The λ -calculus: from simple types to non-idempotent intersection types <https://pageperso.lis-lab.fr/~giulio.guerrieri/ECI2024.html/>

Solutions to the final exam

Due on Wednesday 14 August 2024 anywhere on Earth. Send to giulio.guerrieri@gmail.com

Exercise 1 (4 points)

- 1. (2 points) Prove that $X \Rightarrow Y$, $X \Rightarrow (Y \Rightarrow Z) \vdash X \Rightarrow Z$ by using ND or ND_{seq}.
- 2. (2 points) Find the simply typed λ-term (in Curry-style or Church-style) associated with the derivation found in the previous point.

Solution to Exercise 1

1. In NI:

$$
\frac{X \Rightarrow (Y \Rightarrow Z) \qquad [X]^*}{Y \Rightarrow Z} \Rightarrow_e \qquad \frac{X \Rightarrow Y \qquad [X]^*}{Y} \Rightarrow_e
$$

$$
\frac{Z}{X \Rightarrow Z} \Rightarrow_i^*
$$

In NI_{seq} :

$$
\frac{\overline{X \Rightarrow Y, X \Rightarrow (Y \Rightarrow Z), X \vdash X \Rightarrow (Y \Rightarrow Z)}^{\text{ax}} \overline{X \Rightarrow Y, X \Rightarrow (Y \Rightarrow Z), X \vdash X}^{\text{ax}}}{X \Rightarrow Y, X \Rightarrow (Y \Rightarrow Z), X \vdash Y \Rightarrow Z} \Rightarrow e \xrightarrow{\overline{X \Rightarrow Y, X \Rightarrow (Y \Rightarrow Z), X \vdash X \Rightarrow Y}} \frac{\overline{X \Rightarrow Y, X \Rightarrow (Y \Rightarrow Z), X \vdash X \Rightarrow (Y \Rightarrow Z), X \vdash X}}{\overline{X \Rightarrow Y, X \Rightarrow (Y \Rightarrow Z), X \vdash Z}} \Rightarrow e \xrightarrow{\overline{X \Rightarrow Y, X \Rightarrow (Y \Rightarrow Z), X \vdash Z}} \Rightarrow e \xrightarrow{\overline{X \Rightarrow Y, X \Rightarrow (Y \Rightarrow Z), X \vdash Z}} \Rightarrow e \xrightarrow{\overline{X \Rightarrow Y, X \Rightarrow (Y \Rightarrow Z), X \vdash Z}} \Rightarrow e \xrightarrow{\overline{X \Rightarrow Y, X \Rightarrow (Y \Rightarrow Z), X \vdash Z}} \Rightarrow e \xrightarrow{\overline{X \Rightarrow Y, X \Rightarrow (Y \Rightarrow Z) \vdash X \Rightarrow Z}} \Rightarrow e \xrightarrow{\overline{X \Rightarrow Y, X \Rightarrow (Y \Rightarrow Z) \vdash X \Rightarrow Z}} \Rightarrow e \xrightarrow{\overline{X \Rightarrow Y, X \Rightarrow (Y \Rightarrow Z) \vdash X \Rightarrow Z}} \Rightarrow e \xrightarrow{\overline{X \Rightarrow Y, X \Rightarrow (Y \Rightarrow Z) \vdash X \Rightarrow Z}} \Rightarrow e \xrightarrow{\overline{X \Rightarrow Y, X \Rightarrow (Y \Rightarrow Z) \vdash X \Rightarrow Z}} \Rightarrow e \xrightarrow{\overline{X \Rightarrow Y, X \Rightarrow (Y \Rightarrow Z) \vdash X \Rightarrow Z}} \Rightarrow e \xrightarrow{\overline{X \Rightarrow Y, X \Rightarrow (Y \Rightarrow Z) \vdash X \Rightarrow Z}} \Rightarrow e \xrightarrow{\overline{X \Rightarrow Y, X \Rightarrow (Y \Rightarrow Z) \vdash X \Rightarrow Z}} \Rightarrow e \xrightarrow{\overline{X \Rightarrow Y, X \Rightarrow (Y \Rightarrow Z) \vdash X \Rightarrow Z}} \Rightarrow e \xrightarrow{\overline{X \Rightarrow Y, X \Rightarrow (Y \Rightarrow Z) \vdash X \Rightarrow Z}} \Rightarrow e \xrightarrow{\overline{X \Rightarrow Y, X \Rightarrow (Y \Rightarrow Z) \vdash X \Rightarrow Z}} \Rightarrow e \xrightarrow{\overline{X \Rightarrow Y, X \Rightarrow (Y \Rightarrow Z) \vdash X \Rightarrow Z}} \Rightarrow e \xrightarrow{\overline{X \Rightarrow Y, X \Rightarrow (Y \Rightarrow Z) \vdash X \Rightarrow Z}} \Rightarrow e \xrightarrow{\overline{X \Rightarrow Y, X \Rightarrow (Y \Rightarrow Z) \vdash X \Rightarrow Z}} \Rightarrow e
$$

2. In Curry-style:

z : X ⇒ (Y ⇒ Z) [x : X] ∗ ⇒^e zx : Y ⇒ Z y : X ⇒ Y [x : X] ∗ ⇒^e yx : Y ⇒^e zx(yx) : Z ⇒[∗] i λx.zx(yx) : X ⇒ Z

In Church-style:

$$
\frac{z: X \Rightarrow (Y \Rightarrow Z) \quad [x: X]^*}{zx: Y \Rightarrow Z} \Rightarrow e \quad \frac{y: X \Rightarrow Y \quad [x: X]^*}{yx: Y} \Rightarrow e \quad \frac{zx(yx): Z}{\lambda x^X . zx(yx): X \Rightarrow Z} \Rightarrow^*_{i}
$$

Exercise 2 (2 points)

Find the type and derivation associated with the simply typed λ -term (in Church-style) $\lambda x^{Z\Rightarrow Y\Rightarrow X}.\lambda y^{Z\Rightarrow Y}.\lambda z^{Z}.xz(yz)$.

Solution to Exercise 2

$$
\frac{[x:Z \to Y \to X]^{\bullet} \quad [z:Z]^*}{xz:Y \to X} \xrightarrow{[y:Z \to Y]^{\circ} \quad [z:Z]^*} \Rightarrow_e
$$
\n
$$
\frac{xz(yz):X}{xz(yz):X} \Rightarrow_e
$$
\n
$$
\frac{xz(yz):Z \to X}{\lambda z^Z.xz(yz):Z \to X} \Rightarrow_i^{\circ}
$$
\n
$$
\frac{\lambda y^{Z \to Y}.\lambda z^Z.xz(yz):(Z \to Y) \to Z \to X}{\lambda x^{Z \to Y \to X}.\lambda y^{Z \to Y}.\lambda z^Z.xz(yz):(Z \to Y \to X) \to (Z \to Y) \to Z \to X} \Rightarrow_i^{\circ}
$$

Exercise 3 (3 points)

Let $=$ _β be the reflexive, transitive and symmetric closure of β-reduction in the untyped λ -calculus, that is, for every untyped λ -terms, $t =_\beta u$ if and only if there is a finite sequence $(t_i)_{0 \leq i \leq n}$ of terms for some $n \in \mathbb{N}$ such that $t_0 = t$ and $t_n = u$, and $t_i \rightarrow \beta t_{i+1}$ or $t_{i+1} \rightarrow \beta t_i$ for every $0 \leq i < n$ (note that if $n = 0$ then $t = u$).

Prove that if $t =_\beta u$ then there is a term s such that $t \to^*_{\beta} s$ and $u \to^*_{\beta} s$.

Hint: Proceed by induction on $n \in \mathbb{N}$ (for the n in the definition of $=$ _β above) and use the confluence of \rightarrow _β.

Solution to Exercise 3

By definition of $t =_\beta u$, there is a finite sequence $(t_i)_{0 \leq i \leq n}$ of terms for some $n \in \mathbb{N}$ such that $t_0 = t$ and $t_n = u$, and $t_i \rightarrow_\beta t_{i+1}$ or $t_{i+1} \rightarrow_\beta t_i$ for every $0 \leq i < n$. We proceed by induction on $n \in \mathbb{N}$. Cases:

- $n = 0$: Then, $t = u$ and the statement to prove holds by taking $s = t$.
- $n > 0$: Thus, $t = \beta t_{n-1}$ and $(t_{n-1} \to \beta u$ or $u \to \beta t_{n-1}$). By induction hypothesis applied to $t = \beta t_{n-1}$ (since $n-1 < n$), there is a term s' such that $t \to_{\beta}^* s'$ and $t_{n-1} \to_{\beta}^* s'$. There are two cases:
	- 1. if $u = t_n \rightarrow_\beta t_{n-1}$, then $u \rightarrow_\beta^* s'$ and the statement to prove holds by taking $s = s'$;
	- 2. if $t_{n-1} \to_\beta t_n = u$, then $t_{n-1} \to_\beta s'$ and $t_{n-1} \to_\beta u$ and hence, by confluence of \to_β , there is a term s such that $s' \to_{\beta}^* s$ and $u \to_{\beta}^* s$. As $t \to_{\beta}^* s'$, then $t \to_{\beta}^* s$ and we are done. Graphically:

Exercise 4 (4 points)

Construct an untyped λ -term F such that $Fxy \to^*_{\beta} FyxF$.

Hint: Use the fixpoint combinator Θ and get inspired by the method used to prove that the factorial is representable in the untyped λ -calculus, as explained in the lecture of Day 3.

Solution to Exercise 4

 $Fxy \rightarrow^*_{\beta} FyxF$ follows from $F \rightarrow^*_{\beta} \lambda x.\lambda y.FyxF$, which in turn follows from $F \rightarrow^*_{\beta} (\lambda f.\lambda x.\lambda y.fyxf)F$. Note that F is a fixed point of $\lambda f. \lambda x.\lambda y.fyx \tilde{f}$. Let $F = \Theta(\lambda f.\lambda x.\lambda y.fyx f)$, where Θ is the fixpoint combinator defined in the lecture of Day 3. Now, $F = \Theta(\lambda f.\lambda x.\lambda y.fyxf) \rightarrow_{\beta}^{*} (\lambda f.\lambda x.\lambda y.fyxf) (\Theta(\lambda f.\lambda x.\lambda y.fyxf)) = (\lambda f.\lambda x.\lambda y.fyxf)F \rightarrow_{\beta}$ $\lambda x.\lambda y.FyxF$. Therefore, $Fxy \rightarrow_{\beta} *(\lambda x.\lambda y.FyxF)xy \rightarrow_{\beta} * FyxF$.

Exercise 5 (4 points)

Find a derivation in NI with conclusion $f : M \vdash \lambda a. f(aa) : C$, for some multi type M and linear type C.

Solution to Exercise 5

All the derivations in NI with conclusion $f : M \vdash \lambda a.f(aa) : C$, for any multi type M and linear type C, have the form below, where $N = [[A_1^1, \ldots, A_{n_1}^1] \sim A_0^1, A_1^1, \ldots, A_{n_1}^1, \ldots, A_{n_1}^1, \ldots, A_{n_m}^m] \sim A_0^m, A_1^m, \ldots, A_{n_m}^m]$ and $M'=[A_0^1,\ldots,A_0^m].$

$$
\frac{\left(\frac{\left(\frac{1}{a\cdot[A_i^j\mid\vdash a:A_i^j}^{\text{var}}\right)\right)}{\left(\frac{a\cdot[[A_1^j,\ldots,A_{n_j}^j]\mid\multimap A_0^j\mid\vdash a:[A_1^j,\ldots,A_{n_j}^j]\mid\multimap A_0^j}{a\cdot[A_1^j,\ldots,A_{n_j}^j]\mid\multimap A_0^j}\right)}\right)}{\frac{a\cdot[[A_1^j,\ldots,A_{n_j}^j]\mid\multimap A_0^j,A_1^j,\ldots,A_{n_j}^j]\mid\vdots\mid a\cdot[A_0^j,\ldots,A_{n_j}^j]\mid\vdots\mid a\cdot[A_0^j,\ldots,A_{n_j}^j]\mid\vdots\mid a\cdot[A_1^j,\ldots,A_{n_j}^j]\mid\vdots\mid a\cdot[A_1^j,\ldots,A_{
$$

Therefore, a derivation in NI with conclusion $f : M \vdash \lambda a.f(aa) : C$, for some multi type M and linear type C, is the following, obtained from the one above taking $m = 1$ and $n_1 = 0$ and $A = X$ and $A_0^1 = Y$:

$$
\frac{a:[] \rightarrow Y \mid a:[] \rightarrow Y^{\text{var}} \vdash aa:[]}{\begin{array}{c} a:[[] \rightarrow Y] \vdash a: [Y \rightarrow X] \vdash f: [Y] \rightarrow X^{\text{var}} \\ \hline a:[[] \rightarrow Y] \vdash aa: Y \\ \hline f:[[Y] \rightarrow X], a:[[] \rightarrow Y] \vdash f(aa): X \\ \hline f:[[Y] \rightarrow X] \vdash \lambda a.f(aa): [[] \rightarrow Y] \rightarrow X \end{array}}
$$

Exercise 6 (3 points)

Prove that a linear type $M \to A$ is shrinking if and only if the multi type M is co-shrinking and the linear type A is shrinking.

Solution to Exercise 6

- \Rightarrow : Let $N \in \textsf{oc}_+(A)$. Then, $N \in \textsf{oc}_+(M \multimap A)$ and hence $|N| \geq 1$ since $M \multimap A$ is shrinking. Thus, A is shrinking. To prove that M is co-shrinking, we show that every $B \in M$ is co-shrinking. Let $B \in M$. Let $N \in \text{oc}_-(B)$. Then, $N \in \text{oc}-(M)$ and hence $N \in \text{oc}+(M \multimap A)$. So, $|N| \geq 1$ since $M \multimap A$ is shrinking. Therefore, B is co-shrinking.
- \Leftarrow : Let $N \in \textsf{oc}_+(M \multimap A)$. Then, $N \in \textsf{oc}_-(M)$ or $N \in \textsf{oc}_+(A)$. In the first case, $|N| \geq 1$ since M is co-shrinking. In the second case, $|N| \ge 1$ since A is shrinking. In either case, $|N| \ge 1$. Therefore, $M \sim A$ is shrinking.