The λ -calculus: from simple types to non-idempotent intersection types Day 2: The untyped λ -calculus

Giulio Guerrieri

Department of Informatics, University of Sussex (Brighton, UK) LIS, Aix-Marseille Université (Marseille, France) giulio.guerrieri@lis-lab.fr Attps://pageperso.lis-lab.fr/~giulio.guerrieri/

34th European Summer School in Logic, Language and Information (ESSLLI 2023) Ljubljana (Slovenia), 7-11 August 2023

Outline

1 The syntax and the operational semantics of the untyped λ -calculus

2 Programming with the untyped λ -calculus

3 Conclusion, exercises and bibliography

Outline

1 The syntax and the operational semantics of the untyped λ -calculus

2) Programming with the untyped λ -calculus

3 Conclusion, exercises and bibliography

Term and β -reduction of the simply typed λ -calculus can be defined without types. \rightarrow Let us explore the word of the λ -calculus without types.

- What do we gain?
- O What do we lose?

We can freely apply s to t to get st, without requiring $s : A \Rightarrow B$ or t : A.

- Why is there no A such that $\vdash \lambda x.xx : A$ is derivable?
- $(\lambda x.xx)(\lambda x.xx) \rightarrow_{\beta} (xx)\{\lambda x.xx/x\} = (\lambda x.xx)(\lambda x.xx) \rightarrow_{\beta} \dots$ (normalization fails).

Term and β -reduction of the simply typed λ -calculus can be defined without types. \rightarrow Let us explore the word of the λ -calculus without types.

- What do we gain?
- What do we lose?

We can freely apply s to t to get st, without requiring $s : A \Rightarrow B$ or t : A.

- Why is there no A such that $\vdash \lambda x.xx : A$ is derivable?
- $(\lambda x.xx)(\lambda x.xx) \rightarrow_{\beta} (xx)\{\lambda x.xx/x\} = (\lambda x.xx)(\lambda x.xx) \rightarrow_{\beta} \dots$ (normalization fails).

Term and β -reduction of the simply typed λ -calculus can be defined without types. \rightarrow Let us explore the word of the λ -calculus without types.

- What do we gain?
- What do we lose?

We can freely apply s to t to get st, without requiring $s : A \Rightarrow B$ or t : A.

- Why is there no A such that $\vdash \lambda x.xx : A$ is derivable?
- $(\lambda x.xx)(\lambda x.xx) \rightarrow_{\beta} (xx)\{\lambda x.xx/x\} = (\lambda x.xx)(\lambda x.xx) \rightarrow_{\beta} \dots$ (normalization fails).

Term and β -reduction of the simply typed λ -calculus can be defined without types. \rightarrow Let us explore the word of the λ -calculus without types.

- What do we gain?
- What do we lose?

We can freely apply s to t to get st, without requiring $s : A \Rightarrow B$ or t : A.

- Why is there no A such that $\vdash \lambda x.xx : A$ is derivable?
- $(\lambda x.xx)(\lambda x.xx) \rightarrow_{\beta} (xx)\{\lambda x.xx/x\} = (\lambda x.xx)(\lambda x.xx) \rightarrow_{\beta} \dots$ (normalization fails).

Terms: s, t := x (variable) | $\lambda x.t$ (abstraction) | St (application).

The free variables of a term t are the variables that are not bound to a λ . Formally,

$$fv(x) = \{x\}$$
 $fv(st) = fv(s) \cup fv(t)$ $fv(\lambda x.t) = fv(t) \setminus \{x\}$

Terms are identified up to renaming of bound variables (lpha-equivalence), e.g. $\lambda x.x = \lambda y.y$

 β -reduction ($t\{s/x\}$ is the capture-avoiding substitution of s for the free occurrences of x in t):

(the term on the left is a β -redex) $(\lambda x.t)s \rightarrow_{\beta} t\{s/x\}$

Substitution $t\{s/x\}$ should be defined carefully to avoid capture of variables.

 $(\lambda x.yx)\{x/y\} \neq \lambda x.xx$ but $(\lambda x.yx)\{x/y\} = (\lambda z.yz)\{x/y\} = \lambda z.xz$

Terms: s, t ::= x (variable) | $\lambda x.t$ (abstraction) | St (application).

The free variables of a term t are the variables that are not bound to a λ . Formally,

$$\mathsf{fv}(x) = \{x\}$$
 $\mathsf{fv}(st) = \mathsf{fv}(s) \cup \mathsf{fv}(t)$ $\mathsf{fv}(\lambda x.t) = \mathsf{fv}(t) \setminus \{x\}$

Terms are identified up to renaming of bound variables (lpha-equivalence), e.g. $\lambda x.x = \lambda y.y$

 β -reduction ($t\{s/x\}$ is the capture-avoiding substitution of s for the free occurrences of x in t):

(the term on the left is a β -redex) $(\lambda x.t)s \rightarrow_{\beta} t\{s/x\}$

Substitution $t\{s/x\}$ should be defined carefully to avoid capture of variables.

 $(\lambda x.yx)\{x/y\} \neq \lambda x.xx$ but $(\lambda x.yx)\{x/y\} = (\lambda z.yz)\{x/y\} = \lambda z.xz$

Terms: s, t := x (variable) | $\lambda x.t$ (abstraction) | St (application).

The free variables of a term t are the variables that are not bound to a λ . Formally,

$$\mathsf{fv}(x) = \{x\}$$
 $\mathsf{fv}(st) = \mathsf{fv}(s) \cup \mathsf{fv}(t)$ $\mathsf{fv}(\lambda x.t) = \mathsf{fv}(t) \setminus \{x\}$

Terms are identified up to renaming of bound variables (α -equivalence), e.g. $\lambda x.x = \lambda y.y$

 β -reduction ($t\{s/x\}$ is the capture-avoiding substitution of s for the free occurrences of x in t):

(the term on the left is a β -redex) $(\lambda x.t)s \rightarrow_{\beta} t\{s/x\}$

Substitution $t\{s/x\}$ should be defined carefully to avoid capture of variables.

 $(\lambda x.yx)\{x/y\} \neq \lambda x.xx$ but $(\lambda x.yx)\{x/y\} = (\lambda z.yz)\{x/y\} = \lambda z.xz$

Terms: s, t := x (variable) | $\lambda x.t$ (abstraction) | St (application).

The free variables of a term t are the variables that are not bound to a λ . Formally,

$$\mathsf{fv}(x) = \{x\}$$
 $\mathsf{fv}(st) = \mathsf{fv}(s) \cup \mathsf{fv}(t)$ $\mathsf{fv}(\lambda x.t) = \mathsf{fv}(t) \setminus \{x\}$

Terms are identified up to renaming of bound variables (α -equivalence), e.g. $\lambda x.x = \lambda y.y$

 β -reduction ($t\{s/x\}$ is the capture-avoiding substitution of s for the free occurrences of x in t):

(the term on the left is a β -redex) $(\lambda x.t)s \rightarrow_{\beta} t\{s/x\}$

Substitution $t\{s/x\}$ should be defined carefully to avoid capture of variables.

 $(\lambda x.yx)\{x/y\} \neq \lambda x.xx$ but $(\lambda x.yx)\{x/y\} = (\lambda z.yz)\{x/y\} = \lambda z.xz$

Terms: s, t := x (variable) | $\lambda x.t$ (abstraction) | St (application).

The free variables of a term t are the variables that are not bound to a λ . Formally,

$$\mathsf{fv}(x) = \{x\}$$
 $\mathsf{fv}(st) = \mathsf{fv}(s) \cup \mathsf{fv}(t)$ $\mathsf{fv}(\lambda x.t) = \mathsf{fv}(t) \setminus \{x\}$

Terms are identified up to renaming of bound variables (α -equivalence), e.g. $\lambda x.x = \lambda y.y$

 β -reduction ($t\{s/x\}$ is the capture-avoiding substitution of s for the free occurrences of x in t): (the term on the left is a β -redex) ($\lambda x.t$) $s \rightarrow_{\beta} t\{s/x\}$

Substitution $t\{s/x\}$ should be defined carefully to avoid capture of variables.

 $(\lambda x.yx)\{x/y\} \neq \lambda x.xx$ but $(\lambda x.yx)\{x/y\} = (\lambda z.yz)\{x/y\} = \lambda z.xz$

Terms: s, t := x (variable) | $\lambda x.t$ (abstraction) | St (application).

The free variables of a term t are the variables that are not bound to a λ . Formally,

$$\mathsf{fv}(x) = \{x\}$$
 $\mathsf{fv}(st) = \mathsf{fv}(s) \cup \mathsf{fv}(t)$ $\mathsf{fv}(\lambda x.t) = \mathsf{fv}(t) \setminus \{x\}$

Terms are identified up to renaming of bound variables (α -equivalence), e.g. $\lambda x.x = \lambda y.y$

 β -reduction ($t\{s/x\}$ is the capture-avoiding substitution of s for the free occurrences of x in t): (the term on the left is a β -redex) ($\lambda x.t$) $s \rightarrow_{\beta} t\{s/x\}$

Substitution $t\{s/x\}$ should be defined carefully to avoid capture of variables.

$$(\lambda x.yx)\{x/y\} \neq \lambda x.xx$$
 but $(\lambda x.yx)\{x/y\} = (\lambda z.yz)\{x/y\} = \lambda z.xz$

The structure of a term.

Rmk. Every term can be written in a unique way as

 $\lambda x_1 \dots \lambda x_n . ht_1 \dots t_m$ with $m, n \in \mathbb{N}$

where *h* is either a variable (head variable) or a β -redex (head β -redex).

The structure of a term.

Rmk. Every term can be written in a unique way as

 $\lambda x_1 \dots \lambda x_n . ht_1 \dots t_m$ with $m, n \in \mathbb{N}$

where *h* is either a variable (head variable) or a β -redex (head β -redex).

G. Guerrieri (AMU)

(Full) β -reduction \rightarrow_{β} fires a β -redex anywhere in a term. Formally,

$$\frac{1}{(\lambda x.t)s \rightarrow_{\beta} t\{s/x\}} \qquad \frac{t \rightarrow_{\beta} t'}{\lambda x.t \rightarrow_{\beta} \lambda x.t'} \qquad \frac{t \rightarrow_{\beta} t'}{ts \rightarrow_{\beta} t's} \qquad \frac{t \rightarrow_{\beta} t'}{st \rightarrow_{\beta} st'}$$

Head β -reduction $\rightarrow_{h\beta}$ fires a β -redex only in the "head" of a term. Formally,

$$\frac{1}{(\lambda x.t)s \to_{h\beta} t\{s/x\}} \qquad \frac{t \to_{h\beta} t'}{\lambda x.t \to_{h\beta} \lambda x.t'} \qquad \frac{t \to_{h\beta} t' \quad t \neq \lambda x.t}{ts \to_{h\beta} t's}$$

Leftmost-outermost β -reduction $\rightarrow_{h\beta}$ fires the leftmost-outermost β -redex in a term.

 $\frac{1}{(\lambda x.t)s \to_{I\beta} t\{s/x\}} = \frac{t \to_{I\beta} t'}{\lambda x.t \to_{I\beta} \lambda x.t'} = \frac{t \to_{I\beta} t' \quad t \neq \lambda x.r}{ts \to_{I\beta} t's} = \frac{t \to_{I\beta} t' \quad s \text{ neutral}}{st \to_{I\beta} st'}$

where neutral means $s = xs_1 \dots x_n$ and s_1, \dots, s_n normal, for some $n \in \mathbb{N}$.

Rmk. $\rightarrow_{h\beta} \subsetneq \rightarrow_{l\beta} \subsetneq \rightarrow_{\beta}$. For strictness, consider $I = \lambda x.x$ and t = (Ix)(Iy)(Iz). Then, • $t \rightarrow_{h\beta} x(Iy)(Iz)$ but $t \not\rightarrow_{h\beta} (Ix)y(Iz)$ and $t \not\rightarrow_{h\beta} (Ix)(Iy)z$;

- $x(ly)(lz) \rightarrow_{l\beta} xy(lz)$ but $x(ly)(lz) \not\Rightarrow_{l\beta} x(ly)z;$
- $t \rightarrow_{\beta} (lx)(ly)z$ and $x(ly)(lz) \rightarrow_{\beta} x(ly)z$.

7 / 17

(Full) β -reduction \rightarrow_{β} fires a β -redex anywhere in a term. Formally,

$$\frac{t \to_{\beta} t'}{(\lambda x.t) s \to_{\beta} t\{s/x\}} \qquad \frac{t \to_{\beta} t'}{\lambda x.t \to_{\beta} \lambda x.t'} \qquad \frac{t \to_{\beta} t'}{ts \to_{\beta} t's} \qquad \frac{t \to_{\beta} t'}{st \to_{\beta} st'}$$

Head β -reduction $\rightarrow_{h\beta}$ fires a β -redex only in the "head" of a term. Formally,

$$\frac{1}{(\lambda x.t)s \rightarrow_{h\beta} t\{s/x\}} \qquad \frac{t \rightarrow_{h\beta} t'}{\lambda x.t \rightarrow_{h\beta} \lambda x.t'} \qquad \frac{t \rightarrow_{h\beta} t' \quad t \neq \lambda x.r}{ts \rightarrow_{h\beta} t's}$$

Leftmost-outermost β -reduction $\rightarrow_{h\beta}$ fires the leftmost-outermost β -redex in a term.

 $\frac{t \to_{l\beta} t'}{(\lambda x.t)s \to_{l\beta} t\{s/x\}} = \frac{t \to_{l\beta} t'}{\lambda x.t \to_{l\beta} \lambda x.t'} = \frac{t \to_{l\beta} t'}{ts \to_{l\beta} t's} = \frac{t \to_{l\beta} t' s \text{ neutral}}{st \to_{l\beta} st'}$

where neutral means $s = xs_1 \dots x_n$ and s_1, \dots, s_n normal, for some $n \in \mathbb{N}$.

Rmk. $\rightarrow_{h\beta} \subsetneq \rightarrow_{l\beta} \subsetneq \rightarrow_{\beta}$. For strictness, consider $I = \lambda x.x$ and t = (Ix)(Iy)(Iz). Then, • $t \rightarrow_{h\beta} x(Iy)(Iz)$ but $t \not\rightarrow_{h\beta} (Ix)y(Iz)$ and $t \not\rightarrow_{h\beta} (Ix)(Iy)z$;

- $x(ly)(lz) \rightarrow_{l\beta} xy(lz)$ but $x(ly)(lz) \not\Rightarrow_{l\beta} x(ly)z;$
- $t \rightarrow_{\beta} (lx)(ly)z$ and $x(ly)(lz) \rightarrow_{\beta} x(ly)z$.

7 / 17

(Full) β -reduction \rightarrow_{β} fires a β -redex anywhere in a term. Formally,

$$\frac{t \to_{\beta} t'}{(\lambda x.t) s \to_{\beta} t\{s/x\}} \qquad \frac{t \to_{\beta} t'}{\lambda x.t \to_{\beta} \lambda x.t'} \qquad \frac{t \to_{\beta} t'}{ts \to_{\beta} t's} \qquad \frac{t \to_{\beta} t'}{st \to_{\beta} st'}$$

Head β -reduction $\rightarrow_{h\beta}$ fires a β -redex only in the "head" of a term. Formally,

$$\frac{1}{(\lambda x.t)s \to_{h\beta} t\{s/x\}} \qquad \frac{t \to_{h\beta} t'}{\lambda x.t \to_{h\beta} \lambda x.t'} \qquad \frac{t \to_{h\beta} t' \quad t \neq \lambda x.t}{ts \to_{h\beta} t's}$$

Leftmost-outermost β -reduction $\rightarrow_{h\beta}$ fires the leftmost-outermost β -redex in a term.

 $\frac{1}{(\lambda x.t)s \to_{I\beta} t\{s/x\}} = \frac{t \to_{I\beta} t'}{\lambda x.t \to_{I\beta} \lambda x.t'} = \frac{t \to_{I\beta} t'}{ts \to_{I\beta} t's} = \frac{t \to_{I\beta} t' s \text{ neutral}}{st \to_{I\beta} st'}$

where neutral means $s = xs_1 \dots x_n$ and s_1, \dots, s_n normal, for some $n \in \mathbb{N}$.

Rmk. $\rightarrow_{h\beta} \subsetneq \rightarrow_{l\beta} \subsetneq \rightarrow_{\beta}$. For strictness, consider $I = \lambda x.x$ and t = (Ix)(Iy)(Iz). Then, • $t \rightarrow_{h\beta} x(Iy)(Iz)$ but $t \not\rightarrow_{h\beta} (Ix)y(Iz)$ and $t \not\rightarrow_{h\beta} (Ix)(Iy)z$;

- $x(ly)(lz) \rightarrow_{l\beta} xy(lz)$ but $x(ly)(lz) \not\rightarrow_{l\beta} x(ly)z$;
- $t \rightarrow_{\beta} (lx)(ly)z$ and $x(ly)(lz) \rightarrow_{\beta} x(ly)z$.

7 / 17

(Full) β -reduction \rightarrow_{β} fires a β -redex anywhere in a term. Formally,

$$\frac{t \to_{\beta} t'}{(\lambda x.t) s \to_{\beta} t\{s/x\}} \qquad \frac{t \to_{\beta} t'}{\lambda x.t \to_{\beta} \lambda x.t'} \qquad \frac{t \to_{\beta} t'}{ts \to_{\beta} t's} \qquad \frac{t \to_{\beta} t'}{st \to_{\beta} st'}$$

Head β -reduction $\rightarrow_{h\beta}$ fires a β -redex only in the "head" of a term. Formally,

$$\frac{1}{(\lambda x.t)s \to_{h\beta} t\{s/x\}} \qquad \frac{t \to_{h\beta} t'}{\lambda x.t \to_{h\beta} \lambda x.t'} \qquad \frac{t \to_{h\beta} t' \quad t \neq \lambda x.t}{ts \to_{h\beta} t's}$$

Leftmost-outermost β -reduction $\rightarrow_{h\beta}$ fires the leftmost-outermost β -redex in a term.

 $\frac{1}{(\lambda x.t)s \to_{I\beta} t\{s/x\}} \qquad \frac{t \to_{I\beta} t'}{\lambda x.t \to_{I\beta} \lambda x.t'} \qquad \frac{t \to_{I\beta} t' \quad t \neq \lambda x.r}{ts \to_{I\beta} t's} \qquad \frac{t \to_{I\beta} t' \quad s \text{ neutral}}{st \to_{I\beta} st'}$

where neutral means $s = xs_1 \dots x_n$ and s_1, \dots, s_n normal, for some $n \in \mathbb{N}$.

Rmk. $\rightarrow_{h\beta} \subsetneq \rightarrow_{I\beta} \subsetneq \rightarrow_{\beta}$. For strictness, consider $I = \lambda x.x$ and t = (Ix)(Iy)(Iz). Then, • $t \rightarrow_{h\beta} x(Iy)(Iz)$ but $t \not\rightarrow_{h\beta} (Ix)y(Iz)$ and $t \not\rightarrow_{h\beta} (Ix)(Iy)z$;

- $x(ly)(lz) \rightarrow_{l\beta} xy(lz)$ but $x(ly)(lz) \not\rightarrow_{l\beta} x(ly)z;$
- $t \rightarrow_{\beta} (lx)(ly)z$ and $x(ly)(lz) \rightarrow_{\beta} x(ly)z$.

(Full) β -reduction \rightarrow_{β} fires a β -redex anywhere in a term. Formally,

$$\frac{t \to_{\beta} t'}{(\lambda x.t) s \to_{\beta} t\{s/x\}} \qquad \frac{t \to_{\beta} t'}{\lambda x.t \to_{\beta} \lambda x.t'} \qquad \frac{t \to_{\beta} t'}{ts \to_{\beta} t's} \qquad \frac{t \to_{\beta} t'}{st \to_{\beta} st'}$$

Head β -reduction $\rightarrow_{h\beta}$ fires a β -redex only in the "head" of a term. Formally,

$$\frac{1}{(\lambda x.t)s \to_{h\beta} t\{s/x\}} \qquad \frac{t \to_{h\beta} t'}{\lambda x.t \to_{h\beta} \lambda x.t'} \qquad \frac{t \to_{h\beta} t' \quad t \neq \lambda x.t}{ts \to_{h\beta} t's}$$

Leftmost-outermost β -reduction $\rightarrow_{h\beta}$ fires the leftmost-outermost β -redex in a term.

 $\frac{1}{(\lambda x.t)s \rightarrow_{l\beta} t\{s/x\}} \qquad \frac{t \rightarrow_{l\beta} t'}{\lambda x.t \rightarrow_{l\beta} \lambda x.t'} \qquad \frac{t \rightarrow_{l\beta} t' \quad t \neq \lambda x.r}{ts \rightarrow_{l\beta} t's} \qquad \frac{t \rightarrow_{l\beta} t' \quad s \text{ neutral}}{st \rightarrow_{l\beta} st'}$

where neutral means $s = xs_1 \dots x_n$ and s_1, \dots, s_n normal, for some $n \in \mathbb{N}$.

Rmk. $\rightarrow_{h\beta} \subsetneq \rightarrow_{l\beta} \subsetneq \rightarrow_{\beta}$. For strictness, consider $I = \lambda x.x$ and t = (Ix)(Iy)(Iz). Then, • $t \rightarrow_{h\beta} x(Iy)(Iz)$ but $t \not\rightarrow_{h\beta} (Ix)y(Iz)$ and $t \not\rightarrow_{h\beta} (Ix)(Iy)z$; • $x(Iy)(Iz) \rightarrow_{l\beta} xy(Iz)$ but $x(Iy)(Iz) \not\rightarrow_{l\beta} x(Iy)z$; • $t \rightarrow_{\beta} (Ix)(Iy)z$ and $x(Iy)(Iz) \rightarrow_{\beta} x(Iy)z$.

Rmk. Reductions $\rightarrow_{h\beta}$ and $\rightarrow_{l\beta}$ are deterministic (they can fire at most one redex). So:

If
$$t \rightarrow_r s_1$$
 and $t \rightarrow_r s_2$ then $s_1 = s_2$, for $r \in \{h\beta, I\beta\}$.

Reduction \rightarrow_{β} is not deterministic, it chooses among several β -redexes to fire in a term.

Notation. $t \to^* s$ means that $t = t_0 \xrightarrow{\to t_1 \to \cdots \to} t_n = s$ (in particular, t = s for n = 0).

Theorem (Confluence)

If $t \to_{\beta}^* s_1$ and $t \to_{\beta}^* s_2$, then there is a term r such that $s_1 \to_{\beta}^* r$ and $s_2 \to_{\beta}^* r$.

Def. Let $r \in \{\beta, I\beta, h\beta\}$. A term t is r-normal if there is no s such that $t \rightarrow_r s$.

Proof. By confluence, $s_1 \rightarrow^*_{\beta} r$ and $s_2 \rightarrow^*_{\beta} r$ for some r. By normality, $s_1 = r = s_2$.

G. Guerrieri (AMU)

A-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 8 / 17

Rmk. Reductions $\rightarrow_{h\beta}$ and $\rightarrow_{l\beta}$ are deterministic (they can fire at most one redex). So:

If
$$t \rightarrow_r s_1$$
 and $t \rightarrow_r s_2$ then $s_1 = s_2$, for $r \in \{h\beta, I\beta\}$.

Reduction \rightarrow_{β} is not deterministic, it chooses among several β -redexes to fire in a term.

Notation. $t \to^* s$ means that $t = t_0 \xrightarrow{} t_1 \to \cdots \to t_n = s$ (in particular, t = s for n = 0).

Theorem (Confluence) If $t \to_{\beta}^{*} s_{1}$ and $t \to_{\beta}^{*} s_{2}$, then there is a term r such that $s_{1} \to_{\beta}^{*} r$ and $s_{2} \to_{\beta}^{*} r$. Def. Let $r \in \{\beta, l\beta, h\beta\}$. A term t is r-normal if there is no s such that $t \to_{r} s$. Corollary (Uniqueness of normal form) If $t \to_{\beta}^{*} s_{1}$ and $t \to_{\beta}^{*} s_{2}$ where s_{1} and s_{2} are β -normal, then $s_{1} = s_{2}$.

G. Guerrieri (AMU)

λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 8 / 17

Rmk. Reductions $\rightarrow_{h\beta}$ and $\rightarrow_{l\beta}$ are deterministic (they can fire at most one redex). So:

If
$$t \rightarrow_r s_1$$
 and $t \rightarrow_r s_2$ then $s_1 = s_2$, for $r \in \{h\beta, I\beta\}$.

Reduction \rightarrow_{β} is not deterministic, it chooses among several β -redexes to fire in a term.

Notation. $t \to^* s$ means that $t = t_0 \xrightarrow{for \text{ some } n \in \mathbb{N}} t_n = s$ (in particular, t = s for n = 0).

Theorem (Confluence) If $t \to_{\beta}^{*} s_{1}$ and $t \to_{\beta}^{*} s_{2}$, then there is a term r such that $s_{1} \to_{\beta}^{*} r$ and $s_{2} \to_{\beta}^{*} r$.

Def. Let $r \in \{\beta, I\beta, h\beta\}$. A term t is r-normal if there is no s such that $t \rightarrow_r s$.

Corollary (Uniqueness of normal form)

If $t \rightarrow^*_{\beta} s_1$ and $t \rightarrow^*_{\beta} s_2$ where s_1 and s_2 are β -normal, then $s_1 = s_2$.

Proof. By confluence, $s_1 \rightarrow^*_{\beta} r$ and $s_2 \rightarrow^*_{\beta} r$ for some r. By normality, $s_1 = r = s_2$.

G. Guerrieri (AMU)

A-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 8 / 17

Rmk. Reductions $\rightarrow_{h\beta}$ and $\rightarrow_{l\beta}$ are deterministic (they can fire at most one redex). So:

If
$$t \rightarrow_r s_1$$
 and $t \rightarrow_r s_2$ then $s_1 = s_2$, for $r \in \{h\beta, I\beta\}$.

Reduction \rightarrow_{β} is not deterministic, it chooses among several β -redexes to fire in a term.

Notation. $t \to^* s$ means that $t = t_0 \xrightarrow{for some n \in \mathbb{N}} t_n = s$ (in particular, t = s for n = 0).

Theorem (Confluence) If $t \to_{\beta}^{*} s_{1}$ and $t \to_{\beta}^{*} s_{2}$, then there is a term r such that $s_{1} \to_{\beta}^{*} r$ and $s_{2} \to_{\beta}^{*} r$.

Def. Let $r \in \{\beta, l\beta, h\beta\}$. A term t is r-normal if there is no s such that $t \to_r s$.

Corollary (Uniqueness of normal form) If $t \rightarrow^*_{\beta} s_1$ and $t \rightarrow^*_{\beta} s_2$ where s_1 and s_2 are β -normal, then $s_1 = s_2$. Proof. By confluence, $s_1 \rightarrow^*_{\beta} r$ and $s_2 \rightarrow^*_{\beta} r$ for some r. By normality, $s_1 = r = s_2$.

Def. Let *t* be a term and $r \in \{\beta, I\beta, h\beta\}$.

- **1** t is *r*-normalizing if there is a *r*-normal term *s* such that $t \rightarrow_r^* s$.
- **a** t is strongly r-normalizing if there is no $(t_i)_{i \in \mathbb{N}}$ such that $t = t_0$ and $t_i \rightarrow_r t_{i+1}$.

Ex. Every β -normal form is β -normalizing. Let $\delta = \lambda x.xx$.

- $\delta\delta$ is not β -normalizing: if $\delta\delta \rightarrow_{\beta} t$ then $t = \delta\delta$.
- $(\lambda x.y)(\delta \delta)$ is β -normalizing (indeed $(\lambda x.y)(\delta \delta) \rightarrow_{\beta} y$ which is β -normal) but not strongly β -normalizing (indeed $(\lambda x.y)(\delta \delta) \rightarrow_{\beta} (\lambda x.y)(\delta \delta) \rightarrow_{\beta} ...)$.

Rmk. Strong normalization implies normalization, but the converse fails, see above.

Rmk. Strong normalization and normalization coincide for $\rightarrow_{h\beta}$ and $\rightarrow_{I\beta}$, not for \rightarrow_{β} .

- **Def.** Let *t* be a term and $r \in \{\beta, I\beta, h\beta\}$.
 - **1** t is *r*-normalizing if there is a *r*-normal term *s* such that $t \rightarrow_r^* s$.
 - **2** t is strongly r-normalizing if there is no $(t_i)_{i \in \mathbb{N}}$ such that $t = t_0$ and $t_i \rightarrow_r t_{i+1}$.
- Ex. Every β -normal form is β -normalizing. Let $\delta = \lambda x.xx$.
 - $\delta\delta$ is not β -normalizing: if $\delta\delta \rightarrow_{\beta} t$ then $t = \delta\delta$.
 - $(\lambda x.y)(\delta \delta)$ is β -normalizing (indeed $(\lambda x.y)(\delta \delta) \rightarrow_{\beta} y$ which is β -normal) but not strongly β -normalizing (indeed $(\lambda x.y)(\delta \delta) \rightarrow_{\beta} (\lambda x.y)(\delta \delta) \rightarrow_{\beta} \dots$).

Rmk. Strong normalization implies normalization, but the converse fails, see above.

Rmk. Strong normalization and normalization coincide for $\rightarrow_{h\beta}$ and $\rightarrow_{l\beta}$, not for \rightarrow_{β} .

- **Def.** Let *t* be a term and $r \in \{\beta, I\beta, h\beta\}$.
 - **1** t is *r*-normalizing if there is a *r*-normal term *s* such that $t \rightarrow_r^* s$.
 - **a** t is strongly r-normalizing if there is no $(t_i)_{i \in \mathbb{N}}$ such that $t = t_0$ and $t_i \rightarrow_r t_{i+1}$.
- Ex. Every β -normal form is β -normalizing. Let $\delta = \lambda x.xx$.
 - $\delta\delta$ is not β -normalizing: if $\delta\delta \rightarrow_{\beta} t$ then $t = \delta\delta$.
 - $(\lambda x.y)(\delta \delta)$ is β -normalizing (indeed $(\lambda x.y)(\delta \delta) \rightarrow_{\beta} y$ which is β -normal) but not strongly β -normalizing (indeed $(\lambda x.y)(\delta \delta) \rightarrow_{\beta} (\lambda x.y)(\delta \delta) \rightarrow_{\beta} \dots$).

Rmk. Strong normalization implies normalization, but the converse fails, see above.

Rmk. Strong normalization and normalization coincide for $\rightarrow_{h\beta}$ and $\rightarrow_{l\beta}$, not for \rightarrow_{β} .

- **Def.** Let *t* be a term and $r \in \{\beta, I\beta, h\beta\}$.
 - **1** t is *r*-normalizing if there is a *r*-normal term *s* such that $t \rightarrow_r^* s$.
 - **a** t is strongly r-normalizing if there is no $(t_i)_{i \in \mathbb{N}}$ such that $t = t_0$ and $t_i \rightarrow_r t_{i+1}$.
- Ex. Every β -normal form is β -normalizing. Let $\delta = \lambda x.xx$.
 - $\delta\delta$ is not β -normalizing: if $\delta\delta \rightarrow_{\beta} t$ then $t = \delta\delta$.
 - $(\lambda x.y)(\delta \delta)$ is β -normalizing (indeed $(\lambda x.y)(\delta \delta) \rightarrow_{\beta} y$ which is β -normal) but not strongly β -normalizing (indeed $(\lambda x.y)(\delta \delta) \rightarrow_{\beta} (\lambda x.y)(\delta \delta) \rightarrow_{\beta} \dots$).

Rmk. Strong normalization implies normalization, but the converse fails, see above.

Rmk. Strong normalization and normalization coincide for $\rightarrow_{h\beta}$ and $\rightarrow_{l\beta}$, not for \rightarrow_{β} .

- **Def.** Let *t* be a term and $r \in \{\beta, I\beta, h\beta\}$.
 - **1** t is *r*-normalizing if there is a *r*-normal term *s* such that $t \rightarrow_r^* s$.
 - **a** t is strongly r-normalizing if there is no $(t_i)_{i \in \mathbb{N}}$ such that $t = t_0$ and $t_i \rightarrow_r t_{i+1}$.
- Ex. Every β -normal form is β -normalizing. Let $\delta = \lambda x.xx$.
 - $\delta\delta$ is not β -normalizing: if $\delta\delta \rightarrow_{\beta} t$ then $t = \delta\delta$.
 - $(\lambda x.y)(\delta \delta)$ is β -normalizing (indeed $(\lambda x.y)(\delta \delta) \rightarrow_{\beta} y$ which is β -normal) but not strongly β -normalizing (indeed $(\lambda x.y)(\delta \delta) \rightarrow_{\beta} (\lambda x.y)(\delta \delta) \rightarrow_{\beta} \dots$).

Rmk. Strong normalization implies normalization, but the converse fails, see above.

Rmk. Strong normalization and normalization coincide for $\rightarrow_{h\beta}$ and $\rightarrow_{l\beta}$, not for \rightarrow_{β} .

Fixed point combinator

Def. A fixed point of a term t is a term s such that $s \rightarrow_{\beta}^{*} ts$. A fixed point combinator is a term Y such that Yt is a fixed point of t, for every term t.

Proposition (Fixed point combinator)

Let $A = \lambda a \cdot \lambda f \cdot f(aaf)$ and $\Theta = AA$. Then, Θ is a fixed point combinator.

Proof. $\Theta = (\lambda a.\lambda f.f(aaf))A \rightarrow_{h\beta} \lambda f.f(AAf) = \lambda f.f(\Theta f)$. Therefore, for every term t,

 $\Theta t
ightarrow_{heta} (\lambda f.f(\Theta f))t
ightarrow_{heta} t(\Theta t).$

Rmk. Θ is $h\beta$ -normalizing but not β -normalizing.

Rmk. Theta is not a term of the simply typed λ -calculus, because of the subterm aa.

Rmk. Fixed point combinators such has Θ are crucial to represent recursive functions.

Fixed point combinator

Def. A fixed point of a term *t* is a term *s* such that $s \rightarrow_{\beta}^{*} ts$.

A fixed point combinator is a term Y such that Yt is a fixed point of t, for every term t.

Proposition (Fixed point combinator)

Let $A = \lambda a \cdot \lambda f \cdot f(aaf)$ and $\Theta = AA$. Then, Θ is a fixed point combinator.

Proof. $\Theta = (\lambda a.\lambda f.f(aaf))A \rightarrow_{h\beta} \lambda f.f(AAf) = \lambda f.f(\Theta f)$. Therefore, for every term t, $\Theta t \rightarrow_{h\beta} (\lambda f.f(\Theta f))t \rightarrow_{h\beta} t(\Theta t)$.

Rmk. Θ is $h\beta$ -normalizing but not β -normalizing.

Rmk. Theta is not a term of the simply typed λ -calculus, because of the subterm aa.

Rmk. Fixed point combinators such has Θ are crucial to represent recursive functions.

Fixed point combinator

Def. A fixed point of a term t is a term s such that $s \rightarrow_{\beta}^{*} ts$.

A fixed point combinator is a term Y such that Yt is a fixed point of t, for every term t.

Proposition (Fixed point combinator)

Let $A = \lambda a \cdot \lambda f \cdot f(aaf)$ and $\Theta = AA$. Then, Θ is a fixed point combinator.

Proof. $\Theta = (\lambda a.\lambda f.f(aaf))A \rightarrow_{h\beta} \lambda f.f(AAf) = \lambda f.f(\Theta f)$. Therefore, for every term *t*,

$$\Theta t
ightarrow_{heta} (\lambda f.f(\Theta f))t
ightarrow_{heta} t(\Theta t).$$

Rmk. Θ is $h\beta$ -normalizing but not β -normalizing.

Rmk. Theta is not a term of the simply typed λ -calculus, because of the subterm aa.

Rmk. Fixed point combinators such has Θ are crucial to represent recursive functions.

Outline

The syntax and the operational semantics of the untyped λ -calculus

2 Programming with the untyped λ -calculus

3 Conclusion, exercises and bibliography

Encoding Booleans Goal. Encode propositional classical logic in the untyped λ -calculus.

() We look for a term to encode the NOT: <u>not</u> $\top \rightarrow^*_{\beta} \perp$ and <u>not</u> $\perp \rightarrow^*_{\beta} \top$. (a) To encode the AND: <u>and</u> $s t \to_{\beta}^{*} \underline{\top}$ if $s = t = \underline{\top}$, but <u>and</u> $s t \to_{\beta}^{*} \underline{\bot}$ if $s = \underline{\bot}$ or $t = \underline{\bot}$.

Goal. Encode propositional classical logic in the untyped λ -calculus.

We choose (arbitrarily) two terms to represents true \top and false \bot .

 $\underline{\top} = \lambda x. \lambda y. x \qquad \underline{\perp} = \lambda x. \lambda y. y$

Rmk. For every term s, t, we have $\underline{\top} s t \rightarrow^*_{h\beta} s$ and $\underline{\perp} s t \rightarrow^*_{h\beta} t$.

• We look for a term to encode the NOT: <u>not $\top \rightarrow^*_{\beta} \perp$ </u> and <u>not $\perp \rightarrow^*_{\beta} \perp$ </u>.

not =

(a) To encode the AND: <u>and</u> $s t \rightarrow_{\beta}^* \underline{\top}$ if $s = t = \underline{\top}$, but <u>and</u> $s t \rightarrow_{\beta}^* \underline{\perp}$ if $s = \underline{\perp}$ or $t = \underline{\perp}$.

and =

(a) To encode the OR: <u>ors</u> $t \to_{\beta}^* \perp$ if $s = t = \perp$, but <u>or</u>s $t \to_{\beta}^* \perp$ if $s = \top$ or $t = \top$.

or =

③ To encode the IF-THEN-ELSE: *if* $r s t \rightarrow_{\beta}^{*} s$ if $r = \underline{\top}$ and *if* $r s t \rightarrow_{\beta}^{*} t$ if $r = \underline{\bot}$.

Goal. Encode propositional classical logic in the untyped λ -calculus.

We choose (arbitrarily) two terms to represents true \top and false \perp .

$$\underline{\top} = \lambda x. \lambda y. x \qquad \underline{\perp} = \lambda x. \lambda y. y$$

Rmk. For every term *s*, *t*, we have $\underline{\top} s t \rightarrow^*_{h\beta} s$ and $\underline{\perp} s t \rightarrow^*_{h\beta} t$.

9 We look for a term to encode the NOT: $\underline{not} \perp \rightarrow^*_{\beta} \perp$ and $\underline{not} \perp \rightarrow^*_{\beta} \perp$.

<u>not</u> =

ⓐ To encode the AND: <u>and</u>s $t \to_{\beta}^{*} \pm if s = t = \pm$, but <u>and</u>s $t \to_{\beta}^{*} \pm if s = \pm$ or $t = \pm$.

and =

(a) To encode the OR: <u>or</u>s $t \rightarrow_{\beta}^{*} \perp$ if $s = t = \perp$, but <u>or</u>s $t \rightarrow_{\beta}^{*} \perp$ if $s = \top$ or $t = \top$.

<u>or</u> =

3 To encode the IF-THEN-ELSE: *if r s t* \rightarrow^*_{β} *s* if $r = \top$ and *if r s t* \rightarrow^*_{β} *t* if $r = \bot$.

Goal. Encode propositional classical logic in the untyped λ -calculus.

We choose (arbitrarily) two terms to represents true \top and false \perp .

$$\underline{\top} = \lambda x. \lambda y. x \qquad \underline{\perp} = \lambda x. \lambda y. y$$

Rmk. For every term *s*, *t*, we have $\underline{\top} s t \rightarrow^*_{h\beta} s$ and $\underline{\perp} s t \rightarrow^*_{h\beta} t$.

• We look for a term to encode the NOT: <u>not</u> $\top \rightarrow_{\beta}^* \perp$ and <u>not</u> $\perp \rightarrow_{\beta}^* \top$.

$$\underline{not} = \lambda p.p \bot \top$$

(a) To encode the AND: <u>and</u>s $t \rightarrow_{\beta}^{*} \pm if s = t = \pm$, but <u>and</u>s $t \rightarrow_{\beta}^{*} \pm if s = \pm$ or $t = \pm$.

and =

(a) To encode the OR: <u>or</u>s $t \rightarrow_{\beta}^{*} \perp$ if $s = t = \perp$, but <u>or</u>s $t \rightarrow_{\beta}^{*} \perp$ if $s = \top$ or $t = \top$.

<u>or</u> =

③ To encode the IF-THEN-ELSE: *if r s t* \rightarrow^*_{β} *s* if $r = \top$ and *if r s t* \rightarrow^*_{β} *t* if $r = \bot$.

Goal. Encode propositional classical logic in the untyped λ -calculus.

We choose (arbitrarily) two terms to represents true \top and false \perp .

$$\underline{\top} = \lambda x. \lambda y. x \qquad \underline{\perp} = \lambda x. \lambda y. y$$

Rmk. For every term *s*, *t*, we have $\underline{\top} s t \rightarrow^*_{h\beta} s$ and $\underline{\perp} s t \rightarrow^*_{h\beta} t$.

9 We look for a term to encode the NOT: $\underline{not} \perp \rightarrow^*_{\beta} \perp$ and $\underline{not} \perp \rightarrow^*_{\beta} \perp$.

$$\underline{not} = \lambda p.p \bot \top$$

② To encode the AND: <u>and</u> $s \ t \rightarrow_{\beta}^{*} \perp if \ s = t = \perp$, but <u>and</u> $s \ t \rightarrow_{\beta}^{*} \perp if \ s = \perp$ or $t = \perp$.

<u>and</u> =

(a) To encode the OR: <u>ors</u> $t \rightarrow_{\beta}^* \perp$ if $s = t = \perp$, but <u>or</u>s $t \rightarrow_{\beta}^* \perp$ if $s = \top$ or $t = \top$.

<u>or</u> =

③ To encode the IF-THEN-ELSE: *if r s t* \rightarrow^*_{β} *s* if $r = \top$ and *if r s t* \rightarrow^*_{β} *t* if $r = \bot$.

Goal. Encode propositional classical logic in the untyped λ -calculus.

We choose (arbitrarily) two terms to represents true \top and false \perp .

$$\underline{\top} = \lambda x. \lambda y. x \qquad \underline{\perp} = \lambda x. \lambda y. y$$

Rmk. For every term *s*, *t*, we have $\underline{\top} s t \rightarrow^*_{h\beta} s$ and $\underline{\perp} s t \rightarrow^*_{h\beta} t$.

9 We look for a term to encode the NOT: $\underline{not} \perp \rightarrow^*_{\beta} \perp$ and $\underline{not} \perp \rightarrow^*_{\beta} \perp$.

$$\underline{not} = \lambda p.p \bot \top$$

2 To encode the AND: <u>and</u> $s \ t \rightarrow_{\beta}^{*} \pm if \ s = t = \pm$, but <u>and</u> $s \ t \rightarrow_{\beta}^{*} \pm if \ s = \pm$ or $t = \pm$. <u>and</u> $= \lambda p \cdot \lambda q \cdot pqp$

ⓐ To encode the OR: <u>or</u>s $t \rightarrow_{\beta}^{*} \perp$ if $s = t = \perp$, but <u>or</u>s $t \rightarrow_{\beta}^{*} \perp$ if $s = \top$ or $t = \top$.

<u>or</u> =

③ To encode the IF-THEN-ELSE: <u>if</u> $r s t \rightarrow_{\beta}^{*} s$ if $r = \top$ and <u>if</u> $r s t \rightarrow_{\beta}^{*} t$ if $r = \bot$.

Goal. Encode propositional classical logic in the untyped λ -calculus.

We choose (arbitrarily) two terms to represents true \top and false \bot .

$$\underline{\top} = \lambda x. \lambda y. x \qquad \underline{\perp} = \lambda x. \lambda y. y$$

Rmk. For every term *s*, *t*, we have $\underline{\top} s t \rightarrow^*_{h\beta} s$ and $\underline{\perp} s t \rightarrow^*_{h\beta} t$.

9 We look for a term to encode the NOT: $\underline{not} \perp \rightarrow^*_{\beta} \perp$ and $\underline{not} \perp \rightarrow^*_{\beta} \perp$.

$$\underline{not} = \lambda p.p \bot \top$$

9 To encode the AND: <u>and</u> $s t \rightarrow_{\beta}^{*} \pm if s = t = \pm$, but <u>and</u> $s t \rightarrow_{\beta}^{*} \pm if s = \pm$ or $t = \pm$.

and =
$$\lambda p.\lambda q.pqp$$

(a) To encode the OR: $\underline{ors} t \to_{\beta}^{*} \perp \text{ if } s = t = \perp$, but $\underline{ors} t \to_{\beta}^{*} \perp \text{ if } s = \top$ or $t = \top$.

<u>or</u> =

9 To encode the IF-THEN-ELSE: <u>if</u> $r \ s \ t \rightarrow_{\beta}^* s$ if $r = \underline{\top}$ and <u>if</u> $r \ s \ t \rightarrow_{\beta}^* t$ if $r = \underline{\bot}$.

Goal. Encode propositional classical logic in the untyped λ -calculus.

We choose (arbitrarily) two terms to represents true \top and false \perp .

$$\underline{\top} = \lambda x. \lambda y. x \qquad \underline{\perp} = \lambda x. \lambda y. y$$

Rmk. For every term *s*, *t*, we have $\underline{\top} s t \rightarrow^*_{h\beta} s$ and $\underline{\perp} s t \rightarrow^*_{h\beta} t$.

9 We look for a term to encode the NOT: $\underline{not} \perp \rightarrow^*_{\beta} \perp$ and $\underline{not} \perp \rightarrow^*_{\beta} \perp$.

$$\underline{not} = \lambda p.p \bot \top$$

e To encode the AND: <u>and</u> $s \ t \rightarrow_{\beta}^{*} \pm if \ s = t = \pm$, but <u>and</u> $s \ t \rightarrow_{\beta}^{*} \pm if \ s = \pm$ or $t = \pm$.

$$\underline{and} = \lambda p.\lambda q.pqp$$

9 To encode the OR: <u>or</u> $s t \rightarrow_{\beta}^* \perp$ if $s = t = \perp$, but <u>or</u> $s t \rightarrow_{\beta}^* \perp$ if $s = \top$ or $t = \top$.

$$\underline{or} = \lambda p.\lambda q.ppq$$

9 To encode the IF-THEN-ELSE: <u>if</u> $r \ s \ t \rightarrow_{\beta}^* s$ if $r = \underline{\top}$ and <u>if</u> $r \ s \ t \rightarrow_{\beta}^* t$ if $r = \underline{\bot}$.

$$\underline{if} = \lambda p. \lambda a. \lambda b. pab$$

Encoding arithmetic Goal. Encode the arithmetic in the untyped λ -calculus.

We choose a term <u>n</u> to represents any $n \in \mathbb{N}$ (Church numeral).

 $\underline{n} = \lambda f.\lambda x.f^{n}x = \lambda f.\lambda x.\underbrace{f(f \dots (f x) \dots)}_{n \text{ times } f} \qquad (\text{in particular, } \underline{0} = \lambda f.\lambda x.x)$ The every term s, t, we have $\underline{n} s t \rightarrow_{h\beta}^{*} s^{n} t = \overbrace{s(s \dots (s t) \dots)}^{n \text{ times } s} (n \text{ -iterator}).$

() We look for a term to encode the successor: $\underline{succ} \ \underline{n} \rightarrow^*_{\beta} \underline{n+1}$

succ =

3 To encode the addition: $\underline{add} \underline{m} \underline{n}
ightarrow^*_{eta} \underline{m+m}$

add =

3 To encode the multiplication: $\underline{mult \ m \ n} \rightarrow^*_{\beta} \underline{m \times n}$.

mult =

• To encode the exponentiation: $pow \underline{m} \underline{n} \rightarrow^*_{\beta} \underline{m}^n$.

Goal. Encode the arithmetic in the untyped λ -calculus.

We choose a term \underline{n} to represents any $n \in \mathbb{N}$ (Church numeral).

 $\underline{n} = \lambda f \cdot \lambda x \cdot f^n x = \lambda f \cdot \lambda x \cdot \underbrace{f(f \dots (f \times x) \dots)}_{n \text{ times } f} \quad \text{(in particular, } \underline{0} = \lambda f \cdot \lambda x \cdot x)$ Rmk. For every term s, t, we have $\underline{n} s t \to_{h\beta}^* s^n t = \underbrace{s(s \dots (s \times t) \dots)}_{n \text{ times } s} (n \text{ times } s \times t)$.

() We look for a term to encode the successor: $\underline{succ n} \rightarrow^*_{\beta} \underline{n+1}$.

SUCC =

3) To encode the addition: $\underline{add} \underline{m} \underline{n}
ightarrow_{eta}^{*} \underline{m+m}$

add =

3 To encode the multiplication: $\underline{mult \, m \, n} \rightarrow^*_{\beta} \underline{m \times n}$.

mult =

• To encode the exponentiation: pow $\underline{m} \, \underline{n} \to_{\beta}^{*} \underline{m}^{n}$.

Goal. Encode the arithmetic in the untyped λ -calculus.

We choose a term <u>n</u> to represents any $n \in \mathbb{N}$ (Church numeral).

$$\underline{n} = \lambda f \cdot \lambda x \cdot f^{n} x = \lambda f \cdot \lambda x \cdot \underbrace{f(f \dots (f \times x) \dots)}_{n \text{ times } f} \qquad \text{(in particular, } \underline{0} = \lambda f \cdot \lambda x \cdot x)$$

Rmk. For every term s, t , we have $\underline{n} s t \to_{h\beta}^{*} s^{n} t = \underbrace{s(s \dots (s \times t) \dots)}_{n \text{ times } s} (n \text{ -iterator}).$

9 We look for a term to encode the successor: $\underline{succ} \ \underline{n} \rightarrow^*_{\beta} \underline{n+1}$.

<u>succ</u> =

② To encode the addition: $\underline{add \ m \ n}
ightarrow^*_{eta} \underline{m+m}$

add =

3 To encode the multiplication: $\underline{mult \, m \, n} \rightarrow^*_{\beta} \underline{m \times n}$.

mult =

• To encode the exponentiation: $pow \underline{m} \underline{n} \rightarrow^*_{\beta} \underline{m}^n$.

Goal. Encode the arithmetic in the untyped λ -calculus.

We choose a term \underline{n} to represents any $n \in \mathbb{N}$ (Church numeral).

$$\underline{n} = \lambda f \cdot \lambda x \cdot f^{n} x = \lambda f \cdot \lambda x \cdot \underbrace{f(f \dots (f \times x) \dots)}_{n \text{ times } f} \qquad \text{(in particular, } \underline{0} = \lambda f \cdot \lambda x \cdot x)$$

Rmk. For every term s, t , we have $\underline{n} s t \to_{h\beta}^{*} s^{n} t = \underbrace{s(s \dots (s \times t) \dots)}_{n \text{ times } s} (n \text{ -iterator}).$

• We look for a term to encode the successor: $\underline{succ n} \rightarrow^*_{\beta} \underline{n+1}$. $\underline{succ} = \lambda n \cdot \lambda f \cdot \lambda x \cdot f(nfx)$

Output is a set of the set of

add =

(a) To encode the multiplication: $\underline{mult \ m \ n} \rightarrow^*_{\beta} \underline{m \times n}$.

mult =

• To encode the exponentiation: pow $\underline{m} \, \underline{n} \to^*_{\beta} \, \underline{m}^n$.

Rmk

Goal. Encode the arithmetic in the untyped λ -calculus.

We choose a term \underline{n} to represents any $n \in \mathbb{N}$ (Church numeral).

$$\underline{n} = \lambda f \cdot \lambda x \cdot f^n x = \lambda f \cdot \lambda x \cdot \underbrace{f(f \dots (f \times x) \dots)}_{n \text{ times } f} \quad \text{(in particular, } \underline{0} = \lambda f \cdot \lambda x \cdot x)$$

. For every term s, t , we have $\underline{n} s t \to_{h\beta}^* s^n t = \underbrace{s(s \dots (s \times t) \dots)}_{n \text{ times } s} (n \text{ times } s \times t) \dots (n \text{ -iterator}).$

• We look for a term to encode the successor: <u>succ</u> $\underline{n} \rightarrow^*_{\beta} \underline{n+1}$.

$$\underline{succ} = \lambda n.\lambda f.\lambda x.f(nfx)$$

2 To encode the addition: $\underline{add \ m \ n} \rightarrow^*_{\beta} \underline{m+m}$.

3 To encode the multiplication: $\underline{mult \, m \, n} \rightarrow^*_{\beta} \underline{m \times n}$.

mult =

• To encode the exponentiation: pow $\underline{m} \underline{n} \rightarrow^*_{\beta} \underline{m}^n$.

Goal. Encode the arithmetic in the untyped λ -calculus.

We choose a term \underline{n} to represents any $n \in \mathbb{N}$ (Church numeral).

$$\underline{n} = \lambda f \cdot \lambda x \cdot f^{n} x = \lambda f \cdot \lambda x \cdot \underbrace{f(f \dots (f \times 1) \dots)}_{n \text{ times } f} \qquad \text{(in particular, } \underline{0} = \lambda f \cdot \lambda x \cdot x)$$

Rmk. For every term s, t , we have $\underline{n} s t \to_{h\beta}^{*} s^{n} t = \underbrace{s(s \dots (s \times 1) \dots)}_{n \text{ times } s} (n \text{ -iterator}).$

• We look for a term to encode the successor: $\underline{succ \ n} \rightarrow^*_{\beta} \underline{n+1}$. $\underline{succ} = \lambda n \cdot \lambda f \cdot \lambda x \cdot f(nfx)$

2 To encode the addition:
$$\underline{add \ m \ n} \rightarrow^*_{\beta} \underline{m + m}$$
.
 $\underline{add} = \lambda m.\lambda n.\lambda f.\lambda x.mf(nfx)$

3 To encode the multiplication: $\underline{mult \, m \, n} \rightarrow^*_{\beta} \underline{m \times n}$.

<u>mult</u> =

• To encode the exponentiation: $\underline{pow} \underline{m} \underline{n} \rightarrow^*_{\beta} \underline{m}^n$.

Goal. Encode the arithmetic in the untyped λ -calculus.

We choose a term \underline{n} to represents any $n \in \mathbb{N}$ (Church numeral).

$$\underline{n} = \lambda f \cdot \lambda x \cdot f^{n} x = \lambda f \cdot \lambda x \cdot \underbrace{f(f \dots (f \times 1) \dots)}_{n \text{ times } f} \qquad \text{(in particular, } \underline{0} = \lambda f \cdot \lambda x \cdot x)$$

Rmk. For every term s, t , we have $\underline{n} s t \to_{h\beta}^{*} s^{n} t = \underbrace{s(s \dots (s \times 1) \dots)}_{n \text{ times } s} (n \text{ -iterator}).$

• We look for a term to encode the successor: $\underline{succ n} \rightarrow^*_{\beta} \underline{n+1}$. $\underline{succ} = \lambda n \cdot \lambda f \cdot \lambda x \cdot f(nfx)$

● To encode the addition: $\underline{add \ m \ n} \rightarrow^*_{\beta} \underline{m + m}$. $\underline{add} = \lambda m . \lambda n . \lambda f . \lambda x . m f(nfx)$

③ To encode the multiplication: $\underline{mult \ m \ n} \rightarrow^*_{\beta} \underline{m \times n}$.

<u>mult</u> =

• To encode the exponentiation: $\underline{pow} \underline{m} \underline{n} \rightarrow^*_{\beta} \underline{m}^n$.

Goal. Encode the arithmetic in the untyped λ -calculus.

We choose a term \underline{n} to represents any $n \in \mathbb{N}$ (Church numeral).

$$\underline{n} = \lambda f \cdot \lambda x \cdot f^{n} x = \lambda f \cdot \lambda x \cdot \underbrace{f(f \dots (f \times 1) \dots)}_{n \text{ times } f} \qquad \text{(in particular, } \underline{0} = \lambda f \cdot \lambda x \cdot x)$$

Rmk. For every term s, t , we have $\underline{n} s t \to_{h\beta}^{*} s^{n} t = \underbrace{s(s \dots (s \times 1) \dots)}_{n \text{ times } s} (n \text{ -iterator}).$

• We look for a term to encode the successor: $\underline{succ} \underline{n} \rightarrow^*_{\beta} \underline{n+1}$. $\underline{succ} = \lambda n \cdot \lambda f \cdot \lambda x \cdot f(nfx)$

e To encode the addition: $\underline{add \ m \ n} \rightarrow^*_{\beta} \underline{m + m}$. $add = \lambda m . \lambda n . \lambda f . \lambda x . m f(nfx)$

9 To encode the multiplication: $\underline{mult \ m \ n} \rightarrow^*_{\beta} \underline{m \times n}$.

 $\underline{mult} = \lambda m.\lambda n.\lambda f.m(nf)$

• To encode the exponentiation: $\underline{pow} \underline{m} \underline{n} \rightarrow^*_{\beta} \underline{m}^n$.

$$pow = \lambda m.\lambda n.nm$$

We can encode the functions: *iszero*: $\mathbb{N} \to \{\bot, \top\}$ testing if a natural number is 0 or not, and the predecessor *pred*: $\mathbb{N} \to \mathbb{N}$ such that *pred*(0) = 0 and *pred*(n + 1) = n.

$$\underline{iszero} = \lambda n.n(\lambda x.\underline{\perp}) \underline{\top} \qquad \underline{iszero} \ \underline{n} \rightarrow^*_{\beta} \begin{cases} \underline{\top} & \text{if } n = 0 \\ \underline{\perp} & \text{otherwise.} \end{cases} \qquad \underline{pred} = \dots$$

Question. How can the λ -calculus represent the factorial (typical recursive function)?

$$fact(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \times fact(n-1) & \text{otherwise.} \end{cases}$$

Let us rewrite the definition in a λ -calculus-like style, using IF-THEN-ELSE and <u>mult</u>:

 $F \coloneqq \lambda f. \lambda n. \underline{if(iszero} n) \underline{1(mult} n (f(\underline{pred} n)))$ fact := YF $\rightarrow_{\beta}^{*} F(YF) = F \underline{fact} \rightarrow_{\beta} \lambda n. \underline{if(iszero} n) \underline{1(mult} n (\underline{fact} (pred n)))$

We can encode the functions: *iszero*: $\mathbb{N} \to \{\perp, \top\}$ testing if a natural number is 0 or not, and the predecessor *pred*: $\mathbb{N} \to \mathbb{N}$ such that *pred*(0) = 0 and *pred*(n + 1) = n.

$$\underline{iszero} = \lambda n.n(\lambda x.\underline{\perp}) \underline{\top} \qquad \underline{iszero} \ \underline{n} \rightarrow_{\beta}^{*} \begin{cases} \underline{\top} & \text{if } n = 0 \\ \underline{\perp} & \text{otherwise.} \end{cases} \qquad \underline{pred} = \dots$$

Question. How can the λ -calculus represent the factorial (typical recursive function)?

$$fact(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \times fact(n-1) & \text{otherwise.} \end{cases}$$

Let us rewrite the definition in a λ -calculus-like style, using IF-THEN-ELSE and <u>mult</u>:

<u>fact</u> should satisfies the equation: <u>fact n = if(iszero n)1(mult n(fact (pred n)))</u> $F := \lambda f . \lambda n. \underline{if(iszero n)1(mult n (f (pred n)))}$ $ct := YF \rightarrow_{a}^{*} F(YF) = F fact \rightarrow_{a} \lambda n. \underline{if(iszero n)1(mult n (fact (pred n)))}$

We can encode the functions: *iszero*: $\mathbb{N} \to \{\perp, \top\}$ testing if a natural number is 0 or not, and the predecessor *pred*: $\mathbb{N} \to \mathbb{N}$ such that *pred*(0) = 0 and *pred*(n + 1) = n.

$$\underline{iszero} = \lambda n.n(\lambda x.\underline{\perp}) \underline{\top} \qquad \underline{iszero} \ \underline{n} \rightarrow_{\beta}^{*} \begin{cases} \underline{\top} & \text{if } n = 0 \\ \underline{\perp} & \text{otherwise.} \end{cases} \qquad \underline{pred} = \dots$$

Question. How can the λ -calculus represent the factorial (typical recursive function)?

$$fact(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \times fact(n-1) & \text{otherwise.} \end{cases}$$

Let us rewrite the definition in a λ -calculus-like style, using IF-THEN-ELSE and <u>mult</u>:

<u>fact</u> should satisfies the equation: <u>fact</u> = $\lambda n.if(iszero n) \underline{1}(mult n (fact (pred n)))$ $F := \lambda f. \lambda n.if(iszero n) \underline{1}(mult n (f (pred n)))$ $pot := YE \rightarrow_{a}^{a} E(YE) = E fact \rightarrow_{a} \lambda n.if(iszero n) \underline{1}(mult n (fact (pred n)))$

We can encode the functions: *iszero*: $\mathbb{N} \to \{\perp, \top\}$ testing if a natural number is 0 or not, and the predecessor *pred*: $\mathbb{N} \to \mathbb{N}$ such that *pred*(0) = 0 and *pred*(n + 1) = n.

$$\underline{iszero} = \lambda n.n(\lambda x.\underline{\perp}) \underline{\top} \qquad \underline{iszero} \ \underline{n} \rightarrow_{\beta}^{*} \begin{cases} \underline{\top} & \text{if } n = 0 \\ \underline{\perp} & \text{otherwise.} \end{cases} \qquad \underline{pred} = \dots$$

Question. How can the λ -calculus represent the factorial (typical recursive function)?

$$fact(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \times fact(n-1) & \text{otherwise.} \end{cases}$$

Let us rewrite the definition in a λ -calculus-like style, using IF-THEN-ELSE and <u>mult</u>:

<u>fact</u> should satisfies the equation: $\underline{fact} = \lambda n.\underline{if}(\underline{iszero} n) \underline{1}(\underline{mult} n(\underline{fact}(\underline{pred} n)))$

 $F := \lambda f . \lambda n. \underline{if(iszero} \ n) \underline{1}(\underline{mult} \ n(f(\underline{pred} \ n)))$ $\underline{fact} := YF \rightarrow_{\beta}^{*} F(YF) = F \underline{fact} \rightarrow_{\beta} \lambda n. \underline{if(iszero} \ n) \underline{1}(\underline{mult} \ n(\underline{fact}(\underline{pred} \ n)))$

We can encode the functions: *iszero*: $\mathbb{N} \to \{\perp, \top\}$ testing if a natural number is 0 or not, and the predecessor *pred*: $\mathbb{N} \to \mathbb{N}$ such that *pred*(0) = 0 and *pred*(n + 1) = n.

$$\underline{iszero} = \lambda n.n(\lambda x.\underline{\perp}) \underline{\top} \qquad \underline{iszero} \ \underline{n} \rightarrow_{\beta}^{*} \begin{cases} \underline{\top} & \text{if } n = 0 \\ \underline{\perp} & \text{otherwise.} \end{cases} \qquad \underline{pred} = \dots$$

Question. How can the λ -calculus represent the factorial (typical recursive function)?

$$fact(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \times fact(n-1) & \text{otherwise.} \end{cases}$$

Let us rewrite the definition in a λ -calculus-like style, using IF-THEN-ELSE and <u>mult</u>:

<u>fact</u> should satisfies the equation: <u>fact</u> = $\lambda n.if(iszero n) \underline{1}(mult n (fact (pred n)))$ $F := \lambda f.\lambda n.if(iszero n) \underline{1}(mult n (f (pred n)))$ fact := $YF \rightarrow_{A}^{*} F(YF) = F$ fact $\rightarrow_{B} \lambda n.if(iszero n) \underline{1}(mult n (fact (pred n)))$

We can encode the functions: *iszero*: $\mathbb{N} \to \{\perp, \top\}$ testing if a natural number is 0 or not, and the predecessor *pred*: $\mathbb{N} \to \mathbb{N}$ such that *pred*(0) = 0 and *pred*(n + 1) = n.

$$\underline{iszero} = \lambda n.n(\lambda x.\underline{\perp}) \underline{\top} \qquad \underline{iszero} \ \underline{n} \rightarrow_{\beta}^{*} \begin{cases} \underline{\top} & \text{if } n = 0 \\ \underline{\perp} & \text{otherwise.} \end{cases} \qquad \underline{pred} = \dots$$

Question. How can the λ -calculus represent the factorial (typical recursive function)?

$$fact(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \times fact(n-1) & \text{otherwise.} \end{cases}$$

Let us rewrite the definition in a λ -calculus-like style, using IF-THEN-ELSE and <u>mult</u>:

 $\underline{fact} \text{ should satisfies the equation:} \quad \underline{fact} = \lambda n.\underline{if}(\underline{iszero} \ n) \underline{1}(\underline{mult} \ n(\underline{fact}(\underline{pred} \ n)))$ $F := \lambda f.\lambda n.\underline{if}(\underline{iszero} \ n) \underline{1}(\underline{mult} \ n(f(\underline{pred} \ n)))$ $\underline{fact} := YF \quad \rightarrow_{\beta}^{*} F(YF) = F \ \underline{fact} \rightarrow_{\beta} \lambda n.\underline{if}(\underline{iszero} \ n) \underline{1}(\underline{mult} \ n(\underline{fact}(\underline{pred} \ n)))$

Def. Let $f: \mathbb{N}^n \to \mathbb{N}$ be partial. A term Φ represents f when, for all $k_1, \ldots, k_n \in \mathbb{N}$: **a** if $f(k_1, \ldots, k_n)$ is undefined, then $\Phi \underline{k_1} \ldots \underline{k_n}$ is not $h\beta$ -normalizing; **a** if $f(k_1, \ldots, k_n) = k \in \mathbb{N}$, then $\Phi k_1 \ldots k_n \to_{\beta}^* \underline{k}$.

Theorem (Representability)

Every partial recursive function $f: \mathbb{N}^n \to \mathbb{N}$ is representable by a term in the λ -calculus.

Rmk. According to Church's thesis, the λ -calculus can represent everything is computable.

Rmk. If Φ represents a partial function $f: \mathbb{N}^k \to \mathbb{N}$, then Φ could have whatever behavior when applied to arguments t_1, \ldots, t_k that are not Church numerals.

Def. Let $f: \mathbb{N}^n \to \mathbb{N}$ be partial. A term Φ represents f when, for all $k_1, \ldots, k_n \in \mathbb{N}$: **a** if $f(k_1, \ldots, k_n)$ is undefined, then $\Phi \underline{k_1} \ldots \underline{k_n}$ is not $h\beta$ -normalizing; **b** if $f(k_1, \ldots, k_n) = k \in \mathbb{N}$, then $\Phi k_1 \ldots k_n \to_{\beta}^* \underline{k}$.

Theorem (Representability)

Every partial recursive function $f : \mathbb{N}^n \to \mathbb{N}$ is representable by a term in the λ -calculus.

Rmk. According to Church's thesis, the λ -calculus can represent everything is computable.

Rmk. If Φ represents a partial function $f: \mathbb{N}^k \to \mathbb{N}$, then Φ could have whatever behavior when applied to arguments t_1, \ldots, t_k that are **not** Church numerals.

Def. Let $f: \mathbb{N}^n \to \mathbb{N}$ be partial. A term Φ represents f when, for all $k_1, \ldots, k_n \in \mathbb{N}$: **a** if $f(k_1, \ldots, k_n)$ is undefined, then $\Phi \underline{k_1} \ldots \underline{k_n}$ is not $h\beta$ -normalizing; **b** if $f(k_1, \ldots, k_n) = k \in \mathbb{N}$, then $\Phi k_1 \ldots k_n \to_{\beta}^* \underline{k}$.

Theorem (Representability)

Every partial recursive function $f : \mathbb{N}^n \to \mathbb{N}$ is representable by a term in the λ -calculus.

Rmk. According to Church's thesis, the λ -calculus can represent everything is computable.

Rmk. If Φ represents a partial function $f : \mathbb{N}^k \to \mathbb{N}$, then Φ could have whatever behavior when applied to arguments t_1, \ldots, t_k that are not Church numerals.

Def. Let $f: \mathbb{N}^n \to \mathbb{N}$ be partial. A term Φ represents f when, for all $k_1, \ldots, k_n \in \mathbb{N}$: **a** if $f(k_1, \ldots, k_n)$ is undefined, then $\Phi \underline{k_1} \ldots \underline{k_n}$ is not $h\beta$ -normalizing; **a** if $f(k_1, \ldots, k_n) = k \in \mathbb{N}$, then $\Phi \underline{k_1} \ldots \underline{k_n} \to_{\beta}^* \underline{k}$.

Theorem (Representability)

Every partial recursive function $f \colon \mathbb{N}^n \to \mathbb{N}$ is representable by a term in the λ -calculus.

Rmk. According to Church's thesis, the λ -calculus can represent everything is computable.

Rmk. If Φ represents a partial function $f : \mathbb{N}^k \to \mathbb{N}$, then Φ could have whatever behavior when applied to arguments t_1, \ldots, t_k that are not Church numerals.

Outline

) The syntax and the operational semantics of the untyped λ -calculus

2) Programming with the untyped λ -calculus

3 Conclusion, exercises and bibliography

Bibliography

- For more about the untyped λ -calculus:
 - Jean-Louis Krivine. Lambda-Calculus. Types and Models. Ellis Horwood. 1990. [Chapters 1-2] https://www.irif.fr/~krivine/articles/Lambda.pdf

- Peter Selinger. Lecture Notes on the Lambda Calculus. vol. 0804, Department of Mathematics and Statistics, University of Ottawa. 2008 [Chapters 2-3] http://www.mathstat.dal.ca/~selinger/papers/lambdanotes.pdf
- Henk P. Barendregt. The Lambda-Calculus. Its Syntax and Semantics. Studies in Logic and the Foundations of Mathematics, vol. 103, North Holland, 1984. [Chapters 2-3, 6, 8]
- For an elegant proof of the confluence of β -reduction:
 - Masako Takahashi. Parallel Reductions in λ-Calculus. Information and Computation, vol. 118, issue 1, pages 120-127. 1995. https://doi.org/10.1006/inco.1995.1057