
The λ-calculus: from simple types to non-idempotent intersection types
Days 4–5: Non-idempotent intersection types for the λ-calculus

Giulio Guerrieri

Department of Informatics, University of Sussex (Brighton, UK)
LIS, Aix-Marseille Université (Marseille, France)

B giulio.guerrieri@lis-lab.fr � https://pageperso.lis-lab.fr/~giulio.guerrieri/

34th European Summer School in Logic, Language and Information (ESSLLI 2023)

Ljubljana (Slovenia), 7-11 August 2023

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 1 / 20

mailto:giulio.guerrieri@lis-lab.fr
https://pageperso.lis-lab.fr/~giulio.guerrieri/

Outline

1 Non-idempotent intersection types for the λ-calculus

2 Characterizing head normalization in NI

3 Conclusion, exercises and bibliography

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 2 / 20

Outline

1 Non-idempotent intersection types for the λ-calculus

2 Characterizing head normalization in NI

3 Conclusion, exercises and bibliography

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 3 / 20

The λ-calculus between simple types and the untyped one

The simply typed λ-calculus:
1 has very nice operational properties (e.g. normalization, confluence);
2 has a clear logical meaning (Curry-Howard correspondence);
3 is not very expressive (recursion cannot be represented, Turing-completeness fails).

The untyped λ-calculus:
1 has some very nice properties (e.g. confluence, Turing-completeness);
2 misses some nice properties (e.g. normalization);
3 has no logical meaning;
4 contains diverging terms without any meaning (e.g. δδ).

Questions.
1 Is there a more liberal type system which only takes the pros of the two worlds?
2 Can it characterize all and only the “meaningful” terms of the untyped λ-calculus?

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 4 / 20

The λ-calculus between simple types and the untyped one

The simply typed λ-calculus:
1 has very nice operational properties (e.g. normalization, confluence);
2 has a clear logical meaning (Curry-Howard correspondence);
3 is not very expressive (recursion cannot be represented, Turing-completeness fails).

The untyped λ-calculus:
1 has some very nice properties (e.g. confluence, Turing-completeness);
2 misses some nice properties (e.g. normalization);
3 has no logical meaning;
4 contains diverging terms without any meaning (e.g. δδ).

Questions.
1 Is there a more liberal type system which only takes the pros of the two worlds?
2 Can it characterize all and only the “meaningful” terms of the untyped λ-calculus?

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 4 / 20

The λ-calculus between simple types and the untyped one

The simply typed λ-calculus:
1 has very nice operational properties (e.g. normalization, confluence);
2 has a clear logical meaning (Curry-Howard correspondence);
3 is not very expressive (recursion cannot be represented, Turing-completeness fails).

The untyped λ-calculus:
1 has some very nice properties (e.g. confluence, Turing-completeness);
2 misses some nice properties (e.g. normalization);
3 has no logical meaning;
4 contains diverging terms without any meaning (e.g. δδ).

Questions.
1 Is there a more liberal type system which only takes the pros of the two worlds?
2 Can it characterize all and only the “meaningful” terms of the untyped λ-calculus?

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 4 / 20

The syntax for non-idempotent intersection types
We fix a countably infinite set of atoms, denoted by X ,Y ,Z ,

Linear types: A,B ::= X | M ⊸ A

Multi types: M,N ::= [A1, . . . ,An] (with n ∈ N)
(Non-idempotent intersection) types: S ,T ::= A | M

where [A1, . . . ,An] with n ∈ N is a finite multiset ([] is the empty multiset for n = 0).

Idea. [A1, . . . ,An] stands for a conjunction A1 ∧ · · · ∧ An where ∧ is:

commutative A ∧ B ≡ B ∧ A (multisets do not take order into account);

associative A ∧ (B ∧ C) ≡ (A ∧ B) ∧ C (multisets are associative);

non-idempotent A ∧ A ̸≡ A (multisets take multiplicites into account).

Def. A judgment is a sequent of the form Γ ⊢ t : T where
1 t is a term, T is a type, Γ is a type context, that is,
2 Γ is a map from variables to multi types such that the set {x | Γ(x) ̸= []} is finite.

Notation. ⊎ is the multiset union (e.g. [A,B] ⊎ [A] = [A,A,B] ̸= [A,B]) whose unit is [].
Extended to type contexts pointwise: (Γ ⊎∆)(x) = Γ(x) ⊎∆(x).

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 5 / 20

The syntax for non-idempotent intersection types
We fix a countably infinite set of atoms, denoted by X ,Y ,Z ,

Linear types: A,B ::= X | M ⊸ A

Multi types: M,N ::= [A1, . . . ,An] (with n ∈ N)
(Non-idempotent intersection) types: S ,T ::= A | M

where [A1, . . . ,An] with n ∈ N is a finite multiset ([] is the empty multiset for n = 0).

Idea. [A1, . . . ,An] stands for a conjunction A1 ∧ · · · ∧ An where ∧ is:

commutative A ∧ B ≡ B ∧ A (multisets do not take order into account);

associative A ∧ (B ∧ C) ≡ (A ∧ B) ∧ C (multisets are associative);

non-idempotent A ∧ A ̸≡ A (multisets take multiplicites into account).

Def. A judgment is a sequent of the form Γ ⊢ t : T where
1 t is a term, T is a type, Γ is a type context, that is,
2 Γ is a map from variables to multi types such that the set {x | Γ(x) ̸= []} is finite.

Notation. ⊎ is the multiset union (e.g. [A,B] ⊎ [A] = [A,A,B] ̸= [A,B]) whose unit is [].
Extended to type contexts pointwise: (Γ ⊎∆)(x) = Γ(x) ⊎∆(x).

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 5 / 20

The syntax for non-idempotent intersection types
We fix a countably infinite set of atoms, denoted by X ,Y ,Z ,

Linear types: A,B ::= X | M ⊸ A

Multi types: M,N ::= [A1, . . . ,An] (with n ∈ N)
(Non-idempotent intersection) types: S ,T ::= A | M

where [A1, . . . ,An] with n ∈ N is a finite multiset ([] is the empty multiset for n = 0).

Idea. [A1, . . . ,An] stands for a conjunction A1 ∧ · · · ∧ An where ∧ is:

commutative A ∧ B ≡ B ∧ A (multisets do not take order into account);

associative A ∧ (B ∧ C) ≡ (A ∧ B) ∧ C (multisets are associative);

non-idempotent A ∧ A ̸≡ A (multisets take multiplicites into account).

Def. A judgment is a sequent of the form Γ ⊢ t : T where
1 t is a term, T is a type, Γ is a type context, that is,
2 Γ is a map from variables to multi types such that the set {x | Γ(x) ̸= []} is finite.

Notation. ⊎ is the multiset union (e.g. [A,B] ⊎ [A] = [A,A,B] ̸= [A,B]) whose unit is [].
Extended to type contexts pointwise: (Γ ⊎∆)(x) = Γ(x) ⊎∆(x).

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 5 / 20

The typing rules for non-idempotent intersection type system NI

Notation. A context Γ is denoted by x1 :M1, . . . , xn :Mn if:

variables x1, . . . , xn are pariwise distinct and Γ(x) =

{
Mi if x = xi for some 1 ≤ i ≤ n,

[] otherwise.

Typing rules for NI: var
x : [A] ⊢ x : A

Γ, x : M ⊢ t : A
λ

Γ ⊢ λx .t : M ⊸ A

Γ ⊢ s : M ⊸ A ∆ ⊢ t : M
@

Γ ⊎∆ ⊢ st : A

(Γi ⊢ t : Ai)1≤i≤n n ∈ N
!⊎n

i=1 Γi ⊢ t : [A1, . . . ,An]

Idea. A term typed t : [A,A,B] means that, during evaluation, t can be used:

once as a data of type B, and twice as a data of type A.

Notation. D ▷NI Γ ⊢ t : T means that D is a derivation in NI with conclusion Γ ⊢ t : T .
Γ ⊢NI t : T means that there is a derivation D ▷NI Γ ⊢ t : T .

Rmk. ⊢NI t : [] for every term t (take ! with no premises).

Def. The size |D| of a derivation D is the number of its rules, not counting the rules !.
|D|var (resp. |D|λ; |D|@) is the number of rules var (resp. λ; @) in D.

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 6 / 20

The typing rules for non-idempotent intersection type system NI

Notation. A context Γ is denoted by x1 :M1, . . . , xn :Mn if:

variables x1, . . . , xn are pariwise distinct and Γ(x) =

{
Mi if x = xi for some 1 ≤ i ≤ n,

[] otherwise.

Typing rules for NI: var
x : [A] ⊢ x : A

Γ, x : M ⊢ t : A
λ

Γ ⊢ λx .t : M ⊸ A

Γ ⊢ s : M ⊸ A ∆ ⊢ t : M
@

Γ ⊎∆ ⊢ st : A

(Γi ⊢ t : Ai)1≤i≤n n ∈ N
!⊎n

i=1 Γi ⊢ t : [A1, . . . ,An]

Idea. A term typed t : [A,A,B] means that, during evaluation, t can be used:

once as a data of type B, and twice as a data of type A.

Notation. D ▷NI Γ ⊢ t : T means that D is a derivation in NI with conclusion Γ ⊢ t : T .
Γ ⊢NI t : T means that there is a derivation D ▷NI Γ ⊢ t : T .

Rmk. ⊢NI t : [] for every term t (take ! with no premises).

Def. The size |D| of a derivation D is the number of its rules, not counting the rules !.
|D|var (resp. |D|λ; |D|@) is the number of rules var (resp. λ; @) in D.

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 6 / 20

The typing rules for non-idempotent intersection type system NI

Notation. A context Γ is denoted by x1 :M1, . . . , xn :Mn if:

variables x1, . . . , xn are pariwise distinct and Γ(x) =

{
Mi if x = xi for some 1 ≤ i ≤ n,

[] otherwise.

Typing rules for NI: var
x : [A] ⊢ x : A

Γ, x : M ⊢ t : A
λ

Γ ⊢ λx .t : M ⊸ A

Γ ⊢ s : M ⊸ A ∆ ⊢ t : M
@

Γ ⊎∆ ⊢ st : A

(Γi ⊢ t : Ai)1≤i≤n n ∈ N
!⊎n

i=1 Γi ⊢ t : [A1, . . . ,An]

Idea. A term typed t : [A,A,B] means that, during evaluation, t can be used:

once as a data of type B, and twice as a data of type A.

Notation. D ▷NI Γ ⊢ t : T means that D is a derivation in NI with conclusion Γ ⊢ t : T .
Γ ⊢NI t : T means that there is a derivation D ▷NI Γ ⊢ t : T .

Rmk. ⊢NI t : [] for every term t (take ! with no premises).

Def. The size |D| of a derivation D is the number of its rules, not counting the rules !.
|D|var (resp. |D|λ; |D|@) is the number of rules var (resp. λ; @) in D.

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 6 / 20

The typing rules for non-idempotent intersection type system NI

Notation. A context Γ is denoted by x1 :M1, . . . , xn :Mn if:

variables x1, . . . , xn are pariwise distinct and Γ(x) =

{
Mi if x = xi for some 1 ≤ i ≤ n,

[] otherwise.

Typing rules for NI: var
x : [A] ⊢ x : A

Γ, x : M ⊢ t : A
λ

Γ ⊢ λx .t : M ⊸ A

Γ ⊢ s : M ⊸ A ∆ ⊢ t : M
@

Γ ⊎∆ ⊢ st : A

(Γi ⊢ t : Ai)1≤i≤n n ∈ N
!⊎n

i=1 Γi ⊢ t : [A1, . . . ,An]

Idea. A term typed t : [A,A,B] means that, during evaluation, t can be used:

once as a data of type B, and twice as a data of type A.

Notation. D ▷NI Γ ⊢ t : T means that D is a derivation in NI with conclusion Γ ⊢ t : T .
Γ ⊢NI t : T means that there is a derivation D ▷NI Γ ⊢ t : T .

Rmk. ⊢NI t : [] for every term t (take ! with no premises).

Def. The size |D| of a derivation D is the number of its rules, not counting the rules !.
|D|var (resp. |D|λ; |D|@) is the number of rules var (resp. λ; @) in D.

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 6 / 20

Some examples of derivations in NI

Ex. Find all the derivations with conclusion ⊢ λx .x : C , for any linear type C .

DI
A =

var
x : [A] ⊢ x : A

λ
⊢ λx .x : [A] ⊸ A

for any linear type A.

Ex. Find all the derivations with conclusion ⊢ λx .xx : C , for any linear type C .

Dδ,n
A0,...,An

=
var

x : [[A1, . . . ,An] ⊸ A] ⊢ x : [A1, . . . ,An] ⊸ A0

(
var

x : [Ai] ⊢ x : Ai

)
1≤i≤n

!
x : [A1, . . . ,An] ⊢ x : [A1, . . . ,An]

@
x : [[A1, . . . ,An] ⊸ A0,A1, . . . ,An] ⊢ xx : A0

λ
⊢ λx .xx : [[A1, . . . ,An] ⊸ A0,A1, . . . ,An] ⊸ A0

for any n ∈ N and any linear types A0, . . . ,An (in particular, for n = 0, ⊢ λx.x : [[] ⊸ A0] ⊸ A0).

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 7 / 20

Some examples of derivations in NI

Ex. Find all the derivations with conclusion ⊢ λx .x : C , for any linear type C .

DI
A =

var
x : [A] ⊢ x : A

λ
⊢ λx .x : [A] ⊸ A

for any linear type A.

Ex. Find all the derivations with conclusion ⊢ λx .xx : C , for any linear type C .

Dδ,n
A0,...,An

=
var

x : [[A1, . . . ,An] ⊸ A] ⊢ x : [A1, . . . ,An] ⊸ A0

(
var

x : [Ai] ⊢ x : Ai

)
1≤i≤n

!
x : [A1, . . . ,An] ⊢ x : [A1, . . . ,An]

@
x : [[A1, . . . ,An] ⊸ A0,A1, . . . ,An] ⊢ xx : A0

λ
⊢ λx .xx : [[A1, . . . ,An] ⊸ A0,A1, . . . ,An] ⊸ A0

for any n ∈ N and any linear types A0, . . . ,An (in particular, for n = 0, ⊢ λx.x : [[] ⊸ A0] ⊸ A0).

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 7 / 20

Some examples of derivations in NI

Ex. Find all the derivations with conclusion ⊢ λx .x : C , for any linear type C .

DI
A =

var
x : [A] ⊢ x : A

λ
⊢ λx .x : [A] ⊸ A

for any linear type A.

Ex. Find all the derivations with conclusion ⊢ λx .xx : C , for any linear type C .

Dδ,n
A0,...,An

=
var

x : [[A1, . . . ,An] ⊸ A] ⊢ x : [A1, . . . ,An] ⊸ A0

(
var

x : [Ai] ⊢ x : Ai

)
1≤i≤n

!
x : [A1, . . . ,An] ⊢ x : [A1, . . . ,An]

@
x : [[A1, . . . ,An] ⊸ A0,A1, . . . ,An] ⊢ xx : A0

λ
⊢ λx .xx : [[A1, . . . ,An] ⊸ A0,A1, . . . ,An] ⊸ A0

for any n ∈ N and any linear types A0, . . . ,An (in particular, for n = 0, ⊢ λx.x : [[] ⊸ A0] ⊸ A0).

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 7 / 20

Some examples of derivations in NI

Ex. Find all the derivations with conclusion ⊢ λx .x : C , for any linear type C .

DI
A =

var
x : [A] ⊢ x : A

λ
⊢ λx .x : [A] ⊸ A

for any linear type A.

Ex. Find all the derivations with conclusion ⊢ λx .xx : C , for any linear type C .

Dδ,n
A0,...,An

=
var

x : [[A1, . . . ,An] ⊸ A] ⊢ x : [A1, . . . ,An] ⊸ A0

(
var

x : [Ai] ⊢ x : Ai

)
1≤i≤n

!
x : [A1, . . . ,An] ⊢ x : [A1, . . . ,An]

@
x : [[A1, . . . ,An] ⊸ A0,A1, . . . ,An] ⊢ xx : A0

λ
⊢ λx .xx : [[A1, . . . ,An] ⊸ A0,A1, . . . ,An] ⊸ A0

for any n ∈ N and any linear types A0, . . . ,An (in particular, for n = 0, ⊢ λx.x : [[] ⊸ A0] ⊸ A0).

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 7 / 20

More examples of derivations in NI
Ex. Find all the derivations with conclusion ⊢ (λx .x)λy .y : C , for any linear type C .

DII
A =

var
x : [[A] ⊸ A] ⊢ x : [A] ⊸ A

λ
⊢ λx .x : [[A] ⊸ A] ⊸ [A] ⊸ A

var
y : [A] ⊢ y : A

λ
⊢ λy .y : [A] ⊸ A

!
⊢ λy .y : [[A] ⊸ A]

@
(λx .x)λy .y : [A] ⊸ A

for any linear type A.

Ex. Find a derivation with conclusion ⊢ (λx .xx)λy .y : C , for some linear type C .

Dδ,I
A =

.......
Dδ,1

[A]⊸A,[A]⊸A

⊢ λx.xx :
[
[[A] ⊸ A] ⊸ [A] ⊸ A, [A] ⊸ A

]
⊸ [A] ⊸ A

.......
DI

[[A]⊸A]⊸[A]⊸A

⊢ λy.y : [[A] ⊸ A] ⊸ [A] ⊸ A

.......
DI

[A]⊸A

⊢ λy.y : [A] ⊸ A
!

⊢ λy.y :
[
[[A] ⊸ A] ⊸ [A] ⊸ A, [A] ⊸ A

]
@

⊢ (λx.xx)λy.y : [A] ⊸ A

for any linear type A (actually, all derivations for (λx .xx)λy .y have the form above).

Rmk. In the derivation DII
A (resp. Dδ,I

A) the rule ! has 1 premise (resp. 2 premises)
because 1 copy (resp. 2 copies) of λy .y is (resp. are) needed in the evaluation
(λx .x)λy .y →hβ λy .y (resp. (λx .xx)λy .y →hβ (λy .y)λy .y).

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 8 / 20

More examples of derivations in NI
Ex. Find all the derivations with conclusion ⊢ (λx .x)λy .y : C , for any linear type C .

DII
A =

var
x : [[A] ⊸ A] ⊢ x : [A] ⊸ A

λ
⊢ λx .x : [[A] ⊸ A] ⊸ [A] ⊸ A

var
y : [A] ⊢ y : A

λ
⊢ λy .y : [A] ⊸ A

!
⊢ λy .y : [[A] ⊸ A]

@
(λx .x)λy .y : [A] ⊸ A

for any linear type A.

Ex. Find a derivation with conclusion ⊢ (λx .xx)λy .y : C , for some linear type C .

Dδ,I
A =

.......
Dδ,1

[A]⊸A,[A]⊸A

⊢ λx.xx :
[
[[A] ⊸ A] ⊸ [A] ⊸ A, [A] ⊸ A

]
⊸ [A] ⊸ A

.......
DI

[[A]⊸A]⊸[A]⊸A

⊢ λy.y : [[A] ⊸ A] ⊸ [A] ⊸ A

.......
DI

[A]⊸A

⊢ λy.y : [A] ⊸ A
!

⊢ λy.y :
[
[[A] ⊸ A] ⊸ [A] ⊸ A, [A] ⊸ A

]
@

⊢ (λx.xx)λy.y : [A] ⊸ A

for any linear type A (actually, all derivations for (λx .xx)λy .y have the form above).

Rmk. In the derivation DII
A (resp. Dδ,I

A) the rule ! has 1 premise (resp. 2 premises)
because 1 copy (resp. 2 copies) of λy .y is (resp. are) needed in the evaluation
(λx .x)λy .y →hβ λy .y (resp. (λx .xx)λy .y →hβ (λy .y)λy .y).

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 8 / 20

More examples of derivations in NI
Ex. Find all the derivations with conclusion ⊢ (λx .x)λy .y : C , for any linear type C .

DII
A =

......
DI

[A]⊸A

⊢ λx .x : [[A] ⊸ A] ⊸ [A] ⊸ A

...... D
I
A

⊢ λy .y : [A] ⊸ A
!

⊢ λy .y : [[A] ⊸ A]
@

(λx .x)λy .y : [A] ⊸ A

for any linear type A.

Ex. Find a derivation with conclusion ⊢ (λx .xx)λy .y : C , for some linear type C .

Dδ,I
A =

.......
Dδ,1

[A]⊸A,[A]⊸A

⊢ λx.xx :
[
[[A] ⊸ A] ⊸ [A] ⊸ A, [A] ⊸ A

]
⊸ [A] ⊸ A

.......
DI

[[A]⊸A]⊸[A]⊸A

⊢ λy.y : [[A] ⊸ A] ⊸ [A] ⊸ A

.......
DI

[A]⊸A

⊢ λy.y : [A] ⊸ A
!

⊢ λy.y :
[
[[A] ⊸ A] ⊸ [A] ⊸ A, [A] ⊸ A

]
@

⊢ (λx.xx)λy.y : [A] ⊸ A

for any linear type A (actually, all derivations for (λx .xx)λy .y have the form above).

Rmk. In the derivation DII
A (resp. Dδ,I

A) the rule ! has 1 premise (resp. 2 premises)
because 1 copy (resp. 2 copies) of λy .y is (resp. are) needed in the evaluation
(λx .x)λy .y →hβ λy .y (resp. (λx .xx)λy .y →hβ (λy .y)λy .y).

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 8 / 20

More examples of derivations in NI
Ex. Find all the derivations with conclusion ⊢ (λx .x)λy .y : C , for any linear type C .

DII
A =

......
DI

[A]⊸A

⊢ λx .x : [[A] ⊸ A] ⊸ [A] ⊸ A

...... D
I
A

⊢ λy .y : [A] ⊸ A
!

⊢ λy .y : [[A] ⊸ A]
@

(λx .x)λy .y : [A] ⊸ A

for any linear type A.

Ex. Find a derivation with conclusion ⊢ (λx .xx)λy .y : C , for some linear type C .

Dδ,I
A =

.......
Dδ,1

[A]⊸A,[A]⊸A

⊢ λx.xx :
[
[[A] ⊸ A] ⊸ [A] ⊸ A, [A] ⊸ A

]
⊸ [A] ⊸ A

.......
DI

[[A]⊸A]⊸[A]⊸A

⊢ λy.y : [[A] ⊸ A] ⊸ [A] ⊸ A

.......
DI

[A]⊸A

⊢ λy.y : [A] ⊸ A
!

⊢ λy.y :
[
[[A] ⊸ A] ⊸ [A] ⊸ A, [A] ⊸ A

]
@

⊢ (λx.xx)λy.y : [A] ⊸ A

for any linear type A (actually, all derivations for (λx .xx)λy .y have the form above).

Rmk. In the derivation DII
A (resp. Dδ,I

A) the rule ! has 1 premise (resp. 2 premises)
because 1 copy (resp. 2 copies) of λy .y is (resp. are) needed in the evaluation
(λx .x)λy .y →hβ λy .y (resp. (λx .xx)λy .y →hβ (λy .y)λy .y).

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 8 / 20

More examples of derivations in NI
Ex. Find all the derivations with conclusion ⊢ (λx .x)λy .y : C , for any linear type C .

DII
A =

......
DI

[A]⊸A

⊢ λx .x : [[A] ⊸ A] ⊸ [A] ⊸ A

...... D
I
A

⊢ λy .y : [A] ⊸ A
!

⊢ λy .y : [[A] ⊸ A]
@

(λx .x)λy .y : [A] ⊸ A

for any linear type A.

Ex. Find a derivation with conclusion ⊢ (λx .xx)λy .y : C , for some linear type C .

Dδ,I
A =

.......
Dδ,1

[A]⊸A,[A]⊸A

⊢ λx.xx :
[
[[A] ⊸ A] ⊸ [A] ⊸ A, [A] ⊸ A

]
⊸ [A] ⊸ A

.......
DI

[[A]⊸A]⊸[A]⊸A

⊢ λy.y : [[A] ⊸ A] ⊸ [A] ⊸ A

.......
DI

[A]⊸A

⊢ λy.y : [A] ⊸ A
!

⊢ λy.y :
[
[[A] ⊸ A] ⊸ [A] ⊸ A, [A] ⊸ A

]
@

⊢ (λx.xx)λy.y : [A] ⊸ A

for any linear type A (actually, all derivations for (λx .xx)λy .y have the form above).

Rmk. In the derivation DII
A (resp. Dδ,I

A) the rule ! has 1 premise (resp. 2 premises)
because 1 copy (resp. 2 copies) of λy .y is (resp. are) needed in the evaluation
(λx .x)λy .y →hβ λy .y (resp. (λx .xx)λy .y →hβ (λy .y)λy .y).

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 8 / 20

Oh no! More examples of derivations in NI!

Ex. Find a derivation with conclusion ⊢ (λx .xx)((λy .y)λz .z) : C , for some linear type C .

Dδ,II
A =

.......
Dδ,1

[A]⊸A,[A]⊸A

⊢λx.xx :
[
[[A]⊸A]⊸ [A]⊸A, [A]⊸A

]
⊸ [A]⊸A

.......
DII

[[A]⊸A]⊸[A]⊸A

⊢ (λy.y)λz.z : [[A]⊸A]⊸ [A]⊸A

.......
DII

[A]⊸A

⊢ (λy.y)λz.z : [A]⊸A
!

⊢ (λy.y)λz.z :
[
[[A]⊸A]⊸ [A]⊸A, [A]⊸A

]
@

⊢ (λx.xx)((λy.y)λz.z) : [A] ⊸ A

for any linear type A (actually, all derivations for (λx .xx)((λy .y)λz .z) have that form).

Rmk. In the derivation Dδ,II
A , the rule ! has 2 premises because 2 copies of (λy .y)λz .z are

needed in the evaluation (λx .xx)((λy .y)λz .z) →hβ ((λy .y)λz .z)((λy .y)λz .z).

In turn, in each of the derivations DII
[[A]⊸A]⊸[A]⊸A and DII

[A]⊸A the rule ! has 2 premises,
hence the derivation Dδ,II

A has 4 subderivations with conclusion λx .x , because 4 copies of
λx .x are needed in the evaluation (λx .xx)((λy .y)λz .z) →hβ ((λy .y)λz .z)((λy .y)λz .z).

Ex. Find a derivation with conclusion ⊢ (λx .xx)λy .yy : C , for some linear type C .

Good luck!

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 9 / 20

Oh no! More examples of derivations in NI!

Ex. Find a derivation with conclusion ⊢ (λx .xx)((λy .y)λz .z) : C , for some linear type C .

Dδ,II
A =

.......
Dδ,1

[A]⊸A,[A]⊸A

⊢λx.xx :
[
[[A]⊸A]⊸ [A]⊸A, [A]⊸A

]
⊸ [A]⊸A

.......
DII

[[A]⊸A]⊸[A]⊸A

⊢ (λy.y)λz.z : [[A]⊸A]⊸ [A]⊸A

.......
DII

[A]⊸A

⊢ (λy.y)λz.z : [A]⊸A
!

⊢ (λy.y)λz.z :
[
[[A]⊸A]⊸ [A]⊸A, [A]⊸A

]
@

⊢ (λx.xx)((λy.y)λz.z) : [A] ⊸ A

for any linear type A (actually, all derivations for (λx .xx)((λy .y)λz .z) have that form).

Rmk. In the derivation Dδ,II
A , the rule ! has 2 premises because 2 copies of (λy .y)λz .z are

needed in the evaluation (λx .xx)((λy .y)λz .z) →hβ ((λy .y)λz .z)((λy .y)λz .z).

In turn, in each of the derivations DII
[[A]⊸A]⊸[A]⊸A and DII

[A]⊸A the rule ! has 2 premises,
hence the derivation Dδ,II

A has 4 subderivations with conclusion λx .x , because 4 copies of
λx .x are needed in the evaluation (λx .xx)((λy .y)λz .z) →hβ ((λy .y)λz .z)((λy .y)λz .z).

Ex. Find a derivation with conclusion ⊢ (λx .xx)λy .yy : C , for some linear type C .

Good luck!

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 9 / 20

Oh no! More examples of derivations in NI!

Ex. Find a derivation with conclusion ⊢ (λx .xx)((λy .y)λz .z) : C , for some linear type C .

Dδ,II
A =

.......
Dδ,1

[A]⊸A,[A]⊸A

⊢λx.xx :
[
[[A]⊸A]⊸ [A]⊸A, [A]⊸A

]
⊸ [A]⊸A

.......
DII

[[A]⊸A]⊸[A]⊸A

⊢ (λy.y)λz.z : [[A]⊸A]⊸ [A]⊸A

.......
DII

[A]⊸A

⊢ (λy.y)λz.z : [A]⊸A
!

⊢ (λy.y)λz.z :
[
[[A]⊸A]⊸ [A]⊸A, [A]⊸A

]
@

⊢ (λx.xx)((λy.y)λz.z) : [A] ⊸ A

for any linear type A (actually, all derivations for (λx .xx)((λy .y)λz .z) have that form).

Rmk. In the derivation Dδ,II
A , the rule ! has 2 premises because 2 copies of (λy .y)λz .z are

needed in the evaluation (λx .xx)((λy .y)λz .z) →hβ ((λy .y)λz .z)((λy .y)λz .z).

In turn, in each of the derivations DII
[[A]⊸A]⊸[A]⊸A and DII

[A]⊸A the rule ! has 2 premises,
hence the derivation Dδ,II

A has 4 subderivations with conclusion λx .x , because 4 copies of
λx .x are needed in the evaluation (λx .xx)((λy .y)λz .z) →hβ ((λy .y)λz .z)((λy .y)λz .z).

Ex. Find a derivation with conclusion ⊢ (λx .xx)λy .yy : C , for some linear type C .

Good luck!

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 9 / 20

Oh no! More examples of derivations in NI!

Ex. Find a derivation with conclusion ⊢ (λx .xx)((λy .y)λz .z) : C , for some linear type C .

Dδ,II
A =

.......
Dδ,1

[A]⊸A,[A]⊸A

⊢λx.xx :
[
[[A]⊸A]⊸ [A]⊸A, [A]⊸A

]
⊸ [A]⊸A

.......
DII

[[A]⊸A]⊸[A]⊸A

⊢ (λy.y)λz.z : [[A]⊸A]⊸ [A]⊸A

.......
DII

[A]⊸A

⊢ (λy.y)λz.z : [A]⊸A
!

⊢ (λy.y)λz.z :
[
[[A]⊸A]⊸ [A]⊸A, [A]⊸A

]
@

⊢ (λx.xx)((λy.y)λz.z) : [A] ⊸ A

for any linear type A (actually, all derivations for (λx .xx)((λy .y)λz .z) have that form).

Rmk. In the derivation Dδ,II
A , the rule ! has 2 premises because 2 copies of (λy .y)λz .z are

needed in the evaluation (λx .xx)((λy .y)λz .z) →hβ ((λy .y)λz .z)((λy .y)λz .z).

In turn, in each of the derivations DII
[[A]⊸A]⊸[A]⊸A and DII

[A]⊸A the rule ! has 2 premises,
hence the derivation Dδ,II

A has 4 subderivations with conclusion λx .x , because 4 copies of
λx .x are needed in the evaluation (λx .xx)((λy .y)λz .z) →hβ ((λy .y)λz .z)((λy .y)λz .z).

Ex. Find a derivation with conclusion ⊢ (λx .xx)λy .yy : C , for some linear type C .

Good luck!

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 9 / 20

Oh no! More examples of derivations in NI!

Ex. Find a derivation with conclusion ⊢ (λx .xx)((λy .y)λz .z) : C , for some linear type C .

Dδ,II
A =

.......
Dδ,1

[A]⊸A,[A]⊸A

⊢λx.xx :
[
[[A]⊸A]⊸ [A]⊸A, [A]⊸A

]
⊸ [A]⊸A

.......
DII

[[A]⊸A]⊸[A]⊸A

⊢ (λy.y)λz.z : [[A]⊸A]⊸ [A]⊸A

.......
DII

[A]⊸A

⊢ (λy.y)λz.z : [A]⊸A
!

⊢ (λy.y)λz.z :
[
[[A]⊸A]⊸ [A]⊸A, [A]⊸A

]
@

⊢ (λx.xx)((λy.y)λz.z) : [A] ⊸ A

for any linear type A (actually, all derivations for (λx .xx)((λy .y)λz .z) have that form).

Rmk. In the derivation Dδ,II
A , the rule ! has 2 premises because 2 copies of (λy .y)λz .z are

needed in the evaluation (λx .xx)((λy .y)λz .z) →hβ ((λy .y)λz .z)((λy .y)λz .z).

In turn, in each of the derivations DII
[[A]⊸A]⊸[A]⊸A and DII

[A]⊸A the rule ! has 2 premises,
hence the derivation Dδ,II

A has 4 subderivations with conclusion λx .x , because 4 copies of
λx .x are needed in the evaluation (λx .xx)((λy .y)λz .z) →hβ ((λy .y)λz .z)((λy .y)λz .z).

Ex. Find a derivation with conclusion ⊢ (λx .xx)λy .yy : C , for some linear type C .

Good luck!

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 9 / 20

Enough with the examples of derivations, old man!

Ex. Find all the derivations with conclusion λx .x((λy .yy)λz .zz) : C for any linear type C .

DI ,δδ
A =

var
x : [[] ⊸ A] ⊢ x : [] ⊸ A

!
⊢ (λy .yy)λz .zz : []

@
x : [[] ⊸ A] ⊢ x((λy .yy)λz .zz) : A

λ
⊢ λx .x((λy .yy)λz .zz) : [[] ⊸ A] ⊸ A

Ex. Find a derivation for A = λa.λf .f (aaf) and one for Θ = AA.

This is a good exercise, old man!

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 10 / 20

Enough with the examples of derivations, old man!

Ex. Find all the derivations with conclusion λx .x((λy .yy)λz .zz) : C for any linear type C .

DI ,δδ
A =

var
x : [[] ⊸ A] ⊢ x : [] ⊸ A

!
⊢ (λy .yy)λz .zz : []

@
x : [[] ⊸ A] ⊢ x((λy .yy)λz .zz) : A

λ
⊢ λx .x((λy .yy)λz .zz) : [[] ⊸ A] ⊸ A

Ex. Find a derivation for A = λa.λf .f (aaf) and one for Θ = AA.

This is a good exercise, old man!

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 10 / 20

Enough with the examples of derivations, old man!

Ex. Find all the derivations with conclusion λx .x((λy .yy)λz .zz) : C for any linear type C .

DI ,δδ
A =

var
x : [[] ⊸ A] ⊢ x : [] ⊸ A

!
⊢ (λy .yy)λz .zz : []

@
x : [[] ⊸ A] ⊢ x((λy .yy)λz .zz) : A

λ
⊢ λx .x((λy .yy)λz .zz) : [[] ⊸ A] ⊸ A

Ex. Find a derivation for A = λa.λf .f (aaf) and one for Θ = AA.

This is a good exercise, old man!

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 10 / 20

Enough with the examples of derivations, old man!

Ex. Find all the derivations with conclusion λx .x((λy .yy)λz .zz) : C for any linear type C .

DI ,δδ
A =

var
x : [[] ⊸ A] ⊢ x : [] ⊸ A

!
⊢ (λy .yy)λz .zz : []

@
x : [[] ⊸ A] ⊢ x((λy .yy)λz .zz) : A

λ
⊢ λx .x((λy .yy)λz .zz) : [[] ⊸ A] ⊸ A

Ex. Find a derivation for A = λa.λf .f (aaf) and one for Θ = AA.

This is a good exercise, old man!

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 10 / 20

Outline

1 Non-idempotent intersection types for the λ-calculus

2 Characterizing head normalization in NI

3 Conclusion, exercises and bibliography

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 11 / 20

What can we do with non-idempotent intersection types?

Goal. We want to characterize the all and only the hβ-normalizing terms via NI.

Motivation. There are many theoretical reasons to say “meaningful” = hβ-normalizing.

To achieve this qualitative characterization, we need to prove two properties.
1 Correctness: if a term is typable in NI then it is hβ-normalizing.
2 Completeness: if a term is hβ-normalizing then it is typable in NI.

Bonus. We can extract some quantitative information from NI about:
1 the length of evaluation (the number of hβ-steps to reach the hβ-normal form);
2 the size of the output (i.e. of the hβ-normal form).

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 12 / 20

What can we do with non-idempotent intersection types?

Goal. We want to characterize the all and only the hβ-normalizing terms via NI.

Motivation. There are many theoretical reasons to say “meaningful” = hβ-normalizing.

To achieve this qualitative characterization, we need to prove two properties.
1 Correctness: if a term is typable in NI then it is hβ-normalizing.
2 Completeness: if a term is hβ-normalizing then it is typable in NI.

Bonus. We can extract some quantitative information from NI about:
1 the length of evaluation (the number of hβ-steps to reach the hβ-normal form);
2 the size of the output (i.e. of the hβ-normal form).

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 12 / 20

Ingredients to prove correctness

Def. The head size |t|hβ of a term t is defined by induction on t as follows:

|x |hβ = 0 |λx .t|hβ = 1 + |t|hβ |st|hβ = 1 + |s|hβ

Lemma (Typing hβ-normal forms)

Let t be hβ-normal. If D ▷NI Γ ⊢ t : A then |t|hβ ≤ |D|.

Proof. Every hβ-normal term is of the form t = λxn. . . . λx1.yt1 . . . tm for some m, n ∈ N.
The lemma is proved by induction on (m, n) ∈ N2 with the lexicographical order.

Notation. For a finite multiset M over a set X , its cardinality is |M| =
∑

x∈X M(x) ∈ N.

Lemma (Substitution)

If D ▷NI Γ, x : M ⊢ t : A and D′ ▷NI ∆ ⊢ s : M, then there is D′′ ▷NI Γ ⊎∆ ⊢ t{s/x} : A
with |D′′| = |D|+ |D′| − |M|.

Proof. By structural induction on D. The base case is when the last rule of D is var.
The other cases follow easily from the inductive hypothesis.

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 13 / 20

Ingredients to prove correctness

Def. The head size |t|hβ of a term t is defined by induction on t as follows:

|x |hβ = 0 |λx .t|hβ = 1 + |t|hβ |st|hβ = 1 + |s|hβ

Lemma (Typing hβ-normal forms)

Let t be hβ-normal. If D ▷NI Γ ⊢ t : A then |t|hβ ≤ |D|.

Proof. Every hβ-normal term is of the form t = λxn. . . . λx1.yt1 . . . tm for some m, n ∈ N.
The lemma is proved by induction on (m, n) ∈ N2 with the lexicographical order.

Notation. For a finite multiset M over a set X , its cardinality is |M| =
∑

x∈X M(x) ∈ N.

Lemma (Substitution)

If D ▷NI Γ, x : M ⊢ t : A and D′ ▷NI ∆ ⊢ s : M, then there is D′′ ▷NI Γ ⊎∆ ⊢ t{s/x} : A
with |D′′| = |D|+ |D′| − |M|.

Proof. By structural induction on D. The base case is when the last rule of D is var.
The other cases follow easily from the inductive hypothesis.

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 13 / 20

A graphical view to the substitution lemma
Like natural deduction, derivations in NI can be depicted by a tree-like structure where:

edges are labeled by typed terms, nodes are the typing rules,

leaves form the context, the root types the subject.

Lemma (Substitution)

If D ▷NI Γ, x : [A1, . . .Ak] ⊢ t : A (with k ∈ N) and D′ ▷NI ∆ ⊢ s : [A1, . . .Ak], then there
is D′′ ▷NI Γ ⊎∆ ⊢ t{s/x} : A with |D′′| = |D|+ |D′| − k.

D′′ =

Γ

∆1

D′
1

s : A1 . . .

∆k

D′
k

s : Ak

D{s/x}

t{s/x} : A

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 14 / 20

A graphical view to the substitution lemma
Like natural deduction, derivations in NI can be depicted by a tree-like structure where:

edges are labeled by typed terms, nodes are the typing rules,
leaves form the context, the root types the subject.

.... D
x1 : [A11, . . .A1k1], . . . , xn : [An1, . . .Ankn] ⊢ t : T

Lemma (Substitution)

If D ▷NI Γ, x : [A1, . . .Ak] ⊢ t : A (with k ∈ N) and D′ ▷NI ∆ ⊢ s : [A1, . . .Ak], then there
is D′′ ▷NI Γ ⊎∆ ⊢ t{s/x} : A with |D′′| = |D|+ |D′| − k.

D′′ =

Γ

∆1

D′
1

s : A1 . . .

∆k

D′
k

s : Ak

D{s/x}

t{s/x} : A

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 14 / 20

A graphical view to the substitution lemma
Like natural deduction, derivations in NI can be depicted by a tree-like structure where:

edges are labeled by typed terms, nodes are the typing rules,
leaves form the context, the root types the subject.

x1:A11 ... x1:A1k1 . . . xn :An1 ... xn :Ankn

D

t : T

Lemma (Substitution)

If D ▷NI Γ, x : [A1, . . .Ak] ⊢ t : A (with k ∈ N) and D′ ▷NI ∆ ⊢ s : [A1, . . .Ak], then there
is D′′ ▷NI Γ ⊎∆ ⊢ t{s/x} : A with |D′′| = |D|+ |D′| − k.

D′′ =

Γ

∆1

D′
1

s : A1 . . .

∆k

D′
k

s : Ak

D{s/x}

t{s/x} : A

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 14 / 20

A graphical view to the substitution lemma
Like natural deduction, derivations in NI can be depicted by a tree-like structure where:

edges are labeled by typed terms, nodes are the typing rules,

leaves form the context, the root types the subject.

Lemma (Substitution)

If D ▷NI Γ, x : [A1, . . .Ak] ⊢ t : A (with k ∈ N) and D′ ▷NI ∆ ⊢ s : [A1, . . .Ak], then there
is D′′ ▷NI Γ ⊎∆ ⊢ t{s/x} : A with |D′′| = |D|+ |D′| − k.

D′′ =

Γ

∆1

D′
1

s : A1 . . .

∆k

D′
k

s : Ak

D{s/x}

t{s/x} : A

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 14 / 20

A graphical view to the substitution lemma
Like natural deduction, derivations in NI can be depicted by a tree-like structure where:

edges are labeled by typed terms, nodes are the typing rules,
leaves form the context, the root types the subject.

Lemma (Substitution)

If D ▷NI Γ, x : [A1, . . .Ak] ⊢ t : A (with k ∈ N) and D′ ▷NI ∆ ⊢ s : [A1, . . .Ak], then there
is D′′ ▷NI Γ ⊎∆ ⊢ t{s/x} : A with |D′′| = |D|+ |D′| − k.

D =

Γ x : A1 . . . x : Ak

D

t : A

D′ =

∆1

D′
1

s : A1 . . .

∆k

D′
k

s : Ak
!

s : [A1, . . . ,Ak]

D′′ =

Γ

∆1

D′
1

s : A1 . . .

∆k

D′
k

s : Ak

D{s/x}

t{s/x} : A

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 14 / 20

A graphical view to the substitution lemma
Like natural deduction, derivations in NI can be depicted by a tree-like structure where:

edges are labeled by typed terms, nodes are the typing rules,

leaves form the context, the root types the subject.

Lemma (Substitution)

If D ▷NI Γ, x : [A1, . . .Ak] ⊢ t : A (with k ∈ N) and D′ ▷NI ∆ ⊢ s : [A1, . . .Ak], then there
is D′′ ▷NI Γ ⊎∆ ⊢ t{s/x} : A with |D′′| = |D|+ |D′| − k.

D′′ =

Γ

∆1

D′
1

s : A1 . . .

∆k

D′
k

s : Ak

D{s/x}

t{s/x} : A

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 14 / 20

Correctness of NI: typability implies hβ-normalization

Proposition (Quantitative subject reduction)
If D ▷NI Γ ⊢ t : A and t →hβ t′, then there is D′ ▷NI Γ ⊢ t′ : A with |D| > |D′|.

Proof. By induction on the definition t →hβ t′. The only non-trivial case is when
t = (λx .u)s →hβ u{s/x} = t′: then, D must have the form below, with Γ = Γ′ ⊎ Γ′′.

D =

..... Du

Γ′x : M ⊢ u : A
λ

Γ′ ⊢ λx.u : M ⊸ A

..... Ds

Γ′′ ⊢ s : M
@

Γ′ ⊎ Γ′′ ⊢ (λx.u)s : A

By substitution lemma, there is D′ ▷NI Γ ⊢ u{s/x} : A
with |D′| = |Du|+|Ds |−|M| < |Du|+|Ds |+2 = |D|.

Rmk. The quantitative aspect of subject reduction (i.e. |D| > |D′|) is false:
if t →β t′ instead of t →hβ t′, e.g. λx .x(δδ) →β λx .x(δδ) with δ = λz .zz , see p. 10;
if D and D′ are derivations in the simply typed λ-calculus, instead of NI.

Theorem (Correctness of NI)
If D ▷NIΓ ⊢ t :A then there is s hβ-normal such that t

k hβ-steps︷ ︸︸ ︷
→hβ · · · →hβ s and |D| ≥ k+|s|hβ .

Proof. By induction on |D|.

If t is hβ-normal, then the claim follows from the lemma
about typing hβ-normal forms, taking s = t and k = 0.
Otherwise, t →hβ t′ and by quantitative subject reduction there is D′ ▷NI Γ ⊢ t′ : A with
|D| > |D′|. By induction hypothesis, t′ →∗

hβ s in k hβ-steps for some hβ-normal s with
|D′| ≥ k + |s|hβ . Hence, t →∗

hβ s in k+1 hβ-steps and |D| ≥ |D′|+ 1 ≥ k + 1+ |s|hβ .

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 15 / 20

Correctness of NI: typability implies hβ-normalization

Proposition (Quantitative subject reduction)
If D ▷NI Γ ⊢ t : A and t →hβ t′, then there is D′ ▷NI Γ ⊢ t′ : A with |D| > |D′|.

Proof. By induction on the definition t →hβ t′. The only non-trivial case is when
t = (λx .u)s →hβ u{s/x} = t′: then, D must have the form below, with Γ = Γ′ ⊎ Γ′′.

D =

..... Du

Γ′x : M ⊢ u : A
λ

Γ′ ⊢ λx.u : M ⊸ A

..... Ds

Γ′′ ⊢ s : M
@

Γ′ ⊎ Γ′′ ⊢ (λx.u)s : A

By substitution lemma, there is D′ ▷NI Γ ⊢ u{s/x} : A
with |D′| = |Du|+|Ds |−|M| < |Du|+|Ds |+2 = |D|.

Rmk. The quantitative aspect of subject reduction (i.e. |D| > |D′|) is false:
if t →β t′ instead of t →hβ t′, e.g. λx .x(δδ) →β λx .x(δδ) with δ = λz .zz , see p. 10;
if D and D′ are derivations in the simply typed λ-calculus, instead of NI.

Theorem (Correctness of NI)
If D ▷NIΓ ⊢ t :A then there is s hβ-normal such that t

k hβ-steps︷ ︸︸ ︷
→hβ · · · →hβ s and |D| ≥ k+|s|hβ .

Proof. By induction on |D|.

If t is hβ-normal, then the claim follows from the lemma
about typing hβ-normal forms, taking s = t and k = 0.
Otherwise, t →hβ t′ and by quantitative subject reduction there is D′ ▷NI Γ ⊢ t′ : A with
|D| > |D′|. By induction hypothesis, t′ →∗

hβ s in k hβ-steps for some hβ-normal s with
|D′| ≥ k + |s|hβ . Hence, t →∗

hβ s in k+1 hβ-steps and |D| ≥ |D′|+ 1 ≥ k + 1+ |s|hβ .

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 15 / 20

Correctness of NI: typability implies hβ-normalization

Proposition (Quantitative subject reduction)
If D ▷NI Γ ⊢ t : A and t →hβ t′, then there is D′ ▷NI Γ ⊢ t′ : A with |D| > |D′|.

Proof. By induction on the definition t →hβ t′. The only non-trivial case is when
t = (λx .u)s →hβ u{s/x} = t′: then, D must have the form below, with Γ = Γ′ ⊎ Γ′′.

D =

..... Du

Γ′x : M ⊢ u : A
λ

Γ′ ⊢ λx.u : M ⊸ A

..... Ds

Γ′′ ⊢ s : M
@

Γ′ ⊎ Γ′′ ⊢ (λx.u)s : A

By substitution lemma, there is D′ ▷NI Γ ⊢ u{s/x} : A
with |D′| = |Du|+|Ds |−|M| < |Du|+|Ds |+2 = |D|.

Rmk. The quantitative aspect of subject reduction (i.e. |D| > |D′|) is false:
if t →β t′ instead of t →hβ t′, e.g. λx .x(δδ) →β λx .x(δδ) with δ = λz .zz , see p. 10;
if D and D′ are derivations in the simply typed λ-calculus, instead of NI.

Theorem (Correctness of NI)
If D ▷NIΓ ⊢ t :A then there is s hβ-normal such that t

k hβ-steps︷ ︸︸ ︷
→hβ · · · →hβ s and |D| ≥ k+|s|hβ .

Proof. By induction on |D|.

If t is hβ-normal, then the claim follows from the lemma
about typing hβ-normal forms, taking s = t and k = 0.
Otherwise, t →hβ t′ and by quantitative subject reduction there is D′ ▷NI Γ ⊢ t′ : A with
|D| > |D′|. By induction hypothesis, t′ →∗

hβ s in k hβ-steps for some hβ-normal s with
|D′| ≥ k + |s|hβ . Hence, t →∗

hβ s in k+1 hβ-steps and |D| ≥ |D′|+ 1 ≥ k + 1+ |s|hβ .

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 15 / 20

Correctness of NI: typability implies hβ-normalization

Proposition (Quantitative subject reduction)
If D ▷NI Γ ⊢ t : A and t →hβ t′, then there is D′ ▷NI Γ ⊢ t′ : A with |D| > |D′|.

Proof. By induction on the definition t →hβ t′. The only non-trivial case is when
t = (λx .u)s →hβ u{s/x} = t′: then, D must have the form below, with Γ = Γ′ ⊎ Γ′′.

D =

..... Du

Γ′x : M ⊢ u : A
λ

Γ′ ⊢ λx.u : M ⊸ A

..... Ds

Γ′′ ⊢ s : M
@

Γ′ ⊎ Γ′′ ⊢ (λx.u)s : A

By substitution lemma, there is D′ ▷NI Γ ⊢ u{s/x} : A
with |D′| = |Du|+|Ds |−|M| < |Du|+|Ds |+2 = |D|.

Rmk. The quantitative aspect of subject reduction (i.e. |D| > |D′|) is false:
if t →β t′ instead of t →hβ t′, e.g. λx .x(δδ) →β λx .x(δδ) with δ = λz .zz , see p. 10;
if D and D′ are derivations in the simply typed λ-calculus, instead of NI.

Theorem (Correctness of NI)
If D ▷NIΓ ⊢ t :A then there is s hβ-normal such that t

k hβ-steps︷ ︸︸ ︷
→hβ · · · →hβ s and |D| ≥ k+|s|hβ .

Proof. By induction on |D|. If t is hβ-normal, then the claim follows from the lemma
about typing hβ-normal forms, taking s = t and k = 0.

Otherwise, t →hβ t′ and by quantitative subject reduction there is D′ ▷NI Γ ⊢ t′ : A with
|D| > |D′|. By induction hypothesis, t′ →∗

hβ s in k hβ-steps for some hβ-normal s with
|D′| ≥ k + |s|hβ . Hence, t →∗

hβ s in k+1 hβ-steps and |D| ≥ |D′|+ 1 ≥ k + 1+ |s|hβ .

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 15 / 20

Correctness of NI: typability implies hβ-normalization

Proposition (Quantitative subject reduction)
If D ▷NI Γ ⊢ t : A and t →hβ t′, then there is D′ ▷NI Γ ⊢ t′ : A with |D| > |D′|.

Proof. By induction on the definition t →hβ t′. The only non-trivial case is when
t = (λx .u)s →hβ u{s/x} = t′: then, D must have the form below, with Γ = Γ′ ⊎ Γ′′.

D =

..... Du

Γ′x : M ⊢ u : A
λ

Γ′ ⊢ λx.u : M ⊸ A

..... Ds

Γ′′ ⊢ s : M
@

Γ′ ⊎ Γ′′ ⊢ (λx.u)s : A

By substitution lemma, there is D′ ▷NI Γ ⊢ u{s/x} : A
with |D′| = |Du|+|Ds |−|M| < |Du|+|Ds |+2 = |D|.

Rmk. The quantitative aspect of subject reduction (i.e. |D| > |D′|) is false:
if t →β t′ instead of t →hβ t′, e.g. λx .x(δδ) →β λx .x(δδ) with δ = λz .zz , see p. 10;
if D and D′ are derivations in the simply typed λ-calculus, instead of NI.

Theorem (Correctness of NI)
If D ▷NIΓ ⊢ t :A then there is s hβ-normal such that t

k hβ-steps︷ ︸︸ ︷
→hβ · · · →hβ s and |D| ≥ k+|s|hβ .

Proof. By induction on |D|. If t is hβ-normal, then the claim follows from the lemma
about typing hβ-normal forms, taking s = t and k = 0.
Otherwise, t →hβ t′ and by quantitative subject reduction there is D′ ▷NI Γ ⊢ t′ : A with
|D| > |D′|. By induction hypothesis, t′ →∗

hβ s in k hβ-steps for some hβ-normal s with
|D′| ≥ k + |s|hβ . Hence, t →∗

hβ s in k+1 hβ-steps and |D| ≥ |D′|+ 1 ≥ k + 1+ |s|hβ .
G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 15 / 20

Ingredients to prove completeness
Rmk. Completeness is the converse of correctness, so their needed ingredients are “dual”.

Lemma (Typability of hβ-normal forms)

If t is hβ-normal, then there is D ▷NI Γ ⊢ t : A with |D| = |t|hβ + 1 = |D|+ |D|var.

Proof. Every hβ-normal term is of the form t = λxn. . . . λx1.yt1 . . . tm for some m, n ∈ N.
For n = 0, we prove (by induction on m ∈ N) the stronger property that, for every k ∈ N
and formula A, there is D ▷NI y : [Ak] ⊢ yt1 . . . tm : Ak with |D| = m+ 1 = m+ |D|var and

Ak =

k times []︷ ︸︸ ︷
[] ⊸ · · · ⊸ [] ⊸ A (note that |yt1 . . . tm|hβ = m).

The statement of the lemma is then proved by induction on n ∈ N.

Lemma (Anti-substitution)

If D ▷NI Γ ⊢ t{s/u} : A, then there are contexts Γ′ and Γ′′, a multi type M and
derivations D′ ▷NI Γ

′, x : M ⊢ t : A and D′′ ▷NI Γ
′′ ⊢ s : M such that Γ = Γ′ ⊎ Γ′′ and

|D| = |D′|+ |D′′| − |M|.

Proof. By structural induction on t. The base case is when t is a variable (either x or
other than x). The other cases follow easily from the inductive hypothesis.

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 16 / 20

Ingredients to prove completeness
Rmk. Completeness is the converse of correctness, so their needed ingredients are “dual”.

Lemma (Typability of hβ-normal forms)

If t is hβ-normal, then there is D ▷NI Γ ⊢ t : A with |D| = |t|hβ + 1 = |D|+ |D|var.

Proof. Every hβ-normal term is of the form t = λxn. . . . λx1.yt1 . . . tm for some m, n ∈ N.
For n = 0, we prove (by induction on m ∈ N) the stronger property that, for every k ∈ N
and formula A, there is D ▷NI y : [Ak] ⊢ yt1 . . . tm : Ak with |D| = m+ 1 = m+ |D|var and

Ak =

k times []︷ ︸︸ ︷
[] ⊸ · · · ⊸ [] ⊸ A (note that |yt1 . . . tm|hβ = m).

The statement of the lemma is then proved by induction on n ∈ N.

Lemma (Anti-substitution)

If D ▷NI Γ ⊢ t{s/u} : A, then there are contexts Γ′ and Γ′′, a multi type M and
derivations D′ ▷NI Γ

′, x : M ⊢ t : A and D′′ ▷NI Γ
′′ ⊢ s : M such that Γ = Γ′ ⊎ Γ′′ and

|D| = |D′|+ |D′′| − |M|.

Proof. By structural induction on t. The base case is when t is a variable (either x or
other than x). The other cases follow easily from the inductive hypothesis.

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 16 / 20

Ingredients to prove completeness
Rmk. Completeness is the converse of correctness, so their needed ingredients are “dual”.

Lemma (Typability of hβ-normal forms)

If t is hβ-normal, then there is D ▷NI Γ ⊢ t : A with |D| = |t|hβ + 1 = |D|+ |D|var.

Proof. Every hβ-normal term is of the form t = λxn. . . . λx1.yt1 . . . tm for some m, n ∈ N.
For n = 0, we prove (by induction on m ∈ N) the stronger property that, for every k ∈ N
and formula A, there is D ▷NI y : [Ak] ⊢ yt1 . . . tm : Ak with |D| = m+ 1 = m+ |D|var and

Ak =

k times []︷ ︸︸ ︷
[] ⊸ · · · ⊸ [] ⊸ A (note that |yt1 . . . tm|hβ = m).

The statement of the lemma is then proved by induction on n ∈ N.

Lemma (Anti-substitution)

If D ▷NI Γ ⊢ t{s/u} : A, then there are contexts Γ′ and Γ′′, a multi type M and
derivations D′ ▷NI Γ

′, x : M ⊢ t : A and D′′ ▷NI Γ
′′ ⊢ s : M such that Γ = Γ′ ⊎ Γ′′ and

|D| = |D′|+ |D′′| − |M|.

Proof. By structural induction on t. The base case is when t is a variable (either x or
other than x). The other cases follow easily from the inductive hypothesis.

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 16 / 20

Completeness of NI: hβ-normalization implies typability

Proposition (Quantitative subject expansion)

If D′ ▷NI Γ ⊢ t′ : A and t →hβ t′, then there is D ▷NI Γ ⊢ t : A with |D| > |D′|.

Proof. By induction on the definition t →hβ t′. The only non-trivial case is when
t = (λx .u)s →hβ u{s/x} = t′: by the anti-substitution lemma, since D′ ▷NI Γ ⊢ t′ : A,

D =

..... Du

Γ′x : M ⊢ u : A
λ

Γ′ ⊢ λx.u : M ⊸ A

..... Ds

Γ′′ ⊢ s : M
@

Γ′ ⊎ Γ′′ ⊢ (λx.u)s : A

there are Du▷NIΓ
′, x : M ⊢ u : A and Ds ▷NIΓ

′′ ⊢ s : M
such that Γ = Γ′ ⊎ Γ′′ and |D′| = |Du| + |Ds | − |M|.
Hence, for D ▷NI Γ ⊢ (λx .u)s : A on the left, |D| =
|Du|+ |Ds |+ 2 > |Du|+ |Ds | − |M| = |D′|.

Rmk. We have seen (in day 1) that subject expansion fails with simple types.

Notation. Given k∈N, we write t →k
hβ s if t

k hβ-steps︷ ︸︸ ︷
→hβ · · · →hβ s (thus t →0

hβ s means t = s).

Theorem (Completeness of NI)

If t →k
hβ s with s hβ-normal, then there is D ▷NI Γ ⊢ t : A with |D| ≥ k + |s|hβ .

Proof. By induction on k∈N.

If k = 0, then t = s and typability of hβ-normal concludes.
Otherwise k > 0 and t →hβ t′ →k−1

hβ s. By induction hypothesis, there is
D′ ▷NI Γ ⊢ t′ : A with |D′| ≥ k − 1 + |s|hβ . By quantitative subject expansion, there is
D ▷NI Γ ⊢ t : A with |D| > |D′|, therefore |D| ≥ |D′|+ 1 ≥ k + |s|hβ .

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 17 / 20

Completeness of NI: hβ-normalization implies typability

Proposition (Quantitative subject expansion)

If D′ ▷NI Γ ⊢ t′ : A and t →hβ t′, then there is D ▷NI Γ ⊢ t : A with |D| > |D′|.

Proof. By induction on the definition t →hβ t′. The only non-trivial case is when
t = (λx .u)s →hβ u{s/x} = t′: by the anti-substitution lemma, since D′ ▷NI Γ ⊢ t′ : A,

D =

..... Du

Γ′x : M ⊢ u : A
λ

Γ′ ⊢ λx.u : M ⊸ A

..... Ds

Γ′′ ⊢ s : M
@

Γ′ ⊎ Γ′′ ⊢ (λx.u)s : A

there are Du▷NIΓ
′, x : M ⊢ u : A and Ds ▷NIΓ

′′ ⊢ s : M
such that Γ = Γ′ ⊎ Γ′′ and |D′| = |Du| + |Ds | − |M|.
Hence, for D ▷NI Γ ⊢ (λx .u)s : A on the left, |D| =
|Du|+ |Ds |+ 2 > |Du|+ |Ds | − |M| = |D′|.

Rmk. We have seen (in day 1) that subject expansion fails with simple types.

Notation. Given k∈N, we write t →k
hβ s if t

k hβ-steps︷ ︸︸ ︷
→hβ · · · →hβ s (thus t →0

hβ s means t = s).

Theorem (Completeness of NI)

If t →k
hβ s with s hβ-normal, then there is D ▷NI Γ ⊢ t : A with |D| ≥ k + |s|hβ .

Proof. By induction on k∈N.

If k = 0, then t = s and typability of hβ-normal concludes.
Otherwise k > 0 and t →hβ t′ →k−1

hβ s. By induction hypothesis, there is
D′ ▷NI Γ ⊢ t′ : A with |D′| ≥ k − 1 + |s|hβ . By quantitative subject expansion, there is
D ▷NI Γ ⊢ t : A with |D| > |D′|, therefore |D| ≥ |D′|+ 1 ≥ k + |s|hβ .

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 17 / 20

Completeness of NI: hβ-normalization implies typability

Proposition (Quantitative subject expansion)

If D′ ▷NI Γ ⊢ t′ : A and t →hβ t′, then there is D ▷NI Γ ⊢ t : A with |D| > |D′|.

Proof. By induction on the definition t →hβ t′. The only non-trivial case is when
t = (λx .u)s →hβ u{s/x} = t′: by the anti-substitution lemma, since D′ ▷NI Γ ⊢ t′ : A,

D =

..... Du

Γ′x : M ⊢ u : A
λ

Γ′ ⊢ λx.u : M ⊸ A

..... Ds

Γ′′ ⊢ s : M
@

Γ′ ⊎ Γ′′ ⊢ (λx.u)s : A

there are Du▷NIΓ
′, x : M ⊢ u : A and Ds ▷NIΓ

′′ ⊢ s : M
such that Γ = Γ′ ⊎ Γ′′ and |D′| = |Du| + |Ds | − |M|.
Hence, for D ▷NI Γ ⊢ (λx .u)s : A on the left, |D| =
|Du|+ |Ds |+ 2 > |Du|+ |Ds | − |M| = |D′|.

Rmk. We have seen (in day 1) that subject expansion fails with simple types.

Notation. Given k∈N, we write t →k
hβ s if t

k hβ-steps︷ ︸︸ ︷
→hβ · · · →hβ s (thus t →0

hβ s means t = s).

Theorem (Completeness of NI)

If t →k
hβ s with s hβ-normal, then there is D ▷NI Γ ⊢ t : A with |D| ≥ k + |s|hβ .

Proof. By induction on k∈N.

If k = 0, then t = s and typability of hβ-normal concludes.
Otherwise k > 0 and t →hβ t′ →k−1

hβ s. By induction hypothesis, there is
D′ ▷NI Γ ⊢ t′ : A with |D′| ≥ k − 1 + |s|hβ . By quantitative subject expansion, there is
D ▷NI Γ ⊢ t : A with |D| > |D′|, therefore |D| ≥ |D′|+ 1 ≥ k + |s|hβ .

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 17 / 20

Completeness of NI: hβ-normalization implies typability

Proposition (Quantitative subject expansion)

If D′ ▷NI Γ ⊢ t′ : A and t →hβ t′, then there is D ▷NI Γ ⊢ t : A with |D| > |D′|.

Proof. By induction on the definition t →hβ t′. The only non-trivial case is when
t = (λx .u)s →hβ u{s/x} = t′: by the anti-substitution lemma, since D′ ▷NI Γ ⊢ t′ : A,

D =

..... Du

Γ′x : M ⊢ u : A
λ

Γ′ ⊢ λx.u : M ⊸ A

..... Ds

Γ′′ ⊢ s : M
@

Γ′ ⊎ Γ′′ ⊢ (λx.u)s : A

there are Du▷NIΓ
′, x : M ⊢ u : A and Ds ▷NIΓ

′′ ⊢ s : M
such that Γ = Γ′ ⊎ Γ′′ and |D′| = |Du| + |Ds | − |M|.
Hence, for D ▷NI Γ ⊢ (λx .u)s : A on the left, |D| =
|Du|+ |Ds |+ 2 > |Du|+ |Ds | − |M| = |D′|.

Rmk. We have seen (in day 1) that subject expansion fails with simple types.

Notation. Given k∈N, we write t →k
hβ s if t

k hβ-steps︷ ︸︸ ︷
→hβ · · · →hβ s (thus t →0

hβ s means t = s).

Theorem (Completeness of NI)

If t →k
hβ s with s hβ-normal, then there is D ▷NI Γ ⊢ t : A with |D| ≥ k + |s|hβ .

Proof. By induction on k∈N. If k = 0, then t = s and typability of hβ-normal concludes.

Otherwise k > 0 and t →hβ t′ →k−1
hβ s. By induction hypothesis, there is

D′ ▷NI Γ ⊢ t′ : A with |D′| ≥ k − 1 + |s|hβ . By quantitative subject expansion, there is
D ▷NI Γ ⊢ t : A with |D| > |D′|, therefore |D| ≥ |D′|+ 1 ≥ k + |s|hβ .

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 17 / 20

Completeness of NI: hβ-normalization implies typability

Proposition (Quantitative subject expansion)

If D′ ▷NI Γ ⊢ t′ : A and t →hβ t′, then there is D ▷NI Γ ⊢ t : A with |D| > |D′|.

Proof. By induction on the definition t →hβ t′. The only non-trivial case is when
t = (λx .u)s →hβ u{s/x} = t′: by the anti-substitution lemma, since D′ ▷NI Γ ⊢ t′ : A,

D =

..... Du

Γ′x : M ⊢ u : A
λ

Γ′ ⊢ λx.u : M ⊸ A

..... Ds

Γ′′ ⊢ s : M
@

Γ′ ⊎ Γ′′ ⊢ (λx.u)s : A

there are Du▷NIΓ
′, x : M ⊢ u : A and Ds ▷NIΓ

′′ ⊢ s : M
such that Γ = Γ′ ⊎ Γ′′ and |D′| = |Du| + |Ds | − |M|.
Hence, for D ▷NI Γ ⊢ (λx .u)s : A on the left, |D| =
|Du|+ |Ds |+ 2 > |Du|+ |Ds | − |M| = |D′|.

Rmk. We have seen (in day 1) that subject expansion fails with simple types.

Notation. Given k∈N, we write t →k
hβ s if t

k hβ-steps︷ ︸︸ ︷
→hβ · · · →hβ s (thus t →0

hβ s means t = s).

Theorem (Completeness of NI)

If t →k
hβ s with s hβ-normal, then there is D ▷NI Γ ⊢ t : A with |D| ≥ k + |s|hβ .

Proof. By induction on k∈N. If k = 0, then t = s and typability of hβ-normal concludes.
Otherwise k > 0 and t →hβ t′ →k−1

hβ s. By induction hypothesis, there is
D′ ▷NI Γ ⊢ t′ : A with |D′| ≥ k − 1 + |s|hβ . By quantitative subject expansion, there is
D ▷NI Γ ⊢ t : A with |D| > |D′|, therefore |D| ≥ |D′|+ 1 ≥ k + |s|hβ .

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 17 / 20

Summing up: characterization of head normalization

Putting together correctness and completeness of NI, we obtain:

Corollary (Characterization of head normalization)

A term t is hβ-normalizing if and only if there is D ▷NI Γ ⊢ t : A. Moreover,
|D| ≥ k + |s|hβ if t →k

hβ s with s hβ-normal.

Rmk. The quantitative information about

the length k of evaluation (head reduction) from t to its hβ-normal form s, and

the head size |s|hβ of the hβ-normal term s

are in the size |D| of D without performing head reduction →hβ or knowing s.

Rmk. |D| is an upper bound to k plus |s|hβ together. NI can be refined so that one can:
1 disentangle the information about k and |s|hβ by means of two different sizes of D,
2 obtain the exact values of k and |s|hβ from these two sizes of D.

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 18 / 20

Summing up: characterization of head normalization

Putting together correctness and completeness of NI, we obtain:

Corollary (Characterization of head normalization)

A term t is hβ-normalizing if and only if there is D ▷NI Γ ⊢ t : A. Moreover,
|D| ≥ k + |s|hβ if t →k

hβ s with s hβ-normal.

Rmk. The quantitative information about

the length k of evaluation (head reduction) from t to its hβ-normal form s, and

the head size |s|hβ of the hβ-normal term s

are in the size |D| of D without performing head reduction →hβ or knowing s.

Rmk. |D| is an upper bound to k plus |s|hβ together. NI can be refined so that one can:
1 disentangle the information about k and |s|hβ by means of two different sizes of D,
2 obtain the exact values of k and |s|hβ from these two sizes of D.

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 18 / 20

Summing up: characterization of head normalization

Putting together correctness and completeness of NI, we obtain:

Corollary (Characterization of head normalization)

A term t is hβ-normalizing if and only if there is D ▷NI Γ ⊢ t : A. Moreover,
|D| ≥ k + |s|hβ if t →k

hβ s with s hβ-normal.

Rmk. The quantitative information about

the length k of evaluation (head reduction) from t to its hβ-normal form s, and

the head size |s|hβ of the hβ-normal term s

are in the size |D| of D without performing head reduction →hβ or knowing s.

Rmk. |D| is an upper bound to k plus |s|hβ together. NI can be refined so that one can:
1 disentangle the information about k and |s|hβ by means of two different sizes of D,
2 obtain the exact values of k and |s|hβ from these two sizes of D.

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 18 / 20

Outline

1 Non-idempotent intersection types for the λ-calculus

2 Characterizing head normalization in NI

3 Conclusion, exercises and bibliography

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 19 / 20

Bibliography

For an (almost gentle) introduction to non-idempotent intersection types:

Antonio Bucciarelli, Delia Kesner, Daniel Ventura. Non-Idempotent Intersection
types for the Lambda-Calculus. Logic Journal of the IGPL, vol. 25, issue 4, pp.
431–464, 2017. https://doi.org/10.1093/jigpal/jzx018

For a very advanced study about non-idempotent intersection types:

Beniamino Accattoli, Stéphan Graham-Lengrand, Delia Kesner. Tight typings
and split bounds, fully developed. Journal of Functional Programming, vol. 30,
14 pages, 2020. https://doi.org/10.1017/S095679682000012X

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 20 / 20

https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1017/S095679682000012X

	Non-idempotent intersection types for the lambda-calculus
	Characterizing head normalization in NIh
	Conclusion, exercises and bibliography

