s$ there are $\mathcal{D}_u \triangleright_{NI} \Gamma', x : M \vdash u : A$ and $\mathcal{D}_s \triangleright_{NI} \Gamma'' \vdash s : M$ such that $\Gamma = \Gamma' \oplus \Gamma''$ and $|\mathcal{D}'| = |\mathcal{D}_u| + |\mathcal{D}_s| - |M|$. Hence, for $\mathcal{D} \triangleright_{NI} \Gamma \vdash (\lambda x.u)s : A$ on the left, $|\mathcal{D}| = |\mathcal{D}_u| + |\mathcal{D}_s| + 2 > |\mathcal{D}_u| + |\mathcal{D}_s| - |M| = |\mathcal{D}'|$.

Rmk. We have seen (in day 1) that subject expansion fails with simple types.

Notation. Given $k \in \mathbb{N}$, we write $t \to_{h\beta}^k s$ if $t \to_{h\beta}^{k h\beta \text{-steps}} s$ (thus $t \to_{h\beta}^0 s$ means t = s).

Theorem (Completeness of NI)

If $t \to_{h\beta}^k s$ with $s h\beta$ -normal, then there is $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma \vdash t : A$ with $|\mathcal{D}| \ge k + |s|_{h\beta}$.

Proof. By induction on $k \in \mathbb{N}$. If k = 0, then t = s and typability of $h\beta$ -normal concludes. Otherwise k > 0 and $t \rightarrow_{h\beta} t' \rightarrow_{h\beta}^{k-1} s$. By induction hypothesis, there is $\mathcal{D}' \triangleright_{\mathsf{NI}} \Gamma \vdash t' : A$ with $|\mathcal{D}'| \ge k - 1 + |s|_{h\beta}$. By quantitative subject expansion, there is $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma \vdash t : A$ with $|\mathcal{D}| > |\mathcal{D}'|$, therefore $|\mathcal{D}| \ge |\mathcal{D}'| + 1 \ge k + |s|_{h\beta}$.

Summing up: characterization of head normalization

Putting together correctness and completeness of NI, we obtain:

Corollary (Characterization of head normalization)

A term t is $h\beta$ -normalizing if and only if there is $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma \vdash t : A$. Moreover, $|\mathcal{D}| \ge k + |s|_{h\beta}$ if $t \rightarrow_{h\beta}^{k} s$ with s $h\beta$ -normal.

Rmk. The quantitative information about

• the length k of evaluation (head reduction) from t to its $h\beta$ -normal form s, and

• the head size $|s|_{h\beta}$ of the $h\beta$ -normal term s

are in the size $|\mathcal{D}|$ of \mathcal{D} without performing head reduction $\rightarrow_{h\beta}$ or knowing s.

Rmk. |D| is an upper bound to k plus |s|_{hβ} together. NI can be refined so that one can:
disentangle the information about k and |s|_{hβ} by means of two different sizes of D,
obtain the exact values of k and |s|_{hβ} from these two sizes of D.

Summing up: characterization of head normalization

Putting together correctness and completeness of NI, we obtain:

Corollary (Characterization of head normalization)

A term t is $h\beta$ -normalizing if and only if there is $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma \vdash t : A$. Moreover, $|\mathcal{D}| \ge k + |s|_{h\beta}$ if $t \rightarrow_{h\beta}^{k} s$ with s $h\beta$ -normal.

Rmk. The quantitative information about

- the length k of evaluation (head reduction) from t to its $h\beta$ -normal form s, and
- the head size $|s|_{h\beta}$ of the $h\beta$ -normal term s

are in the size $|\mathcal{D}|$ of \mathcal{D} without performing head reduction $\rightarrow_{h\beta}$ or knowing s.

Rmk. |D| is an upper bound to k plus |s|_{hβ} together. NI can be refined so that one can:
disentangle the information about k and |s|_{hβ} by means of two different sizes of D,
obtain the exact values of k and |s|_{hβ} from these two sizes of D.

Summing up: characterization of head normalization

Putting together correctness and completeness of NI, we obtain:

Corollary (Characterization of head normalization)

A term t is $h\beta$ -normalizing if and only if there is $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma \vdash t : A$. Moreover, $|\mathcal{D}| \ge k + |s|_{h\beta}$ if $t \rightarrow_{h\beta}^{k} s$ with s $h\beta$ -normal.

Rmk. The quantitative information about

- the length k of evaluation (head reduction) from t to its $h\beta$ -normal form s, and
- the head size $|s|_{h\beta}$ of the $h\beta$ -normal term s

are in the size $|\mathcal{D}|$ of \mathcal{D} without performing head reduction $\rightarrow_{h\beta}$ or knowing *s*.

Rmk. $|\mathcal{D}|$ is an upper bound to k plus $|s|_{h\beta}$ together. NI can be refined so that one can:

- **(**) disentangle the information about k and $|s|_{h\beta}$ by means of two different sizes of \mathcal{D} ,
- **a** obtain the exact values of k and $|s|_{h\beta}$ from these two sizes of \mathcal{D} .

Outline

Non-idempotent intersection types for the λ -calculus

2 Characterizing head normalization in NI

3 Conclusion, exercises and bibliography

Bibliography

- For an (almost gentle) introduction to non-idempotent intersection types:
 - Antonio Bucciarelli, Delia Kesner, Daniel Ventura. Non-Idempotent Intersection types for the Lambda-Calculus. Logic Journal of the IGPL, vol. 25, issue 4, pp. 431–464, 2017. https://doi.org/10.1093/jigpal/jzx018
- For a very advanced study about non-idempotent intersection types:
 - Beniamino Accattoli, Stéphan Graham-Lengrand, Delia Kesner. *Tight typings and split bounds, fully developed*. Journal of Functional Programming, vol. 30, 14 pages, 2020. https://doi.org/10.1017/S095679682000012X