
The λ-calculus: from simple types to non-idempotent intersection types
Day 2: The untyped λ-calculus

Giulio Guerrieri

Department of Informatics, University of Sussex (Brighton, UK)
LIS, Aix-Marseille Université (Marseille, France)

B giulio.guerrieri@lis-lab.fr � https://pageperso.lis-lab.fr/~giulio.guerrieri/

34th European Summer School in Logic, Language and Information (ESSLLI 2023)

Ljubljana (Slovenia), 7-11 August 2023

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 1 / 17

mailto:giulio.guerrieri@lis-lab.fr
https://pageperso.lis-lab.fr/~giulio.guerrieri/

Outline

1 The syntax and the operational semantics of the untyped λ-calculus

2 Programming with the untyped λ-calculus

3 Conclusion, exercises and bibliography

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 2 / 17

Outline

1 The syntax and the operational semantics of the untyped λ-calculus

2 Programming with the untyped λ-calculus

3 Conclusion, exercises and bibliography

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 3 / 17

The λ-calculus beyond simple types

Term and β-reduction of the simply typed λ-calculus can be defined without types.
⇝ Let us explore the word of the λ-calculus without types.

1 What do we gain?
2 What do we lose?

We can freely apply s to t to get st, without requiring s : A ⇒ B or t : A.

Consider the term λx .xx . It not a term for the simply typed λ-calculus.

Why is there no A such that ⊢ λx .xx : A is derivable?

(λx .xx)(λx .xx) →β (xx){λx .xx/x} = (λx .xx)(λx .xx) →β . . . (normalization fails).

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 4 / 17

The λ-calculus beyond simple types

Term and β-reduction of the simply typed λ-calculus can be defined without types.
⇝ Let us explore the word of the λ-calculus without types.

1 What do we gain?
2 What do we lose?

We can freely apply s to t to get st, without requiring s : A ⇒ B or t : A.

Consider the term λx .xx . It not a term for the simply typed λ-calculus.

Why is there no A such that ⊢ λx .xx : A is derivable?

(λx .xx)(λx .xx) →β (xx){λx .xx/x} = (λx .xx)(λx .xx) →β . . . (normalization fails).

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 4 / 17

The λ-calculus beyond simple types

Term and β-reduction of the simply typed λ-calculus can be defined without types.
⇝ Let us explore the word of the λ-calculus without types.

1 What do we gain?
2 What do we lose?

We can freely apply s to t to get st, without requiring s : A ⇒ B or t : A.

Consider the term λx .xx . It not a term for the simply typed λ-calculus.

Why is there no A such that ⊢ λx .xx : A is derivable?

(λx .xx)(λx .xx) →β (xx){λx .xx/x} = (λx .xx)(λx .xx) →β . . . (normalization fails).

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 4 / 17

The λ-calculus beyond simple types

Term and β-reduction of the simply typed λ-calculus can be defined without types.
⇝ Let us explore the word of the λ-calculus without types.

1 What do we gain?
2 What do we lose?

We can freely apply s to t to get st, without requiring s : A ⇒ B or t : A.

Consider the term λx .xx . It not a term for the simply typed λ-calculus.

Why is there no A such that ⊢ λx .xx : A is derivable?

(λx .xx)(λx .xx) →β (xx){λx .xx/x} = (λx .xx)(λx .xx) →β . . . (normalization fails).

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 4 / 17

The untyped λ-calculus

Terms: s, t ::= x (variable) | λx .t (abstraction) | st (application).

The free variables of a term t are the variables that are not bound to a λ. Formally,

fv(x) = {x} fv(st) = fv(s) ∪ fv(t) fv(λx .t) = fv(t) \ {x}

Terms are identified up to renaming of bound variables (α-equivalence), e.g. λx .x = λy .y

β-reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(the term on the left is a β-redex) (λx .t)s →β t{s/x}

Substitution t{s/x} should be defined carefully to avoid capture of variables.

(λx .yx){x/y} ̸= λx .xx but (λx .yx){x/y} = (λz .yz){x/y} = λz .xz

To write t{s/x}, first take t such that its bound variables are not in fv(s) then substitute.

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 5 / 17

The untyped λ-calculus

Terms: s, t ::= x (variable) | λx .t (abstraction) | st (application).

The free variables of a term t are the variables that are not bound to a λ. Formally,

fv(x) = {x} fv(st) = fv(s) ∪ fv(t) fv(λx .t) = fv(t) \ {x}

Terms are identified up to renaming of bound variables (α-equivalence), e.g. λx .x = λy .y

β-reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(the term on the left is a β-redex) (λx .t)s →β t{s/x}

Substitution t{s/x} should be defined carefully to avoid capture of variables.

(λx .yx){x/y} ̸= λx .xx but (λx .yx){x/y} = (λz .yz){x/y} = λz .xz

To write t{s/x}, first take t such that its bound variables are not in fv(s) then substitute.

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 5 / 17

The untyped λ-calculus

Terms: s, t ::= x (variable) | λx .t (abstraction) | st (application).

The free variables of a term t are the variables that are not bound to a λ. Formally,

fv(x) = {x} fv(st) = fv(s) ∪ fv(t) fv(λx .t) = fv(t) \ {x}

Terms are identified up to renaming of bound variables (α-equivalence), e.g. λx .x = λy .y

β-reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(the term on the left is a β-redex) (λx .t)s →β t{s/x}

Substitution t{s/x} should be defined carefully to avoid capture of variables.

(λx .yx){x/y} ̸= λx .xx but (λx .yx){x/y} = (λz .yz){x/y} = λz .xz

To write t{s/x}, first take t such that its bound variables are not in fv(s) then substitute.

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 5 / 17

The untyped λ-calculus

Terms: s, t ::= x (variable) | λx .t (abstraction) | st (application).

The free variables of a term t are the variables that are not bound to a λ. Formally,

fv(x) = {x} fv(st) = fv(s) ∪ fv(t) fv(λx .t) = fv(t) \ {x}

Terms are identified up to renaming of bound variables (α-equivalence), e.g. λx .x = λy .y

β-reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(the term on the left is a β-redex) (λx .t)s →β t{s/x}

Substitution t{s/x} should be defined carefully to avoid capture of variables.

(λx .yx){x/y} ̸= λx .xx but (λx .yx){x/y} = (λz .yz){x/y} = λz .xz

To write t{s/x}, first take t such that its bound variables are not in fv(s) then substitute.

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 5 / 17

The untyped λ-calculus

Terms: s, t ::= x (variable) | λx .t (abstraction) | st (application).

The free variables of a term t are the variables that are not bound to a λ. Formally,

fv(x) = {x} fv(st) = fv(s) ∪ fv(t) fv(λx .t) = fv(t) \ {x}

Terms are identified up to renaming of bound variables (α-equivalence), e.g. λx .x = λy .y

β-reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(the term on the left is a β-redex) (λx .t)s →β t{s/x}

Substitution t{s/x} should be defined carefully to avoid capture of variables.

(λx .yx){x/y} ̸= λx .xx but (λx .yx){x/y} = (λz .yz){x/y} = λz .xz

To write t{s/x}, first take t such that its bound variables are not in fv(s) then substitute.

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 5 / 17

The untyped λ-calculus

Terms: s, t ::= x (variable) | λx .t (abstraction) | st (application).

The free variables of a term t are the variables that are not bound to a λ. Formally,

fv(x) = {x} fv(st) = fv(s) ∪ fv(t) fv(λx .t) = fv(t) \ {x}

Terms are identified up to renaming of bound variables (α-equivalence), e.g. λx .x = λy .y

β-reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(the term on the left is a β-redex) (λx .t)s →β t{s/x}

Substitution t{s/x} should be defined carefully to avoid capture of variables.

(λx .yx){x/y} ̸= λx .xx but (λx .yx){x/y} = (λz .yz){x/y} = λz .xz

To write t{s/x}, first take t such that its bound variables are not in fv(s) then substitute.

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 5 / 17

The structure of a term.

Rmk. Every term can be written in a unique way as

λx1 . . . λxn.ht1 . . . tm with m, n ∈ N

where h is either a variable (head variable) or a β-redex (head β-redex).

λx1

...

λxn

@

. .
.

tn

@

h t1

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 6 / 17

The structure of a term.

Rmk. Every term can be written in a unique way as

λx1 . . . λxn.ht1 . . . tm with m, n ∈ N

where h is either a variable (head variable) or a β-redex (head β-redex).

λx1

...

λxn

@

. .
.

tn

@

h t1

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 6 / 17

Different notions of reduction

(Full) β-reduction →β fires a β-redex anywhere in a term. Formally,

(λx.t)s →β t{s/x}
t →β t′

λx.t →β λx.t′

t →β t′

ts →β t′s

t →β t′

st →β st′

Head β-reduction →hβ fires a β-redex only in the “head” of a term. Formally,

(λx.t)s →hβ t{s/x}
t →hβ t′

λx.t →hβ λx.t′

t →hβ t′ t ̸= λx.r

ts →hβ t′s

Leftmost-outermost β-reduction →hβ fires the leftmost-outermost β-redex in a term.

(λx.t)s →lβ t{s/x}
t →lβ t′

λx.t →lβ λx.t′

t →lβ t′ t ̸= λx.r

ts →lβ t′s

t →lβ t′ s neutral

st →lβ st′

where neutral means s = xs1 . . . xn and s1, . . . , sn normal, for some n ∈ N.

Rmk. →hβ ⊊ →lβ ⊊ →β . For strictness, consider I = λx .x and t = (Ix)(Iy)(Iz). Then,

t →hβ x(Iy)(Iz) but t ̸→hβ (Ix)y(Iz) and t ̸→hβ (Ix)(Iy)z ;

x(Iy)(Iz) →lβ xy(Iz) but x(Iy)(Iz) ̸→lβ x(Iy)z ;

t →β (Ix)(Iy)z and x(Iy)(Iz) →β x(Iy)z .

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 7 / 17

Different notions of reduction

(Full) β-reduction →β fires a β-redex anywhere in a term. Formally,

(λx.t)s →β t{s/x}
t →β t′

λx.t →β λx.t′

t →β t′

ts →β t′s

t →β t′

st →β st′

Head β-reduction →hβ fires a β-redex only in the “head” of a term. Formally,

(λx.t)s →hβ t{s/x}
t →hβ t′

λx.t →hβ λx.t′

t →hβ t′ t ̸= λx.r

ts →hβ t′s

Leftmost-outermost β-reduction →hβ fires the leftmost-outermost β-redex in a term.

(λx.t)s →lβ t{s/x}
t →lβ t′

λx.t →lβ λx.t′

t →lβ t′ t ̸= λx.r

ts →lβ t′s

t →lβ t′ s neutral

st →lβ st′

where neutral means s = xs1 . . . xn and s1, . . . , sn normal, for some n ∈ N.

Rmk. →hβ ⊊ →lβ ⊊ →β . For strictness, consider I = λx .x and t = (Ix)(Iy)(Iz). Then,

t →hβ x(Iy)(Iz) but t ̸→hβ (Ix)y(Iz) and t ̸→hβ (Ix)(Iy)z ;

x(Iy)(Iz) →lβ xy(Iz) but x(Iy)(Iz) ̸→lβ x(Iy)z ;

t →β (Ix)(Iy)z and x(Iy)(Iz) →β x(Iy)z .

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 7 / 17

Different notions of reduction

(Full) β-reduction →β fires a β-redex anywhere in a term. Formally,

(λx.t)s →β t{s/x}
t →β t′

λx.t →β λx.t′

t →β t′

ts →β t′s

t →β t′

st →β st′

Head β-reduction →hβ fires a β-redex only in the “head” of a term. Formally,

(λx.t)s →hβ t{s/x}
t →hβ t′

λx.t →hβ λx.t′

t →hβ t′ t ̸= λx.r

ts →hβ t′s

Leftmost-outermost β-reduction →hβ fires the leftmost-outermost β-redex in a term.

(λx.t)s →lβ t{s/x}
t →lβ t′

λx.t →lβ λx.t′

t →lβ t′ t ̸= λx.r

ts →lβ t′s

t →lβ t′ s neutral

st →lβ st′

where neutral means s = xs1 . . . xn and s1, . . . , sn normal, for some n ∈ N.

Rmk. →hβ ⊊ →lβ ⊊ →β . For strictness, consider I = λx .x and t = (Ix)(Iy)(Iz). Then,

t →hβ x(Iy)(Iz) but t ̸→hβ (Ix)y(Iz) and t ̸→hβ (Ix)(Iy)z ;

x(Iy)(Iz) →lβ xy(Iz) but x(Iy)(Iz) ̸→lβ x(Iy)z ;

t →β (Ix)(Iy)z and x(Iy)(Iz) →β x(Iy)z .

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 7 / 17

Different notions of reduction

(Full) β-reduction →β fires a β-redex anywhere in a term. Formally,

(λx.t)s →β t{s/x}
t →β t′

λx.t →β λx.t′

t →β t′

ts →β t′s

t →β t′

st →β st′

Head β-reduction →hβ fires a β-redex only in the “head” of a term. Formally,

(λx.t)s →hβ t{s/x}
t →hβ t′

λx.t →hβ λx.t′

t →hβ t′ t ̸= λx.r

ts →hβ t′s

Leftmost-outermost β-reduction →hβ fires the leftmost-outermost β-redex in a term.

(λx.t)s →lβ t{s/x}
t →lβ t′

λx.t →lβ λx.t′

t →lβ t′ t ̸= λx.r

ts →lβ t′s

t →lβ t′ s neutral

st →lβ st′

where neutral means s = xs1 . . . xn and s1, . . . , sn normal, for some n ∈ N.

Rmk. →hβ ⊊ →lβ ⊊ →β . For strictness, consider I = λx .x and t = (Ix)(Iy)(Iz). Then,

t →hβ x(Iy)(Iz) but t ̸→hβ (Ix)y(Iz) and t ̸→hβ (Ix)(Iy)z ;

x(Iy)(Iz) →lβ xy(Iz) but x(Iy)(Iz) ̸→lβ x(Iy)z ;

t →β (Ix)(Iy)z and x(Iy)(Iz) →β x(Iy)z .

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 7 / 17

Different notions of reduction

(Full) β-reduction →β fires a β-redex anywhere in a term. Formally,

(λx.t)s →β t{s/x}
t →β t′

λx.t →β λx.t′

t →β t′

ts →β t′s

t →β t′

st →β st′

Head β-reduction →hβ fires a β-redex only in the “head” of a term. Formally,

(λx.t)s →hβ t{s/x}
t →hβ t′

λx.t →hβ λx.t′

t →hβ t′ t ̸= λx.r

ts →hβ t′s

Leftmost-outermost β-reduction →hβ fires the leftmost-outermost β-redex in a term.

(λx.t)s →lβ t{s/x}
t →lβ t′

λx.t →lβ λx.t′

t →lβ t′ t ̸= λx.r

ts →lβ t′s

t →lβ t′ s neutral

st →lβ st′

where neutral means s = xs1 . . . xn and s1, . . . , sn normal, for some n ∈ N.

Rmk. →hβ ⊊ →lβ ⊊ →β . For strictness, consider I = λx .x and t = (Ix)(Iy)(Iz). Then,

t →hβ x(Iy)(Iz) but t ̸→hβ (Ix)y(Iz) and t ̸→hβ (Ix)(Iy)z ;

x(Iy)(Iz) →lβ xy(Iz) but x(Iy)(Iz) ̸→lβ x(Iy)z ;

t →β (Ix)(Iy)z and x(Iy)(Iz) →β x(Iy)z .

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 7 / 17

Properties of different reductions
Rmk. Reductions →hβ and →lβ are deterministic (they can fire at most one redex). So:

If t →r s1 and t →r s2 then s1 = s2, for r ∈ {hβ, lβ}.

Reduction →β is not deterministic, it chooses among several β-redexes to fire in a term.

((λz.z)y)((λz.z)y)

outermost β-redex︷ ︸︸ ︷
(λx .xx)((λz.z)y︸ ︷︷ ︸

inner β-redex

) (λx .xx)z

β

β

Notation. t →∗ s means that t = t0

for some n∈N︷ ︸︸ ︷
→ t1 → · · · → tn = s (in particular, t = s for n = 0).

Theorem (Confluence)

If t →∗
β s1 and t →∗

β s2, then there is a term r such that s1 →∗
β r and s2 →∗

β r .

Def. Let r ∈ {β, lβ, hβ}. A term t is r-normal if there is no s such that t →r s.

Corollary (Uniqueness of normal form)

If t →∗
β s1 and t →∗

β s2 where s1 and s2 are β-normal, then s1 = s2.

Proof. By confluence, s1 →∗
β r and s2 →∗

β r for some r . By normality, s1 = r = s2.
G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 8 / 17

Properties of different reductions
Rmk. Reductions →hβ and →lβ are deterministic (they can fire at most one redex). So:

If t →r s1 and t →r s2 then s1 = s2, for r ∈ {hβ, lβ}.

Reduction →β is not deterministic, it chooses among several β-redexes to fire in a term.

((λz.z)y)((λz.z)y)

outermost β-redex︷ ︸︸ ︷
(λx .xx)((λz.z)y︸ ︷︷ ︸

inner β-redex

) (λx .xx)z

β

β

Notation. t →∗ s means that t = t0

for some n∈N︷ ︸︸ ︷
→ t1 → · · · → tn = s (in particular, t = s for n = 0).

Theorem (Confluence)

If t →∗
β s1 and t →∗

β s2, then there is a term r such that s1 →∗
β r and s2 →∗

β r .

Def. Let r ∈ {β, lβ, hβ}. A term t is r-normal if there is no s such that t →r s.

Corollary (Uniqueness of normal form)

If t →∗
β s1 and t →∗

β s2 where s1 and s2 are β-normal, then s1 = s2.

Proof. By confluence, s1 →∗
β r and s2 →∗

β r for some r . By normality, s1 = r = s2.
G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 8 / 17

Properties of different reductions
Rmk. Reductions →hβ and →lβ are deterministic (they can fire at most one redex). So:

If t →r s1 and t →r s2 then s1 = s2, for r ∈ {hβ, lβ}.

Reduction →β is not deterministic, it chooses among several β-redexes to fire in a term.

((λz.z)y)((λz.z)y)

outermost β-redex︷ ︸︸ ︷
(λx .xx)((λz.z)y︸ ︷︷ ︸

inner β-redex

) (λx .xx)z

β

β

Notation. t →∗ s means that t = t0

for some n∈N︷ ︸︸ ︷
→ t1 → · · · → tn = s (in particular, t = s for n = 0).

Theorem (Confluence)

If t →∗
β s1 and t →∗

β s2, then there is a term r such that s1 →∗
β r and s2 →∗

β r .

Def. Let r ∈ {β, lβ, hβ}. A term t is r-normal if there is no s such that t →r s.

Corollary (Uniqueness of normal form)

If t →∗
β s1 and t →∗

β s2 where s1 and s2 are β-normal, then s1 = s2.

Proof. By confluence, s1 →∗
β r and s2 →∗

β r for some r . By normality, s1 = r = s2.
G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 8 / 17

Properties of different reductions
Rmk. Reductions →hβ and →lβ are deterministic (they can fire at most one redex). So:

If t →r s1 and t →r s2 then s1 = s2, for r ∈ {hβ, lβ}.

Reduction →β is not deterministic, it chooses among several β-redexes to fire in a term.

((λz.z)y)((λz.z)y)

outermost β-redex︷ ︸︸ ︷
(λx .xx)((λz.z)y︸ ︷︷ ︸

inner β-redex

) (λx .xx)z

β

β

Notation. t →∗ s means that t = t0

for some n∈N︷ ︸︸ ︷
→ t1 → · · · → tn = s (in particular, t = s for n = 0).

Theorem (Confluence)

If t →∗
β s1 and t →∗

β s2, then there is a term r such that s1 →∗
β r and s2 →∗

β r .

Def. Let r ∈ {β, lβ, hβ}. A term t is r-normal if there is no s such that t →r s.

Corollary (Uniqueness of normal form)

If t →∗
β s1 and t →∗

β s2 where s1 and s2 are β-normal, then s1 = s2.

Proof. By confluence, s1 →∗
β r and s2 →∗

β r for some r . By normality, s1 = r = s2.
G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 8 / 17

Normalization, strong normalization and divergence

Def. Let t be a term and r ∈ {β, lβ, hβ}.
1 t is r -normalizing if there is a r -normal term s such that t →∗

r s.
2 t is strongly r -normalizing if there is no (ti)i∈N such that t = t0 and ti →r ti+1.

Ex. Every β-normal form is β-normalizing. Let δ = λx .xx .

δδ is not β-normalizing: if δδ →β t then t = δδ.

(λx .y)(δδ) is β-normalizing (indeed (λx .y)(δδ) →β y which is β-normal) but not
strongly β-normalizing (indeed (λx .y)(δδ) →β (λx .y)(δδ) →β . . .).

Rmk. Strong normalization implies normalization, but the converse fails, see above.

Rmk. Strong normalization and normalization coincide for →hβ and →lβ , not for →β .

Rmk. In the simply typed λ-calculus, every term is β-normalizing (actually, strongly).

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 9 / 17

Normalization, strong normalization and divergence

Def. Let t be a term and r ∈ {β, lβ, hβ}.
1 t is r -normalizing if there is a r -normal term s such that t →∗

r s.
2 t is strongly r -normalizing if there is no (ti)i∈N such that t = t0 and ti →r ti+1.

Ex. Every β-normal form is β-normalizing. Let δ = λx .xx .

δδ is not β-normalizing: if δδ →β t then t = δδ.

(λx .y)(δδ) is β-normalizing (indeed (λx .y)(δδ) →β y which is β-normal) but not
strongly β-normalizing (indeed (λx .y)(δδ) →β (λx .y)(δδ) →β . . .).

Rmk. Strong normalization implies normalization, but the converse fails, see above.

Rmk. Strong normalization and normalization coincide for →hβ and →lβ , not for →β .

Rmk. In the simply typed λ-calculus, every term is β-normalizing (actually, strongly).

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 9 / 17

Normalization, strong normalization and divergence

Def. Let t be a term and r ∈ {β, lβ, hβ}.
1 t is r -normalizing if there is a r -normal term s such that t →∗

r s.
2 t is strongly r -normalizing if there is no (ti)i∈N such that t = t0 and ti →r ti+1.

Ex. Every β-normal form is β-normalizing. Let δ = λx .xx .

δδ is not β-normalizing: if δδ →β t then t = δδ.

(λx .y)(δδ) is β-normalizing (indeed (λx .y)(δδ) →β y which is β-normal) but not
strongly β-normalizing (indeed (λx .y)(δδ) →β (λx .y)(δδ) →β . . .).

Rmk. Strong normalization implies normalization, but the converse fails, see above.

Rmk. Strong normalization and normalization coincide for →hβ and →lβ , not for →β .

Rmk. In the simply typed λ-calculus, every term is β-normalizing (actually, strongly).

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 9 / 17

Normalization, strong normalization and divergence

Def. Let t be a term and r ∈ {β, lβ, hβ}.
1 t is r -normalizing if there is a r -normal term s such that t →∗

r s.
2 t is strongly r -normalizing if there is no (ti)i∈N such that t = t0 and ti →r ti+1.

Ex. Every β-normal form is β-normalizing. Let δ = λx .xx .

δδ is not β-normalizing: if δδ →β t then t = δδ.

(λx .y)(δδ) is β-normalizing (indeed (λx .y)(δδ) →β y which is β-normal) but not
strongly β-normalizing (indeed (λx .y)(δδ) →β (λx .y)(δδ) →β . . .).

Rmk. Strong normalization implies normalization, but the converse fails, see above.

Rmk. Strong normalization and normalization coincide for →hβ and →lβ , not for →β .

Rmk. In the simply typed λ-calculus, every term is β-normalizing (actually, strongly).

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 9 / 17

Normalization, strong normalization and divergence

Def. Let t be a term and r ∈ {β, lβ, hβ}.
1 t is r -normalizing if there is a r -normal term s such that t →∗

r s.
2 t is strongly r -normalizing if there is no (ti)i∈N such that t = t0 and ti →r ti+1.

Ex. Every β-normal form is β-normalizing. Let δ = λx .xx .

δδ is not β-normalizing: if δδ →β t then t = δδ.

(λx .y)(δδ) is β-normalizing (indeed (λx .y)(δδ) →β y which is β-normal) but not
strongly β-normalizing (indeed (λx .y)(δδ) →β (λx .y)(δδ) →β . . .).

Rmk. Strong normalization implies normalization, but the converse fails, see above.

Rmk. Strong normalization and normalization coincide for →hβ and →lβ , not for →β .

Rmk. In the simply typed λ-calculus, every term is β-normalizing (actually, strongly).

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 9 / 17

Fixed point combinator

Def. A fixed point of a term t is a term s such that s →∗
β ts.

A fixed point combinator is a term Y such that Yt is a fixed point of t, for every term t.

Proposition (Fixed point combinator)

Let A = λa.λf .f (aaf) and Θ = AA. Then, Θ is a fixed point combinator.

Proof. Θ = (λa.λf .f (aaf))A →hβ λf .f (AAf) = λf .f (Θf). Therefore, for every term t,

Θt →hβ (λf .f (Θf))t →hβ t(Θt).

Rmk. Θ is hβ-normalizing but not β-normalizing.

Rmk. Theta is not a term of the simply typed λ-calculus, because of the subterm aa.

Rmk. Fixed point combinators such has Θ are crucial to represent recursive functions.

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 10 / 17

Fixed point combinator

Def. A fixed point of a term t is a term s such that s →∗
β ts.

A fixed point combinator is a term Y such that Yt is a fixed point of t, for every term t.

Proposition (Fixed point combinator)

Let A = λa.λf .f (aaf) and Θ = AA. Then, Θ is a fixed point combinator.

Proof. Θ = (λa.λf .f (aaf))A →hβ λf .f (AAf) = λf .f (Θf). Therefore, for every term t,

Θt →hβ (λf .f (Θf))t →hβ t(Θt).

Rmk. Θ is hβ-normalizing but not β-normalizing.

Rmk. Theta is not a term of the simply typed λ-calculus, because of the subterm aa.

Rmk. Fixed point combinators such has Θ are crucial to represent recursive functions.

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 10 / 17

Fixed point combinator

Def. A fixed point of a term t is a term s such that s →∗
β ts.

A fixed point combinator is a term Y such that Yt is a fixed point of t, for every term t.

Proposition (Fixed point combinator)

Let A = λa.λf .f (aaf) and Θ = AA. Then, Θ is a fixed point combinator.

Proof. Θ = (λa.λf .f (aaf))A →hβ λf .f (AAf) = λf .f (Θf). Therefore, for every term t,

Θt →hβ (λf .f (Θf))t →hβ t(Θt).

Rmk. Θ is hβ-normalizing but not β-normalizing.

Rmk. Theta is not a term of the simply typed λ-calculus, because of the subterm aa.

Rmk. Fixed point combinators such has Θ are crucial to represent recursive functions.

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 10 / 17

Outline

1 The syntax and the operational semantics of the untyped λ-calculus

2 Programming with the untyped λ-calculus

3 Conclusion, exercises and bibliography

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 11 / 17

Encoding Booleans
Goal. Encode propositional classical logic in the untyped λ-calculus.

We choose (arbitrarily) two terms to represents true ⊤ and false ⊥.

⊤ = λx .λy .x ⊥ = λx .λy .y

Rmk. For every term s, t, we have ⊤ s t →∗
hβ s and ⊥ s t →∗

hβ t.

1 We look for a term to encode the NOT: not ⊤ →∗
β ⊥ and not ⊥ →∗

β ⊤.

not =

2 To encode the AND: ands t →∗
β ⊤ if s = t = ⊤, but ands t →∗

β ⊥ if s = ⊥ or t=⊥.

and =

3 To encode the OR: ors t →∗
β ⊥ if s = t = ⊥, but ors t →∗

β ⊥ if s = ⊤ or t = ⊤.

or =

4 To encode the IF-THEN-ELSE: if r s t →∗
β s if r = ⊤ and if r s t →∗

β t if r = ⊥.

if =

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 12 / 17

Encoding Booleans
Goal. Encode propositional classical logic in the untyped λ-calculus.

We choose (arbitrarily) two terms to represents true ⊤ and false ⊥.

⊤ = λx .λy .x ⊥ = λx .λy .y

Rmk. For every term s, t, we have ⊤ s t →∗
hβ s and ⊥ s t →∗

hβ t.

1 We look for a term to encode the NOT: not ⊤ →∗
β ⊥ and not ⊥ →∗

β ⊤.

not =

2 To encode the AND: ands t →∗
β ⊤ if s = t = ⊤, but ands t →∗

β ⊥ if s = ⊥ or t=⊥.

and =

3 To encode the OR: ors t →∗
β ⊥ if s = t = ⊥, but ors t →∗

β ⊥ if s = ⊤ or t = ⊤.

or =

4 To encode the IF-THEN-ELSE: if r s t →∗
β s if r = ⊤ and if r s t →∗

β t if r = ⊥.

if =

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 12 / 17

Encoding Booleans
Goal. Encode propositional classical logic in the untyped λ-calculus.

We choose (arbitrarily) two terms to represents true ⊤ and false ⊥.

⊤ = λx .λy .x ⊥ = λx .λy .y

Rmk. For every term s, t, we have ⊤ s t →∗
hβ s and ⊥ s t →∗

hβ t.

1 We look for a term to encode the NOT: not ⊤ →∗
β ⊥ and not ⊥ →∗

β ⊤.

not =

2 To encode the AND: ands t →∗
β ⊤ if s = t = ⊤, but ands t →∗

β ⊥ if s = ⊥ or t=⊥.

and =

3 To encode the OR: ors t →∗
β ⊥ if s = t = ⊥, but ors t →∗

β ⊥ if s = ⊤ or t = ⊤.

or =

4 To encode the IF-THEN-ELSE: if r s t →∗
β s if r = ⊤ and if r s t →∗

β t if r = ⊥.

if =

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 12 / 17

Encoding Booleans
Goal. Encode propositional classical logic in the untyped λ-calculus.

We choose (arbitrarily) two terms to represents true ⊤ and false ⊥.

⊤ = λx .λy .x ⊥ = λx .λy .y

Rmk. For every term s, t, we have ⊤ s t →∗
hβ s and ⊥ s t →∗

hβ t.

1 We look for a term to encode the NOT: not ⊤ →∗
β ⊥ and not ⊥ →∗

β ⊤.

not = λp.p⊥⊤

2 To encode the AND: ands t →∗
β ⊤ if s = t = ⊤, but ands t →∗

β ⊥ if s = ⊥ or t=⊥.

and =

3 To encode the OR: ors t →∗
β ⊥ if s = t = ⊥, but ors t →∗

β ⊥ if s = ⊤ or t = ⊤.

or =

4 To encode the IF-THEN-ELSE: if r s t →∗
β s if r = ⊤ and if r s t →∗

β t if r = ⊥.

if =

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 12 / 17

Encoding Booleans
Goal. Encode propositional classical logic in the untyped λ-calculus.

We choose (arbitrarily) two terms to represents true ⊤ and false ⊥.

⊤ = λx .λy .x ⊥ = λx .λy .y

Rmk. For every term s, t, we have ⊤ s t →∗
hβ s and ⊥ s t →∗

hβ t.

1 We look for a term to encode the NOT: not ⊤ →∗
β ⊥ and not ⊥ →∗

β ⊤.

not = λp.p⊥⊤

2 To encode the AND: ands t →∗
β ⊤ if s = t = ⊤, but ands t →∗

β ⊥ if s = ⊥ or t=⊥.

and =

3 To encode the OR: ors t →∗
β ⊥ if s = t = ⊥, but ors t →∗

β ⊥ if s = ⊤ or t = ⊤.

or =

4 To encode the IF-THEN-ELSE: if r s t →∗
β s if r = ⊤ and if r s t →∗

β t if r = ⊥.

if =

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 12 / 17

Encoding Booleans
Goal. Encode propositional classical logic in the untyped λ-calculus.

We choose (arbitrarily) two terms to represents true ⊤ and false ⊥.

⊤ = λx .λy .x ⊥ = λx .λy .y

Rmk. For every term s, t, we have ⊤ s t →∗
hβ s and ⊥ s t →∗

hβ t.

1 We look for a term to encode the NOT: not ⊤ →∗
β ⊥ and not ⊥ →∗

β ⊤.

not = λp.p⊥⊤

2 To encode the AND: ands t →∗
β ⊤ if s = t = ⊤, but ands t →∗

β ⊥ if s = ⊥ or t=⊥.

and = λp.λq.pqp

3 To encode the OR: ors t →∗
β ⊥ if s = t = ⊥, but ors t →∗

β ⊥ if s = ⊤ or t = ⊤.

or =

4 To encode the IF-THEN-ELSE: if r s t →∗
β s if r = ⊤ and if r s t →∗

β t if r = ⊥.

if =

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 12 / 17

Encoding Booleans
Goal. Encode propositional classical logic in the untyped λ-calculus.

We choose (arbitrarily) two terms to represents true ⊤ and false ⊥.

⊤ = λx .λy .x ⊥ = λx .λy .y

Rmk. For every term s, t, we have ⊤ s t →∗
hβ s and ⊥ s t →∗

hβ t.

1 We look for a term to encode the NOT: not ⊤ →∗
β ⊥ and not ⊥ →∗

β ⊤.

not = λp.p⊥⊤

2 To encode the AND: ands t →∗
β ⊤ if s = t = ⊤, but ands t →∗

β ⊥ if s = ⊥ or t=⊥.

and = λp.λq.pqp

3 To encode the OR: ors t →∗
β ⊥ if s = t = ⊥, but ors t →∗

β ⊥ if s = ⊤ or t = ⊤.

or =

4 To encode the IF-THEN-ELSE: if r s t →∗
β s if r = ⊤ and if r s t →∗

β t if r = ⊥.

if =

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 12 / 17

Encoding Booleans
Goal. Encode propositional classical logic in the untyped λ-calculus.

We choose (arbitrarily) two terms to represents true ⊤ and false ⊥.

⊤ = λx .λy .x ⊥ = λx .λy .y

Rmk. For every term s, t, we have ⊤ s t →∗
hβ s and ⊥ s t →∗

hβ t.

1 We look for a term to encode the NOT: not ⊤ →∗
β ⊥ and not ⊥ →∗

β ⊤.

not = λp.p⊥⊤

2 To encode the AND: ands t →∗
β ⊤ if s = t = ⊤, but ands t →∗

β ⊥ if s = ⊥ or t=⊥.

and = λp.λq.pqp

3 To encode the OR: ors t →∗
β ⊥ if s = t = ⊥, but ors t →∗

β ⊥ if s = ⊤ or t = ⊤.

or = λp.λq.ppq

4 To encode the IF-THEN-ELSE: if r s t →∗
β s if r = ⊤ and if r s t →∗

β t if r = ⊥.

if = λp.λa.λb.pab

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 12 / 17

Encoding arithmetic
Goal. Encode the arithmetic in the untyped λ-calculus.

We choose a term n to represents any n ∈ N (Church numeral).

n = λf .λx .f nx = λf .λx . f (f . . . (f︸ ︷︷ ︸
n times f

x) . . .) (in particular, 0 = λf .λx .x)

Rmk. For every term s, t, we have n s t →∗
hβ snt =

n times s︷ ︸︸ ︷
s(s . . . (s t) . . .) (n-iterator).

1 We look for a term to encode the successor: succ n →∗
β n + 1.

succ =

2 To encode the addition: add m n →∗
β m +m.

add =

3 To encode the multiplication: mult m n →∗
β m × n.

mult =

4 To encode the exponentiation: pow m n →∗
β mn.

pow =

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 13 / 17

Encoding arithmetic
Goal. Encode the arithmetic in the untyped λ-calculus.

We choose a term n to represents any n ∈ N (Church numeral).

n = λf .λx .f nx = λf .λx . f (f . . . (f︸ ︷︷ ︸
n times f

x) . . .) (in particular, 0 = λf .λx .x)

Rmk. For every term s, t, we have n s t →∗
hβ snt =

n times s︷ ︸︸ ︷
s(s . . . (s t) . . .) (n-iterator).

1 We look for a term to encode the successor: succ n →∗
β n + 1.

succ =

2 To encode the addition: add m n →∗
β m +m.

add =

3 To encode the multiplication: mult m n →∗
β m × n.

mult =

4 To encode the exponentiation: pow m n →∗
β mn.

pow =

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 13 / 17

Encoding arithmetic
Goal. Encode the arithmetic in the untyped λ-calculus.

We choose a term n to represents any n ∈ N (Church numeral).

n = λf .λx .f nx = λf .λx . f (f . . . (f︸ ︷︷ ︸
n times f

x) . . .) (in particular, 0 = λf .λx .x)

Rmk. For every term s, t, we have n s t →∗
hβ snt =

n times s︷ ︸︸ ︷
s(s . . . (s t) . . .) (n-iterator).

1 We look for a term to encode the successor: succ n →∗
β n + 1.

succ =

2 To encode the addition: add m n →∗
β m +m.

add =

3 To encode the multiplication: mult m n →∗
β m × n.

mult =

4 To encode the exponentiation: pow m n →∗
β mn.

pow =

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 13 / 17

Encoding arithmetic
Goal. Encode the arithmetic in the untyped λ-calculus.

We choose a term n to represents any n ∈ N (Church numeral).

n = λf .λx .f nx = λf .λx . f (f . . . (f︸ ︷︷ ︸
n times f

x) . . .) (in particular, 0 = λf .λx .x)

Rmk. For every term s, t, we have n s t →∗
hβ snt =

n times s︷ ︸︸ ︷
s(s . . . (s t) . . .) (n-iterator).

1 We look for a term to encode the successor: succ n →∗
β n + 1.

succ = λn.λf .λx .f (nfx)

2 To encode the addition: add m n →∗
β m +m.

add =

3 To encode the multiplication: mult m n →∗
β m × n.

mult =

4 To encode the exponentiation: pow m n →∗
β mn.

pow =

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 13 / 17

Encoding arithmetic
Goal. Encode the arithmetic in the untyped λ-calculus.

We choose a term n to represents any n ∈ N (Church numeral).

n = λf .λx .f nx = λf .λx . f (f . . . (f︸ ︷︷ ︸
n times f

x) . . .) (in particular, 0 = λf .λx .x)

Rmk. For every term s, t, we have n s t →∗
hβ snt =

n times s︷ ︸︸ ︷
s(s . . . (s t) . . .) (n-iterator).

1 We look for a term to encode the successor: succ n →∗
β n + 1.

succ = λn.λf .λx .f (nfx)

2 To encode the addition: add m n →∗
β m +m.

add =

3 To encode the multiplication: mult m n →∗
β m × n.

mult =

4 To encode the exponentiation: pow m n →∗
β mn.

pow =

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 13 / 17

Encoding arithmetic
Goal. Encode the arithmetic in the untyped λ-calculus.

We choose a term n to represents any n ∈ N (Church numeral).

n = λf .λx .f nx = λf .λx . f (f . . . (f︸ ︷︷ ︸
n times f

x) . . .) (in particular, 0 = λf .λx .x)

Rmk. For every term s, t, we have n s t →∗
hβ snt =

n times s︷ ︸︸ ︷
s(s . . . (s t) . . .) (n-iterator).

1 We look for a term to encode the successor: succ n →∗
β n + 1.

succ = λn.λf .λx .f (nfx)

2 To encode the addition: add m n →∗
β m +m.

add = λm.λn.λf .λx .mf (nfx)

3 To encode the multiplication: mult m n →∗
β m × n.

mult =

4 To encode the exponentiation: pow m n →∗
β mn.

pow =

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 13 / 17

Encoding arithmetic
Goal. Encode the arithmetic in the untyped λ-calculus.

We choose a term n to represents any n ∈ N (Church numeral).

n = λf .λx .f nx = λf .λx . f (f . . . (f︸ ︷︷ ︸
n times f

x) . . .) (in particular, 0 = λf .λx .x)

Rmk. For every term s, t, we have n s t →∗
hβ snt =

n times s︷ ︸︸ ︷
s(s . . . (s t) . . .) (n-iterator).

1 We look for a term to encode the successor: succ n →∗
β n + 1.

succ = λn.λf .λx .f (nfx)

2 To encode the addition: add m n →∗
β m +m.

add = λm.λn.λf .λx .mf (nfx)

3 To encode the multiplication: mult m n →∗
β m × n.

mult =

4 To encode the exponentiation: pow m n →∗
β mn.

pow =

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 13 / 17

Encoding arithmetic
Goal. Encode the arithmetic in the untyped λ-calculus.

We choose a term n to represents any n ∈ N (Church numeral).

n = λf .λx .f nx = λf .λx . f (f . . . (f︸ ︷︷ ︸
n times f

x) . . .) (in particular, 0 = λf .λx .x)

Rmk. For every term s, t, we have n s t →∗
hβ snt =

n times s︷ ︸︸ ︷
s(s . . . (s t) . . .) (n-iterator).

1 We look for a term to encode the successor: succ n →∗
β n + 1.

succ = λn.λf .λx .f (nfx)

2 To encode the addition: add m n →∗
β m +m.

add = λm.λn.λf .λx .mf (nfx)

3 To encode the multiplication: mult m n →∗
β m × n.

mult = λm.λn.λf .m(nf)

4 To encode the exponentiation: pow m n →∗
β mn.

pow = λm.λn.nm

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 13 / 17

More about encoding arithmetic: recursion

We can encode the functions: iszero : N → {⊥,⊤} testing if a natural number is 0 or not,
and the predecessor pred : N → N such that pred(0) = 0 and pred(n + 1) = n.

iszero = λn.n(λx .⊥)⊤ iszero n →∗
β

{
⊤ if n = 0
⊥ otherwise.

pred = . . .

Question. How can the λ-calculus represent the factorial (typical recursive function)?

fact(n) =

{
1 if n = 0
n × fact(n − 1) otherwise.

Let us rewrite the definition in a λ-calculus-like style, using IF-THEN-ELSE and mult:

F := λf .λn.if (iszero n) 1 (mult n (f (pred n)))

fact := YF →∗
β F (YF) = F fact →β λn.if (iszero n) 1 (mult n (fact (pred n)))

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 14 / 17

More about encoding arithmetic: recursion

We can encode the functions: iszero : N → {⊥,⊤} testing if a natural number is 0 or not,
and the predecessor pred : N → N such that pred(0) = 0 and pred(n + 1) = n.

iszero = λn.n(λx .⊥)⊤ iszero n →∗
β

{
⊤ if n = 0
⊥ otherwise.

pred = . . .

Question. How can the λ-calculus represent the factorial (typical recursive function)?

fact(n) =

{
1 if n = 0
n × fact(n − 1) otherwise.

Let us rewrite the definition in a λ-calculus-like style, using IF-THEN-ELSE and mult:

fact should satisfies the equation: fact n = if (iszero n) 1 (mult n (fact (pred n)))

F := λf .λn.if (iszero n) 1 (mult n (f (pred n)))

fact := YF →∗
β F (YF) = F fact →β λn.if (iszero n) 1 (mult n (fact (pred n)))

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 14 / 17

More about encoding arithmetic: recursion

We can encode the functions: iszero : N → {⊥,⊤} testing if a natural number is 0 or not,
and the predecessor pred : N → N such that pred(0) = 0 and pred(n + 1) = n.

iszero = λn.n(λx .⊥)⊤ iszero n →∗
β

{
⊤ if n = 0
⊥ otherwise.

pred = . . .

Question. How can the λ-calculus represent the factorial (typical recursive function)?

fact(n) =

{
1 if n = 0
n × fact(n − 1) otherwise.

Let us rewrite the definition in a λ-calculus-like style, using IF-THEN-ELSE and mult:

fact should satisfies the equation: fact = λn.if (iszero n) 1 (mult n (fact (pred n)))

F := λf .λn.if (iszero n) 1 (mult n (f (pred n)))

fact := YF →∗
β F (YF) = F fact →β λn.if (iszero n) 1 (mult n (fact (pred n)))

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 14 / 17

More about encoding arithmetic: recursion

We can encode the functions: iszero : N → {⊥,⊤} testing if a natural number is 0 or not,
and the predecessor pred : N → N such that pred(0) = 0 and pred(n + 1) = n.

iszero = λn.n(λx .⊥)⊤ iszero n →∗
β

{
⊤ if n = 0
⊥ otherwise.

pred = . . .

Question. How can the λ-calculus represent the factorial (typical recursive function)?

fact(n) =

{
1 if n = 0
n × fact(n − 1) otherwise.

Let us rewrite the definition in a λ-calculus-like style, using IF-THEN-ELSE and mult:

fact should satisfies the equation: fact = λn.if (iszero n) 1 (mult n (fact (pred n)))

F := λf .λn.if (iszero n) 1 (mult n (f (pred n)))

fact := YF →∗
β F (YF) = F fact →β λn.if (iszero n) 1 (mult n (fact (pred n)))

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 14 / 17

More about encoding arithmetic: recursion

We can encode the functions: iszero : N → {⊥,⊤} testing if a natural number is 0 or not,
and the predecessor pred : N → N such that pred(0) = 0 and pred(n + 1) = n.

iszero = λn.n(λx .⊥)⊤ iszero n →∗
β

{
⊤ if n = 0
⊥ otherwise.

pred = . . .

Question. How can the λ-calculus represent the factorial (typical recursive function)?

fact(n) =

{
1 if n = 0
n × fact(n − 1) otherwise.

Let us rewrite the definition in a λ-calculus-like style, using IF-THEN-ELSE and mult:

fact should satisfies the equation: fact = λn.if (iszero n) 1 (mult n (fact (pred n)))

F := λf .λn.if (iszero n) 1 (mult n (f (pred n)))

fact := YF →∗
β F (YF) = F fact →β λn.if (iszero n) 1 (mult n (fact (pred n)))

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 14 / 17

More about encoding arithmetic: recursion

We can encode the functions: iszero : N → {⊥,⊤} testing if a natural number is 0 or not,
and the predecessor pred : N → N such that pred(0) = 0 and pred(n + 1) = n.

iszero = λn.n(λx .⊥)⊤ iszero n →∗
β

{
⊤ if n = 0
⊥ otherwise.

pred = . . .

Question. How can the λ-calculus represent the factorial (typical recursive function)?

fact(n) =

{
1 if n = 0
n × fact(n − 1) otherwise.

Let us rewrite the definition in a λ-calculus-like style, using IF-THEN-ELSE and mult:

fact should satisfies the equation: fact = λn.if (iszero n) 1 (mult n (fact (pred n)))

F := λf .λn.if (iszero n) 1 (mult n (f (pred n)))

fact := YF →∗
β F (YF) = F fact →β λn.if (iszero n) 1 (mult n (fact (pred n)))

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 14 / 17

The untyped λ-calculus is Turing-complete!

Def. Let f : Nn ⇀ N be partial. A term Φ represents f when, for all k1, . . . , kn ∈ N:
1 if f (k1, . . . , kn) is undefined, then Φ k1 . . . kn is not hβ-normalizing;
2 if f (k1, . . . , kn) = k ∈ N, then Φ k1 . . . kn →∗

β k.

Theorem (Representability)

Every partial recursive function f : Nn ⇀ N is representable by a term in the λ-calculus.

Rmk. According to Church’s thesis, the λ-calculus can represent everything is computable.

Rmk. If Φ represents a partial function f : Nk ⇀ N, then Φ could have whatever behavior
when applied to arguments t1, . . . , tk that are not Church numerals.

Rmk. In Point 1 of the definition, hβ-normalizing can be replaced by β-normalizing.

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 15 / 17

The untyped λ-calculus is Turing-complete!

Def. Let f : Nn ⇀ N be partial. A term Φ represents f when, for all k1, . . . , kn ∈ N:
1 if f (k1, . . . , kn) is undefined, then Φ k1 . . . kn is not hβ-normalizing;
2 if f (k1, . . . , kn) = k ∈ N, then Φ k1 . . . kn →∗

β k.

Theorem (Representability)

Every partial recursive function f : Nn ⇀ N is representable by a term in the λ-calculus.

Rmk. According to Church’s thesis, the λ-calculus can represent everything is computable.

Rmk. If Φ represents a partial function f : Nk ⇀ N, then Φ could have whatever behavior
when applied to arguments t1, . . . , tk that are not Church numerals.

Rmk. In Point 1 of the definition, hβ-normalizing can be replaced by β-normalizing.

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 15 / 17

The untyped λ-calculus is Turing-complete!

Def. Let f : Nn ⇀ N be partial. A term Φ represents f when, for all k1, . . . , kn ∈ N:
1 if f (k1, . . . , kn) is undefined, then Φ k1 . . . kn is not hβ-normalizing;
2 if f (k1, . . . , kn) = k ∈ N, then Φ k1 . . . kn →∗

β k.

Theorem (Representability)

Every partial recursive function f : Nn ⇀ N is representable by a term in the λ-calculus.

Rmk. According to Church’s thesis, the λ-calculus can represent everything is computable.

Rmk. If Φ represents a partial function f : Nk ⇀ N, then Φ could have whatever behavior
when applied to arguments t1, . . . , tk that are not Church numerals.

Rmk. In Point 1 of the definition, hβ-normalizing can be replaced by β-normalizing.

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 15 / 17

The untyped λ-calculus is Turing-complete!

Def. Let f : Nn ⇀ N be partial. A term Φ represents f when, for all k1, . . . , kn ∈ N:
1 if f (k1, . . . , kn) is undefined, then Φ k1 . . . kn is not hβ-normalizing;
2 if f (k1, . . . , kn) = k ∈ N, then Φ k1 . . . kn →∗

β k.

Theorem (Representability)

Every partial recursive function f : Nn ⇀ N is representable by a term in the λ-calculus.

Rmk. According to Church’s thesis, the λ-calculus can represent everything is computable.

Rmk. If Φ represents a partial function f : Nk ⇀ N, then Φ could have whatever behavior
when applied to arguments t1, . . . , tk that are not Church numerals.

Rmk. In Point 1 of the definition, hβ-normalizing can be replaced by β-normalizing.

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 15 / 17

Outline

1 The syntax and the operational semantics of the untyped λ-calculus

2 Programming with the untyped λ-calculus

3 Conclusion, exercises and bibliography

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 16 / 17

Bibliography

For more about the untyped λ-calculus:

Jean-Louis Krivine. Lambda-Calculus. Types and Models. Ellis Horwood. 1990.
[Chapters 1-2] https://www.irif.fr/~krivine/articles/Lambda.pdf

Peter Selinger. Lecture Notes on the Lambda Calculus. vol. 0804, Department
of Mathematics and Statistics, University of Ottawa. 2008 [Chapters 2-3]
http://www.mathstat.dal.ca/~selinger/papers/lambdanotes.pdf

Henk P. Barendregt. The Lambda-Calculus. Its Syntax and Semantics. Studies
in Logic and the Foundations of Mathematics, vol. 103, North Holland, 1984.
[Chapters 2-3, 6, 8]

For an elegant proof of the confluence of β-reduction:

Masako Takahashi. Parallel Reductions in λ-Calculus. Information and
Computation, vol. 118, issue 1, pages 120-127. 1995.
https://doi.org/10.1006/inco.1995.1057

G. Guerrieri (AMU) λ-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11 17 / 17

https://www.irif.fr/~krivine/articles/Lambda.pdf
http://www.mathstat.dal.ca/~selinger/papers/lambdanotes.pdf
https://doi.org/10.1006/inco.1995.1057

	The syntax and the operational semantics of the untyped lambda-calculus
	Programming with the untyped lambda-calculus
	Conclusion, exercises and bibliography

