The λ -calculus: from simple types to non-idempotent intersection types https://pageperso.lis-lab.fr/~giulio.guerrieri/ECI2024.html

Final exam — ECI 2024

Due on Wednesday 14 August 2024 anywhere on Earth. Send to giulio.guerrieri@gmail.com

Exercise 1 (4 points)

- 1. (2 points) Prove that $X \Rightarrow Y, X \Rightarrow (Y \Rightarrow Z) \vdash X \Rightarrow Z$ by using ND or ND_{seq}.
- 2. (2 points) Find the simply typed λ -term associated with the derivation found in the previous point.

Exercise 2 (2 points)

Find the type and derivation associated with the simply typed λ -term (in Church-style) $\lambda x^{Z\Rightarrow Y\Rightarrow X} \cdot \lambda y^{Z\Rightarrow Y} \cdot \lambda z^Z \cdot xz(yz)$.

Exercise 3 (3 points)

Let $=_{\beta}$ be the reflexive, transitive and symmetric closure of β -reduction in the untyped λ -calculus, that is, for every untyped λ -terms, $t =_{\beta} u$ if and only if there is a finite sequence $(t_i)_{0 \leq i \leq n}$ of terms for some $n \in \mathbb{N}$ such that $t_0 = t$ and $t_n = u$, and $t_i \to_{\beta} t_{i+1}$ or $t_{i+1} \to_{\beta} t_i$ for every $0 \leq i < n$ (note that if n = 0 then t = u).

Prove that if $t = \beta u$ then there is a term s such that $t \to_{\beta}^* s$ and $u \to_{\beta}^* s$.

Hint: Proceed by induction on $n \in \mathbb{N}$ (for the n in the definition of $=_{\beta}$ above) and use the confluence of \to_{β} .

Exercise 4 (4 points)

Construct an untyped λ -term F such that $Fxy \to_{\beta}^* FyxF$.

Hint: Use the fixpoint combinator Θ and get inspired by the method used to prove that the factorial is representable in the untyped λ -calculus, as explained in the lecture of Day 3.

Exercise 5 (4 points)

Find a derivation in NI with conclusion $f: M \vdash \lambda a.f(aa): C$, for some multi type M and linear type C.

Exercise 6 (3 points)

Prove that a linear type $M \multimap A$ is shrinking if and only if the multi type M is co-shrinking and the linear type A is shrinking.