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The A-calculus beyond simple types

Term and S-reduction of the simply typed A-calculus can be defined without types.
~ Let us explore the word of the A-calculus without types.
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© What do we lose?
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The A-calculus beyond simple types

Term and S-reduction of the simply typed A-calculus can be defined without types.

~ Let us explore the word of the A-calculus without types.
@ What do we gain?
@ What do we lose?

We can freely apply s to t to get st, without requiring s : A= Bor t: A.

G. Guerrieri (AMU)

A-calculus, simple & non-idempotent intersection types ESSLLI 2023/08/07-11

4/17



The A-calculus beyond simple types

Term and S-reduction of the simply typed A-calculus can be defined without types.
~ Let us explore the word of the A-calculus without types.

@ What do we gain?
© What do we lose?

We can freely apply s to t to get st, without requiring s : A= Bor t: A.

Consider the term Ax.xx. It not a term for the simply typed A-calculus.
@ Why is there no A such that - Ax.xx : A is derivable?

o (Ax.xx)(Ax.xx) =g (xx){Ax.xx/x} = (Ax.xx)(Ax.xx) =3 ... (normalization fails).
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The untyped A-calculus

Terms: S, t :i= X (variable) | Ax.t (abstraction) | St (application).
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The untyped A-calculus

Terms: S, t :i= X (variable) | Ax.t (abstraction) | St (application).

The free variables of a term t are the variables that are not bound to a A. Formally,

fv(x) = {x} fv(st) = fv(s) U fu(t) fv(dx.t) = fv(t) \ {x}
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fv(x) = {x} fv(st) = fv(s) U fu(t) fv(dx.t) = fv(t) \ {x}

Terms are identified up to renaming of bound variables (a-equivalence), e.g. Ax.x = Ay.y
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The untyped A-calculus

Terms: S, t :i= X (variable) | Ax.t (abstraction) | St (application).

The free variables of a term t are the variables that are not bound to a A. Formally,

fv(x) = {x} fv(st) = fv(s) U fu(t) fv(dx.t) = fv(t) \ {x}

Terms are identified up to renaming of bound variables (a-equivalence), e.g. Ax.x = Ay.y

(B-reduction

(the term on the left is a S-redex) ()\X.t)s —3 t{S/X}
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The untyped A-calculus

Terms: S, t :i= X (variable) l Ax.t (abstraction) | St (application).

The free variables of a term t are the variables that are not bound to a A. Formally,

fv(x) = {x} fv(st) = fv(s) U fu(t) fv(dx.t) = fv(t) \ {x}

Terms are identified up to renaming of bound variables (a-equivalence), e.g. Ax.x = Ay.y

B-reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(the term on the left is a S-redex) ()\X.t)s —3 t{S/X}
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The untyped A-calculus

Terms: S, t :i= X (variable) ‘ Ax.t (abstraction) | St (application).

The free variables of a term t are the variables that are not bound to a A. Formally,

fv(x) = {x} fv(st) = fv(s) U fu(t) fv(dx.t) = fv(t) \ {x}

Terms are identified up to renaming of bound variables (a-equivalence), e.g. Ax.x = Ay.y

B-reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(the term on the left is a S-redex) ()\x.t)s —3 t{S/X}

Substitution t{s/x} should be defined carefully to avoid capture of variables.

(Ax.yx){x/y} # Ax.xx but (Ax.yx){x/y} = Az.yz){x/y} = Az.xz

To write t{s/x}, first take t such that its bound variables are not in fv(s) then substitute.
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The structure of a term.
Rmk. Every term can be written in a unique way as
AX1 ... \Xn.ht1 ... tm with m,n € N

where h is either a variable (head variable) or a S-redex (head [-redex).
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The structure of a term.
Rmk. Every term can be written in a unique way as
AX1 ... \Xn.ht1 ... tm with m,n € N

where h is either a variable (head variable) or a S-redex (head [-redex).
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Different notions of reduction
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Different notions of reduction

(Full) B-reduction —4 fires a S-redex anywhere in a term. Formally,

t gt t gt t gt

(xt)s =5 t{s/x} Ax.t =g Ax.t! ts »g t's st —g st
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Different notions of reduction

(Full) B-reduction — g fires a B-redex anywhere in a term. Formally,

t gt t—pt’ t—pgt

(xt)s =5 t{s/x} Ax.t =g Ax.t’ ts »g t's st —g st

Head B-reduction — s fires a B-redex only in the “head” of a term. Formally,

t—pg t’ t —hg t’ t # \x.r

(Ax.t)s —pp t{s/x}

Ax.t —>hB Ax.t/ ts —p3 t's
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Different notions of reduction

(Full) B-reduction — g fires a B-redex anywhere in a term. Formally,

t gt t—pt’ t—pgt

(xt)s =5 t{s/x} Ax.t =g Ax.t’ ts »g t's st —g st

Head B-reduction — s fires a B-redex only in the “head” of a term. Formally,

t—pg t’ t —hg t’ t # \x.r

(Axt)s —ng t{s/x} 7 —hp Ax.t! ts —ng t's

Leftmost-outermost B-reduction —4g fires the leftmost-outermost [S-redex in a term.

t—pt t—pt t # Ax.r t =5 t' s neutral
Ax.t)s =5 t{s/x
( ) 18 { / } Ax.t —iB Ax.t ts — t's st — 3 st’
where neutral means s = xs; ... x, and s1,...,s, normal, for some n € N.
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Different notions of reduction

(Full) B-reduction — g fires a B-redex anywhere in a term. Formally,

t—gt t—gt t—gt

(xt)s =5 t{s/x} Ax.t =g Ax.t’ ts »g t's st —g st

Head B-reduction — s fires a B-redex only in the “head” of a term. Formally,

t—pg t’ t —hg t’ t # \x.r

(Axt)s —ng t{s/x} 7 —hp Ax.t! ts —ng t's

Leftmost-outermost B-reduction —4g fires the leftmost-outermost [S-redex in a term.

t—pt t—pt t # Ax.r t =5 t' s neutral
Ax.t)s =5 t{s/x
( ) 18 { / } Ax.t —iB Ax.t ts — t's st — 3 st’
where neutral means s = xs; ... x, and s1,...,s, normal, for some n € N.

Rmk. —p3 C —13 C —p. For strictness, consider | = Ax.x and t = (Ix)(ly)(/z). Then,
o t —ng x(ly)(Iz) but t Ang (IX)y(Iz) and t A4s (IX)(ly)z;
o x(Iy)(Iz) 15 xy(Iz) but x(Iy)(12) 15 x(Iy)z;
o t =5 (Ix)(ly)z and x(ly)(Iz) =3 x(ly)z.
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Properties of different reductions
Rmk. Reductions —43 and — g are deterministic (they can fire at most one redex). So:

If t =, 51 and t —, s, then 51 = s, for r € {hp,13}.
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Properties of different reductions
Rmk. Reductions —43 and — g are deterministic (they can fire at most one redex). So:

If t =, 51 and t —, s, then 51 = s, for r € {hp,13}.
Reduction — 4 is not deterministic, it chooses among several S-redexes to fire in a term.

((Az.2)y)(Az.2)y)

outermost 3-redex B
—_—
(Axxx)( (Az.2)y ) —— (Ax.xx)z
—— B

inner (3-redex
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Properties of different reductions
Rmk. Reductions —43 and — g are deterministic (they can fire at most one redex). So:

If t =, 51 and t —, s, then 51 = s, for r € {hp,13}.
Reduction — 4 is not deterministic, it chooses among several S-redexes to fire in a term.

((Az.2)y)(Az.2)y)

outermost 3-redex B
—_—
(Mxxx)( (Az.z)y ) — (Ax.xx)z
——

inner [3-redex

for some neN

Notation. t —* s means that t = to — t1 — - -+ — t, = s (in particular, t = s for n = 0).

Theorem (Confluence) J

If t =% s1 and t —% s2, then there is a term r such that s; =5 r and so =5 r.
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Properties of different reductions
Rmk. Reductions —43 and — g are deterministic (they can fire at most one redex). So:

If t =, s1 and t —, s, then s1 = s, for r € {h3,18}.
Reduction — 4 is not deterministic, it chooses among several S-redexes to fire in a term.

((Az.2)y)(Az.2)y)

outermost 3-redex B
—_—
(Mxxx)( (Az.z)y ) — (Ax.xx)z
——
inner [3-redex

for some neN

Notation. t —* s means that t = to — t1 — - -+ — t, = s (in particular, t = s for n = 0).

Theorem (Confluence) J

If t =% s1 and t —% s2, then there is a term r such that s; =5 r and so =5 r.

Def. Let r € {B,18, h3}. A term t is r-normal if there is no s such that t —, s.

Corollary (Uniqueness of normal form) J

If t =% s1 and t =7 s> where s; and s, are -normal, then s; = s,.

Proof. By confluence, s —>?3 rand s, =% r for some r. By normality, s; = r = s,. O
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Normalization, strong normalization and divergence

Def. Let t be a term and r € {3,183, h53}.
@ tis r-normalizing if there is a r-normal term s such that t — s.

@ t is strongly r-normalizing if there is no (ti)ien such that t = to and t; — tij1.
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Normalization, strong normalization and divergence

Def. Let t be a term and r € {3,183, h53}.
@ tis r-normalizing if there is a r-normal term s such that t — s.

@ t is strongly r-normalizing if there is no (ti)ien such that t = to and t; — tij1.

Ex. Every B-normal form is S-normalizing. Let § = Ax.xx.
@ 44 is not S-normalizing: if 8§ —p t then t = §6.

o (Ax.y)(66) is B-normalizing (indeed (Ax.y)(d0) — y which is B-normal) but not
strongly S-normalizing (indeed (Ax.y)(00) =5 (Ax.y)(d6) =5 ...).
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Normalization, strong normalization and divergence

Def. Let t be a term and r € {3,183, h53}.
@ tis r-normalizing if there is a r-normal term s such that t — s.

@ t is strongly r-normalizing if there is no (ti)ien such that t = to and t; — tij1.

Ex. Every B-normal form is S-normalizing. Let § = Ax.xx.
@ 44 is not S-normalizing: if 8§ —p t then t = §6.

o (Ax.y)(66) is B-normalizing (indeed (Ax.y)(d0) — y which is B-normal) but not
strongly S-normalizing (indeed (Ax.y)(00) =5 (Ax.y)(d6) =5 ...).

Rmk. Strong normalization implies normalization, but the converse fails, see above.
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Normalization, strong normalization and divergence

Def. Let t be a term and r € {3,183, h53}.
@ tis r-normalizing if there is a r-normal term s such that t — s.

@ t is strongly r-normalizing if there is no (ti)ien such that t = to and t; — tij1.

Ex. Every 8-normal form is 8-normalizing. Let 6 = Ax.xx.
@ 00 is not S-normalizing: if §§ — 3 t then t = §4.

o (Ax.y)(66) is B-normalizing (indeed (Ax.y)(d0) — y which is B-normal) but not
strongly S-normalizing (indeed (Ax.y)(00) =5 (Ax.y)(d6) =5 ...).

Rmk. Strong normalization implies normalization, but the converse fails, see above.

Rmk. Strong normalization and normalization coincide for —x3 and — 3, not for — 4.
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Normalization, strong normalization and divergence

Def. Let t be a term and r € {3,183, h53}.
@ tis r-normalizing if there is a r-normal term s such that t — s.

@ t is strongly r-normalizing if there is no (ti)ien such that t = to and t; — tij1.

Ex. Every 8-normal form is 8-normalizing. Let 6 = Ax.xx.
@ 00 is not S-normalizing: if §§ — 3 t then t = §4.

o (Ax.y)(66) is B-normalizing (indeed (Ax.y)(d0) — y which is B-normal) but not
strongly S-normalizing (indeed (Ax.y)(00) =5 (Ax.y)(d6) =5 ...).

Rmk. Strong normalization implies normalization, but the converse fails, see above.
Rmk. Strong normalization and normalization coincide for —x3 and — 3, not for — 4.

Rmk. In the simply typed A-calculus, every term is 8-normalizing (actually, strongly).
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Fixed point combinator

Def. A fixed point of a term t is a term s such that s =7 ts.
A fixed point combinator is a term Y such that Yt is a fixed point of t, for every term t.
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Fixed point combinator

Def. A fixed point of a term t is a term s such that s =7 ts.
A fixed point combinator is a term Y such that Yt is a fixed point of t, for every term t.

Proposition (Fixed point combinator)
Let A= Aa.\f.f(aaf) and © = AA. Then, © is a fixed point combinator. J

Proof. © = (Aa.Af.f(aaf))A —ng AF.F(AAF) = Af.f(OF). Therefore, for every term t,
ot —hB ()\f.f(@f))t —hp t(@t). O
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Fixed point combinator

Def. A fixed point of a term t is a term s such that s =} ts.
A fixed point combinator is a term Y such that Yt is a fixed point of t, for every term t.

Proposition (Fixed point combinator)
Let A= Aa.\f.f(aaf) and © = AA. Then, © is a fixed point combinator. J

Proof. © = (Aa.Af.f(aaf))A —ng AF.F(AAF) = Af.f(OF). Therefore, for every term t,
Ot —hB ()\f.f(@f))t —h8 t(@t). O

Rmk. © is h-normalizing but not 8-normalizing.
Rmk. Theta is not a term of the simply typed A-calculus, because of the subterm aa.

Rmk. Fixed point combinators such has © are crucial to represent recursive functions.
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Outline

© Programming with the untyped A-calculus

G. Guerrieri (AMU) A-calculus, simple & non-idempotent intersection types



Encoding Booleans
Goal. Encode propositional classical logic in the untyped A-calculus.
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Encoding Booleans
Goal. Encode propositional classical logic in the untyped A-calculus.

We choose (arbitrarily) two terms to represents true T and false L.
T = AxAy.x L =XxAy.y

Rmk. For every term s, t, we have Tst —}5sand Lst =5 t.
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Encoding Booleans
Goal. Encode propositional classical logic in the untyped A-calculus.

We choose (arbitrarily) two terms to represents true T and false L.
T = AxAy.x L =XxAy.y

Rmk. For every term s, t, we have Tst —}5sand Lst =5 t.

© We look for a term to encode the NOT: not T —% L and not L —% T.

not =
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Goal. Encode propositional classical logic in the untyped A-calculus.

We choose (arbitrarily) two terms to represents true T and false L.
T = AxAy.x L =XxAy.y

Rmk. For every term s, t, we have Tst —}5sand Lst =5 t.

© We look for a term to encode the NOT: not T —7% L and not L —% T.

not = Ap.pLl T

@ To encode the AND: andst —5 T ifs=t=T, butandst =3 Lifs=_Lort=_1.

and =
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Encoding Booleans
Goal. Encode propositional classical logic in the untyped A-calculus.

We choose (arbitrarily) two terms to represents true T and false L.
T = AxAy.x L =XxAy.y

Rmk. For every term s, t, we have Tst —}5sand Lst =5 t.

© We look for a term to encode the NOT: not T —7% L and not L —% T.
not = Ap.pLl T

@ To encode the AND: andst —5 T ifs=t=T, butandst =3 Lifs=_Lort=_1.

and = Ap.A\q.pqp
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Encoding Booleans
Goal. Encode propositional classical logic in the untyped A-calculus.

We choose (arbitrarily) two terms to represents true T and false L.
T = Ax.Ay.x L =XxAy.y

Rmk. For every term s, t, we have Tst —}5sand Lst =5 t.

© We look for a term to encode the NOT: not T —7% L and not L —% T.
not = Ap.pLl T

@ To encode the AND: andst —5 T ifs=t=T, butandst =3 Lifs=_Lort=_1.
and = Ap.\q.pqgp

© Toencodethe OR: orst —j; Lifs=t=_1, butorst =5 Lifs=Tort

I
I

or =

Q To encode the IF-THEN-ELSE: ifrst =5 sif r=T and if rst w5 tifr=_1

if =
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Encoding Booleans
Goal. Encode propositional classical logic in the untyped A-calculus.

We choose (arbitrarily) two terms to represents true T and false L.
T = Ax.Ay.x L =XxAy.y

Rmk. For every term s, t, we have Tst —}5sand Lst =5 t.

© We look for a term to encode the NOT: not T —7% L and not L —% T.
not = Ap.pLl T

@ To encode the AND: andst —5 T ifs=t=T, butandst =3 Lifs=_Lort=_1.
and = Ap.\q.pqgp

© Toencodethe OR: orst —j; Lifs=t=_1, butorst =5 Lifs=Tort

I
I

or = Ap.\q.ppq
Q To encode the IF-THEN-ELSE: ifrst =5 sif r=T and if rst w5 tifr=_1

if = Ap.\a.\b.pab
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Encoding arithmetic
Goal. Encode the arithmetic in the untyped A-calculus.
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Encoding arithmetic
Goal. Encode the arithmetic in the untyped A-calculus.

We choose a term n to represents any n € N (Church numeral).

n=MM.f"x =M. f(f...(Fx)...) (in particular, 0 = Af.Ax.x)
———

n times f n times s

——
Rmk. For every term s, t, we have nst —;5 s"t = s(s...(st)...) (n-iterator).
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Encoding arithmetic
Goal. Encode the arithmetic in the untyped A-calculus.

We choose a term n to represents any n € N (Church numeral).

n=MMf"x=AMIx.f(f...(fx)...) (in particular, 0 = Af.Ax.x)
———

n times f n times s

——
Rmk. For every term s, t, we have nst —;5 s"t = s(s...(st)...) (n-iterator).

© We look for a term to encode the successor: succn —j n+ 1.

succ =
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Encoding arithmetic
Goal. Encode the arithmetic in the untyped A-calculus.

We choose a term n to represents any n € N (Church numeral).

n=MMf"x=AMIx.f(f...(fx)...) (in particular, 0 = Af.Ax.x)
———

n times f n times s

——
Rmk. For every term s, t, we have nst —;5 s"t = s(s...(st)...) (n-iterator).

© We look for a term to encode the successor: succn —j n+ 1.

succ = AnAf.x.f(nfx)
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Encoding arithmetic
Goal. Encode the arithmetic in the untyped A-calculus.
We choose a term n to represents any n € N (Church numeral).

n=MM.f"x =M. f(f...(Fx)...) (in particular, 0 = Af.Ax.x)
———

n times f n times s

—_— .
Rmk. For every term s, t, we have nst —;5 s"t = s(s...(st)...) (n-iterator).
© We look for a term to encode the successor: succn —j n+ 1.
succ = AnAf.x.f(nfx)

@ To encode the addition: add mn —% m+4 m.

add =
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Rmk. For every term s, t, we have nst —;5 s"t = s(s...(st)...) (n-iterator).
© We look for a term to encode the successor: succn —j n+ 1.
succ = AnAf.x.f(nfx)

@ To encode the addition: add mn —% m+4 m.

add = Am.AnAf . Ax.mf (nfx)
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Goal. Encode the arithmetic in the untyped A-calculus.
We choose a term n to represents any n € N (Church numeral).

n=MM.f"x =M. f(f...(Fx)...) (in particular, 0 = Af.Ax.x)
———

n times f n times s

Rmk. For every term s, t, we have nst —;5 s"t = s(s...(st)...) (n-iterator).
© We look for a term to encode the successor: succn —j n+ 1.
succ = AnAf. ) x.f(nfx)
@ To encode the addition: add mn —% m+4 m.
add = Am.An.\f.Ax.mf (nfx)
© To encode the multiplication: mult mn —5 m x n.
mult =

© To encode the exponentiation: pow mn —j m”.

pow =
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Goal. Encode the arithmetic in the untyped A-calculus.
We choose a term n to represents any n € N (Church numeral).

n=MM.f"x =M. f(f...(Fx)...) (in particular, 0 = Af.Ax.x)
———

n times f n times s

Rmk. For every term s, t, we have nst —}5 s"t = ﬂt) ...) (n-iterator).
© We look for a term to encode the successor: succn —j n+ 1.
succ = AnAf. ) x.f(nfx)
@ To encode the addition: add mn —% m+4 m.
add = Am.An.\f.Ax.mf (nfx)
© To encode the multiplication: mult mn —5 m x n.
mult = Am.An.Af.m(nf)

© To encode the exponentiation: pow mn —j m”.

pow = Am.An.nm
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More about encoding arithmetic: recursion

We can encode the functions: iszero: N — {1, T} testing if a natural number is 0 or not,
and the predecessor pred: N — N such that pred(0) = 0 and pred(n+ 1) = n.

T ifn=0

. pred = ...
L otherwise. —_—

iszero = An.n(Ax..L)T iszeron —j {
Question. How can the A-calculus represent the factorial (typical recursive function)?

ifn=0
n x fact(n — 1) otherwise.

fact(n) = {1
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We can encode the functions: iszero: N — {1 T} testing if a natural number is 0 or not,
and the predecessor pred: N — N such that pred(0) = 0 and pred(n+ 1) = n.

T ifn=0

. pred = ...
L otherwise. e

iszero = An.n(Ax..L)T iszero n — {

Question. How can the A-calculus represent the factorial (typical recursive function)?

fact(n) = {1 ifn =0

n X fact(n —1) otherwise.
Let us rewrite the definition in a A-calculus-like style, using IF-THEN-ELSE and mult:

fact should satisfies the equation: fact n = if (iszero n) 1 (mult n (fact (pred n)))
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L otherwise. e
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Question. How can the A-calculus represent the factorial (typical recursive function)?

fact(n) = {1 ifn =0

n X fact(n —1) otherwise.
Let us rewrite the definition in a A-calculus-like style, using IF-THEN-ELSE and mult:

fact should satisfies the equation: fact = An.if (iszero n) 1 (mult n(fact (pred n)))

F = Af.\n.if (iszero n) 1 (mult n (f (pred n)))
fact = YF

G. Guerrieri (AMU) A-calculus, simple & non-idempotent intersection types | (=l B L | Plopkcy Ly Loy b 14 / 17



More about encoding arithmetic: recursion

We can encode the functions: iszero: N — {1 T} testing if a natural number is 0 or not,
and the predecessor pred: N — N such that pred(0) = 0 and pred(n+ 1) = n.

T ifn=0

. pred = ...
L otherwise. e

iszero = An.n(Ax..L)T iszero n — {

Question. How can the A-calculus represent the factorial (typical recursive function)?

fact(n) = {1 ifn =0

n X fact(n —1) otherwise.
Let us rewrite the definition in a A-calculus-like style, using IF-THEN-ELSE and mult:

fact should satisfies the equation: fact = An.if (iszero n) 1 (mult n(fact (pred n)))

F = Af.\n.if (iszero n) 1 (mult n (f (pred n)))
fact .= YF —}j F(YF) = F fact — An.if (iszero n) 1 (mult n (fact (pred n)))
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The untyped A-calculus is Turing-complete!

Def. Let f: N” — N be partial. A term & represents f when, for all ky,..., k, € N:
@ if f(ky,...,kn) is undefined, then ® k; ... k, is not hf3-normalizing;
Q if f(k,... ka) = k €N, then d ki ... kn =7 k.

)

Rmk. According to Church's thesis, the A-calculus can represent everything is computable.
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Def. Let f: N” — N be partial. A term & represents f when, for all ky,..., k, € N:
@ if f(ky,...,kn) is undefined, then ® k; ... k, is not hf3-normalizing;
Q if f(ki,...,ka) =k €N, then ® ki ...k, = k.

Theorem (Representability)
Every partial recursive function f: N” — N is representable by a term in the A-calculus. J

Rmk. According to Church's thesis, the A-calculus can represent everything is computable.
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Q if f(ki,...,ka) =k €N, then ki ...k, =5 k

Theorem (Representability)

Every partial recursive function f: N” — N is representable by a term in the A-calculus. J

Rmk. According to Church's thesis, the A-calculus can represent everything is computable.

Rmk. If ® represents a partial function f: N — N, then ® could have whatever behavior
when applied to arguments ti, ..., tx that are not Church numerals.
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Def. Let f: N” — N be partial. A term & represents f when, for all ky,..., k, € N:
@ if f(ky,...,kn) is undefined, then ® k; ... k, is not hf3-normalizing;
Q if f(ki,...,ka) =k €N, then ki ...k, =5 k

Theorem (Representability)

Every partial recursive function f: N” — N is representable by a term in the A-calculus. J

Rmk. According to Church's thesis, the A-calculus can represent everything is computable.

Rmk. If ® represents a partial function f: N — N, then ® could have whatever behavior
when applied to arguments t1, ..., tx that are not Church numerals.

Rmk. In Point 1 of the definition, h3-normalizing can be replaced by B-normalizing.
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Outline

© Conclusion, exercises and bibliography
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