The λ -calculus: from simple types to non-idempotent intersection types https://pageperso.lis-lab.fr/~giulio.guerrieri/ECI2024.html/

Solutions to the final exam

Due on Wednesday 14 August 2024 anywhere on Earth. Send to giulio.guerrieri@gmail.com

Exercise 1 (4 points)

- 1. (2 points) Prove that $X \Rightarrow Y, X \Rightarrow (Y \Rightarrow Z) \vdash X \Rightarrow Z$ by using ND or ND_{seq} .
- 2. (2 points) Find the simply typed λ -term (in Curry-style or Church-style) associated with the derivation found in the previous point.

Solution to Exercise 1

1. In NI:

$$\frac{X \Rightarrow (Y \Rightarrow Z) \quad [X]^*}{Y \Rightarrow Z} \Rightarrow_e \frac{X \Rightarrow Y \quad [X]^*}{Y} \Rightarrow_e$$

$$\frac{Z}{X \Rightarrow Z} \Rightarrow_i^*$$

In NI_{seq} :

$$\frac{\overline{X\Rightarrow Y,\, X\Rightarrow (Y\Rightarrow Z),\, X\vdash X\Rightarrow (Y\Rightarrow Z)}^{\mathsf{ax}}}{\frac{X\Rightarrow Y,\, X\Rightarrow (Y\Rightarrow Z),\, X\vdash Y\Rightarrow Z}{}} \xrightarrow{X\Rightarrow Y,\, X\Rightarrow (Y\Rightarrow Z),\, X\vdash X}^{\mathsf{ax}}} \frac{\overline{X\Rightarrow Y,\, X\Rightarrow (Y\Rightarrow Z),\, X\vdash X\Rightarrow Y}^{\mathsf{ax}}}{X\Rightarrow Y,\, X\Rightarrow (Y\Rightarrow Z),\, X\vdash X}^{\mathsf{ax}}} \xrightarrow{X\Rightarrow Y,\, X\Rightarrow (Y\Rightarrow Z),\, X\vdash X}^{\mathsf{ax}}} \xrightarrow{X\Rightarrow Y,\, X\Rightarrow (Y\Rightarrow Z),\, X\vdash X}^{\mathsf{ax}}} \xrightarrow{X\Rightarrow Y,\, X\Rightarrow (Y\Rightarrow Z),\, X\vdash Z}^{\mathsf{ax}}} \Rightarrow_{e}$$

2. In Curry-style:

$$\frac{z:X\Rightarrow (Y\Rightarrow Z) \quad [x:X]^*}{\frac{zx:Y\Rightarrow Z}{}\Rightarrow_e \quad \frac{y:X\Rightarrow Y \quad [x:X]^*}{yx:Y}\Rightarrow_e} \Rightarrow_e$$

$$\frac{zx(yx):Z}{\frac{\lambda x.zx(yx):X\Rightarrow Z}{}\Rightarrow_i^*}$$

In Church-style:

$$\frac{z:X\Rightarrow (Y\Rightarrow Z) \quad [x:X]^*}{\frac{zx:Y\Rightarrow Z}{}\Rightarrow_e} \xrightarrow{\begin{array}{c} y:X\Rightarrow Y \quad [x:X]^*\\ yx:Y\\ \hline \\ \frac{zx(yx):Z}{\lambda x^X.zx(yx):X\Rightarrow Z}\Rightarrow_i^* \end{array}}$$

Exercise 2 (2 points)

Find the type and derivation associated with the simply typed λ -term (in Church-style) $\lambda x^{Z\Rightarrow Y\Rightarrow X} \cdot \lambda y^{Z\Rightarrow Y} \cdot \lambda z^Z \cdot xz(yz)$.

Solution to Exercise 2

Exercise 3 (3 points)

Let $=_{\beta}$ be the reflexive, transitive and symmetric closure of β -reduction in the untyped λ -calculus, that is, for every untyped λ -terms, $t =_{\beta} u$ if and only if there is a finite sequence $(t_i)_{0 \le i \le n}$ of terms for some $n \in \mathbb{N}$ such that $t_0 = t$ and $t_n = u$, and $t_i \to_{\beta} t_{i+1}$ or $t_{i+1} \to_{\beta} t_i$ for every $0 \le i < n$ (note that if n = 0 then t = u).

Prove that if $t =_{\beta} u$ then there is a term s such that $t \to_{\beta}^* s$ and $u \to_{\beta}^* s$.

Hint: Proceed by induction on $n \in \mathbb{N}$ (for the n in the definition of $=_{\beta}$ above) and use the confluence of \to_{β} .

Solution to Exercise 3

By definition of $t =_{\beta} u$, there is a finite sequence $(t_i)_{0 \le i \le n}$ of terms for some $n \in \mathbb{N}$ such that $t_0 = t$ and $t_n = u$, and $t_i \to_{\beta} t_{i+1}$ or $t_{i+1} \to_{\beta} t_i$ for every $0 \le i < n$. We proceed by induction on $n \in \mathbb{N}$. Cases:

- n = 0: Then, t = u and the statement to prove holds by taking s = t.
- n > 0: Thus, $t =_{\beta} t_{n-1}$ and $(t_{n-1} \to_{\beta} u \text{ or } u \to_{\beta} t_{n-1})$. By induction hypothesis applied to $t =_{\beta} t_{n-1}$ (since n-1 < n), there is a term s' such that $t \to_{\beta}^* s'$ and $t_{n-1} \to_{\beta}^* s'$. There are two cases:
 - 1. if $u = t_n \to_{\beta} t_{n-1}$, then $u \to_{\beta}^* s'$ and the statement to prove holds by taking s = s';
 - 2. if $t_{n-1} \to_{\beta} t_n = u$, then $t_{n-1} \to_{\beta}^* s'$ and $t_{n-1} \to_{\beta} u$ and hence, by confluence of \to_{β} , there is a term s such that $s' \to_{\beta}^* s$ and $u \to_{\beta}^* s$. As $t \to_{\beta}^* s'$, then $t \to_{\beta}^* s$ and we are done. Graphically:

Exercise 4 (4 points)

Construct an untyped λ -term F such that $Fxy \to_{\beta}^* FyxF$.

Hint: Use the fixpoint combinator Θ and get inspired by the method used to prove that the factorial is representable in the untyped λ -calculus, as explained in the lecture of Day 3.

Solution to Exercise 4

 $Fxy \to_{\beta}^* FyxF$ follows from $F \to_{\beta}^* \lambda x.\lambda y.FyxF$, which in turn follows from $F \to_{\beta}^* (\lambda f.\lambda x.\lambda y.fyxf)F$. Note that F is a fixed point of $\lambda f.\lambda x.\lambda y.fyxf$. Let $F = \Theta(\lambda f.\lambda x.\lambda y.fyxf)$, where Θ is the fixpoint combinator defined in the lecture of Day 3. Now, $F = \Theta(\lambda f.\lambda x.\lambda y.fyxf) \to_{\beta}^* (\lambda f.\lambda x.\lambda y.fyxf)(\Theta(\lambda f.\lambda x.\lambda y.fyxf)) = (\lambda f.\lambda x.\lambda y.fyxf)F \to_{\beta} \lambda x.\lambda y.FyxF$. Therefore, $Fxy \to_{\beta} *(\lambda x.\lambda y.FyxF)xy \to_{\beta}^* FyxF$.

Exercise 5 (4 points)

Find a derivation in NI with conclusion $f: M \vdash \lambda a. f(aa): C$, for some multi type M and linear type C.

Solution to Exercise 5

All the derivations in NI with conclusion $f: M \vdash \lambda a.f(aa): C$, for any multi type M and linear type C, have the form below, where $N = [[A_1^1, \ldots, A_{n_1}^1] \multimap A_0^1, A_1^1, \ldots, A_{n_1}^1, \ldots, A_{n_1}^m] \multimap A_0^m, A_1^m, \ldots, A_{n_m}^m]$ and $M' = [A_0^1, \ldots, A_0^m]$.

$$\left(\frac{\frac{\left(\overline{a}:[A_i^j] \vdash a:A_i^j \text{var}\right)_{1 \leq i \leq n_j}}{a:[[A_1^j, \dots, A_{n_j}^j] \multimap A_0^j] \vdash a:[A_1^j, \dots, A_{n_j}^j] \multimap A_0^j} \underbrace{\frac{\left(\overline{a}:[A_i^j] \vdash a:A_i^j \text{var}\right)_{1 \leq i \leq n_j}}{a:[A_1^j, \dots, A_{n_j}^j] \vdash aa:[A_1^j, \dots, A_{n_j}^j] \vdash aa:A_0^j}}_{1 \leq j \leq m}\right)_{1 \leq j \leq m} \underbrace{\frac{f:[M' \multimap A] \vdash f:M' \multimap A]}_{f:[M' \multimap A] \vdash \lambda a.f(aa):N \multimap A}}_{f:[M' \multimap A] \vdash \lambda a.f(aa):N \multimap A} \right)_{1 \leq j \leq m}}_{1 \leq j \leq m}$$

Therefore, a derivation in NI with conclusion $f: M \vdash \lambda a.f(aa): C$, for some multi type M and linear type C, is the following, obtained from the one above taking m = 1 and $n_1 = 0$ and A = X and $A_0^1 = Y$:

$$\frac{\overline{a\colon []\multimap Y]\vdash a\colon []\multimap Y}^{\mathsf{var}} \ \overline{\vdash aa\colon []}^!}{\frac{a\colon []\multimap Y]\vdash aa\colon Y}{a\colon []\multimap Y]\vdash aa\colon Y}^!}_{@}} \\ \frac{f\colon [[Y]\multimap X]\vdash f\colon [Y]\multimap X}{f\colon [[Y]\multimap X], \, a\colon [[]\multimap Y]\vdash f(aa)\colon X}^!}_{@}$$

Exercise 6 (3 points)

Prove that a linear type $M \multimap A$ is shrinking if and only if the multi type M is co-shrinking and the linear type A is shrinking.

Solution to Exercise 6

- ⇒: Let $N \in \mathsf{oc}_+(A)$. Then, $N \in \mathsf{oc}_+(M \multimap A)$ and hence $|N| \ge 1$ since $M \multimap A$ is shrinking. Thus, A is shrinking. To prove that M is co-shrinking, we show that every $B \in M$ is co-shrinking. Let $B \in M$. Let $N \in \mathsf{oc}_-(B)$. Then, $N \in \mathsf{oc}_-(M)$ and hence $N \in \mathsf{oc}_+(M \multimap A)$. So, $|N| \ge 1$ since $M \multimap A$ is shrinking. Therefore, B is co-shrinking.
- \Leftarrow : Let $N \in oc_+(M \multimap A)$. Then, $N \in oc_-(M)$ or $N \in oc_+(A)$. In the first case, $|N| \ge 1$ since M is co-shrinking. In the second case, $|N| \ge 1$ since A is shrinking. In either case, $|N| \ge 1$. Therefore, $M \multimap A$ is shrinking.