The λ-calculus: from simple types to non-idempotent intersection types Day 2: The untyped λ-calculus

Giulio Guerrieri

Department of Informatics, University of Sussex (Brighton, UK)
LIS, Aix-Marseille Université (Marseille, France)
\boxtimes giulio.guerrieri@lis-lab.fr https://pageperso.lis-lab.fr/~giulio.guerrieri/

34th European Summer School in Logic, Language and Information (ESSLLI 2023) Ljubljana (Slovenia), 7-11 August 2023

Outline

(1) The syntax and the operational semantics of the untyped λ-calculus
(2) Programming with the untyped λ-calculus
(3) Conclusion, exercises and bibliography

Outline

(1) The syntax and the operational semantics of the untyped λ-calculus

(2) Programming with the untyped λ-calculus

(3) Conclusion, exercises and bibliography

The λ-calculus beyond simple types

Term and β-reduction of the simply typed λ-calculus can be defined without types. \rightsquigarrow Let us explore the word of the λ-calculus without types.
(1) What do we gain?
(2) What do we lose?

We can freely apply s to t to get $s t$, without requiring $s: A \Rightarrow B$ or $t: A$.
Consider the term λx. $x x$. It not a term for the simply typed λ-calculus.

- Why is there no A such that $\vdash \lambda x . x x: A$ is derivable?
- $(\lambda x \cdot x x)(\lambda x \cdot x x) \rightarrow_{\beta}(x x)\{\lambda x \cdot x x / x\}=(\lambda x \cdot x x)(\lambda x \cdot x x) \rightarrow_{\beta} \ldots$ (normalization fails)

The λ-calculus beyond simple types

Term and β-reduction of the simply typed λ-calculus can be defined without types. \rightsquigarrow Let us explore the word of the λ-calculus without types.
(1) What do we gain?
(2) What do we lose?

We can freely apply s to t to get $s t$, without requiring $s: A \Rightarrow B$ or $t: A$.
Consider the term λx.xx. It not a term for the simply typed λ-calculus.

- Why is there no A such that $\vdash \lambda x . x x: A$ is derivable?
- $(\lambda x \cdot x x)(\lambda x \cdot x x) \rightarrow_{\beta}(x x)\{\lambda x \cdot x x / x\}=(\lambda x \cdot x x)(\lambda x \cdot x x) \rightarrow_{\beta} \ldots$ (normalization fails)

The λ-calculus beyond simple types

Term and β-reduction of the simply typed λ-calculus can be defined without types. \rightsquigarrow Let us explore the word of the λ-calculus without types.
(1) What do we gain?
(2) What do we lose?

We can freely apply s to t to get $s t$, without requiring $s: A \Rightarrow B$ or $t: A$.

Consider the term λx.xx. It not a term for the simply typed λ-calculus.

- Why is there no A such that $\vdash \lambda x . x x: A$ is derivable?
- $(\lambda x \cdot x x)(\lambda x \cdot x x) \rightarrow_{\beta}(x x)\{\lambda x \cdot x x / x\}=(\lambda x \cdot x x)(\lambda x \cdot x x) \rightarrow_{\beta} \ldots$ (normalization fails)

The λ-calculus beyond simple types

Term and β-reduction of the simply typed λ-calculus can be defined without types. \rightsquigarrow Let us explore the word of the λ-calculus without types.
(1) What do we gain?
(2) What do we lose?

We can freely apply s to t to get $s t$, without requiring $s: A \Rightarrow B$ or $t: A$.

Consider the term λx.xx. It not a term for the simply typed λ-calculus.

- Why is there no A such that $\vdash \lambda x . x x: A$ is derivable?
- $(\lambda x \cdot x x)(\lambda x \cdot x x) \rightarrow_{\beta}(x x)\{\lambda x \cdot x x / x\}=(\lambda x \cdot x x)(\lambda x \cdot x x) \rightarrow_{\beta} \ldots$ (normalization fails).

The untyped λ-calculus

Terms: $\quad s, t::=x$ (variable) $\mid \lambda x . t$ (abstraction) $\mid ~ s t$ (application).

The free variables of a term t are the variables that are not bound to a λ. Formally,

$$
f v(x)=\{x\} \quad f v(s t)=f v(s) \cup f v(t) \quad f v(\lambda x . t)=f v(t) \backslash\{x\}
$$

Terms are identified up to renaming of bound variables (α-equivalence), e.g. $\lambda x \cdot x=\lambda y \cdot y$
β-reduction
(the term on the left is a β-redex) $(\lambda x . t) s \rightarrow_{\beta} t\{s / x\}$

Substitution $t\{s / x\}$ should be defined carefully to avoid capture of variables.
$(\lambda x \cdot y x)\{x / y\} \neq \lambda x \cdot x x \quad$ but $\quad(\lambda x \cdot y x)\{x / y\}=(\lambda z \cdot y z)\{x / y\}=\lambda z \cdot x z$
To write $t\{s / x\}$, first take t such that its bound variables are not in $f(s)$ then substitute.

The untyped λ-calculus

Terms: $\quad s, t::=x$ (variable) $\mid \lambda x . t$ (abstraction) $\mid ~ s t$ (application).
The free variables of a term t are the variables that are not bound to a λ. Formally,

$$
f v(x)=\{x\} \quad f v(s t)=f v(s) \cup f v(t) \quad f v(\lambda x . t)=f v(t) \backslash\{x\}
$$

Terms are identified up to renaming of bound variables (α-equivalence), e.g. $\lambda x \cdot x=\lambda y \cdot y$
β-reduction
(the term on the left is a β-redex) $(\lambda x . t) s \rightarrow_{\beta} t\{s / x\}$

Substitution $t\{s / x\}$ should be defined carefully to avoid capture of variables.
$(\lambda x . y x)\{x / y\} \neq \lambda x . x x$ but $\quad(\lambda x . y x)\{x / y\}=(\lambda z . y z)\{x / y\}=\lambda z . x z$
To write $t\{s / x\}$, first take t such that its bound variables are not in $\mathrm{fv}(s)$ then substitute.

The untyped λ-calculus

Terms: $\quad s, t::=x$ (variable) $\mid \lambda x . t$ (abstraction) $\mid s t$ (application).
The free variables of a term t are the variables that are not bound to a λ. Formally,

$$
f v(x)=\{x\} \quad f v(s t)=f v(s) \cup f v(t) \quad f v(\lambda x . t)=f v(t) \backslash\{x\}
$$

Terms are identified up to renaming of bound variables (α-equivalence), e.g. $\lambda x \cdot x=\lambda y \cdot y$

β-reduction

(the term on the left is a β-redex) $(\lambda x . t) s \rightarrow_{\beta} t\{s / x\}$

Substitution $t\{s / x\}$ should be defined carefully to avoid capture of variables.
\square
To write $t\{s / x\}$, first take t such that its bound variables are not in $f v(s)$ then substitute.

The untyped λ-calculus

Terms: $\quad s, t::=x$ (variable) $\mid \lambda x . t$ (abstraction) \mid st (application).
The free variables of a term t are the variables that are not bound to a λ. Formally,

$$
\mathrm{fv}(x)=\{x\} \quad \mathrm{fv}(s t)=\mathrm{fv}(s) \cup \mathrm{fv}(t) \quad \mathrm{fv}(\lambda x . t)=\mathrm{fv}(t) \backslash\{x\}
$$

Terms are identified up to renaming of bound variables (α-equivalence), e.g. $\lambda x \cdot x=\lambda y \cdot y$
β-reduction
(the term on the left is a β-redex) $(\lambda x . t) s \rightarrow_{\beta} t\{s / x\}$

Substitution $t\{s / x\}$ should be defined carefully to avoid capture of variables.

$$
(\lambda x . y x)\{x / y\} \neq \lambda x . x x \quad \text { but } \quad(\lambda x . y x)\{x / y\}=(\lambda z . y z)\{x / y\}=\lambda z \cdot x z
$$

To write $t\{s / x\}$, first take t such that its bound variables are not in $\mathrm{fv}(s)$ then substitute.

The untyped λ-calculus

Terms: $\quad s, t::=x$ (variable) $\mid \lambda x . t$ (abstraction) \mid st (application).
The free variables of a term t are the variables that are not bound to a λ. Formally,

$$
\mathrm{fv}(x)=\{x\} \quad \mathrm{fv}(s t)=\mathrm{fv}(s) \cup \mathrm{fv}(t) \quad \mathrm{fv}(\lambda x . t)=\mathrm{fv}(t) \backslash\{x\}
$$

Terms are identified up to renaming of bound variables (α-equivalence), e.g. $\lambda x \cdot x=\lambda y \cdot y$
β-reduction ($t\{s / x\}$ is the capture-avoiding substitution of s for the free occurrences of x in t): (the term on the left is a β-redex) $(\lambda x . t) s \rightarrow_{\beta} t\{s / x\}$

Substitution $t\{s / x\}$ should be defined carefully to avoid capture of variables.

$$
(\lambda \times y \times)\{x / y\} \neq \lambda x \times x \quad \text { but } \quad(\lambda x . y x)\{x / y\}=(\lambda z . y z)\{x / y\}=\lambda z \cdot x z
$$

To write $t\{s / x\}$, first take t such that its bound variables are not in $\mathrm{fv}(s)$ then substitute.

The untyped λ-calculus

Terms: $\quad s, t::=x$ (variable) $\mid \lambda x$.t (abstraction) \mid st (application).
The free variables of a term t are the variables that are not bound to a λ. Formally,

$$
f v(x)=\{x\} \quad f v(s t)=f v(s) \cup f v(t) \quad f v(\lambda x . t)=f v(t) \backslash\{x\}
$$

Terms are identified up to renaming of bound variables (α-equivalence), e.g. $\lambda x \cdot x=\lambda y . y$
β-reduction ($t\{s / x\}$ is the capture-avoiding substitution of s for the free occurrences of x in t): (the term on the left is a β-redex) $(\lambda x . t) s \rightarrow_{\beta} t\{s / x\}$

Substitution $t\{s / x\}$ should be defined carefully to avoid capture of variables.

$$
(\lambda x \cdot y x)\{x / y\} \neq \lambda x \cdot x x \quad \text { but } \quad(\lambda x \cdot y x)\{x / y\}=(\lambda z \cdot y z)\{x / y\}=\lambda z \cdot x z
$$

To write $t\{s / x\}$, first take t such that its bound variables are not in $\mathrm{fv}(s)$ then substitute.

The structure of a term.
Rmk. Every term can be written in a unique way as
$\lambda x_{1} \ldots \lambda x_{n} . h t_{1} \ldots t_{m} \quad$ with $m, n \in \mathbb{N}$
where h is either a variable (head variable) or a β-redex (head β-redex).

The structure of a term.
Rmk. Every term can be written in a unique way as

$$
\lambda x_{1} \ldots \lambda x_{n} \cdot h t_{1} \ldots t_{m} \quad \text { with } m, n \in \mathbb{N}
$$

where h is either a variable (head variable) or a β-redex (head β-redex).

Different notions of reduction

```
(Full) }\beta\mathrm{ -reduction }\mp@subsup{->}{\beta}{}\mathrm{ fires a }\beta\mathrm{ -redex anywhere in a term. Formally,
    \(\lambdax,t)s->\betatt{s/X}
\(t \rightarrow \beta t^{\prime}\)
\(\lambda x \cdot t \rightarrow \beta \lambda x \cdot t^{\prime}\)
\(\xrightarrow[t \rightarrow \beta t^{\prime}]{t \rightarrow \beta t^{\prime} s}\)
\(t \rightarrow \beta\)
\(s t \rightarrow \beta t^{\prime} \rightarrow t^{\prime}\)
Head \(\beta\)-reduction \(\rightarrow_{h \beta}\) fires a \(\beta\)-redex only in the "head" of a term. Formally,
\(\frac{t \rightarrow_{h \beta} t^{\prime}}{(\lambda x, t)_{S \rightarrow h \beta} t\{s / x\}} \quad \frac{t \rightarrow_{h \beta} t^{\prime}}{\lambda \neq \lambda x . r}\)
Leftmost-outermost \(\beta\)-reduction \(\rightarrow_{h \beta}\) fires the leftmost-outermost \(\beta\)-redex in a term.
\(\frac{t \rightarrow 1 \beta t^{\prime}}{\left.(\lambda x, t) s \rightarrow\right|_{1 \beta} t\{s / x\}} \quad t \rightarrow 1 \beta t^{\prime} t \neq \lambda x \cdot r \quad\) \(t \rightarrow 1 \beta t^{\prime} \quad s\) neutral
where neutral means \(s=x s_{1} \ldots x_{n}\) and \(s_{1}, \ldots, s_{n}\) normal, for some \(n \in \mathbb{N}\).
Rmk. \(\rightarrow_{h \beta} \subsetneq \rightarrow_{i \beta} \subsetneq \rightarrow_{\beta}\). For strictness, consider \(I=\lambda x . x\) and \(t=(I x)(I y)(I z)\). Then,
- \(t \rightarrow_{h \beta} x(I y)(I z)\) but \(t \nrightarrow 力 h \beta(I x) y(I z)\) and \(t \nrightarrow h \beta(I x)(I y) z\);
- \(x(I y)(I z) \rightarrow_{I \beta} x y(I z)\) but \(x(I y)(I z) \rightarrow_{I \beta} x(I y) z ;\)
- \(t \rightarrow_{\beta}(I x)(I y) z\) and \(x(I y)(I z) \rightarrow_{\beta} x(I y) z\).
```


Different notions of reduction

(Full) β-reduction \rightarrow_{β} fires a β-redex anywhere in a term. Formally,
$\frac{t \rightarrow_{\beta} t^{\prime}}{(\lambda x . t) s \rightarrow_{\beta} t\{s / x\}} \quad \frac{t \rightarrow_{\beta} t^{\prime}}{\lambda x . t \rightarrow_{\beta} \lambda x . t^{\prime}} \quad \frac{t \rightarrow_{\beta} t^{\prime}}{t s \rightarrow_{\beta} t^{\prime} s} \quad \frac{t}{s t \rightarrow_{\beta} s t^{\prime}}$
Head β-reduction $\rightarrow_{h \beta}$ fires a β-redex only in the "head" of a term. Formally,

$$
\overline{(\lambda x . t) s \rightarrow_{h \beta} t\{s / x\}}
$$

Leftmost-outermost β-reduction $\rightarrow_{h \beta}$ fires the leftmost-outermost β-redex in a term.
\square
where neutral means $s=x s_{1} \ldots x_{n}$ and s_{1}, \ldots, s_{n} normal, for some $n \in \mathbb{N}$.

Rmk. $\rightarrow_{h \beta} \subsetneq \rightarrow_{I \beta} \subsetneq \rightarrow_{\beta}$. For strictness, consider $I=\lambda x . x$ and $t=(I x)(I y)(I z)$. Then,

- $t \rightarrow_{h \beta} x(I y)(I z)$ but $t \nrightarrow h \beta(I x) y(I z)$ and $t \nrightarrow h \beta(I x)(I y) z$;
- $x(I y)(I z) \rightarrow_{I \beta} x y(I z)$ but $x(I y)(I z) \rightarrow_{I \beta} x(I y) z ;$
- $t \rightarrow_{\beta}(I x)(I y) z$ and $x(I y)(I z) \rightarrow_{\beta} x(I y) z$.

Different notions of reduction

(Full) β-reduction \rightarrow_{β} fires a β-redex anywhere in a term. Formally,

$$
\overline{(\lambda x . t) s \rightarrow_{\beta} t\{s / x\}} \quad \frac{t \rightarrow_{\beta} t^{\prime}}{\lambda x . t \rightarrow_{\beta} \lambda x \cdot t^{\prime}} \quad \frac{t \rightarrow_{\beta} t^{\prime}}{t s \rightarrow_{\beta} t^{\prime} s} \quad \frac{t \rightarrow_{\beta} t^{\prime}}{s t \rightarrow_{\beta} s t^{\prime}}
$$

Head β-reduction $\rightarrow_{h \beta}$ fires a β-redex only in the "head" of a term. Formally,

$$
\overline{(\lambda x . t) s \rightarrow_{h \beta} t\{s / x\}} \quad \frac{t \rightarrow_{h \beta} t^{\prime}}{\lambda x . t \rightarrow_{h \beta} \lambda x . t^{\prime}} \quad \frac{t \rightarrow_{h \beta} t^{\prime} \quad t \neq \lambda x . r}{t s \rightarrow_{h \beta} t^{\prime} s}
$$

Leftmost-outermost β-reduction $\rightarrow_{h \beta}$ fires the leftmost-outermost β-redex in a term.
where neutral means $s=x s_{1} \ldots x_{n}$ and s_{1}, \ldots, s_{n} normal, for some $n \in \mathbb{N}$.

Different notions of reduction

(Full) β-reduction \rightarrow_{β} fires a β-redex anywhere in a term. Formally,

$$
\overline{(\lambda x . t) s \rightarrow_{\beta} t\{s / x\}} \quad \frac{t \rightarrow_{\beta} t^{\prime}}{\lambda x . t \rightarrow_{\beta} \lambda x \cdot t^{\prime}} \quad \frac{t \rightarrow_{\beta} t^{\prime}}{t s \rightarrow_{\beta} t^{\prime} s} \quad \frac{t \rightarrow_{\beta} t^{\prime}}{s t \rightarrow_{\beta} s t^{\prime}}
$$

Head β-reduction $\rightarrow_{h \beta}$ fires a β-redex only in the "head" of a term. Formally,

$$
\overline{(\lambda x . t) s \rightarrow_{h \beta} t\{s / x\}} \quad \frac{t \rightarrow_{h \beta} t^{\prime}}{\lambda x . t \rightarrow_{h \beta} \lambda x . t^{\prime}} \quad \frac{t \rightarrow_{h \beta} t^{\prime} \quad t \neq \lambda x . r}{t s \rightarrow_{h \beta} t^{\prime} s}
$$

Leftmost-outermost β-reduction $\rightarrow_{h \beta}$ fires the leftmost-outermost β-redex in a term.

$$
\overline{(\lambda x . t) s \rightarrow_{I \beta} t\{s / x\}} \quad \frac{t \rightarrow_{I \beta} t^{\prime}}{\lambda x . t \rightarrow_{I \beta} \lambda x . t^{\prime}} \quad \frac{t \rightarrow_{I \beta} t^{\prime} t \neq \lambda x . r}{t s \rightarrow_{I \beta} t^{\prime} s} \quad \frac{t \rightarrow_{I \beta} t^{\prime} s \text { neutral }}{s t \rightarrow_{I \beta} s t^{\prime}}
$$

where neutral means $s=x s_{1} \ldots x_{n}$ and s_{1}, \ldots, s_{n} normal, for some $n \in \mathbb{N}$.
\square

Different notions of reduction

(Full) β-reduction \rightarrow_{β} fires a β-redex anywhere in a term. Formally,

$$
\overline{(\lambda x . t) s \rightarrow_{\beta} t\{s / x\}} \quad \frac{t \rightarrow_{\beta} t^{\prime}}{\lambda x . t \rightarrow_{\beta} \lambda x . t^{\prime}} \quad \frac{t \rightarrow_{\beta} t^{\prime}}{t s \rightarrow_{\beta} t^{\prime} s} \quad \frac{t \rightarrow_{\beta} t^{\prime}}{s t \rightarrow_{\beta} s t^{\prime}}
$$

Head β-reduction $\rightarrow_{h \beta}$ fires a β-redex only in the "head" of a term. Formally,

$$
\overline{(\lambda x . t) s \rightarrow_{h \beta} t\{s / x\}} \quad \frac{t \rightarrow_{h \beta} t^{\prime}}{\lambda x . t \rightarrow_{h \beta} \lambda x . t^{\prime}} \quad \frac{t \rightarrow_{h \beta} t^{\prime} \quad t \neq \lambda x . r}{t s \rightarrow_{h \beta} t^{\prime} s}
$$

Leftmost-outermost β-reduction $\rightarrow_{h \beta}$ fires the leftmost-outermost β-redex in a term.

$$
\overline{(\lambda x . t) s \rightarrow_{I \beta} t\{s / x\}} \quad \frac{t \rightarrow_{I \beta} t^{\prime}}{\lambda x . t \rightarrow_{/ \beta} \lambda x . t^{\prime}} \quad \frac{t \rightarrow_{I \beta} t^{\prime} t \neq \lambda x . r}{t s \rightarrow_{I \beta} t^{\prime} s} \quad \frac{t \rightarrow_{I \beta} t^{\prime} s \text { neutral }}{s t \rightarrow_{I \beta} s t^{\prime}}
$$

where neutral means $s=x s_{1} \ldots x_{n}$ and s_{1}, \ldots, s_{n} normal, for some $n \in \mathbb{N}$.

Rmk. $\rightarrow_{h \beta} \subsetneq \rightarrow_{I \beta} \subsetneq \rightarrow_{\beta}$. For strictness, consider $I=\lambda x . x$ and $t=(I x)(I y)(I z)$. Then,

- $t \rightarrow_{h \beta} x(I y)(I z)$ but $t \nrightarrow h_{h \beta}(I x) y(I z)$ and $t \nrightarrow h_{h \beta}(I x)(I y) z$;
- $x(I y)(I z) \rightarrow_{\beta \beta} x y(I z)$ but $x(I y)(I z) \nrightarrow_{I_{\beta}} x(I y) z$;
- $t \rightarrow_{\beta}(I x)(I y) z$ and $x(I y)(I z) \rightarrow_{\beta} x(I y) z$.

Properties of different reductions

Rmk. Reductions $\rightarrow_{n \beta}$ and $\rightarrow_{\beta \beta}$ are deterministic (they can fire at most one redex). So: If $t \rightarrow_{r} s_{1}$ and $t \rightarrow_{r} s_{2}$ then $s_{1}=s_{2}$, for $r \in\{h \beta, \mid \beta\}$.

Reduction $\rightarrow \beta$ is not deterministic, it chooses among several β-redexes to fire in a term.

\square

Def. Let $r \in\{\beta, \mid \beta, h \beta\}$. A term t is r-normal if there is no s such that $t \rightarrow_{r} s$
\square

Properties of different reductions

Rmk. Reductions $\rightarrow_{n \beta}$ and $\rightarrow_{\beta \beta}$ are deterministic (they can fire at most one redex). So: If $t \rightarrow_{r} s_{1}$ and $t \rightarrow_{r} s_{2}$ then $s_{1}=s_{2}$, for $r \in\{h \beta, I \beta\}$.

Reduction \rightarrow_{β} is not deterministic, it chooses among several β-redexes to fire in a term.

\square

Properties of different reductions

Rmk. Reductions $\rightarrow_{n \beta}$ and $\rightarrow_{\neq \beta}$ are deterministic (they can fire at most one redex). So: If $t \rightarrow_{r} s_{1}$ and $t \rightarrow_{r} s_{2}$ then $s_{1}=s_{2}$, for $r \in\{h \beta, \mid \beta\}$.
Reduction \rightarrow_{β} is not deterministic, it chooses among several β-redexes to fire in a term.

Notation. $t \rightarrow{ }^{*} s$ means that $t=t_{0} \overbrace{\rightarrow t_{1} \rightarrow \cdots \rightarrow}^{\text {for some } n \in \mathbb{N}} t_{n}=s$ (in particular, $t=s$ for $n=0$).
Theorem (Confluence)
If $t \rightarrow_{\beta}^{*} s_{1}$ and $t \rightarrow_{\beta}^{*} s_{2}$, then there is a term r such that $s_{1} \rightarrow_{\beta}^{*} r$ and $s_{2} \rightarrow_{\beta}^{*} r$.

Properties of different reductions

Rmk. Reductions $\rightarrow_{h \beta}$ and $\rightarrow_{\beta \beta}$ are deterministic (they can fire at most one redex). So: If $t \rightarrow_{r} s_{1}$ and $t \rightarrow_{r} s_{2}$ then $s_{1}=s_{2}$, for $r \in\{h \beta, I \beta\}$.

Reduction \rightarrow_{β} is not deterministic, it chooses among several β-redexes to fire in a term.

Notation. $t \rightarrow^{*} s$ means that $t=t_{0} \overbrace{\rightarrow t_{1} \rightarrow \cdots \rightarrow}^{\text {for some } n \in \mathbb{N}} t_{n}=s$ (in particular, $t=s$ for $n=0$).

Theorem (Confluence)

If $t \rightarrow_{\beta}^{*} s_{1}$ and $t \rightarrow_{\beta}^{*} s_{2}$, then there is a term r such that $s_{1} \rightarrow_{\beta}^{*} r$ and $s_{2} \rightarrow_{\beta}^{*} r$.

Def. Let $r \in\{\beta, I \beta, h \beta\}$. A term t is r-normal if there is no s such that $t \rightarrow_{r} s$.

Corollary (Uniqueness of normal form)

If $t \rightarrow{ }_{\beta}^{*} s_{1}$ and $t \rightarrow{ }_{\beta}^{*} s_{2}$ where s_{1} and s_{2} are β-normal, then $s_{1}=s_{2}$.
Proof. By confluence, $s_{1} \rightarrow_{\beta}^{*} r$ and $s_{2} \rightarrow_{\beta}^{*} r$ for some r. By normality, $s_{1}=r=s_{2}$.

Normalization, strong normalization and divergence

Def. Let t be a term and $r \in\{\beta, I \beta, h \beta\}$.
(1) t is r-normalizing if there is a r-normal term s such that $t \rightarrow_{r}^{*} s$.
(2) t is strongly r-normalizing if there is no $\left(t_{i}\right)_{i \in \mathbb{N}}$ such that $t=t_{0}$ and $t_{i} \rightarrow_{r} t_{i+1}$.

Ex. Every β-normal form is β-normalizing. Let $\delta=\lambda x$.xx.

- $\delta \delta$ is not β-normalizing: if $\delta \delta \rightarrow_{\beta} t$ then $t=\delta \delta$.
- $(\lambda x \cdot y)(\delta \delta)$ is β-normalizing (indeed $(\lambda x \cdot y)(\delta \delta) \rightarrow_{\beta} y$ which is β-normal) but not strongly β-normalizing (indeed $(\lambda x . y)(\delta \delta) \rightarrow_{\beta}(\lambda x . y)(\delta \delta) \rightarrow_{\beta} \ldots$).

Rmk. Strong normalization implies normalization, but the converse fails, see above.
Rmk. Strong normalization and normalization coincide for $\rightarrow_{h \beta}$ and $\rightarrow_{\beta \beta}$, not for \rightarrow_{β}

Rmk. In the simply typed λ-calculus, every term is β-normalizing (actually, strongly).

Normalization, strong normalization and divergence

Def. Let t be a term and $r \in\{\beta, I \beta, h \beta\}$.
(1) t is r-normalizing if there is a r-normal term s such that $t \rightarrow_{r}^{*} s$.
(2) t is strongly r-normalizing if there is no $\left(t_{i}\right)_{i \in \mathbb{N}}$ such that $t=t_{0}$ and $t_{i} \rightarrow_{r} t_{i+1}$.

Ex. Every β-normal form is β-normalizing. Let $\delta=\lambda x$.xx.

- $\delta \delta$ is not β-normalizing: if $\delta \delta \rightarrow_{\beta} t$ then $t=\delta \delta$.
- $(\lambda x . y)(\delta \delta)$ is β-normalizing (indeed $(\lambda x . y)(\delta \delta) \rightarrow_{\beta} y$ which is β-normal) but not strongly β-normalizing (indeed $(\lambda x . y)(\delta \delta) \rightarrow_{\beta}(\lambda x . y)(\delta \delta) \rightarrow_{\beta} \ldots$).

Rmk. Strong normalization implies normalization, but the converse fails, see above.

Rmk. Strong normalization and normalization coincide for $\rightarrow_{h \beta}$ and $\rightarrow_{\mathcal{\prime} \beta}$, not for \rightarrow_{β}

Rmk. In the simply typed λ-calculus, every term is β-normalizing (actually, strongly).

Normalization, strong normalization and divergence

Def. Let t be a term and $r \in\{\beta, I \beta, h \beta\}$.
(1) t is r-normalizing if there is a r-normal term s such that $t \rightarrow_{r}^{*} s$.
(2) t is strongly r-normalizing if there is no $\left(t_{i}\right)_{i \in \mathbb{N}}$ such that $t=t_{0}$ and $t_{i} \rightarrow_{r} t_{i+1}$.

Ex. Every β-normal form is β-normalizing. Let $\delta=\lambda x$.xx.

- $\delta \delta$ is not β-normalizing: if $\delta \delta \rightarrow_{\beta} t$ then $t=\delta \delta$.
- $(\lambda x . y)(\delta \delta)$ is β-normalizing (indeed $(\lambda x . y)(\delta \delta) \rightarrow_{\beta} y$ which is β-normal) but not strongly β-normalizing (indeed $(\lambda x . y)(\delta \delta) \rightarrow_{\beta}(\lambda x . y)(\delta \delta) \rightarrow_{\beta} \ldots$).

Rmk. Strong normalization implies normalization, but the converse fails, see above.

Rmk. Strong normalization and normalization coincide for $\rightarrow_{h \beta}$ and $\rightarrow_{\beta \beta}$, not for \rightarrow_{β}.
Rmk. In the simply typed λ-calculus, every term is β-normalizing (actually, strongly).

Normalization, strong normalization and divergence

Def. Let t be a term and $r \in\{\beta, I \beta, h \beta\}$.
(1) t is r-normalizing if there is a r-normal term s such that $t \rightarrow_{r}^{*} s$.
(2) t is strongly r-normalizing if there is no $\left(t_{i}\right)_{i \in \mathbb{N}}$ such that $t=t_{0}$ and $t_{i} \rightarrow_{r} t_{i+1}$.

Ex. Every β-normal form is β-normalizing. Let $\delta=\lambda x$.xx.

- $\delta \delta$ is not β-normalizing: if $\delta \delta \rightarrow_{\beta} t$ then $t=\delta \delta$.
- $(\lambda x . y)(\delta \delta)$ is β-normalizing (indeed $(\lambda x . y)(\delta \delta) \rightarrow_{\beta} y$ which is β-normal) but not strongly β-normalizing (indeed $(\lambda x . y)(\delta \delta) \rightarrow_{\beta}(\lambda x . y)(\delta \delta) \rightarrow_{\beta} \ldots$).

Rmk. Strong normalization implies normalization, but the converse fails, see above.
Rmk. Strong normalization and normalization coincide for $\rightarrow_{h \beta}$ and $\rightarrow_{I \beta}$, not for \rightarrow_{β}.
Rmk. In the simply typed λ-calculus, every term is β-normalizing (actually, strongly).

Normalization, strong normalization and divergence

Def. Let t be a term and $r \in\{\beta, I \beta, h \beta\}$.
(1) t is r-normalizing if there is a r-normal term s such that $t \rightarrow_{r}^{*} s$.
(2) t is strongly r-normalizing if there is no $\left(t_{i}\right)_{i \in \mathbb{N}}$ such that $t=t_{0}$ and $t_{i} \rightarrow_{r} t_{i+1}$.

Ex. Every β-normal form is β-normalizing. Let $\delta=\lambda x$.xx.

- $\delta \delta$ is not β-normalizing: if $\delta \delta \rightarrow_{\beta} t$ then $t=\delta \delta$.
- $(\lambda x . y)(\delta \delta)$ is β-normalizing (indeed $(\lambda x . y)(\delta \delta) \rightarrow_{\beta} y$ which is β-normal) but not strongly β-normalizing (indeed $(\lambda x . y)(\delta \delta) \rightarrow_{\beta}(\lambda x . y)(\delta \delta) \rightarrow_{\beta} \ldots$).

Rmk. Strong normalization implies normalization, but the converse fails, see above.

Rmk. Strong normalization and normalization coincide for $\rightarrow_{h \beta}$ and $\rightarrow_{I \beta}$, not for \rightarrow_{β}.
Rmk. In the simply typed λ-calculus, every term is β-normalizing (actually, strongly).

Fixed point combinator

Def. A fixed point of a term t is a term s such that $s \rightarrow_{\beta}^{*} t s$.
A fixed point combinator is a term Y such that $Y t$ is a fixed point of t, for every term t.

```
Proposition (Fixed point combinator)
Let \(A=\lambda a . \lambda f . f(\) aaf \()\) and \(\Theta=A A\). Then, \(\Theta\) is a fixed point combinator.
\(\square\)
Proof. \(\Theta=(\lambda a . \lambda f . f(a a f)) A \rightarrow_{n \beta} \lambda f . f(A A f)=\lambda f . f(\Theta f)\). Therefore, for every term \(t\), \(\Theta t \rightarrow_{h \beta}(\lambda f . f(\Theta f)) t \rightarrow_{h \beta} t(\Theta t)\)
```

> Rmk. Θ is $h \beta$-normalizing but not β-normalizing.
> Rmk. Theta is not a term of the simply typed λ-calculus, because of the subterm aa.
> Rmk. Fixed point combinators such has Θ are crucial to represent recursive functions.

Fixed point combinator

Def. A fixed point of a term t is a term s such that $s \rightarrow_{\beta}^{*} t s$.
A fixed point combinator is a term Y such that $Y t$ is a fixed point of t, for every term t.

Proposition (Fixed point combinator)

Let $A=\lambda a . \lambda f . f(a a f)$ and $\Theta=A A$. Then, Θ is a fixed point combinator.
Proof. $\Theta=(\lambda a . \lambda f . f(a a f)) A \rightarrow_{n \beta} \lambda f . f(A A f)=\lambda f . f(\Theta f)$. Therefore, for every term t,

$$
\Theta t \rightarrow_{h \beta}(\lambda f . f(\Theta f)) t \rightarrow_{h \beta} t(\Theta t) .
$$

Θ is $h \beta$-normalizing but not β-normalizing.
Theta is not a term of the simply typed λ-calculus, because of the subterm aa.
Rmk. Fixed point combinators such has Θ are crucial to represent recursive functions.

Fixed point combinator

Def. A fixed point of a term t is a term s such that $s \rightarrow_{\beta}^{*} t s$.
A fixed point combinator is a term Y such that $Y t$ is a fixed point of t, for every term t.

Proposition (Fixed point combinator)

Let $A=\lambda a . \lambda f . f(a a f)$ and $\Theta=A A$. Then, Θ is a fixed point combinator.
Proof. $\Theta=(\lambda a . \lambda f . f(a a f)) A \rightarrow_{h \beta} \lambda f . f(A A f)=\lambda f . f(\Theta f)$. Therefore, for every term t,

$$
\Theta t \rightarrow_{h \beta}(\lambda f . f(\Theta f)) t \rightarrow_{h \beta} t(\Theta t) .
$$

Rmk. Θ is $h \beta$-normalizing but not β-normalizing.

Rmk. Theta is not a term of the simply typed λ-calculus, because of the subterm aa.

Rmk. Fixed point combinators such has Θ are crucial to represent recursive functions.

Outline

(1) The syntax and the operational semantics of the untyped λ-calculus

(2) Programming with the untyped λ-calculus
(3) Conclusion, exercises and bibliography

Encoding Booleans

Goal. Encode propositional classical logic in the untyped λ-calculus.

We choose (arbitrarily) two terms to represents true T and false \perp.

Rmk. For every term s, t, we have $I s t \rightarrow_{h \beta}^{*} s$ and $\perp s t \rightarrow_{h \beta}^{*} t$.
(1) We look for a term to encode the NOT: $\underline{n o t} \mathbb{T} \rightarrow_{\beta}^{*} \perp$ and $\underline{n o t} \perp \rightarrow_{\beta}^{*} I$.
not $=$

$$
\text { and }=
$$

(3) To encode the OR: ors $t \rightarrow_{\beta}^{*} \perp$ if $s=t=\perp$, but ors $t \rightarrow_{\beta}^{*} \perp$ if $s=\underline{I}$ or $t=\underline{I}$.

$$
\text { or }=
$$

© To encode the IF-THEN-ELSE: if $r s t \rightarrow{ }_{\beta}^{*} s$ if $r=\underline{I}$ and if $r s t \rightarrow_{\beta}^{*} t$ if $r=\perp$.
\qquad

Encoding Booleans

Goal. Encode propositional classical logic in the untyped λ-calculus.

We choose (arbitrarily) two terms to represents true \top and false \perp.

$$
I=\lambda x \cdot \lambda y \cdot x \quad \perp=\lambda x \cdot \lambda y \cdot y
$$

Rmk. For every term s, t, we have $\underline{I} s t \rightarrow_{h \beta}^{*} s$ and $\perp s t \rightarrow_{h \beta}^{*} t$.

not $=$
(3) To encode the AND: ands $t \rightarrow_{\beta}^{*}$ I if $s=t=I_{\text {, but and } s} t \rightarrow_{\beta}^{*} \perp$ if $s=\perp$ or $t=\perp$. and $=$

Encoding Booleans

Goal. Encode propositional classical logic in the untyped λ-calculus.

We choose (arbitrarily) two terms to represents true \top and false \perp.

$$
\underline{I}=\lambda x \cdot \lambda y \cdot x \quad \perp=\lambda x \cdot \lambda y \cdot y
$$

Rmk. For every term s, t, we have $\underline{I} s t \rightarrow_{h \beta}^{*} s$ and $\perp s t \rightarrow_{h \beta}^{*} t$.
(1) We look for a term to encode the NOT: $\underline{n o t} \bar{T} \rightarrow_{\beta}^{*} \perp$ and $\underline{n o t} \perp \rightarrow_{\beta}^{*} \underline{I}$.

$$
\underline{n o t}=
$$

(3) To encode the AND: ands $t \rightarrow_{\beta}^{*}$ I if $s=t=\underline{L}$, but and $s t \rightarrow_{\beta}^{*} \perp$ if $s=\perp$ or $t=\perp$ and $=$

Encoding Booleans

Goal. Encode propositional classical logic in the untyped λ-calculus.

We choose (arbitrarily) two terms to represents true \top and false \perp.

$$
\underline{I}=\lambda x \cdot \lambda y \cdot x \quad \perp=\lambda x \cdot \lambda y \cdot y
$$

Rmk. For every term s, t, we have $\underline{I} s t \rightarrow_{h \beta}^{*} s$ and $\perp s t \rightarrow_{h \beta}^{*} t$.
(1) We look for a term to encode the NOT: $\underline{n o t} \underline{T} \rightarrow_{\beta}^{*} \perp$ and $\underline{n o t} \perp \rightarrow_{\beta}^{*} \underline{I}$.

$$
\underline{n o t}=\lambda p . p \perp \Phi
$$

(ㅇ) To encode the AND: ands $t \rightarrow{ }_{\beta}^{*}$ I if $s=t=I$, but ands $t \rightarrow_{\beta}^{*} \perp$ if $s=\perp$ or $t=\perp$. and $=$

Encoding Booleans

Goal. Encode propositional classical logic in the untyped λ-calculus.

We choose (arbitrarily) two terms to represents true \top and false \perp.

$$
I=\lambda x \cdot \lambda y \cdot x \quad \perp=\lambda x \cdot \lambda y \cdot y
$$

Rmk. For every term s, t, we have $\underline{I} s t \rightarrow_{h \beta}^{*} s$ and $\perp s t \rightarrow_{h \beta}^{*} t$.
(1) We look for a term to encode the NOT: $\underline{n o t} \underline{T} \rightarrow_{\beta}^{*} \perp$ and $\underline{n o t} \perp \rightarrow_{\beta}^{*} \underline{I}$.

$$
\underline{n o t}=\lambda p \cdot p \perp \Phi
$$

(2) To encode the AND: ands $t \rightarrow_{\beta}^{*}$ I if $s=t=\underline{I}$, but $\underline{\text { and }} s t \rightarrow_{\beta}^{*} \perp$ if $s=\perp$ or $t=\perp$.

$$
\underline{\text { and }}=
$$

- To encode the IF-THEN-ELSE: if $r s t \rightarrow{ }_{\beta}^{*} s$ if $r=$ I and if $r s t \rightarrow_{\beta}^{*} t$ if $r=\perp$.

Encoding Booleans

Goal. Encode propositional classical logic in the untyped λ-calculus.

We choose (arbitrarily) two terms to represents true \top and false \perp.

$$
I=\lambda x \cdot \lambda y \cdot x \quad \perp=\lambda x \cdot \lambda y \cdot y
$$

Rmk. For every term s, t, we have $\underline{I} s t \rightarrow_{h \beta}^{*} s$ and $\perp s t \rightarrow_{h \beta}^{*} t$.
(1) We look for a term to encode the NOT: $\underline{n o t} \underline{T} \rightarrow_{\beta}^{*} \perp$ and $\underline{n o t} \perp \rightarrow_{\beta}^{*} \underline{I}$.

$$
\underline{n o t}=\lambda p \cdot p \perp \subseteq
$$

(2) To encode the AND: ands $t \rightarrow_{\beta}^{*}$ I if $s=t=\underline{I}$, but $\underline{\text { and }} s t \rightarrow_{\beta}^{*} \perp$ if $s=\perp$ or $t=\perp$.

$$
\underline{\text { and }}=\lambda p \cdot \lambda q \cdot p q p
$$

(1) To encode the IF-THEN-ELSE: if $r s t \rightarrow_{\beta}^{*} s$ if $r=\underline{I}$ and if $r s t \rightarrow_{\beta}^{*} t$ if $r=\perp$.

Encoding Booleans

Goal. Encode propositional classical logic in the untyped λ-calculus.
We choose (arbitrarily) two terms to represents true \top and false \perp.

$$
I=\lambda x \cdot \lambda y \cdot x \quad \perp=\lambda x \cdot \lambda y \cdot y
$$

Rmk. For every term s, t, we have $\underline{I} s t \rightarrow_{h \beta}^{*} s$ and $\perp s t \rightarrow_{h \beta}^{*} t$.
(1) We look for a term to encode the NOT: $\underline{n o t} \bar{T} \rightarrow_{\beta}^{*} \perp$ and $\underline{n o t} \perp \rightarrow_{\beta}^{*} \underline{I}$.

$$
\underline{n o t}=\lambda p \cdot p \perp \Phi
$$

(2) To encode the AND: ands $t \rightarrow_{\beta}^{*}$ I if $s=t=\underline{I}$, but $\underline{\text { and }} s t \rightarrow_{\beta}^{*} \perp$ if $s=\perp$ or $t=\perp$.

$$
\underline{\text { and }}=\lambda p \cdot \lambda q \cdot p q p
$$

(3) To encode the OR: ors $t \rightarrow_{\beta}^{*} \perp$ if $s=t=\perp$, but ors $t \rightarrow_{\beta}^{*} \perp$ if $s=\underline{I}$ or $t=\underline{I}$.

$$
\underline{\text { or }}=
$$

(9) To encode the IF-THEN-ELSE: if $r s t \rightarrow_{\beta}^{*} s$ if $r=\underline{\text { I }}$ and if $r s t \rightarrow_{\beta}^{*} t$ if $r=\perp$.

$$
\underline{i f}=
$$

Encoding Booleans

Goal. Encode propositional classical logic in the untyped λ-calculus.
We choose (arbitrarily) two terms to represents true \top and false \perp.

$$
I=\lambda x \cdot \lambda y \cdot x \quad \perp=\lambda x \cdot \lambda y \cdot y
$$

Rmk. For every term s, t, we have $\underline{I} s t \rightarrow_{h \beta}^{*} s$ and $\perp s t \rightarrow_{h \beta}^{*} t$.
(1) We look for a term to encode the NOT: $\underline{n o t} T \rightarrow_{\beta}^{*} \perp$ and $\underline{n o t} \perp \rightarrow_{\beta}^{*} \underline{I}$.

$$
\underline{n o t}=\lambda p \cdot p \perp \Phi
$$

(2) To encode the AND: ands $t \rightarrow_{\beta}^{*}$ I if $s=t=\underline{I}$, but $\underline{\text { and }} s t \rightarrow_{\beta}^{*} \perp$ if $s=\perp$ or $t=\perp$.

$$
\underline{\text { and }}=\lambda p \cdot \lambda q \cdot p q p
$$

(3) To encode the OR: ors $t \rightarrow_{\beta}^{*} \perp$ if $s=t=\perp$, but ors $t \rightarrow_{\beta}^{*} \perp$ if $s=\underline{I}$ or $t=\underline{I}$.

$$
\underline{o r}=\lambda p \cdot \lambda q \cdot p p q
$$

(9) To encode the IF-THEN-ELSE: if $r s t \rightarrow_{\beta}^{*} s$ if $r=\underline{\text { I }}$ and if $r s t \rightarrow_{\beta}^{*} t$ if $r=\perp$.

$$
\underline{i f}=\lambda p \cdot \lambda a \cdot \lambda b \cdot p a b
$$

Encoding arithmetic

Goal. Encode the arithmetic in the untyped λ-calculus.
We choose a term \underline{n} to represents any $n \in \mathbb{N}$ (Church numeral).

(1) We look for a term to encode the successor: succ $\underline{n} \rightarrow_{\beta}^{*} \underline{n+1}$.

$$
\underline{s U C C}=
$$

(2) To encode the addition: $\underline{\text { add }} \underline{m} \underline{n} \rightarrow_{\beta}^{*} \underline{m+m}$.

$$
\operatorname{add}^{\prime}=
$$

(3) To encode the multiplication: $\underline{m u / t} \underline{m} \underline{n} \rightarrow_{\beta}^{*} \underline{m \times n}$.

$$
\underline{m u l t}=
$$

(a) To encode the exponentiation: pow $\underline{m} \underline{n} \rightarrow_{\beta}^{*} \underline{m^{n}}$.

$$
\text { pow }=
$$

Encoding arithmetic Goal. Encode the arithmetic in the untyped λ-calculus.

We choose a term \underline{n} to represents any $n \in \mathbb{N}$ (Church numeral).

$$
\underline{n}=\lambda f \cdot \lambda x \cdot f^{n} x=\lambda f \cdot \lambda x \cdot \underbrace{f(f \ldots(f}_{n \text { times } f} x) \ldots) \quad \overbrace{\substack{n \text { times } s}}^{\text {(in particular, } \underline{0}=\lambda f \cdot \lambda x \cdot x),}
$$

Rmk. For every term s, t, we have $\underline{n} s t \rightarrow_{h \beta}^{*} s^{n} t=\overbrace{s(s \ldots(s)} t) \ldots)$ (n-iterator).
(ㅇ) We look for a term to encode the successor: $\underline{\operatorname{succ}} \underline{n} \rightarrow{ }_{\beta}^{*} \underline{n+1}$
(2) To encode the addition: $\underline{\operatorname{add}} \underline{m} \underline{n} \rightarrow{ }_{\beta}^{*} \underline{m+m}$.

$$
\text { add }=
$$

(3) To encode the multiplication: $\underline{m u l t} \underline{m} \underline{n} \rightarrow{ }_{\beta}^{*} \underline{m \times n}$. mult $=$
(- To encode the exponentiation: pow $\underline{m} \underline{n} \rightarrow{ }_{\beta}^{*} \underline{m^{n}}$

$$
\text { pow }=
$$

Encoding arithmetic

Goal. Encode the arithmetic in the untyped λ-calculus.
We choose a term \underline{n} to represents any $n \in \mathbb{N}$ (Church numeral).

$$
\underline{n}=\lambda f \cdot \lambda x \cdot f^{n} x=\lambda f \cdot \lambda x \cdot \underbrace{f(f \ldots(f}_{n \text { times } f} x) \ldots) \quad \overbrace{\substack{n \text { times } s}}^{\text {(in particular, } \underline{0}=\lambda f \cdot \lambda x \cdot x),}
$$

(1) We look for a term to encode the successor: $\underline{\operatorname{succ}} \underline{n} \rightarrow_{\beta}^{*} \underline{n+1}$.

$$
\underline{\text { succ }}=
$$

(ㅇ) To encode the addition: add $\underline{m} \underline{n} \rightarrow{ }_{\beta}^{*} \underline{m}+m$. $\underline{\text { add }}=$

- To encode the multiplication: mult $\underline{m} n \rightarrow{ }_{B}^{*} m \times n$ $\underline{\text { mult }}=$
(0) To encode the exponentiation: pow $\underline{m} \underline{n} \rightarrow{ }_{\beta}^{*} \underline{m^{n}}$

$$
\text { pown }=
$$

Encoding arithmetic

Goal. Encode the arithmetic in the untyped λ-calculus.
We choose a term \underline{n} to represents any $n \in \mathbb{N}$ (Church numeral).

$$
\underline{n}=\lambda f \cdot \lambda x \cdot f^{n} x=\lambda f \cdot \lambda x \cdot \underbrace{f(f \ldots(f}_{n \text { times } f} x) \ldots) \quad \overbrace{\substack{n \text { times } s}}^{\text {(in particular, } \underline{0}=\lambda f . \lambda x \cdot x), ~}
$$

(1) We look for a term to encode the successor: $\underline{\operatorname{succ}} \underline{n} \rightarrow_{\beta}^{*} \underline{n+1}$.

$$
\underline{s u c c}=\lambda n \cdot \lambda f \cdot \lambda x \cdot f(n f x)
$$

(ㅇ) To encode the addition: add $\underline{m} \underline{n} \rightarrow{ }_{\beta}^{*} \underline{m}+m$.

$$
\underline{\text { add }}=
$$

(3) To encode the multiplication: $\underline{m u l t} \underline{m} \underline{n} \rightarrow{ }_{\beta}^{*} \underline{m \times n}$. mult $=$
(0) To encode the exponentiation: pow $\underline{m} \underline{n} \rightarrow{ }_{\beta}^{*} \underline{m^{n}}$

$$
\text { pow }=
$$

Encoding arithmetic

Goal. Encode the arithmetic in the untyped λ-calculus.
We choose a term \underline{n} to represents any $n \in \mathbb{N}$ (Church numeral).

$$
\underline{n}=\lambda f \cdot \lambda x \cdot f^{n} x=\lambda f \cdot \lambda x \cdot \underbrace{f(f \ldots(f}_{n \text { times } f} x) \ldots) \quad \overbrace{\substack{n \text { times } s}}^{\text {(in particular, } \underline{0}=\lambda f \cdot \lambda x \cdot x),}
$$

Rmk. For every term s, t, we have $\underline{n} s t \rightarrow_{h \beta}^{*} s^{n} t=\overbrace{s(s \ldots(s)} t) \ldots)$ (n-iterator).
(1) We look for a term to encode the successor: $\underline{\operatorname{succ}} \underline{n} \rightarrow_{\beta}^{*} \underline{n+1}$.

$$
\underline{s u c c}=\lambda n \cdot \lambda f \cdot \lambda x \cdot f(n f x)
$$

(2) To encode the addition: $\underline{\operatorname{add}} \underline{m} \underline{n} \rightarrow{ }_{\beta}^{*} \underline{m+m}$.

$$
\underline{a d d}=
$$

(ㅇ) To encode the multiplication: $\underline{m u l t} \underline{m} \underline{n} \rightarrow{ }_{\beta}^{*} \underline{m} \times n$. $\underline{\text { mult }}=$

- To encode the exponentiation: pow $m \underline{n} \rightarrow^{*} m^{n}$

Encoding arithmetic

Goal. Encode the arithmetic in the untyped λ-calculus.
We choose a term \underline{n} to represents any $n \in \mathbb{N}$ (Church numeral).

$$
\underline{n}=\lambda f \cdot \lambda x \cdot f^{n} x=\lambda f \cdot \lambda x \cdot \underbrace{f(f \ldots(f}_{n \text { times } f} x) \ldots) \quad \overbrace{\substack{n \text { times } s}}^{\text {(in particular, } \underline{0}=\lambda f \cdot \lambda x \cdot x),}
$$

Rmk. For every term s, t, we have $\underline{n} s t \rightarrow_{h \beta}^{*} s^{n} t=\overbrace{s(s \ldots(s)} t) \ldots)$ (n-iterator).
(1) We look for a term to encode the successor: $\underline{\operatorname{succ}} \underline{n} \rightarrow_{\beta}^{*} \underline{n+1}$.

$$
\underline{s u c c}=\lambda n \cdot \lambda f \cdot \lambda x \cdot f(n f x)
$$

(2) To encode the addition: $\underline{a d d} \underline{m} \underline{n} \rightarrow{ }_{\beta}^{*} \underline{m+m}$.

$$
\underline{a d d}=\lambda m \cdot \lambda n \cdot \lambda f \cdot \lambda x \cdot m f(n f x)
$$

(3) To encode the multiplication: mult $\underline{m} \underline{n} \rightarrow_{\beta}^{*} \underline{m} \times n$.
$\underline{\text { mult }}=$

- To encode the exponentiation: pow $m \underline{n} \rightarrow^{*} m^{n}$

Encoding arithmetic

Goal. Encode the arithmetic in the untyped λ-calculus.
We choose a term \underline{n} to represents any $n \in \mathbb{N}$ (Church numeral).

$$
\underline{n}=\lambda f \cdot \lambda x \cdot f^{n} x=\lambda f \cdot \lambda x \cdot \underbrace{f(f \ldots(f}_{n \text { times } f} x) \ldots) \quad \overbrace{\substack{n \text { times } s}}^{\text {(in particular, } \underline{0}=\lambda f \cdot \lambda x \cdot x),}
$$

Rmk. For every term s, t, we have $\underline{n} s t \rightarrow_{h \beta}^{*} s^{n} t=\overbrace{s(s \ldots(s)} t) \ldots)$ (n-iterator).
(1) We look for a term to encode the successor: $\underline{\text { succ }} \underline{n} \rightarrow_{\beta}^{*} \underline{n+1}$.

$$
\underline{s u c c}=\lambda n \cdot \lambda f \cdot \lambda x \cdot f(n f x)
$$

(2) To encode the addition: $\underline{a d d} \underline{m} \underline{n} \rightarrow{ }_{\beta}^{*} \underline{m+m}$.

$$
\underline{a d d}=\lambda m \cdot \lambda n \cdot \lambda f \cdot \lambda x \cdot m f(n f x)
$$

(3) To encode the multiplication: $\underline{m u l t} \underline{m} \underline{n} \rightarrow{ }_{\beta}^{*} \underline{m \times n}$.

$$
\underline{m u l t}=
$$

(c) To encode the exponentiation: $\underline{p o w} \underline{m} \underline{n} \rightarrow_{\beta}^{*} \underline{m^{n}}$.

$$
\underline{\text { pow }}=
$$

Encoding arithmetic

Goal. Encode the arithmetic in the untyped λ-calculus.
We choose a term \underline{n} to represents any $n \in \mathbb{N}$ (Church numeral).

$$
\underline{n}=\lambda f \cdot \lambda x \cdot f^{n} x=\lambda f \cdot \lambda x \cdot \underbrace{f(f \ldots(f}_{n \text { times } f} x) \ldots) \quad \overbrace{\substack{n \text { times } s}}^{\text {(in particular, } \underline{0}=\lambda f \cdot \lambda x \cdot x),}
$$

Rmk. For every term s, t, we have $\underline{n} s t \rightarrow_{h \beta}^{*} s^{n} t=\overbrace{s(s \ldots(s)} t) \ldots)$ (n-iterator).
(1) We look for a term to encode the successor: $\underline{\text { succ }} \underline{n} \rightarrow_{\beta}^{*} \underline{n+1}$.

$$
\underline{s u c c}=\lambda n \cdot \lambda f \cdot \lambda x \cdot f(n f x)
$$

(2) To encode the addition: $\underline{\operatorname{add}} \underline{m} \underline{n} \rightarrow{ }_{\beta}^{*} \underline{m+m}$.

$$
\underline{a d d}=\lambda m \cdot \lambda n \cdot \lambda f \cdot \lambda x \cdot m f(n f x)
$$

(3) To encode the multiplication: $\underline{m u l t} \underline{m} \underline{n} \rightarrow{ }_{\beta}^{*} \underline{m \times n}$.

$$
\underline{m u l t}=\lambda m \cdot \lambda n \cdot \lambda f \cdot m(n f)
$$

(9) To encode the exponentiation: $\underline{p o w} \underline{m} \underline{n} \rightarrow{ }_{\beta}^{*} \underline{m^{n}}$.

$$
\underline{\text { pow }}=\lambda m \cdot \lambda n \cdot n m
$$

More about encoding arithmetic: recursion

We can encode the functions: iszero: $\mathbb{N} \rightarrow\{\perp, \top\}$ testing if a natural number is 0 or not, and the predecessor pred : $\mathbb{N} \rightarrow \mathbb{N}$ such that $\operatorname{pred}(0)=0$ and $\operatorname{pred}(n+1)=n$.

$$
\underline{\text { iszero }}=\lambda n . n(\lambda x . \perp) \underline{\square} \quad \underline{\text { iszero }} \underline{n} \rightarrow_{\beta}^{*}\left\{\begin{array}{ll}
\underline{T} & \text { if } n=0 \\
\perp & \text { otherwise } .
\end{array} \quad \underline{\text { pred }}=\ldots\right.
$$

Question. How can the λ-calculus represent the factorial (typical recursive function)?

$$
\operatorname{fact}(n)= \begin{cases}1 & \text { if } n=0 \\ n \times \operatorname{fact}(n-1) & \text { otherwise }\end{cases}
$$

Let us rewrite the definition in a λ-calculus-like style, using IF-THEN-ELSE and mult:

More about encoding arithmetic: recursion
We can encode the functions: iszero: $\mathbb{N} \rightarrow\{\perp, \top\}$ testing if a natural number is 0 or not, and the predecessor pred: $\mathbb{N} \rightarrow \mathbb{N}$ such that $\operatorname{pred}(0)=0$ and $\operatorname{pred}(n+1)=n$.

$$
\underline{\text { iszero }}=\lambda n . n(\lambda x . \perp) \underline{\text { iszero }} \underline{n} \rightarrow_{\beta}^{*}\left\{\begin{array}{ll}
\underline{T} & \text { if } n=0 \\
\perp & \text { otherwise } .
\end{array} \underline{\text { pred }}=\ldots\right.
$$

Question. How can the λ-calculus represent the factorial (typical recursive function)?

$$
\operatorname{fact}(n)= \begin{cases}1 & \text { if } n=0 \\ n \times \operatorname{fact}(n-1) & \text { otherwise }\end{cases}
$$

Let us rewrite the definition in a λ-calculus-like style, using IF-THEN-ELSE and mult:

$$
\underline{\text { fact should satisfies the equation: } \underline{\text { fact }} \underline{n}=\underline{i f}(\underline{\text { iszero }} \underline{n}) \underline{1}(\underline{\text { mult }} \underline{n}(\underline{\text { fact }}(\underline{\text { pred }} \underline{n}))), ~(\underline{n})}
$$

More about encoding arithmetic: recursion
We can encode the functions: iszero: $\mathbb{N} \rightarrow\{\perp, \top\}$ testing if a natural number is 0 or not, and the predecessor pred: $\mathbb{N} \rightarrow \mathbb{N}$ such that $\operatorname{pred}(0)=0$ and $\operatorname{pred}(n+1)=n$.

$$
\underline{\text { iszero }}=\lambda n . n(\lambda x . \perp) \underline{\text { iszero }} \underline{n} \rightarrow_{\beta}^{*}\left\{\begin{array}{ll}
\underline{T} & \text { if } n=0 \\
\perp & \text { otherwise } .
\end{array} \underline{\text { pred }}=\ldots\right.
$$

Question. How can the λ-calculus represent the factorial (typical recursive function)?

$$
\operatorname{fact}(n)= \begin{cases}1 & \text { if } n=0 \\ n \times \operatorname{fact}(n-1) & \text { otherwise }\end{cases}
$$

Let us rewrite the definition in a λ-calculus-like style, using IF-THEN-ELSE and mult: $\underline{\text { fact }}$ should satisfies the equation: $\underline{\text { fact }}=\lambda n . \underline{i f}(\underline{\text { iszero }} n) \underline{1}(\underline{\text { mult }} n(\underline{\text { fact }}(\underline{\text { pred }} n)))$

More about encoding arithmetic: recursion
We can encode the functions: iszero: $\mathbb{N} \rightarrow\{\perp, \top\}$ testing if a natural number is 0 or not, and the predecessor pred: $\mathbb{N} \rightarrow \mathbb{N}$ such that $\operatorname{pred}(0)=0$ and $\operatorname{pred}(n+1)=n$.

$$
\underline{\text { iszero }}=\lambda n \cdot n(\lambda x . \perp) \underline{I} \quad \text { iszero } \underline{n} \rightarrow_{\beta}^{*}\left\{\begin{array}{ll}
\underline{T} & \text { if } n=0 \\
\underline{\perp} & \text { otherwise } .
\end{array} \quad \underline{\text { pred }}=\ldots\right.
$$

Question. How can the λ-calculus represent the factorial (typical recursive function)?

$$
\operatorname{fact}(n)= \begin{cases}1 & \text { if } n=0 \\ n \times \operatorname{fact}(n-1) & \text { otherwise }\end{cases}
$$

Let us rewrite the definition in a λ-calculus-like style, using IF-THEN-ELSE and mult:

$$
\begin{aligned}
& \text { fact should satisfies the equation: } \underline{\text { fact }}=\lambda n . \underline{f(\text { iszero }} n) \underline{1}(\underline{\text { mult }} n(\underline{\text { fact }}(\underline{\text { pred }} n))) \\
& F:=\lambda f . \lambda n . \underline{i f}(\text { iszero } n) \underline{1}(\underline{\text { mult }} n(f(\underline{\text { pred }} n)))
\end{aligned}
$$

More about encoding arithmetic: recursion

We can encode the functions: iszero: $\mathbb{N} \rightarrow\{\perp, \top\}$ testing if a natural number is 0 or not, and the predecessor pred : $\mathbb{N} \rightarrow \mathbb{N}$ such that $\operatorname{pred}(0)=0$ and $\operatorname{pred}(n+1)=n$.

$$
\underline{\text { iszero }}=\lambda n . n(\lambda x . \perp) \underline{\Upsilon} \quad \text { iszero } \underline{n} \rightarrow_{\beta}^{*}\left\{\begin{array}{ll}
\underline{\top} & \text { if } n=0 \\
\perp & \text { otherwise } .
\end{array} \quad \underline{\text { pred }}=\ldots\right.
$$

Question. How can the λ-calculus represent the factorial (typical recursive function)?

$$
\operatorname{fact}(n)= \begin{cases}1 & \text { if } n=0 \\ n \times \operatorname{fact}(n-1) & \text { otherwise }\end{cases}
$$

Let us rewrite the definition in a λ-calculus-like style, using IF-THEN-ELSE and mult:
$\underline{\text { fact }}$ should satisfies the equation: $\underline{\text { fact }}=\lambda n \underline{\underline{i f}(\underline{\text { iszero }} n) \underline{1}(\underline{\text { mult }} n(\underline{\text { fact }}(\underline{\text { pred }} n))), ~(\underline{f}}$
$F:=\lambda f . \lambda n . \underline{i f}(\underline{\text { iszero }} n) \underline{1}(\underline{\text { mult }} n(f(\underline{\text { pred }} n)))$
fact $:=Y F$
fact
n. if (iszero $n) \underline{1}($ mult $n($ fact $($ pred $n)))$

More about encoding arithmetic: recursion

We can encode the functions: iszero: $\mathbb{N} \rightarrow\{\perp, \top\}$ testing if a natural number is 0 or not, and the predecessor pred : $\mathbb{N} \rightarrow \mathbb{N}$ such that $\operatorname{pred}(0)=0$ and $\operatorname{pred}(n+1)=n$.

$$
\underline{\text { iszero }}=\lambda n . n(\lambda x . \perp) \underline{\square} \quad \text { iszero } \underline{n} \rightarrow_{\beta}^{*}\left\{\begin{array}{ll}
\underline{\top} & \text { if } n=0 \\
\perp & \text { otherwise } .
\end{array} \quad \underline{\text { pred }}=\ldots\right.
$$

Question. How can the λ-calculus represent the factorial (typical recursive function)?

$$
\operatorname{fact}(n)= \begin{cases}1 & \text { if } n=0 \\ n \times \operatorname{fact}(n-1) & \text { otherwise }\end{cases}
$$

Let us rewrite the definition in a λ-calculus-like style, using IF-THEN-ELSE and mult:
$\underline{\text { fact }}$ should satisfies the equation: $\underline{\text { fact }}=\lambda n \underline{\underline{i f}(\underline{\text { iszero }} n) \underline{1}(\underline{\text { mult }} n(\underline{\text { fact }}(\underline{\text { pred }} n))), ~(\underline{f}}$
$F:=\lambda f . \lambda n . \underline{i f}(\underline{\text { iszero }} n) \underline{1}(\underline{\text { mult }} n(f($ pred $n)))$

$$
\underline{\text { fact }}:=Y F \rightarrow_{\beta}^{*} F(Y F)=F \underline{\text { fact }} \rightarrow_{\beta} \lambda n \underline{\text { if }}(\underline{\text { iszero }} n) \underline{1}(\underline{\text { mult }} n(\underline{\text { fact }}(\underline{\text { pred }} n)))
$$

The untyped λ-calculus is Turing-complete!

Def. Let $f: \mathbb{N}^{n} \rightharpoonup \mathbb{N}$ be partial. A term Φ represents f when, for all $k_{1}, \ldots, k_{n} \in \mathbb{N}$:
(1) if $f\left(k_{1}, \ldots, k_{n}\right)$ is undefined, then $\Phi \underline{k_{1}} \ldots \underline{k_{n}}$ is not $h \beta$-normalizing;
(2) if $f\left(k_{1}, \ldots, k_{n}\right)=k \in \mathbb{N}$, then $\Phi \underline{k_{1}} \ldots \underline{k_{n}} \rightarrow_{\beta}^{*} \underline{k}$.

Rmk. According to Church's thesis, the λ-calculus can represent everything is computable.

> Rmk. If ϕ represents a partial function $f: \mathbb{N}^{k} \rightharpoonup \mathbb{N}$, then ϕ could have whatever behavior when applied to arguments t_{1}, \ldots, t_{k} that are not Church numerals.
> Rmk. In Point 1 of the definition, $h \beta$-normalizing can be replaced by β-normalizing.

The untyped λ-calculus is Turing-complete!

Def. Let $f: \mathbb{N}^{n} \rightharpoonup \mathbb{N}$ be partial. A term Φ represents f when, for all $k_{1}, \ldots, k_{n} \in \mathbb{N}$:
(1) if $f\left(k_{1}, \ldots, k_{n}\right)$ is undefined, then $\Phi \underline{k_{1}} \ldots \underline{k_{n}}$ is not $h \beta$-normalizing;
(2) if $f\left(k_{1}, \ldots, k_{n}\right)=k \in \mathbb{N}$, then $\Phi \underline{k_{1}} \ldots \underline{k_{n}} \rightarrow_{\beta}^{*} \underline{k}$.

Theorem (Representability)

Every partial recursive function $f: \mathbb{N}^{n} \rightharpoonup \mathbb{N}$ is representable by a term in the λ-calculus.
Rmk. According to Church's thesis, the λ-calculus can represent everything is computable.
\square
Rmk. If Φ represents a partial function $f: \mathbb{N}^{k} \rightharpoonup \mathbb{N}$, then Φ could have whatever behavior when applied to arguments t_{1}, \ldots, t_{k} that are not Church numerals.

Rmk. In Point 1 of the definition, $h \beta$-normalizing can be replaced by β-normalizing.

The untyped λ-calculus is Turing-complete!

Def. Let $f: \mathbb{N}^{n} \rightharpoonup \mathbb{N}$ be partial. A term Φ represents f when, for all $k_{1}, \ldots, k_{n} \in \mathbb{N}$:
(1) if $f\left(k_{1}, \ldots, k_{n}\right)$ is undefined, then $\Phi \underline{k_{1}} \ldots \underline{k_{n}}$ is not $h \beta$-normalizing;
(2) if $f\left(k_{1}, \ldots, k_{n}\right)=k \in \mathbb{N}$, then $\Phi \underline{k_{1}} \ldots \underline{k_{n}} \rightarrow_{\beta}^{*} \underline{k}$.

Theorem (Representability)

Every partial recursive function $f: \mathbb{N}^{n} \rightharpoonup \mathbb{N}$ is representable by a term in the λ-calculus.
Rmk. According to Church's thesis, the λ-calculus can represent everything is computable.
Rmk. If Φ represents a partial function $f: \mathbb{N}^{k} \rightharpoonup \mathbb{N}$, then Φ could have whatever behavior when applied to arguments t_{1}, \ldots, t_{k} that are not Church numerals.

Rmk. In Point 1 of the definition, $h \beta$-normalizing can be replaced by β-normalizing.

The untyped λ-calculus is Turing-complete!

Def. Let $f: \mathbb{N}^{n} \rightharpoonup \mathbb{N}$ be partial. A term Φ represents f when, for all $k_{1}, \ldots, k_{n} \in \mathbb{N}$:
(1) if $f\left(k_{1}, \ldots, k_{n}\right)$ is undefined, then $\Phi \underline{k_{1}} \ldots \underline{k_{n}}$ is not $h \beta$-normalizing;
(2) if $f\left(k_{1}, \ldots, k_{n}\right)=k \in \mathbb{N}$, then $\Phi \underline{k_{1}} \ldots \underline{k_{n}} \rightarrow_{\beta}^{*} \underline{k}$.

Theorem (Representability)

Every partial recursive function $f: \mathbb{N}^{n} \rightharpoonup \mathbb{N}$ is representable by a term in the λ-calculus.
Rmk. According to Church's thesis, the λ-calculus can represent everything is computable.
Rmk. If Φ represents a partial function $f: \mathbb{N}^{k} \rightharpoonup \mathbb{N}$, then Φ could have whatever behavior when applied to arguments t_{1}, \ldots, t_{k} that are not Church numerals.

Rmk. In Point 1 of the definition, $h \beta$-normalizing can be replaced by β-normalizing.

Outline

(1) The syntax and the operational semantics of the untyped λ-calculus

(2) Programming with the untyped λ-calculus

(3) Conclusion, exercises and bibliography

Bibliography

- For more about the untyped λ-calculus:

Jean-Louis Krivine. Lambda-Calculus. Types and Models. Ellis Horwood. 1990. [Chapters 1-2] https://www.irif.fr/~krivine/articles/Lambda.pdf
(3)

Peter Selinger. Lecture Notes on the Lambda Calculus. vol. 0804, Department of Mathematics and Statistics, University of Ottawa. 2008 [Chapters 2-3] http://www.mathstat.dal.ca/~selinger/papers/lambdanotes.pdf
Q Henk P. Barendregt. The Lambda-Calculus. Its Syntax and Semantics. Studies in Logic and the Foundations of Mathematics, vol. 103, North Holland, 1984. [Chapters 2-3, 6, 8]

- For an elegant proof of the confluence of β-reduction:
(in Masako Takahashi. Parallel Reductions in λ-Calculus. Information and Computation, vol. 118, issue 1, pages 120-127. 1995.
https://doi.org/10.1006/inco.1995.1057

