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Exercise 1
Prove the following facts, using ND and NDscq.
LEX=(X=Y)=Y)
2. X=Y)=X=2)FY=X= 27
3. X=2Y)=XFY=X.
4. X=Y=22)FY=X="27
5. X=Y=2 X=Y+HX="27
6. X=X)=YrH{Y=2)="Z.

Solution to Exercise 1

1. In ND and NDgcq, respectively:

X=vP X X X=VYFXoY | X XoYEX
e :>6
Y Lo X, X=YHFY
i =i
X=v)=vy . XHFX=Y)=Y
1 =
X=>(X=Y)=Y) FX=(X=Y)=Y)
2. In ND:
yr
X=Y)=X=2) X=Y
X=27 . e
A=z .
Y=X=7
In NDgeq:

X=Y)s (X=2).X5YFY
(X:$Y)ﬁ(XéZ),YF(XéY)é(XéZ)aX (XéY)é(XéZ),YFXéY%
X=Y)=> (X=2),YFX=Z o
X=Y)=(X=>2)FY=>X=>2

*
K3

3. In ND and NDgq, respectively:
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m*i
X=Y)=X X=VY '
X e
=*
Y=X "
4. In ND:
In NDgoq:

ax
(X=Y)=>X,X,YFY

ax =i
(X=Y)=X,YH(X=Y)=X (X=Y)=X,YHFX=Y

=e
(X=Y)=X,YFX

=
X=2Y)=XFY=X

%

X=Y=2) [X]
Y = Z Y]

X=Y¥=2,X,YFX= (Y =2

ax

ax
X=Y=2),X,YFX

X=>Y=2),X,Y+FY=2Z

=e

X=>Y=2,XYFY

5. In ND:

In NDgeq:

e

X=Y=2),XY+-Z
=
X=Y=2),YrX=7Z7
=
X=Y=>2)FY=X=>7

i

i

X=Y=2 [X] X=Y [X]
=e =e
Y=Z7 Y
=e
Z *
=5
X=7

XY= Z XY, XF XY =5Z XY =2, X=Y,XF X XoY=SZX=Y,XFX=oY  XoY=SZX=Y,XEX

X=Y=Z2X=Y,XFY=Z

:>6
X=Y=ZX=Y,X+FY

6. In ND:

In NDgeq:

e
X=Y=2ZX=Y,X+F2Z

=
X=2Y=>2,X=YHX=>Z

i

RS
X=>X)=Y X=X "
v = 2)* Y e
Z e
Y=2)=>2 '

ax
Y=Z(X=X)=Y,XFX

ax =
Y=Z(X=X)=2YFX=>X)=Y Y=Z(X=X)=YFHX=X

ax
Y=Z(X=X)=YFY=Z

e
Y=Z(X=X)=YFY

e

Y=Z(X=X)=YHFZ

=i
X=X)=Y+-{Y=2)=2Z

Exercise 2

Show that I/ (X = Y) = X, ie. (X =Y) = X is not derivable with no hypotheses.



Solution to Exercise 2

Suppose by absurd that (X = Y) = X is derivable in ND with no hypothesis. The last rule of the derivation
cannot be either an hypothesis (because there are no hypotheses) or =, (otherwise it would be it would contradict
the subformula property), hence it could only be =; discharging the hypothesis X = Y, that is,

(X =Y
_x
(X=Y)=X

The rule whose conclusion is X cannot be either =; (otherwise its conclusion should be an arrow) or an
hypothesis (because there is no hypothesis X), hence it could only be =, with premises A = X and A for some
formula A, that is,

*
A

X=Y]* [X=Y)

A= X A
X
X=Y)=X
For the subformula property applied to the derivation whose conclusion is X, A could only be a subformula of
X or X =Y, that is,

e

*
2

e cither A = X, but then A = X = X = X is a formula of that derivation that is not a subformula of X or
X =Y, which contradicts the subformula property;

eor A=Y, but then A = X =Y = X is a formula of that derivation that is not a subformula of X or
X =Y, which contradicts the subformula property;

eor A=X =Y, but then A= X = (X = Y) = X is a formula of that derivation that is not a subformula
of X or X = Y, which contradicts the subformula property.

Therefore, there is no derivation of (X = Y) = X with no hypotheses.

Exercise 3

Perform all passible cut-elimination steps from the derivation on p. 24 of Day 1 slides, until you get a derivation
without redexes. Is it always the same?

Solution to Exercise 3

The derivation on p. 24 of Day 1 slides is D below, where there are two redexes, marked as blue and red.

(X=X)=B=>X=X)|' [ X=X° [(X=X)=B] X=X

B= (X = X) o B o
X=X ] o [X]*
X=X)= (X =X) X=x '
X=X B - X = x]f
(X=>X)=B)=X=X) " B=X=X"' |
(X=X)=B=X=2X)=(X=X)=B) = (X=X)) X=>X)=>B=>X=X) '
(X=X)=B)= (X = X) o
If the red redex in D is fired, then D reduces to the derivation D; below.
(X (X7
(X=>X)=B=>X=X)] X=X  [(X=X)=>B X=X
B= (X = X) o B o
X=X . X = X]f
(X=X)=DB)=>X=>X) ;U B=>X=>X

i

(X=X)=B=X=X)=(X=X)=DB)=(X=X)) ' (X=X)=(B=X=X)
(X=X)=B)=(X=X)

=e



If the blue redex in D is fired, then D; reduces to the derivation D} below, with a new green redex.

(X = X]f
B=X=x "' . X" | X,
(X=X)=(B=X=X) X=X [X=X)=B X=X
B= (X = X) - B o
X=X o

=%

i

(X=X)=B)= (X=X)

If the green redex in D] is fired, then D] reduces to derivation D} below, with a new gray redex.

[X]° X,
Yxox (X=>X)=>Bf X=X
B=X=X_ B o
X=X B

L

(X=X)=B)= (X =X)
If the gray redex in DY is fired, then D} reduces to derivation Dy below, which is without redexes.
[X]°
=
X=X
(X=X)=B)=(X=X)

.
i

=i

If the blue redex in D is fired, then D reduces to the derivation Ds below, with a new green redex.

X = Xt
B=X=X
(X=X)=(B=X=X) [X=X° [X=X)= B [X=X]°
B= (X = X) h B o
X=X ] o R
X=X)=(X=X) X=X
X=X ] -
(X=X)=B)= (X =X) |
If the red redex in Dy is fired, then Dy reduces to the derivation Dy; below.
(X = X]f
B=X=X TR .S X .
(X=X)=(B=X=X) X=X ' [X=X)=B* X=X
B= (X = X) o B o
X=X o

=*

i

(X=X)=B)=(X=X)

If the green redex in Doy is fired, then Do; reduces to the derivation Dy already shown above.
If the green redex in Dy is fired, then Dy reduces to the derivation Dys below, with a new gray redex.

X = X]° [(X=X)=B]* [X=X]°
B= X=X B o
X=X L X
X=X)= (X =X) X=X
X = X o

=

(X=X)=DB)=(X=X)

If the red redex in Dys is fired, then Doy reduces to the derivation Doy below.

[X]* LI

Yox | [(X=X)=B X=X

B=X = X B o
X=X ¥q

(X=X)=DB)=(X=X)



If the gray redex in Dayoq is fired, then Doy reduces to the derivation Dy below, which is without redexes.

[X]*
X=X
(X=X)=B)=(X=X)

b4
i

=

If the gray redex in Dag is fired, then Dayy reduces to the derivation Dass below.

[X = X]° [X]°
X=X)=>X=%X) X=X
X=X o

"
e

(X=X)=DB)= (X=X)

If the red redex in Dags is fired, then Doy reduces to the derivation Dy below, which is without redexes.
X9

X=X

(X=X)=B)=(X=X)

=i

All possible cut-elimination steps from D are the following;:

Ds Dy

4 e

D] Doy Doy

L

/!
Dy Doy Dy

NS
Dy
In any case, every reduction sequence eventually reaches the same derivation Dy with no redexes.

Exercise 4

Order the following multisets over N according to the (strict) multiset order <.
[1,1] [0,2] [1] [0,0,2] [] [0,3] [0,2,2]

Solution to Exercise 4

H ~<mul [1] ~<mul [17 1] ~<mul [0,2] ~<mul [070a2} ~<mul [07272] ~<mul [073]

Exercise 5

Prove in a rigorous way the proposition on p. 15 of Day 1 slides.

Solution to Exercise 5

Proposition. Let I' be a finite multiset of formulas and A be a formula: T' = A in ND if and only if the sequent
I' = A is derivable in NDgeq.

Proof. =: By induction on the number of rules of the smallest derivation D in ND proving that I' = A. Cases:

e D is just an hypothesis, that is, D = A and so I = I/, A for any finite multiset I'V. Then, the derivation
Dseq below derives the sequent I' = A in NDgcq.

Diq = T.AFA
e The last rule in D is =;, that is, A = B = C and
[B]*
p - iD
¢ .
=i
B=C



where D’ is the smallest derivation in ND that proves that I', B = C, by minimality of D. By induction
hypothesis applied to D', there is a derivation Dl,, in NDgeq of the sequent I'; B = C. Then, the

seq
derivation Dgeq below derives the sequent I' = A in NDgeq.

i e
sed I'BFC
e N
'-B=C
e The last rule in D is =, that is, for some formula B
> i
p B=A B

e

A

where D’ and D" are the smallest derivation in ND that prove that I' = B = A and I' - B, respectively,
by minimality of D. By induction hypothesis applied to D’ and D", respectively, there are derivations
D¢ and DY, in NDgeq of the sequents I' = B = A and T' = B. Then, the derivation Dycq below derives

the sequent I' = A in NDgeg.

: D] : D,

Dseq : seq : seq
'-B=A TIH+B

r-A

<«: By induction on the number of rules of the smallest derivation D in NDgeq proving the sequent I' = A. Cases:

e

e The last rule of D is ax, that is,

D = T ArA”
where I' = IV, A for some finite multiset I, Then, the derivation Dy = A proves that I' = A in ND.
e The last rule in D is =;, that is, A = B = C and

LD
,BFC
_—=
'-B=~C
where D’ is the smallest derivation in NDgeq of the sequent I', B = C', by minimality of D. By induction

hypothesis applied to D’, there is a derivation D} in ND that proves that I, B+ C. Then, the derivation
Do below proves that I' = A in ND.

D

2

[B]*

p - P
C .
B=C '

e The last rule in D is =, that is, for some formula B

LD D
Dseq I'B=A T+B
I+ A ‘

where D’ and D" are the smallest derivation in NDge, that prove the sequents I' F B = A and ' + B,
respectively, by minimality of D. By induction hypothesis applied to D’ and D”, respectively, there are
derivations D) and Df in ND that prove I' - B = A and I' -+ B. Then, the derivation Dy below prove
that I' - A in ND.

D D
P = B4 B
7#6
A

Exercise 6

For any formula B, prove that if I' = A is derivable in NDgq, then so is I', B F A.



Solution to Exercise 6
By induction on the number of rules of the smallest derivation D in NDgcq proving the sequent I' = A. Cases:

e The last rule of D is ax, that is,

——————a
D = [ ArA

where I' = I/, A for some finite multiset I'". Then, the derivation below proves the sequent I', B = A in NDgq.
— aX
I",B,AF A

e The last rule in D is =, that is, A= D = C and

D!
I,DFC
= .,
I'tD=C
where D’ is the smallest derivation in NDgeq of the sequent I', D + C, by minimality of D. By induction

hypothesis applied to D’, there is a derivation Dy in NDgeq that proves the sequent I', B, D - C. Then, the
derivation below proves the sequent I', B = A in NDgq.

gDo
I.,B,DFC
e e
I.BFD=C

i

e The last rule in D is =, that is, for some formula C

D LD
Dsea rC=A TFC
T'-A ‘

where D’ and D” are the smallest derivations in NDgeq that prove the sequents I' H C = A and I' - C,
respectively, by minimality of D. By induction hypothesis applied to D’ and D”, respectively, there are
derivations D; and Dy in NDgq that prove the sequents I'' B - C = A and I' - C. Then, the derivation
below prove the sequent I', B = A in NDgq.

LDy ' D,
I'BrC=A T,BrC
I .BF A e

Exercise 7

For any formula B, prove that if I, B, B - A is derivable in NDgeq then so is I} B - A.

Solution to Exercise 7
By induction on the number of rules of the smallest derivation D in NDg.q proving the sequent I', B, B - A. Cases:

e The last rule of D is ax, that is,
——a
D = ' BBAFA
where I' = IV, A for some finite multiset I''. Then, the derivation below proves the sequent I', B - A in NDgg.
— aX
I",B,AF A

e The last rule in D is =, that is, A= D = C and



Ly
D = rBDFC
I.B.BFD—=C

i

where D’ is the smallest derivation in NDgeq of the sequent I', B, B, D - C', by minimality of D. By induction
hypothesis applied to D’, there is a derivation Dy in NDgeq that proves the sequent I', B, D - C. Then, the
derivation below proves the sequent I', B = A in NDgq.

LD,
I.B.DFC
o
I.BFrD=C

7

e The last rule in D is =, that is, for some formula C

D D
Dea = pBBrC=A T,B,BFC
e
[,B,BFA

where D’ and D" are the smallest derivations in NDge, that prove the sequents I',B,B + C' = A and
I, B, B = C, respectively, by minimality of D. By induction hypothesis applied to D’ and D", respectively,
there are derivations D; and Dy in NDgeq that prove the sequents Iy B = C = A and I' = C'. Then, the
derivation below proves the sequent I', B = A in NDgeq.

§D1 g'Dz
IBFC=A T,B-C
T.BF A e

Exercises from Day 2 (https://pageperso.lis-lab.fr/~giulio.guerrieri/ECI2024/day2.pdf)

Exercise 1

Find the simply typed A-terms (in Curry-style and Church-style) associated with the derivations in ND found for
the facts below (see Exercise 1 from Day 1).

L.FX=(X=Y)=Y)

2. X=2Y)=X=22)FY=X=27.
3. (X=Y)=XFY=X.

4. X=Y=2)FY=X=7

5. X=Y=2 X=Y+HX=27

6. X=X)=Y+H{Y=2)="Z

Solution to Exercise 1

1. In Curry-style and Church-style for A-terms, and ND for derivations:

[y: X=Y]° [z:X]* y: X=Y]° [z:X]*
e e
yr:Y yr:Y N
=7 i
AMyr: (X =Y)=Y N 7 Yyr: (X =Y)=>Y
=*

: =
A Ayyr: X = (X =Y)=Y) A XXX =Y yr X = (X =Y)=Y)

oy

2. In Curry-style and Church-style for A-terms, and ND for derivations:


https://pageperso.lis-lab.fr/~giulio.guerrieri/ECI2024/day2.pdf

[y:Y]* ly:Y]" N
A NN -
z2:(X=Y)=X=2) ly:X=Y 2:(X=2Y)=X=2) My:X=Y
=e e
z2Axy): X =27 zAxXy): X = Z

=7 =
ANyz(Azy) Y = X = Z MYz Xy): Y =X =2

i

% i

3. In Curry-style and Church-style for A-terms, and ND for derivations:

R b
22 (X=Y)=X JIy:X=Y z:(X=Y)=X Mfy:X=Y
=e e
z(Az.y) : X z(Az¥y) X

*

=i
Ayz(Azy) Y = X

i

*

=3
MYoz(AaXy) Y = X

4. In Curry-style and Church-style for A-terms, and ND for derivations:

2: X=Y=2) [z:X]° z2: X=Y=2) [z:X)°
=e =e N
Y =27 [y : Y]* zx:Y = Z [y:Y]:>
e e
zxy : 7 zxy : Z .
_ =9 =
Mezay: X =27 ° XeXzey: X = Z
=7 =7
5. In Curry-style and Church-style for A-terms, and ND for derivations:
z2: X=Y=7 [z:X]* y: X=Y [z:X]* z2: X=Y=27 [z:X]* y: X=Y [z:X]*
e e =e =e
zx:Y =27 yr:Y zx:Y=>7 yr:Y
=e =e
zx(yx) : Z za(yx) : Z
=7 =7
Ar.zx(yx) : X =272 Mo Xzx(yz): X =2
6. In Curry-style and Church-style for A-terms, and ND for derivations:
[z: X]° [z : X]° o
- - @ o —_— =
y: ( X=X)=Y la: X=X ' y: (X=X)=Y Xz X=X
=e e
[z:Y=2Z]" yiz.x:Y [z:Y=Z]* ydxXaz: Y
=e e
2(yAz.x): Z . 2y aXw): Z
i =7
Azz(yrea): (Y=2)=2Z MY (ydaXa)  (Y=2)=Z

Exercise 2

Perform all possible S-reduction steps from the A-term decorating the derivation D in ND on p. 24 of Day 1, until
you get a S-normal form. Is it always the same? Compare it with the normal derivation obtained by cut-elimination
steps from D.

Solution to Exercise 2

The derivation on p. 24 of Day 1 slides is D below, decorated with A-terms is Curry-style.

y:(X=X)=B=X=X)[: X=X v:(X=X)=B]" [¢: X=X]°

yz' : B= (X = X) o vz’ : B o
e
yz'(v2') : X = X [x: X]®
=9 e — )
Ay (v2) (X = X) = (X = X) ez X=X
e
Ay (v vz X = X . [z: X = x]t

M. (A2 oy (v ) Azx: (X = X)= B) = (X = X) i . Nz:Bo X = x ¢
Ay (A2 yz' (v )z (X =X)=(B=>X=X)=(X=X)=B) = X=> X)):i AzXbz: (X =X)=(B=>X= X):\

Ay Av.(A2'.yz' (v2')) Az.z) Az bz (X = X) = B) = (X = X)

7

=e



Thus, the A-term decorating D is t = (Ay. v.(A2'.y2' (v2'))Az.2) 2. \b.z. All possible S-reduction steps from ¢ are
the following:

Ay Av. (A2 yz' (v2") Ax.z) Az \b. 2
— T

Ay Av.(yAz.z)(ve.x))Az.\b.2 A (A2 (Az.\b.2)2 (v2))) Aa.x
\: — 2
M. (Az.Ab.2)Az.x) (vAz.x) M. (Az.Ab.2)(Az.x) (vAz.x) Av. (A2 .(Ab.2") (v2')) ez
2 — - 1
Av.(Ab ) x.z) (vAx.x) Av.(Ab.2") (vAx.x) M.\ 2" )\

\ + /
v T2

In any case, every S-reduction sequence eventually reaches the same S-normal term Av.Az.z. Note that Av.Az.x
is the decoration of the derivation Dy below, which is the derivation without redexes to which D eventually reduces
via cut-elimination steps (see Exercise 3 from day 1).

[x: X]*
Az X = X
wiazz: (X =X)=B)= (X=X)

= K

Exercise 3

n times f
Prove rigorously the following facts (f"z = mm) ...) for any n € N):
1. Az.zzx is untypable in Curry-style, Ax“.2z is untypable in Church-style for any type A;
2. in Church-style, AfY.Az*X.f"2 is not typable for any n > 0 but A\f¥ A\z¥.z is typable;
3. AfAx.f™x is typable in Curry-style, for all n € N.

Solution to Exercise 3

1. Curry-style: Suppose by absurd that Az.zx is typable in the simply typed A-calculus in Curry-style. Then
there would be a derivation D of A\x.zx. Its last rule is necessarily A (because the term in the derivation is an
abstraction), and its second to last rule is necessarily @ (because the body of the abstraction in the derivation
is an application), and its leaves are necessarily var rules (because the proper subterms of the application are
variables), hence D has the form below, for some types A, B, C.

var var

rz:Arx:C=B a::AI—x:C@
rz:AFzz: B
Fxoxx: A= B

To make D a valid derivation, the two instances of the rule var must be correct, thus A=C = Band A =C
must hold, which implies that C'= C' = B, but this is impossible for any type B, C.

Church-style: Suppose by absurd that Az“.zz is typable in the simply typed A-calculus in Church-style.
Then there would be a derivation D of Az.zx. Its last rule is necessarily A abstracting a variable of type A
(because the term in the derivation is an abstraction of type A), and its second to last rule is necessarily @
(because the body of the abstraction is an application), and its leaves are necessarily var rules (because the
proper subterms of the application are variables), hence D has the form below, for some types B, C.

var var
rz:Atz:C =B x:AI—x:C@
rz:AkFzxzx: B
Flxdzer: A= B

To make D a valid derivation, the two instances of the rule var must be correct, thus A=C = Band A =C
must hold, which implies that C' = C' = B, but this is impossible for any type B, C.

2. The term AfY.\zX.x is typable in Church-style, as shown by the derivation below.

r

f:Y,x:Xl—x:Xva)\
f:YFxXes: X=X
FAfY Xz Y = X=X

10



We prove by contradiction that AfY. AzX. "z is not typable in Church-style for any n € N*. Since n € Nt =
N\ {0}, then f?x = f(f" 'x) where n — 1 € N. Suppose by absurd that \f¥.\zX.f"x is typable in the
simply typed A-calculus in Church-style. Then there would be a derivation D of Af¥ X\xX.f"x. Its two last
rules are necessarily A (because the term in the derivation is a double abstraction), and its third to last rule is
necessarily @ (because the body of the double abstraction is the application f(f"~'z)), and the left premise
of the @ rule is necessarily a var rule (because the left subterm of the application is a variable), hence D has
the form below, for some types A, B.

FY,2: XFf:B=A4 f;Y,z;Xanfla;;B@
f:Y,x:Xl—f"x:A/\
f:YFXxXos: X = A

FAf  AXa Y = X = A

To make D a valid derivation, the left instance of the rule var must be correct, thus Y = B = A must hold
for some types A, B, but this is impossible because Y is a ground type.

3. We first prove the following.
Fact. For alln € N, there is a derivation of f: X = X, x : X F f"x : X (in Curry-style and Church-style).

Proof. By induction on n € N. Cases:

(a) m = 0: then, fO2 = 2 and hence the derivation below concludes.

ar

f:X:>X,x:X|—x:XV

(b) m > 0: then f"z = f(f" ') and by induction hypothesis there is a derivation Dof f : X = X, x: X I
f» 'z : X. The derivation below concludes.

)
F XX, 2: XFf X=X X=X, 2:XFfrlg: X
f X=Xz XFfrfe:X

@

O

We can now show that, for all n € N, the term Af.Ax.f"zx is typable in Curry-style. Indeed, by the fact
above, there is a derivation D of f: X = X, 2 : X F f"x : X for all n € N. The derivation below concludes:

D
f X=Xz XFflfe:X
fX=XFX.flfra: X=X
FAfae.ffz: ( X=X)=X=X

Exercise 13

In a ARS (A4, —), prove that t € A is SN if and only if for every ¢’ € A, if t — ¢’ then ¢ is SN.

Solution to Exercise 13

t is not strongly normalizing

<— there is an infinite sequence (t;);en such that to = ¢ and ¢; — t;11 for all i € N
<= there is ¢ such that ¢ — ¢’ and an infinite sequence (;);en such that to =t and t; — t;, for all i € N
= there is ¢’ such that ¢ — ¢’ and ¢’ is not strongly normalizing.

11



Exercises from Day 3 (nttps://pageperso.lis-1ab.fr/~giulio.guerrieri/ECI2024/day3.pdf)

Exercise 1

Write the tree representation of following terms (as on p. 7 of Day 3), specifying m,n € N and the subtrees
corresponding to h,t1,...,tm: @, I, Ax.Jox, Ae.d(xx), Ae.xzx(zz), IT (where I = Az.z).

Solution to Exercise 1

The subtree corresponding to the head h (head variable or head redex) is marked in red, the ones corresponding
to t1, to and t3 (if any) are marked in blue, gray and green, respectively.

1. z: then m =0=mn and

"
2. I =Xz.z: thenn=1,m=0 and
Az
!
3. MxJxx = Ax.(Az.z)zz: thenn =1, m =1 and
Az
.

AN

e
@ T
N
Az T
\

z

4. e d(xzx) = Ax.(Az.z)(xx): then n =1, m =0 and

AL
\

e

Az @
\
Z

\
T/ \T

5. Az.zzx(xzz): then n =1, m = 3 and

AL
\

‘(l

AN

x

(@

@/ T

@/ \z‘ ’1‘/
SN :

6. IT = (Az.z) z.x: then n =0, m = 0 and

©

Exercise 3

Consider the n-reduction —, defined below, which can be fired everywhere in a term. Prove that —, is strongly

normalizing.
Ar.tr =yt if x ¢ fu(t)

12
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Solution to Exercise 3
Fact. Let — be a reduction on a set A: t € A is strongly normalizing (for —) if and only if every t' such that
t — t' is strongly normalizing (for — ).

Proof. Let t € A.
t is not strongly normalizing

— there is an infinite sequence (¢;);en such that to =t and ¢; — ¢,y for all i € N
<= there is ¢’ such that ¢ — ¢’ and an infinite sequence (;);cn such that tg = ¢ and t; — t;; for all i € N
— there is ¢’ such that ¢ — ¢’ and ' is not strongly normalizing.

O

Formally, n-reduction is defined on the terms of the untyped A-calculus by the rules below.

x ¢ fu(t) t—sy t! t—sy t t =yt

Ax.te —, t Ax.t =y Azt ts =y t's st —, st’
Let the size |t| € N of a term ¢ be defined by structural induction on ¢ as follows:
lz| =1 [Az.t] =1+ [¢ |st| =1+ [s| + [¢]
Lemma. Ift —, t' then [t| > |t|.
Proof. By induction on the definition of ¢ —, t'. Cases:
o If \z.tx —, t with « ¢ fv(t), then |Az.tx| = 3+ [t] > [t].
o If Azt —, Ax.t/ with t —,, ¢/, then |¢| > |¢/| by induction hypothesis, hence [Az.t| = 1+ [t| > 1+ |t/| = [Az.t'|.
o If ts —, t's with t —,, ¢/, then || > |t/| by induction hypothesis, hence [ts| = 1+|t|+]|s| > 1+|t'| +]|s| = |t's]|.
o If st —, st’ with ¢t —,, ¢/, then [¢| > |¢/| by induction hypothesis, so |st| = 14 |s|+[t| > 1+]s|+|t'| = |st'|. O
Corollary. —, is strongly normalizing.
Proof. Let t be a term. We prove that ¢ is strongly n-normalizing by induction on |¢| € N. Cases:

e If ¢ is y-normal, we are done.
o If ¢t —, t/, then |t| > |t/| by the lemma above, and hence ¢’ is strongly n-normalizing by induction hypothesis;
we conclude that ¢ is strongly n-normalizing thanks to the fact above. O
Exercise 4

Find a term r such that rt —7% t(tr) for every ¢ (Hint: use the fixpoint combinator ©).

Solution to Exercise 4

Saying that r is an term such that ¢t —7% ¢(¢r) for every term ¢ amounts to say that rz —7% x(zr) for any variable
z ¢ fv(r), which follows from r —% Az.xz(zr), which in turn follows from r —7% (Ay.Az.z(zy))r. Note that r is
a fixed point of Ay.Az.z(zy). Let r = © Ay.A\z.z(zy), where © is the fixpoint combinator, that is, Ot —7% t(O1)
for every term t. Now, r = O Ay \z.x(zy) =% (A\yAv.2(2y))(© My Av.z(vy)) = (AyAv.z(zy))r —p Az.z(zr).
Therefore, 7t =% (Az.x(a1))t —5 t(tr) for every term .

Exercise 5

Prove that succn —>}§ n+1foralln €N, and addmn —>;§ m + n for all m,n € N.

Solution to Exercise 5

sucen = (AmAf A z.f(mfz)) g y.g"y —p N x. f(Ng-Ay.g"y) fz)
= M (Y. fry)z) = M Az f(f"x) = M e f"Tle=n+1

addmmn = (AmInAf xe.mf(nfx))(Ag. \y.g"y)(Ah.Az.h"2)
=g (AnAfAz.(Ag.Ay.g™y) f(nfz))(Ah.Az.h"2)
=g (AnAfAr. Ay fMy)(nfx))(AhAz.h"2) =g (AnAf e f"(nfx))(Ah.Az.h"2)
=g Af Az (AR Az.R"z) fx) =5 Af Az f™ (A2, f2)z)
=g Mz f (") = Mz [T e =m+n

13



Exercise 6

Find terms ¢, s, s’ such that t =, t', s =, ¢’ and t[s/x] #, t'[s'/x] (where =, is a-equivalence and t[s/x] is naive
substitution, see p. 10 on Day 2 slides).

Solution to Exercise 6

Let t = A\y.x and t’ = A\z.x where z,y, z are pairwise distinct variables, let s = z = s’. Thus,

tls/z] = \y.x)[z/x] = A\y.2 #a A2.2 = (Az.x)[2/2] = t'[s' /]

Exercises from Day 4 (https://pageperso.lis-lab.fr/~giulio.guerrieri/ECI2024/day4.pdf)

Exercise 3

Prove that all derivations in NI for (Ax.zz)\y.y have the form DZ’I shown on p. 8 of Day 4, for any linear type A.

Solution to Exercise 3

Every derivation in NI for (Az.zz)Ay.y has the form below for some m,n € N and some linear types Ay, ..., A,, B1,
..y B, where Di’:’m’An and ’ngi are the derivations in NI defined on p. 7 of Day 4 slides:
o,
R :
: Do, A, FAyy s [Bi] — Bi/ 1cicnm \

FAz.ax: [[Al,...,An] — Ao, A1, Ay — Ao F Ay [[Bi] — Bi,. .., [Bm] — By
F (Az.zz)dz.2 0 Ag

(@

To make the last rule @ valid, [[41,...,A4,] — Ao, A1,...,A,] = [[B1] — Bi,...,[Bm] — By,]. Therefore,
n+1=m and n =1, hence m = 2. Thus, the identity above becomes [[A;] — Ag, A1] = [[B1] — Bi, [Bz2] — Ba].
As a consequence, A} = Ay = [A4] — A and B; = By = A, for any linear type A. So, every derivation in NI of
(Az.zx)A\y.y is necessarily of the form below, for any linear type A.

:'DI

. : Diajoa D

Ll : :

D T [Al—eA [A] A FAyy:[[A] —A] < [A] A FAyy:[4] — A|
FAz.zx: [[[A]—OA] —o [A] — A, [A]—OA] —o [A] — A FAy.y: [[[A] — A] —o [A] — A, [A] — A] o '

F (Az.zx)\y.y: [A] — A

Exercise 9
Prove rigorously the two lemmas on p. 13 and the two lemmas on p. 16 of Day 4.
Lemma (Typing hB-normal forms, p. 13 of Day 4). Let t be h3-normal. If Doy T F ¢ : A then |t|ns < |D|.

Proof. Since t is hf-normal, t = Ax,, ... Ax1.yty ... t,, for some m,n € N. We prove the statement by induction on
lt|ns € N. Cases (as A is a linear type, the last rule in D cannot be !):

e n=0=m: Then, ¢t =y and hence D is necessarily as below, with I' = y : [4] and |D| =1 = [¢|ps.
r

 —————va
D_y:[A]Fy:A

e n=0,m>0: Then, t = yt; ...t,. Let t’ = yty...tm_1, so t = t't,, (this makes sense because m > 0). By
necessity, D is as below, with ' =TV W T,,.

LD . D,

D=pirv. M4 Do bt s M
T'wl, Ftt, A

As t' is hf-normal with |t'|ng < 1+ |t/|ng = |t|ns, we have |D’| > |t’|3 by induction hypothesis. Therefore,
Dl =14 D[+ [Dm| 2 14 [D'| 2 1+ [t'|np = [t]ns-
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e n >0: Then, t = Aay, ... Az1.yty ...ty Let t/ = Axpq ... Az1.yty .. .ty SO ¢ = Azp.t' (this makes sense
because n > 0). By necessity, D is as below, with A = M — B.

D!
Lz,: M+t :B
'Xe,t' : M —B

D =

Since ¢’ is h-normal with [t'|,3 < 14 |t'|ng = |t|ns, we have |D’| > |t/|,5 by induction hypothesis. Therefore,
DI =1+ D = 1+[t'|np = [t]ns- =

Lemma (Typability of hS-normal forms, p. 16 of Day 4). If t be hf3-normal, then there is Doy I'F ¢ @ A with
[t|ng = |D|, for some environment I' and linear type A.

Proof. To have the right induction hypothesis, we prove the following stronger statement:

If t be hf-normal, then there is a derivation Doy I' - ¢ @ A with |t|pg = |D|, for some environment

I' and linear type A. If, moreover, t = yt; ...t,, for some m € N and terms tq,...,t,,, then for every

linear type A and k € N, there is an environment I' and a derivation Doy T'H¢:[] — -+ —o [] — A,
. ~—_———

with |D|y =0, |D]var = 1 and |D|a = m. o times []

Since t is hf-normal, t = Az, ... Ax1.yt1 . . . L, for some m,n € N. We prove the stronger statement by induction
on |t|ps € N. Cases:

e n=0=m: Then t = y, which is not an abstraction. Let A be a linear type and k € N. Let D be as below,
hence |D| =1 = [t|np and |D|x =0, |D|var = 1 and |D]a = 0 = m.

p vl ol = AlFy:[] o <[] <A
—— —
k times [] k times []

e n=0,m >0: Then t = yt; ...t,, which is not an abstraction. Let A be a linear type and k € N. Let t’ =
yti ... tm_1, so t = t't,, (this makes sense because m > 0). As t’ is hf-normal and not an abstraction, with
[t'|ng < 14 |t'|ng = |t|ns, then by induction hypothesis there is a derivation D'y I'H¢ 1 [] — -+ — [] o A

—_——

with [D'| = |t/|pg and [D'|y =0, |D'|var = 1 and |D’|@ = m — 1. Let D be as below. K1 times []
%l
k+1 t.imes []

!

D=riy. o <[—-4 m@

PhHtty:[]—o-—o[] oA
~——_———
k times []

Hence, [D|=1+1|D'| =1+ |t’|h[3 = |t|npg with |D|y = |D'|x =0, |Dlvar = |D'Jvar =1 and [D]a =1+ |D'|a =
l1+m—-1=m.

e n>0: Thent = Az, ... \x1.9yt1 ...1,,, which is an abstraction becausen > 0. Let t’ = Axz,,_1 ... Az1.yt1 ...t
so t = Azt (this makes sense because n > 0). As ¢’ is hf-normal with [t'|,3 < 1+|t'|ns = |t|ns, by induction
hypothesis there is D'on I, @y, : M F t': B for some environment I, z,,: M and linear type B, with |D| = |t/|5s.
Let D be as below, hence |D| =1+ |D'| =1+ [t'|ng = |t|ns-

LD
Lz,: M+t :B
Mz, t':M —-B

D =

O

Exercises from Day 5 (https://pageperso.lis-lab.fr/~giulio.guerrieri/ECI2024/day5.pdf)

Exercise 6

Prove rigorously the two lemmas on p. 7 and the the lemma on p. 9 of Day 5.
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Lemma (Spreading of shrinkingness, p. 7 of Day 5). Let ¢ be 5-normal and not an abstraction. Let Doy T -t : A.
If T is co-shrinking then A is co-shrinking.

Proof. Since t is f-normal and not an abstraction, ¢t = yt;...t,, for some m € N with S-normal ¢,...,%,,. We
proceed by induction on m € N (as A is a linear type, the last rule of D cannot be !). Cases:

e m = 0: Then, ¢t = y and thus D is as below, with I' = y : [A]. Since I is co-shrinking, so are [A] and hence A.

r

—Va
D:y:[A]I—y:A

e m > 0: Then, t = yty...ty,. Let ¢ = yt1...tm—1, S0 t = t't,, (this makes sense because m > 0). Thus, D is
as below, with ' =TIV w T,,.

LD Dy,
Ft': M — A katm:M@
Vwl,, Ftt,: A

D:F/

Since T' is co-shrinking, so is IV. We can then apply the induction hypothesis to D' oy IV H ¢ : M — A,
because t’ is 3-normal and not an abstraction: thus, M —o A is co-shrinking. Hence, A is co-shrinking too. [

Lemma (Typing S-normal forms in a co-shrinking environment, p. 7 of Day 5). Let t be S-normal and let Dy T -
t:A. IfT is co-shrinking and (A is shrinking or t is not an abstraction), then |t| < |D|.

Proof. Since t is g-normal, t = Ax,, ... Ax1.yty . .. t,, for some m,n € N, with ¢1,...,t,, S-normal. We proceed by
induction on the size [t| € N of t. Cases (as A is a linear type, the last rule in D cannot be !):

e n=0=m: Then, ¢t =y and hence D is necessarily as below, with I' =y : [A] and |D| =1 = [¢t].

r

 ————va
D_y:[A]Fy:A

e n=0,m>0: Then, t = yt;...t,,. Let t’ = yty...tm_1, so t = t't,, (this makes sense because m > 0). By
necessity, D is as below, with ' =I"w T, and ', = Lﬂle I'‘ and M = [Aq, ..., Ag] for some k € N.

D
D= D/ F%th:Aillgigk

I'Ft:M— A le—tm:M'@
I'wl,, Ftt,: A

Since T' is co-shrinking, so is IV. We can then apply the induction hypothesis to D' oy IV H ¢ : M — A,
because ¢’ is f-normal and not an abstraction with [¢/| < 1 + [t/| + |t,,| = [t]: thus, |D’| > [¢/|. By the
lemma above (spreading of shrinkingness), M —o A is co-shrinking, which entails that: A is co-shrinking, M
is shrinking and hence k > 0 (that is, M # []), and A; is shrinking for all 1 <4 < k. Since I is co-shrinking,
sois T, for all 1 < i < k. We can then apply the induction hypothesis to D!, oy I, = ' 0 A; for all
1 < i <k, because t,, is f-normal with [t,,| < 1+ [t/| + |[tm| = |t|: thus, |DL,| > |t| for all 1 < i < k. So,

D =14|D|+ 55, |Di| > 14 |D/| +|DL| = 14 |t/| + |tm| = |t| (the first inequality hold because k > 0).

e n>0: Then, t = Az, ... \x1.yt1 ...t,, whichis an abstraction. Let t' = Az, _1... Ax1.9t1...tm, SOt = Az,
(this makes sense because n > 0). Thus, D is as below, with A = M —o B shrinking, as ¢ is an abstraction.

LD
Tz, : M-t:B
'FXep,t' :M —B

D =

Since M —o B is shrinking, so is B and M is co-shrinking. Therefore, I', x,, : M is co-shrinking. We can then
apply the induction hypothesis to D' oy 'z, : M ¢’ : B, because t’ is S-normal with [t'| < 1+ |t/| = |¢|:
thus, |D’| > |t/|. Hence, |D| =1+ |D'| > 1+ |t/| = |¢|. O

Lemma (Shrinking typability of S-normal forms, p. 9 of Day 5). If t be S-normal, then there is a shrinking
deriation Doy T Ht: A with |t] = |D|, for some environment T and linear type A.

Proof. To have the right induction hypothesis, we prove the following stronger statement:
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If t be S-normal, then there is a shrinking derivation Dy ' F ¢ : A with |t| = |D|, for some environment
I' and linear type A. If, moreover, t = yt;...t,, for some m € N and S-normal t,...,t,,, then for
every k € N and co-shrinking linear type A and shrinking linear types A1,..., A, there is a derivation
Doy T Ht:[A)] —o -+ —o [Ag] — A for some co-shrinking environment T'.

Since t is f-normal, t = Ax,, ... Ax1.yt1 . .. t,, for some m,n € N and S-normal ¢q, ..., t,,. We prove the stronger
statement by induction on |t| € N. Cases:

e n =0 = m: Then t = gy, which is not an abstraction. Let k¥ € N and A be a co-shrinking linear type and
Aj ..., A be shrinking linear types, thus [A;] — -+ —o [Ag] — A and [[41] — -+ —o [Ag] — A] are co-
shrinking. Let D be as below, so |D| =1 = |¢t| and y : [[A1] —o -+ - —o [A}] —o A] is a co-shrinking environment.

r

D=y [[A)] —o - —o[A] = AJF y: [A] —o - —o [A] <A

In the particular case where k = 0 and A = X (note that X is shrinking and co-shrinking), Doy : [X] Fy: X
is a shrinking derivation, since y : [X] is a co-shrinking environment and X is a shrinking linear type.

e n=0,m>0: Then t = yt; ...t,, which is not an abstraction, with ¢,...,%,, S-normal. Let k € N and A
be a co-shrinking linear type and Ay, ... Ay be shrinking linear types. Let ¢ = yt1 ... ¢m—1, so t = t't,, (this
makes sense because m > 0). As ¢, is S-normal, then by induction hypothesis there is a shrinking derivation
Do T bt o B with |D,,| = |t], hence Ty, is co-shrinking and B is shrinking. As ¢’ is S-normal and not
an abstraction, then by induction hypothesis there is a derivation D'oy ' -t : [B] —o [A1] —0 -+ —0 [Ay] — A
for some co-shrinking IV, with |D’| = |¢/|. Let D be as below, hence I' W I';,, is a co-shrinking environment
(because so are IV and T'y,,) and |D| = 1+ |D/| + | D] = 1+ || + |tm] = |E]-

LD : Dy,
D:F/}_t/:[B]ﬂ[Al]%...w[Ak]wA I‘ml—tm:B@
VW b t'ty, : [Al] — -+ —0 [Ag] — A

In the particular case where k = 0 and A = X (note that X is shrinking and co-shrinking), Doy /W, = ¢ : X
is a shrinking derivation, since IV W T',, is a co-shrinking environment and X is a shrinking linear type.

e n>0: Thent = Az, ... \x1.yt1 .. .1, which is an abstraction becausen > 0. Let ' = Ax,,_1 ... Ax1.yt1 ...t
s0 t = Ax,,.t' (this makes sense because n > 0). As ¢’ is S-normal, by induction hypothesis there is a shrinking
derivation D'y T, 2, : M E ¢ : B for some environment I', z,, : M and linear type B, with |D’| = |t/|. Let D
be as below, hence |D| =1+ |D'| =1+ [t/| = |¢| and T is a co-shrinking environment (since so is T', x,, : M)
and M —o B is a shrinking linear type (because M is co-shrinking and B is shrinking).

D
Iz, : M+t :B \
I'Mept' M —B

D=
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