
The λ-calculus: from simple types to non-idempotent intersection types
https://pageperso.lis-lab.fr/~giulio.guerrieri/ECI2024/

Solutions to selected exercises — ECI 2024

Giulio Guerrieri

Department of Informatics, University of Sussex, Brighton, UK. g.guerrieri@sussex.ac.uk

August 25, 2024

Exercises from Day 1 (https://pageperso.lis-lab.fr/~giulio.guerrieri/ECI2024/day1.pdf)

Exercise 1

Prove the following facts, using ND and NDseq.

1. ⊢ X ⇒ ((X ⇒ Y) ⇒ Y).

2. (X ⇒ Y) ⇒ (X ⇒ Z) ⊢ Y ⇒ X ⇒ Z.

3. (X ⇒ Y) ⇒ X ⊢ Y ⇒ X.

4. X ⇒ (Y ⇒ Z) ⊢ Y ⇒ X ⇒ Z.

5. X ⇒ Y ⇒ Z, X ⇒ Y ⊢ X ⇒ Z.

6. (X ⇒ X) ⇒ Y ⊢ (Y ⇒ Z) ⇒ Z.

Solution to Exercise 1

1. In ND and NDseq, respectively:

[X ⇒ Y]◦ [X]∗
⇒e

Y ⇒◦
i

(X ⇒ Y) ⇒ Y
⇒∗

i
X ⇒ ((X ⇒ Y) ⇒ Y)

ax
X,X ⇒ Y ⊢ X ⇒ Y

ax
X,X ⇒ Y ⊢ X

⇒e
X,X ⇒ Y ⊢ Y

⇒i
X ⊢ (X ⇒ Y) ⇒ Y

⇒i
⊢ X ⇒ ((X ⇒ Y) ⇒ Y)

2. In ND:

(X ⇒ Y) ⇒ (X ⇒ Z)

[Y]∗
⇒i

X ⇒ Y
⇒e

X ⇒ Z ⇒∗
i

Y ⇒ X ⇒ Z

In NDseq:

ax
(X ⇒ Y) ⇒ (X ⇒ Z), Y ⊢ (X ⇒ Y) ⇒ (X ⇒ Z)

ax
(X ⇒ Y) ⇒ (X ⇒ Z), X, Y ⊢ Y

⇒i
(X ⇒ Y) ⇒ (X ⇒ Z), Y ⊢ X ⇒ Y

⇒e

(X ⇒ Y) ⇒ (X ⇒ Z), Y ⊢ X ⇒ Z
⇒∗

i
(X ⇒ Y) ⇒ (X ⇒ Z) ⊢ Y ⇒ X ⇒ Z

3. In ND and NDseq, respectively:

1

https://pageperso.lis-lab.fr/~giulio.guerrieri/ECI2024/
mailto:g.guerrieri@sussex.ac.uk
https://pageperso.lis-lab.fr/~giulio.guerrieri/ECI2024/day1.pdf

(X ⇒ Y) ⇒ X

[Y]∗
⇒i

X ⇒ Y
⇒e

X ⇒∗
i

Y ⇒ X

ax
(X ⇒ Y) ⇒ X,Y ⊢ (X ⇒ Y) ⇒ X

ax
(X ⇒ Y) ⇒ X,X, Y ⊢ Y

⇒i
(X ⇒ Y) ⇒ X,Y ⊢ X ⇒ Y

⇒e

(X ⇒ Y) ⇒ X,Y ⊢ X
⇒i

(X ⇒ Y) ⇒ X ⊢ Y ⇒ X

4. In ND:

X ⇒ (Y ⇒ Z) [X]◦
⇒e

Y ⇒ Z [Y]∗
⇒e

Z ⇒◦
i

X ⇒ Z ⇒∗
i

Y ⇒ X ⇒ Z

In NDseq:

ax
X ⇒ (Y ⇒ Z), X, Y ⊢ X ⇒ (Y ⇒ Z)

ax
X ⇒ (Y ⇒ Z), X, Y ⊢ X

⇒e

X ⇒ (Y ⇒ Z), X, Y ⊢ Y ⇒ Z
ax

X ⇒ (Y ⇒ Z), X, Y ⊢ Y
⇒e

X ⇒ (Y ⇒ Z), X, Y ⊢ Z
⇒i

X ⇒ (Y ⇒ Z), Y ⊢ X ⇒ Z
⇒i

X ⇒ (Y ⇒ Z) ⊢ Y ⇒ X ⇒ Z

5. In ND:

X ⇒ Y ⇒ Z [X]∗
⇒e

Y ⇒ Z

X ⇒ Y [X]∗
⇒e

Y ⇒e
Z ⇒∗

i
X ⇒ Z

In NDseq:

ax
X⇒Y ⇒Z,X⇒Y,X ⊢ X⇒Y ⇒Z

ax
X⇒Y ⇒Z,X⇒Y,X ⊢ X

⇒e
X⇒Y ⇒Z,X ⇒ Y,X ⊢ Y ⇒Z

ax
X⇒Y ⇒Z,X⇒Y,X ⊢ X⇒Y

ax
X⇒Y ⇒Z,X⇒Y,X ⊢ X

⇒e
X⇒Y ⇒Z,X⇒Y,X ⊢ Y

⇒e
X⇒Y ⇒Z,X⇒Y,X ⊢ Z

⇒i
X⇒Y ⇒Z,X⇒Y ⊢ X⇒Z

6. In ND:

[Y ⇒ Z]∗
(X ⇒ X) ⇒ Y

[X]◦
⇒◦

i
X ⇒ X

⇒e
Y

⇒e
Z ⇒∗

i
(Y ⇒ Z) ⇒ Z

In NDseq:

ax
Y ⇒ Z, (X ⇒ X) ⇒ Y ⊢ Y ⇒ Z

ax
Y ⇒ Z, (X ⇒ X) ⇒ Y ⊢ (X ⇒ X) ⇒ Y

ax
Y ⇒ Z, (X ⇒ X) ⇒ Y,X ⊢ X

⇒i
Y ⇒ Z, (X ⇒ X) ⇒ Y ⊢ X ⇒ X

⇒e
Y ⇒ Z, (X ⇒ X) ⇒ Y ⊢ Y

⇒e
Y ⇒ Z, (X ⇒ X) ⇒ Y ⊢ Z

⇒i
(X ⇒ X) ⇒ Y ⊢ (Y ⇒ Z) ⇒ Z

Exercise 2

Show that ̸⊢ (X ⇒ Y) ⇒ X, i.e. (X ⇒ Y) ⇒ X is not derivable with no hypotheses.

2

Solution to Exercise 2

Suppose by absurd that (X ⇒ Y) ⇒ X is derivable in ND with no hypothesis. The last rule of the derivation
cannot be either an hypothesis (because there are no hypotheses) or ⇒e (otherwise it would be it would contradict
the subformula property), hence it could only be ⇒i discharging the hypothesis X ⇒ Y , that is,

[X ⇒ Y]∗
...
X ⇒∗

i
(X ⇒ Y) ⇒ X

The rule whose conclusion is X cannot be either ⇒i (otherwise its conclusion should be an arrow) or an
hypothesis (because there is no hypothesis X), hence it could only be ⇒e with premises A ⇒ X and A for some
formula A, that is,

[X ⇒ Y]∗
...

A ⇒ X

[X ⇒ Y]∗
...
A⇒e

X ⇒∗
i

(X ⇒ Y) ⇒ X

For the subformula property applied to the derivation whose conclusion is X, A could only be a subformula of
X or X ⇒ Y , that is,

• either A = X, but then A ⇒ X = X ⇒ X is a formula of that derivation that is not a subformula of X or
X ⇒ Y , which contradicts the subformula property;

• or A = Y , but then A ⇒ X = Y ⇒ X is a formula of that derivation that is not a subformula of X or
X ⇒ Y , which contradicts the subformula property;

• or A = X ⇒ Y , but then A ⇒ X = (X ⇒ Y) ⇒ X is a formula of that derivation that is not a subformula
of X or X ⇒ Y , which contradicts the subformula property.

Therefore, there is no derivation of (X ⇒ Y) ⇒ X with no hypotheses.

Exercise 3

Perform all passible cut-elimination steps from the derivation on p. 24 of Day 1 slides, until you get a derivation
without redexes. Is it always the same?

Solution to Exercise 3

The derivation on p. 24 of Day 1 slides is D below, where there are two redexes, marked as blue and red.

[(X ⇒ X) ⇒ (B ⇒ X ⇒ X)]† [X ⇒ X]◦
⇒e

B ⇒ (X ⇒ X)

[(X ⇒ X) ⇒ B]∗ [X ⇒ X]◦
⇒e

B
⇒e

X ⇒ X
⇒i

◦

(X ⇒ X) ⇒ (X ⇒ X)

[X]•
⇒•

i
X ⇒ X

⇒e

X ⇒ X
⇒∗

i

((X ⇒ X) ⇒ B) ⇒ (X ⇒ X)
⇒i

†

((X ⇒ X) ⇒ (B ⇒ X ⇒ X)) ⇒ ((X ⇒ X) ⇒ B) ⇒ (X ⇒ X))

[X ⇒ X]†
⇒i

B ⇒ X ⇒ X
⇒†

i
(X ⇒ X) ⇒ (B ⇒ X ⇒ X)

⇒e

((X ⇒ X) ⇒ B) ⇒ (X ⇒ X)

If the red redex in D is fired, then D reduces to the derivation D1 below.

[(X ⇒ X) ⇒ (B ⇒ X ⇒ X)]†
[X]•

⇒•
i

X ⇒ X
⇒e

B ⇒ (X ⇒ X)

[(X ⇒ X) ⇒ B]∗
[X]•

⇒•
i

X ⇒ X
⇒e

B
⇒e

X ⇒ X
⇒∗

i

((X ⇒ X) ⇒ B) ⇒ (X ⇒ X)
⇒i

†

((X ⇒ X) ⇒ (B ⇒ X ⇒ X)) ⇒ ((X ⇒ X) ⇒ B) ⇒ (X ⇒ X))

[X ⇒ X]†
⇒i

B ⇒ X ⇒ X
⇒†

i

(X ⇒ X) ⇒ (B ⇒ X ⇒ X)
⇒e

((X ⇒ X) ⇒ B) ⇒ (X ⇒ X)

3

If the blue redex in D1 is fired, then D1 reduces to the derivation D′
1 below, with a new green redex.

[X ⇒ X]†
⇒i

B ⇒ X ⇒ X
⇒i

†

(X ⇒ X) ⇒ (B ⇒ X ⇒ X)

[X]•
⇒•

i
X ⇒ X

⇒e

B ⇒ (X ⇒ X)

[(X ⇒ X) ⇒ B]∗
[X]•

⇒•
i

X ⇒ X
⇒e

B
⇒e

X ⇒ X
⇒∗

i

((X ⇒ X) ⇒ B) ⇒ (X ⇒ X)

If the green redex in D′
1 is fired, then D′

1 reduces to derivation D′′
1 below, with a new gray redex.

[X]•
⇒•

i
X ⇒ X

⇒i

B ⇒ X ⇒ X

[(X ⇒ X) ⇒ B]∗
[X]•

⇒•
i

X ⇒ X
⇒e

B
⇒e

X ⇒ X
⇒∗

i

((X ⇒ X) ⇒ B) ⇒ (X ⇒ X)

If the gray redex in D′′
1 is fired, then D′′

1 reduces to derivation D0 below, which is without redexes.

[X]•
⇒•

i
X ⇒ X

⇒i

((X ⇒ X) ⇒ B) ⇒ (X ⇒ X)

If the blue redex in D is fired, then D reduces to the derivation D2 below, with a new green redex.

[X ⇒ X]†
⇒i

B ⇒ X ⇒ X
⇒i

†

(X ⇒ X) ⇒ (B ⇒ X ⇒ X) [X ⇒ X]◦
⇒e

B ⇒ (X ⇒ X)

[(X ⇒ X) ⇒ B]∗ [X ⇒ X]◦
⇒e

B
⇒e

X ⇒ X
⇒i

◦

(X ⇒ X) ⇒ (X ⇒ X)

[X]•
⇒•

i
X ⇒ X

⇒e

X ⇒ X
⇒∗

i

((X ⇒ X) ⇒ B) ⇒ (X ⇒ X)

If the red redex in D2 is fired, then D2 reduces to the derivation D21 below.

[X ⇒ X]†
⇒i

B ⇒ X ⇒ X
⇒i

†

(X ⇒ X) ⇒ (B ⇒ X ⇒ X)

[X]•
⇒•

i
X ⇒ X

⇒e

B ⇒ (X ⇒ X)

[(X ⇒ X) ⇒ B]∗
[X]•

⇒•
i

X ⇒ X
⇒e

B
⇒e

X ⇒ X
⇒∗

i

((X ⇒ X) ⇒ B) ⇒ (X ⇒ X)

If the green redex in D21 is fired, then D21 reduces to the derivation D′′
1 already shown above.

If the green redex in D2 is fired, then D2 reduces to the derivation D22 below, with a new gray redex.

[X ⇒ X]◦
⇒i

B ⇒ X ⇒ X

[(X ⇒ X) ⇒ B]∗ [X ⇒ X]◦
⇒e

B
⇒e

X ⇒ X
⇒i

◦

(X ⇒ X) ⇒ (X ⇒ X)

[X]•
⇒•

i
X ⇒ X

⇒e

X ⇒ X
⇒∗

i

((X ⇒ X) ⇒ B) ⇒ (X ⇒ X)

If the red redex in D22 is fired, then D22 reduces to the derivation D221 below.

[X]•
⇒•

i
X ⇒ X

⇒i

B ⇒ X ⇒ X

[(X ⇒ X) ⇒ B]∗
[X]•

⇒•
i

X ⇒ X
⇒e

B
⇒e

X ⇒ X
⇒∗

i

((X ⇒ X) ⇒ B) ⇒ (X ⇒ X)

4

If the gray redex in D221 is fired, then D221 reduces to the derivation D0 below, which is without redexes.

[X]•
⇒•

i
X ⇒ X

⇒i

((X ⇒ X) ⇒ B) ⇒ (X ⇒ X)

If the gray redex in D22 is fired, then D22 reduces to the derivation D222 below.

[X ⇒ X]◦
⇒i

◦

(X ⇒ X) ⇒ (X ⇒ X)

[X]•
⇒•

i
X ⇒ X

⇒e

X ⇒ X
⇒∗

i

((X ⇒ X) ⇒ B) ⇒ (X ⇒ X)

If the red redex in D222 is fired, then D222 reduces to the derivation D0 below, which is without redexes.

[X]•
⇒•

i
X ⇒ X

⇒i

((X ⇒ X) ⇒ B) ⇒ (X ⇒ X)

All possible cut-elimination steps from D are the following:

D

D1 D2

D′
1 D21 D22

D′′
1 D221 D222

D0

In any case, every reduction sequence eventually reaches the same derivation D0 with no redexes.

Exercise 4

Order the following multisets over N according to the (strict) multiset order ≺mul.

[1, 1] [0, 2] [1] [0, 0, 2] [] [0, 3] [0, 2, 2]

Solution to Exercise 4

[] ≺mul [1] ≺mul [1, 1] ≺mul [0, 2] ≺mul [0, 0, 2] ≺mul [0, 2, 2] ≺mul [0, 3].

Exercise 5

Prove in a rigorous way the proposition on p. 15 of Day 1 slides.

Solution to Exercise 5

Proposition. Let Γ be a finite multiset of formulas and A be a formula: Γ ⊢ A in ND if and only if the sequent
Γ ⊢ A is derivable in NDseq.

Proof. ⇒: By induction on the number of rules of the smallest derivation D in ND proving that Γ ⊢ A. Cases:

• D is just an hypothesis, that is, D = A and so Γ = Γ′, A for any finite multiset Γ′. Then, the derivation
Dseq below derives the sequent Γ ⊢ A in NDseq.

Dseq =
ax

Γ′, A ⊢ A

• The last rule in D is ⇒i, that is, A = B ⇒ C and

D =

[B]∗
..... D

′

C ⇒∗
i

B ⇒ C

5

where D′ is the smallest derivation in ND that proves that Γ, B ⊢ C, by minimality of D. By induction
hypothesis applied to D′, there is a derivation D′

seq in NDseq of the sequent Γ, B ⊢ C. Then, the
derivation Dseq below derives the sequent Γ ⊢ A in NDseq.

Dseq =

......
D′

seq

Γ, B ⊢ C
⇒i

Γ ⊢ B ⇒ C

• The last rule in D is ⇒e, that is, for some formula B

D =

..... D
′

B ⇒ A

..... D
′′

B ⇒e
A

where D′ and D′′ are the smallest derivation in ND that prove that Γ ⊢ B ⇒ A and Γ ⊢ B, respectively,
by minimality of D. By induction hypothesis applied to D′ and D′′, respectively, there are derivations
D′

seq and D′′
seq in NDseq of the sequents Γ ⊢ B ⇒ A and Γ ⊢ B. Then, the derivation Dseq below derives

the sequent Γ ⊢ A in NDseq.

Dseq =

......
D′

seq

Γ ⊢ B ⇒ A

......
D′′

seq

Γ ⊢ B ⇒e
Γ ⊢ A

⇐: By induction on the number of rules of the smallest derivation D in NDseq proving the sequent Γ ⊢ A. Cases:

• The last rule of D is ax, that is,

D =
ax

Γ′, A ⊢ A

where Γ = Γ′, A for some finite multiset Γ′. Then, the derivation D0 = A proves that Γ ⊢ A in ND.

• The last rule in D is ⇒i, that is, A = B ⇒ C and

D =

..... D
′

Γ, B ⊢ C
⇒i

Γ ⊢ B ⇒ C

where D′ is the smallest derivation in NDseq of the sequent Γ, B ⊢ C, by minimality of D. By induction
hypothesis applied to D′, there is a derivation D′

0 in ND that proves that Γ, B ⊢ C. Then, the derivation
D0 below proves that Γ ⊢ A in ND.

D =

[B]∗
..... D

′

C ⇒∗
i

B ⇒ C

• The last rule in D is ⇒e, that is, for some formula B

Dseq =

..... D
′

Γ ⊢ B ⇒ A

..... D
′′

Γ ⊢ B ⇒e
Γ ⊢ A

where D′ and D′′ are the smallest derivation in NDseq that prove the sequents Γ ⊢ B ⇒ A and Γ ⊢ B,
respectively, by minimality of D. By induction hypothesis applied to D′ and D′′, respectively, there are
derivations D′

0 and D′′
0 in ND that prove Γ ⊢ B ⇒ A and Γ ⊢ B. Then, the derivation D0 below prove

that Γ ⊢ A in ND.

D =

..... D
′

B ⇒ A

..... D
′′

B ⇒e
A

Exercise 6

For any formula B, prove that if Γ ⊢ A is derivable in NDseq, then so is Γ, B ⊢ A.

6

Solution to Exercise 6

By induction on the number of rules of the smallest derivation D in NDseq proving the sequent Γ ⊢ A. Cases:

• The last rule of D is ax, that is,

D =
ax

Γ′, A ⊢ A

where Γ = Γ′, A for some finite multiset Γ′. Then, the derivation below proves the sequent Γ, B ⊢ A in NDseq.

ax
Γ′, B,A ⊢ A

• The last rule in D is ⇒i, that is, A = D ⇒ C and

D =

..... D
′

Γ, D ⊢ C
⇒i

Γ ⊢ D ⇒ C

where D′ is the smallest derivation in NDseq of the sequent Γ, D ⊢ C, by minimality of D. By induction
hypothesis applied to D′, there is a derivation D0 in NDseq that proves the sequent Γ, B,D ⊢ C. Then, the
derivation below proves the sequent Γ, B ⊢ A in NDseq.

.....
D0

Γ, B,D ⊢ C
⇒i

Γ, B ⊢ D ⇒ C

• The last rule in D is ⇒e, that is, for some formula C

Dseq =

..... D
′

Γ ⊢ C ⇒ A

..... D
′′

Γ ⊢ C ⇒e
Γ ⊢ A

where D′ and D′′ are the smallest derivations in NDseq that prove the sequents Γ ⊢ C ⇒ A and Γ ⊢ C,
respectively, by minimality of D. By induction hypothesis applied to D′ and D′′, respectively, there are
derivations D1 and D2 in NDseq that prove the sequents Γ, B ⊢ C ⇒ A and Γ ⊢ C. Then, the derivation
below prove the sequent Γ, B ⊢ A in NDseq.

.....
D1

Γ, B ⊢ C ⇒ A

.....
D2

Γ, B ⊢ C
⇒e

Γ, B ⊢ A

Exercise 7

For any formula B, prove that if Γ, B,B ⊢ A is derivable in NDseq then so is Γ, B ⊢ A.

Solution to Exercise 7

By induction on the number of rules of the smallest derivation D in NDseq proving the sequent Γ, B,B ⊢ A. Cases:

• The last rule of D is ax, that is,

D =
ax

Γ′, B,B,A ⊢ A

where Γ = Γ′, A for some finite multiset Γ′. Then, the derivation below proves the sequent Γ, B ⊢ A in NDseq.

ax
Γ′, B,A ⊢ A

• The last rule in D is ⇒i, that is, A = D ⇒ C and

7

D =

..... D
′

Γ, B,D ⊢ C
⇒i

Γ, B,B ⊢ D ⇒ C

where D′ is the smallest derivation in NDseq of the sequent Γ, B,B,D ⊢ C, by minimality of D. By induction
hypothesis applied to D′, there is a derivation D0 in NDseq that proves the sequent Γ, B,D ⊢ C. Then, the
derivation below proves the sequent Γ, B ⊢ A in NDseq.

.....
D0

Γ, B,D ⊢ C
⇒i

Γ, B ⊢ D ⇒ C

• The last rule in D is ⇒e, that is, for some formula C

Dseq =

..... D
′

Γ, B,B ⊢ C ⇒ A

..... D
′′

Γ, B,B ⊢ C
⇒e

Γ, B,B ⊢ A

where D′ and D′′ are the smallest derivations in NDseq that prove the sequents Γ, B,B ⊢ C ⇒ A and
Γ, B,B ⊢ C, respectively, by minimality of D. By induction hypothesis applied to D′ and D′′, respectively,
there are derivations D1 and D2 in NDseq that prove the sequents Γ, B ⊢ C ⇒ A and Γ ⊢ C. Then, the
derivation below proves the sequent Γ, B ⊢ A in NDseq.

.....
D1

Γ, B ⊢ C ⇒ A

.....
D2

Γ, B ⊢ C
⇒e

Γ, B ⊢ A

Exercises from Day 2 (https://pageperso.lis-lab.fr/~giulio.guerrieri/ECI2024/day2.pdf)

Exercise 1

Find the simply typed λ-terms (in Curry-style and Church-style) associated with the derivations in ND found for
the facts below (see Exercise 1 from Day 1).

1. ⊢ X ⇒ ((X ⇒ Y) ⇒ Y).

2. (X ⇒ Y) ⇒ (X ⇒ Z) ⊢ Y ⇒ X ⇒ Z.

3. (X ⇒ Y) ⇒ X ⊢ Y ⇒ X.

4. X ⇒ (Y ⇒ Z) ⊢ Y ⇒ X ⇒ Z.

5. X ⇒ Y ⇒ Z, X ⇒ Y ⊢ X ⇒ Z.

6. (X ⇒ X) ⇒ Y ⊢ (Y ⇒ Z) ⇒ Z.

Solution to Exercise 1

1. In Curry-style and Church-style for λ-terms, and ND for derivations:

[y : X ⇒ Y]◦ [x : X]∗
⇒e

yx : Y
⇒◦

i
λy.yx : (X ⇒ Y) ⇒ Y

⇒∗
i

λx.λy.yx : X ⇒ ((X ⇒ Y) ⇒ Y)

[y : X ⇒ Y]◦ [x : X]∗
⇒e

yx : Y
⇒◦

i
λyX⇒Y.yx : (X ⇒ Y) ⇒ Y

⇒∗
i

λxX.λyX⇒Y.yx : X ⇒ ((X ⇒ Y) ⇒ Y)

2. In Curry-style and Church-style for λ-terms, and ND for derivations:

8

https://pageperso.lis-lab.fr/~giulio.guerrieri/ECI2024/day2.pdf

z : (X ⇒ Y) ⇒ (X ⇒ Z)

[y : Y]∗
⇒i

λx.y : X ⇒ Y
⇒e

z(λx.y) : X ⇒ Z
⇒∗

i
λy.z(λx.y) : Y ⇒ X ⇒ Z

z : (X ⇒ Y) ⇒ (X ⇒ Z)

[y : Y]∗
⇒i

λxX.y : X ⇒ Y
⇒e

z(λxX.y) : X ⇒ Z
⇒∗

i
λyY.z(λxX.y) : Y ⇒ X ⇒ Z

3. In Curry-style and Church-style for λ-terms, and ND for derivations:

z : (X ⇒ Y) ⇒ X

[y : Y]∗
⇒i

λx.y : X ⇒ Y
⇒e

z(λx.y) : X
⇒∗

i
λy.z(λx.y) : Y ⇒ X

z : (X ⇒ Y) ⇒ X

[y : Y]∗
⇒i

λxX.y : X ⇒ Y
⇒e

z(λxX.y) : X
⇒∗

i
λyY.z(λxX.y) : Y ⇒ X

4. In Curry-style and Church-style for λ-terms, and ND for derivations:

z : X ⇒ (Y ⇒ Z) [x : X]◦
⇒e

zx : Y ⇒ Z [y : Y]∗
⇒e

zxy : Z
⇒◦

i
λx.zxy : X ⇒ Z

⇒∗
i

λy.λx.zxy : Y ⇒ X ⇒ Z

z : X ⇒ (Y ⇒ Z) [x : X]◦
⇒e

zx : Y ⇒ Z [y : Y]∗
⇒e

zxy : Z
⇒◦

i
λxX.zxy : X ⇒ Z

⇒∗
i

λyY.λxX.zxy : Y ⇒ X ⇒ Z

5. In Curry-style and Church-style for λ-terms, and ND for derivations:

z : X⇒Y ⇒Z [x : X]∗
⇒e

zx : Y ⇒Z

y : X⇒Y [x : X]∗
⇒e

yx : Y
⇒e

zx(yx) : Z
⇒∗

i
λx.zx(yx) : X⇒Z

z : X⇒Y ⇒Z [x : X]∗
⇒e

zx : Y ⇒Z

y : X⇒Y [x : X]∗
⇒e

yx : Y
⇒e

zx(yx) : Z
⇒∗

i
λxX.zx(yx) : X⇒Z

6. In Curry-style and Church-style for λ-terms, and ND for derivations:

[z : Y ⇒Z]∗
y : (X⇒X)⇒Y

[x : X]◦
⇒◦

i
λx.x : X⇒X

⇒e
y λx.x : Y

⇒e

z(y λx.x) : Z
⇒∗

i
λz.z(y λx.x) : (Y ⇒Z)⇒Z

[z : Y ⇒Z]∗

y : (X⇒X)⇒Y

[x : X]◦
⇒◦

i
λxX.x : X⇒X

⇒e

y λxX.x : Y
⇒e

z(y λxX.x) : Z
⇒∗

i
λzY⇒Z.z(y λxX.x) : (Y ⇒Z)⇒Z

Exercise 2

Perform all possible β-reduction steps from the λ-term decorating the derivation D in ND on p. 24 of Day 1, until
you get a β-normal form. Is it always the same? Compare it with the normal derivation obtained by cut-elimination
steps from D.

Solution to Exercise 2

The derivation on p. 24 of Day 1 slides is D below, decorated with λ-terms is Curry-style.

[y : (X ⇒ X) ⇒ (B ⇒ X ⇒ X)]† [z′ : X ⇒ X]◦
⇒e

yz′ : B ⇒ (X ⇒ X)

[v : (X ⇒ X) ⇒ B]∗ [z′ : X ⇒ X]◦
⇒e

vz′ : B
⇒e

yz′(vz′) : X ⇒ X
⇒◦

i
λz′.yz′(vz′) : (X ⇒ X) ⇒ (X ⇒ X)

[x : X]•
⇒•

i
λx.x : X ⇒ X

⇒e
(λz′.yz′(vz′))λx.x : X ⇒ X

⇒∗
i

λv.(λz′.yz′(vz′))λx.x : ((X ⇒ X) ⇒ B) ⇒ (X ⇒ X)
⇒†

i
λy.λv.(λz′.yz′(vz′))λx.x : ((X ⇒ X) ⇒ (B ⇒ X ⇒ X)) ⇒ ((X ⇒ X) ⇒ B) ⇒ (X ⇒ X))

[z : X ⇒ X]†
⇒i

λb.z : B ⇒ X ⇒ X
⇒†

i
λz.λb.z : (X ⇒ X) ⇒ (B ⇒ X ⇒ X)

⇒e
(λy.λv.(λz′.yz′(vz′))λx.x)λz.λb.z : ((X ⇒ X) ⇒ B) ⇒ (X ⇒ X)

9

Thus, the λ-term decorating D is t = (λy.λv.(λz′.yz′(vz′))λx.x)λz.λb.z. All possible β-reduction steps from t are
the following:

(λy.λv.(λz′.yz′(vz′))λx.x)λz.λb.z

(λy.λv.(yλx.x)(vλx.x))λz.λb.z λv.(λz′.(λz.λb.z)z′(vz′))λx.x

λv.((λz.λb.z)λx.x)(vλx.x) λv.(λz.λb.z)(λx.x)(vλx.x) λv.(λz′.(λb.z′)(vz′))λx.x

λv.(λb.λx.x)(vλx.x) λv.(λb.z′)(vλx.x) λv.(λz′.z′)λx.x

λv.λx.x

In any case, every β-reduction sequence eventually reaches the same β-normal term λv.λx.x. Note that λv.λx.x
is the decoration of the derivation D0 below, which is the derivation without redexes to which D eventually reduces
via cut-elimination steps (see Exercise 3 from day 1).

[x : X]•
⇒•

i
λx.x : X ⇒ X

⇒i

λv.λx.x : ((X ⇒ X) ⇒ B) ⇒ (X ⇒ X)

Exercise 3

Prove rigorously the following facts (fnx =

n times f︷ ︸︸ ︷
f(. . . (f x) . . .) for any n ∈ N):

1. λx.xx is untypable in Curry-style, λxA.xx is untypable in Church-style for any type A;

2. in Church-style, λfY.λxX.fnx is not typable for any n > 0 but λfY.λxX.x is typable;

3. λf.λx.fnx is typable in Curry-style, for all n ∈ N.

Solution to Exercise 3

1. Curry-style: Suppose by absurd that λx.xx is typable in the simply typed λ-calculus in Curry-style. Then
there would be a derivation D of λx.xx. Its last rule is necessarily λ (because the term in the derivation is an
abstraction), and its second to last rule is necessarily @ (because the body of the abstraction in the derivation
is an application), and its leaves are necessarily var rules (because the proper subterms of the application are
variables), hence D has the form below, for some types A,B,C.

var
x : A ⊢ x : C ⇒ B

var
x : A ⊢ x : C

@
x : A ⊢ xx : B

λ
⊢ λx.xx : A ⇒ B

To make D a valid derivation, the two instances of the rule var must be correct, thus A = C ⇒ B and A = C
must hold, which implies that C = C ⇒ B, but this is impossible for any type B,C.

Church-style: Suppose by absurd that λxA.xx is typable in the simply typed λ-calculus in Church-style.
Then there would be a derivation D of λxA.xx. Its last rule is necessarily λ abstracting a variable of type A
(because the term in the derivation is an abstraction of type A), and its second to last rule is necessarily @
(because the body of the abstraction is an application), and its leaves are necessarily var rules (because the
proper subterms of the application are variables), hence D has the form below, for some types B,C.

var
x : A ⊢ x : C ⇒ B

var
x : A ⊢ x : C

@
x : A ⊢ xx : B

λ
⊢ λxA.xx : A ⇒ B

To make D a valid derivation, the two instances of the rule var must be correct, thus A = C ⇒ B and A = C
must hold, which implies that C = C ⇒ B, but this is impossible for any type B,C.

2. The term λfY.λxX.x is typable in Church-style, as shown by the derivation below.

var
f : Y, x : X ⊢ x : X

λ
f : Y ⊢ λxX.x : X ⇒ X

λ
⊢ λfY .λxX.x : Y ⇒ X ⇒ X

10

We prove by contradiction that λfY.λxX.fnx is not typable in Church-style for any n ∈ N+. Since n ∈ N+ =
N \ {0}, then fnx = f(fn−1x) where n − 1 ∈ N. Suppose by absurd that λfY.λxX.fnx is typable in the
simply typed λ-calculus in Church-style. Then there would be a derivation D of λfY.λxX.fnx. Its two last
rules are necessarily λ (because the term in the derivation is a double abstraction), and its third to last rule is
necessarily @ (because the body of the double abstraction is the application f(fn−1x)), and the left premise
of the @ rule is necessarily a var rule (because the left subterm of the application is a variable), hence D has
the form below, for some types A,B.

var
f : Y, x : X ⊢ f : B ⇒ A

...
f : Y, x : X ⊢ fn−1x : B

@
f : Y, x : X ⊢ fnx : A

λ
f : Y ⊢ λxX.x : X ⇒ A

λ
⊢ λfY .λxX.x : Y ⇒ X ⇒ A

To make D a valid derivation, the left instance of the rule var must be correct, thus Y = B ⇒ A must hold
for some types A,B, but this is impossible because Y is a ground type.

3. We first prove the following.

Fact. For all n ∈ N, there is a derivation of f : X ⇒ X, x : X ⊢ fnx : X (in Curry-style and Church-style).

Proof. By induction on n ∈ N. Cases:

(a) n = 0: then, f0x = x and hence the derivation below concludes.

var
f : X ⇒ X, x : X ⊢ x : X

(b) n > 0: then fnx = f(fn−1x) and by induction hypothesis there is a derivation D of f : X ⇒ X, x : X ⊢
fn−1x : X. The derivation below concludes.

var
f : X ⇒ X, x : X ⊢ f : X ⇒ X

.... D
f : X ⇒ X, x : X ⊢ fn−1x : X

@
f : X ⇒ X, x : X ⊢ fnx : X

We can now show that, for all n ∈ N, the term λf.λx.fnx is typable in Curry-style. Indeed, by the fact
above, there is a derivation D of f : X ⇒ X, x : X ⊢ fnx : X for all n ∈ N. The derivation below concludes:

.... D
f : X ⇒ X, x : X ⊢ fnx : X

λ
f : X ⇒ X ⊢ λx.fnx : X ⇒ X

λ
⊢ λf.λx.fnx : (X ⇒ X) ⇒ X ⇒ X

Exercise 13

In a ARS (A,→), prove that t ∈ A is SN if and only if for every t′ ∈ A, if t → t′ then t′ is SN.

Solution to Exercise 13

t is not strongly normalizing
⇐⇒ there is an infinite sequence (ti)i∈N such that t0 = t and ti → ti+1 for all i ∈ N
⇐⇒ there is t′ such that t → t′ and an infinite sequence (t′i)i∈N such that t0 = t′ and t′i → t′i+1 for all i ∈ N
⇐⇒ there is t′ such that t → t′ and t′ is not strongly normalizing.

11

Exercises from Day 3 (https://pageperso.lis-lab.fr/~giulio.guerrieri/ECI2024/day3.pdf)

Exercise 1

Write the tree representation of following terms (as on p. 7 of Day 3), specifying m,n ∈ N and the subtrees
corresponding to h, t1, . . . , tm: x, I, λx.Ixx, λx.I(xx), λx.xxx(xx), II (where I = λz.z).

Solution to Exercise 1

The subtree corresponding to the head h (head variable or head redex) is marked in red, the ones corresponding
to t1, t2 and t3 (if any) are marked in blue, gray and green, respectively.

1. x: then m = 0 = n and
x

2. I = λz.z: then n = 1, m = 0 and
λz

z

3. λx.Ixx = λx.(λz.z)xx: then n = 1, m = 1 and

λx

@

@ x

λz x

z

4. λx.I(xx) = λx.(λz.z)(xx): then n = 1, m = 0 and

λx

@

λz @

z x x

5. λx.xxx(xx): then n = 1, m = 3 and

λx

@

@ @

@ x x x

x x

6. II = (λz.z)λx.x: then n = 0, m = 0 and

@

λz λx

z x

Exercise 3

Consider the η-reduction →η defined below, which can be fired everywhere in a term. Prove that →η is strongly
normalizing.

λx.tx →η t if x /∈ fv(t)

12

https://pageperso.lis-lab.fr/~giulio.guerrieri/ECI2024/day3.pdf

Solution to Exercise 3

Fact. Let → be a reduction on a set A: t ∈ A is strongly normalizing (for →) if and only if every t′ such that
t → t′ is strongly normalizing (for →).

Proof. Let t ∈ A.
t is not strongly normalizing

⇐⇒ there is an infinite sequence (ti)i∈N such that t0 = t and ti → ti+1 for all i ∈ N
⇐⇒ there is t′ such that t → t′ and an infinite sequence (t′i)i∈N such that t0 = t′ and t′i → t′i+1 for all i ∈ N
⇐⇒ there is t′ such that t → t′ and t′ is not strongly normalizing.

Formally, η-reduction is defined on the terms of the untyped λ-calculus by the rules below.

x /∈ fv(t)

λx.tx →η t

t →η t′

λx.t →η λx.t′

t →η t′

ts →η t′s

t →η t′

st →η st′

Let the size |t| ∈ N of a term t be defined by structural induction on t as follows:

|x| = 1 |λx.t| = 1 + |t| |st| = 1 + |s|+ |t|

Lemma. If t →η t′ then |t| > |t′|.

Proof. By induction on the definition of t →η t′. Cases:

• If λx.tx →η t with x /∈ fv(t), then |λx.tx| = 3 + |t| > |t|.

• If λx.t →η λx.t′ with t →η t′, then |t| > |t′| by induction hypothesis, hence |λx.t| = 1+ |t| > 1+ |t′| = |λx.t′|.

• If ts →η t′s with t →η t′, then |t| > |t′| by induction hypothesis, hence |ts| = 1+ |t|+ |s| > 1+ |t′|+ |s| = |t′s|.

• If st →η st′ with t →η t′, then |t| > |t′| by induction hypothesis, so |st| = 1+ |s|+ |t| > 1+ |s|+ |t′| = |st′|.

Corollary. →η is strongly normalizing.

Proof. Let t be a term. We prove that t is strongly η-normalizing by induction on |t| ∈ N. Cases:

• If t is η-normal, we are done.

• If t →η t′, then |t| > |t′| by the lemma above, and hence t′ is strongly η-normalizing by induction hypothesis;
we conclude that t is strongly η-normalizing thanks to the fact above.

Exercise 4

Find a term r such that rt →∗
β t(tr) for every t (Hint: use the fixpoint combinator Θ).

Solution to Exercise 4

Saying that r is an term such that rt →∗
β t(tr) for every term t amounts to say that rx →∗

β x(xr) for any variable
x /∈ fv(r), which follows from r →∗

β λx.x(xr), which in turn follows from r →∗
β (λy.λx.x(xy))r. Note that r is

a fixed point of λy.λx.x(xy). Let r = Θλy.λx.x(xy), where Θ is the fixpoint combinator, that is, Θt →∗
β t(Θt)

for every term t. Now, r = Θλy.λx.x(xy) →∗
β (λy.λx.x(xy))(Θλy.λx.x(xy)) = (λy.λx.x(xy))r →β λx.x(xr).

Therefore, rt →∗
β (λx.x(xr))t →β t(tr) for every term t.

Exercise 5

Prove that succ n →∗
β n+ 1 for all n ∈ N, and addmn →∗

β m+ n for all m,n ∈ N.

Solution to Exercise 5

succ n = (λm.λf.λx.f(mfx))λg.λy.gny →β λf.λx.f((λg.λy.gny)fx)

→β λf.λx.f((λy.fny)x) →β λf.λx.f(fnx) = λf.λx.fn+1x = n+ 1

addmn = (λm.λn.λf.λx.mf(nfx))(λg.λy.gmy)(λh.λz.hnz)

→β (λn.λf.λx.(λg.λy.gmy)f(nfx))(λh.λz.hnz)

→β (λn.λf.λx.(λy.fmy)(nfx))(λh.λz.hnz) →β (λn.λf.λx.fm(nfx))(λh.λz.hnz)

→β λf.λx.fm((λh.λz.hnz)fx) →β λf.λx.fm((λz.fnz)x)

→β λf.λx.fm(fnx) = λf.λx.fm+nx = m+ n

13

Exercise 6

Find terms t, t′, s, s′ such that t =α t′, s =α s′ and t[s/x] ̸=α t′[s′/x] (where =α is α-equivalence and t[s/x] is näıve
substitution, see p. 10 on Day 2 slides).

Solution to Exercise 6

Let t = λy.x and t′ = λz.x where x, y, z are pairwise distinct variables, let s = z = s′. Thus,

t[s/x] = (λy.x)[z/x] = λy.z ̸=α λz.z = (λz.x)[z/x] = t′[s′/x].

Exercises from Day 4 (https://pageperso.lis-lab.fr/~giulio.guerrieri/ECI2024/day4.pdf)

Exercise 3

Prove that all derivations in NI for (λx.xx)λy.y have the form Dδ,I
A shown on p. 8 of Day 4, for any linear type A.

Solution to Exercise 3

Every derivation in NI for (λx.xx)λy.y has the form below for some m,n ∈ N and some linear types A0, . . . , An, B1,

. . . , Bm, where Dδ,n
A0,...,An

and DI
Bi

are the derivations in NI defined on p. 7 of Day 4 slides:

.......
Dδ,n

A0,...,An

⊢ λx.xx : [[A1, . . . , An] ⊸ A0, A1, . . . , An] ⊸ A0

DI

Bi

⊢ λy.y : [Bi] ⊸ Bi

1≤i≤m

!
⊢ λy.y : [[B1] ⊸ B1, . . . , [Bm] ⊸ Bm]

@
⊢ (λx.xx)λz.z : A0

To make the last rule @ valid, [[A1, . . . , An] ⊸ A0, A1, . . . , An] = [[B1] ⊸ B1, . . . , [Bm] ⊸ Bm]. Therefore,
n+ 1 = m and n = 1, hence m = 2. Thus, the identity above becomes [[A1] ⊸ A0, A1] = [[B1] ⊸ B1, [B2] ⊸ B2].
As a consequence, A1 = A0 = [A] ⊸ A and B1 = B2 = A, for any linear type A. So, every derivation in NI of
(λx.xx)λy.y is necessarily of the form below, for any linear type A.

.......
Dδ,1

[A]⊸A,[A]⊸A

⊢ λx.xx :
[
[[A]⊸A] ⊸ [A]⊸A, [A]⊸A

]
⊸ [A]⊸A

......
DI

[A]⊸A

⊢ λy.y : [[A]⊸A] ⊸ [A]⊸A

......
DI

A

⊢ λy.y : [A] ⊸ A
!

⊢ λy.y : [[[A]⊸A] ⊸ [A]⊸A, [A]⊸A]
@

⊢ (λx.xx)λy.y : [A] ⊸ A

Exercise 9

Prove rigorously the two lemmas on p. 13 and the two lemmas on p. 16 of Day 4.

Lemma (Typing hβ-normal forms, p. 13 of Day 4). Let t be hβ-normal. If D ▷NI Γ ⊢ t : A then |t|hβ ≤ |D|.

Proof. Since t is hβ-normal, t = λxn . . . λx1.yt1 . . . tm for some m,n ∈ N. We prove the statement by induction on
|t|hβ ∈ N. Cases (as A is a linear type, the last rule in D cannot be !):

• n = 0 = m: Then, t = y and hence D is necessarily as below, with Γ = y : [A] and |D| = 1 = |t|hβ .

D =
var

y : [A] ⊢ y : A

• n = 0, m > 0: Then, t = yt1 . . . tm. Let t′ = yt1 . . . tm−1, so t = t′tm (this makes sense because m > 0). By
necessity, D is as below, with Γ = Γ′ ⊎ Γm.

D =

..... D
′

Γ′ ⊢ t′ : M ⊸ A

.....
Dm

Γm ⊢ tm : M
@

Γ′ ⊎ Γm ⊢ t′tm : A

As t′ is hβ-normal with |t′|hβ < 1 + |t′|hβ = |t|hβ , we have |D′| ≥ |t′|hβ by induction hypothesis. Therefore,
|D| = 1 + |D′|+ |Dm| ≥ 1 + |D′| ≥ 1 + |t′|hβ = |t|hβ .

14

https://pageperso.lis-lab.fr/~giulio.guerrieri/ECI2024/day4.pdf

• n > 0: Then, t = λxn . . . λx1.yt1 . . . tm. Let t′ = λxn−1 . . . λx1.yt1 . . . tm, so t = λxn.t
′ (this makes sense

because n > 0). By necessity, D is as below, with A = M ⊸ B.

D =

..... D
′

Γ, xn : M ⊢ t′ : B
λ

Γ ⊢ λxn.t
′ : M ⊸ B

Since t′ is hβ-normal with |t′|hβ < 1+ |t′|hβ = |t|hβ , we have |D′| ≥ |t′|hβ by induction hypothesis. Therefore,
|D| = 1 + |D′| ≥ 1 + |t′|hβ = |t|hβ .

Lemma (Typability of hβ-normal forms, p. 16 of Day 4). If t be hβ-normal, then there is D ▷NI Γ ⊢ t : A with
|t|hβ = |D|, for some environment Γ and linear type A.

Proof. To have the right induction hypothesis, we prove the following stronger statement:

If t be hβ-normal, then there is a derivation D ▷NI Γ ⊢ t : A with |t|hβ = |D|, for some environment
Γ and linear type A. If, moreover, t = yt1 . . . tm for some m ∈ N and terms t1, . . . , tm, then for every
linear type A and k ∈ N, there is an environment Γ and a derivation D ▷NI Γ ⊢ t : [] ⊸ · · · ⊸ []︸ ︷︷ ︸

k times []

⊸ A,

with |D|λ = 0, |D|var = 1 and |D|@ = m.

Since t is hβ-normal, t = λxn . . . λx1.yt1 . . . tm for some m,n ∈ N. We prove the stronger statement by induction
on |t|hβ ∈ N. Cases:

• n = 0 = m: Then t = y, which is not an abstraction. Let A be a linear type and k ∈ N. Let D be as below,
hence |D| = 1 = |t|hβ and |D|λ = 0, |D|var = 1 and |D|@ = 0 = m.

D =

var
y : [[] ⊸ · · · ⊸ []︸ ︷︷ ︸

k times []

⊸ A] ⊢ y : [] ⊸ · · · ⊸ []︸ ︷︷ ︸
k times []

⊸ A

• n = 0, m > 0: Then t = yt1 . . . tm, which is not an abstraction. Let A be a linear type and k ∈ N. Let t′ =
yt1 . . . tm−1, so t = t′tm (this makes sense because m > 0). As t′ is hβ-normal and not an abstraction, with
|t′|hβ < 1+ |t′|hβ = |t|hβ , then by induction hypothesis there is a derivation D′ ▷NI Γ ⊢ t′ : [] ⊸ · · · ⊸ []︸ ︷︷ ︸

k+1 times []

⊸ A

with |D′| = |t′|hβ and |D′|λ = 0, |D′|var = 1 and |D′|@ = m− 1. Let D be as below.

D =

..... D
′

Γ ⊢ t′ :

k+1 times []︷ ︸︸ ︷
[] ⊸ · · · ⊸ [] ⊸ A

!
⊢ tm : []

@
Γ ⊢ t′tm : [] ⊸ · · · ⊸ []︸ ︷︷ ︸

k times []

⊸ A

Hence, |D| = 1 + |D′| = 1 + |t′|hβ = |t|hβ with |D|λ = |D′|λ = 0, |D|var = |D′|var = 1 and |D|@ = 1 + |D′|@ =
1 +m− 1 = m.

• n > 0: Then t = λxn . . . λx1.yt1 . . . tm, which is an abstraction because n > 0. Let t′ = λxn−1 . . . λx1.yt1 . . . tm,
so t = λxn.t

′ (this makes sense because n > 0). As t′ is hβ-normal with |t′|hβ < 1+|t′|hβ = |t|hβ , by induction
hypothesis there is D′ ▷NIΓ, xn :M ⊢ t′ :B for some environment Γ, xn :M and linear type B, with |D| = |t′|hβ .
Let D be as below, hence |D| = 1 + |D′| = 1 + |t′|hβ = |t|hβ .

D =

..... D
′

Γ, xn : M ⊢ t′ : B
λ

Γ ⊢ λxn.t
′ : M ⊸ B

Exercises from Day 5 (https://pageperso.lis-lab.fr/~giulio.guerrieri/ECI2024/day5.pdf)

Exercise 6

Prove rigorously the two lemmas on p. 7 and the the lemma on p. 9 of Day 5.

15

https://pageperso.lis-lab.fr/~giulio.guerrieri/ECI2024/day5.pdf

Lemma (Spreading of shrinkingness, p. 7 of Day 5). Let t be β-normal and not an abstraction. Let D ▷NIΓ ⊢ t : A.
If Γ is co-shrinking then A is co-shrinking.

Proof. Since t is β-normal and not an abstraction, t = yt1 . . . tm for some m ∈ N with β-normal t1, . . . , tm. We
proceed by induction on m ∈ N (as A is a linear type, the last rule of D cannot be !). Cases:

• m = 0: Then, t = y and thus D is as below, with Γ = y : [A]. Since Γ is co-shrinking, so are [A] and hence A.

D =
var

y : [A] ⊢ y : A

• m > 0: Then, t = yt1 . . . tm. Let t′ = yt1 . . . tm−1, so t = t′tm (this makes sense because m > 0). Thus, D is
as below, with Γ = Γ′ ⊎ Γm.

D =

..... D
′

Γ′ ⊢ t′ : M ⊸ A

.....
Dm

Γm ⊢ tm : M
@

Γ′ ⊎ Γm ⊢ t′tm : A

Since Γ is co-shrinking, so is Γ′. We can then apply the induction hypothesis to D′ ▷NI Γ
′ ⊢ t′ : M ⊸ A,

because t′ is β-normal and not an abstraction: thus, M ⊸ A is co-shrinking. Hence, A is co-shrinking too.

Lemma (Typing β-normal forms in a co-shrinking environment, p. 7 of Day 5). Let t be β-normal and let D▷NIΓ ⊢
t : A. If Γ is co-shrinking and (A is shrinking or t is not an abstraction), then |t| ≤ |D|.

Proof. Since t is β-normal, t = λxn . . . λx1.yt1 . . . tm for some m,n ∈ N, with t1, . . . , tm β-normal. We proceed by
induction on the size |t| ∈ N of t. Cases (as A is a linear type, the last rule in D cannot be !):

• n = 0 = m: Then, t = y and hence D is necessarily as below, with Γ = y : [A] and |D| = 1 = |t|.

D =
var

y : [A] ⊢ y : A

• n = 0, m > 0: Then, t = yt1 . . . tm. Let t′ = yt1 . . . tm−1, so t = t′tm (this makes sense because m > 0). By

necessity, D is as below, with Γ = Γ′ ⊎ Γm and Γm =
⊎k

i=1 Γ
i
m and M = [A1, . . . , Ak] for some k ∈ N.

D =
..... D

′

Γ′ ⊢ t′ : M ⊸ A

Di

m

Γi
m ⊢ tm : Ai

1≤i≤k

!
Γm ⊢ tm : M

@
Γ′ ⊎ Γm ⊢ t′tm : A

Since Γ is co-shrinking, so is Γ′. We can then apply the induction hypothesis to D′ ▷NI Γ
′ ⊢ t′ : M ⊸ A,

because t′ is β-normal and not an abstraction with |t′| < 1 + |t′| + |tm| = |t|: thus, |D′| ≥ |t′|. By the
lemma above (spreading of shrinkingness), M ⊸ A is co-shrinking, which entails that: A is co-shrinking, M
is shrinking and hence k > 0 (that is, M ̸= []), and Ai is shrinking for all 1 ≤ i ≤ k. Since Γ is co-shrinking,
so is Γi

m for all 1 ≤ i ≤ k. We can then apply the induction hypothesis to Di
m ▷NI Γ

i
m ⊢ t′ : Ai for all

1 ≤ i ≤ k, because tm is β-normal with |tm| < 1 + |t′| + |tm| = |t|: thus, |Di
m| ≥ |t| for all 1 ≤ i ≤ k. So,

|D| = 1+ |D′|+
∑k

i=1 |Di
m| ≥ 1 + |D′|+ |D1

m| ≥ 1 + |t′|+ |tm| = |t| (the first inequality hold because k > 0).

• n > 0: Then, t = λxn . . . λx1.yt1 . . . tm which is an abstraction. Let t′ = λxn−1 . . . λx1.yt1 . . . tm, so t = λxn.t
′

(this makes sense because n > 0). Thus, D is as below, with A = M ⊸ B shrinking, as t is an abstraction.

D =

..... D
′

Γ, xn : M ⊢ t′ : B
λ

Γ ⊢ λxn.t
′ : M ⊸ B

Since M ⊸ B is shrinking, so is B and M is co-shrinking. Therefore, Γ, xn : M is co-shrinking. We can then
apply the induction hypothesis to D′ ▷NI Γ, xn : M ⊢ t′ : B, because t′ is β-normal with |t′| < 1 + |t′| = |t|:
thus, |D′| ≥ |t′|. Hence, |D| = 1 + |D′| ≥ 1 + |t′| = |t|.

Lemma (Shrinking typability of β-normal forms, p. 9 of Day 5). If t be β-normal, then there is a shrinking
derivation D ▷NI Γ ⊢ t : A with |t| = |D|, for some environment Γ and linear type A.

Proof. To have the right induction hypothesis, we prove the following stronger statement:

16

If t be β-normal, then there is a shrinking derivation D▷NIΓ ⊢ t : A with |t| = |D|, for some environment
Γ and linear type A. If, moreover, t = yt1 . . . tm for some m ∈ N and β-normal t1, . . . , tm, then for
every k ∈ N and co-shrinking linear type A and shrinking linear types A1, . . . , Ak, there is a derivation
D ▷NI Γ ⊢ t : [A1] ⊸ · · · ⊸ [Ak] ⊸ A for some co-shrinking environment Γ.

Since t is β-normal, t = λxn . . . λx1.yt1 . . . tm for some m,n ∈ N and β-normal t1, . . . , tm. We prove the stronger
statement by induction on |t| ∈ N. Cases:

• n = 0 = m: Then t = y, which is not an abstraction. Let k ∈ N and A be a co-shrinking linear type and
A1 . . . , Ak be shrinking linear types, thus [A1] ⊸ · · · ⊸ [Ak] ⊸ A and [[A1] ⊸ · · · ⊸ [Ak] ⊸ A] are co-
shrinking. Let D be as below, so |D| = 1 = |t| and y : [[A1] ⊸ · · · ⊸ [Ak] ⊸ A] is a co-shrinking environment.

D =
var

y : [[A1] ⊸ · · · ⊸ [Ak] ⊸ A] ⊢ y : [A1] ⊸ · · · ⊸ [Ak] ⊸ A

In the particular case where k = 0 and A = X (note thatX is shrinking and co-shrinking), D▷NIy : [X] ⊢ y : X
is a shrinking derivation, since y : [X] is a co-shrinking environment and X is a shrinking linear type.

• n = 0, m > 0: Then t = yt1 . . . tm, which is not an abstraction, with t1, . . . , tm β-normal. Let k ∈ N and A
be a co-shrinking linear type and A1, . . . Ak be shrinking linear types. Let t′ = yt1 . . . tm−1, so t = t′tm (this
makes sense because m > 0). As tm is β-normal, then by induction hypothesis there is a shrinking derivation
Dm ▷NI Γm ⊢ tm : B with |Dm| = |tm|, hence Γm is co-shrinking and B is shrinking. As t′ is β-normal and not
an abstraction, then by induction hypothesis there is a derivation D′▷NIΓ ⊢ t′ : [B] ⊸ [A1] ⊸ · · · ⊸ [Ak] ⊸ A
for some co-shrinking Γ′, with |D′| = |t′|. Let D be as below, hence Γ ⊎ Γm is a co-shrinking environment
(because so are Γ′ and Γm) and |D| = 1 + |D′|+ |Dm| = 1 + |t′|+ |tm| = |t|.

D =

..... D
′

Γ′ ⊢ t′ : [B] ⊸ [A1] ⊸ · · · ⊸ [Ak] ⊸ A

.....
Dm

Γm ⊢ tm : B
@

Γ′ ⊎ Γm ⊢ t′tm : [A1] ⊸ · · · ⊸ [Ak] ⊸ A

In the particular case where k = 0 and A = X (note thatX is shrinking and co-shrinking), D▷NIΓ
′⊎Γm ⊢ t : X

is a shrinking derivation, since Γ′ ⊎ Γm is a co-shrinking environment and X is a shrinking linear type.

• n > 0: Then t = λxn . . . λx1.yt1 . . . tm, which is an abstraction because n > 0. Let t′ = λxn−1 . . . λx1.yt1 . . . tm,
so t = λxn.t

′ (this makes sense because n > 0). As t′ is β-normal, by induction hypothesis there is a shrinking
derivation D′ ▷NI Γ, xn : M ⊢ t′ : B for some environment Γ, xn : M and linear type B, with |D′| = |t′|. Let D
be as below, hence |D| = 1 + |D′| = 1 + |t′| = |t| and Γ is a co-shrinking environment (since so is Γ, xn : M)
and M ⊸ B is a shrinking linear type (because M is co-shrinking and B is shrinking).

D =

..... D
′

Γ, xn : M ⊢ t′ : B
λ

Γ ⊢ λxn.t
′ : M ⊸ B

17

