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The λ-calculus between simple types and the untyped one

The simply typed λ-calculus:
1 has very nice operational properties (e.g. normalization, confluence);
2 has a clear logical meaning (Curry-Howard correspondence);
3 is not very expressive (recursion cannot be represented, Turing-completeness fails).

The untyped λ-calculus:
1 has some very nice properties (e.g. confluence, Turing-completeness);
2 misses some nice properties (e.g. normalization);
3 has no logical meaning;
4 contains diverging terms without any meaning (e.g. δδ).

Questions.
1 Is there a more liberal type system which only takes the pros of the two worlds?
2 Can it characterize all and only the “meaningful” terms of the untyped λ-calculus?
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The syntax for non-idempotent intersection types
We fix a countably infinite set of atoms, denoted by X ,Y ,Z , . . . .

Linear types: A,B ::= X | M ⊸ A

Multi types: M,N ::= [A1, . . . ,An] (with n ∈ N)
(Non-idempotent intersection) types: S ,T ::= A | M

where [A1, . . . ,An] with n ∈ N is a finite multiset ([ ] is the empty multiset for n = 0).

Idea. [A1, . . . ,An] stands for a conjunction A1 ∧ · · · ∧ An where ∧ is:

commutative A ∧ B ≡ B ∧ A (multisets do not take order into account);

associative A ∧ (B ∧ C) ≡ (A ∧ B) ∧ C (multisets are associative);

non-idempotent A ∧ A ̸≡ A (multisets take multiplicites into account).

Def. A judgment is a sequent of the form Γ ⊢ t : T where
1 t is a term, T is a type, Γ is an environment, that is,
2 Γ is a function from variables to multi types such that {x | Γ(x) ̸= [ ]} is a finite set.

Notation. ⊎ is the multiset union (e.g. [A,B] ⊎ [A] = [A,A,B] ̸= [A,B]) whose unit is [ ].
Extended to type environments pointwise: (Γ ⊎∆)(x) = Γ(x) ⊎∆(x).
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The typing rules for non-idempotent intersection type system NI

Notation. An environment Γ is denoted by x1 :M1, . . . , xn :Mn if:

variables x1, . . . , xn are pariwise distinct and Γ(x) =

{
Mi if x = xi for some 1 ≤ i ≤ n,

[ ] otherwise.

Typing rules for NI: var
x : [A] ⊢ x : A

Γ, x : M ⊢ t : A
λ

Γ ⊢ λx .t : M ⊸ A

Γ ⊢ s : M ⊸ A ∆ ⊢ t : M
@

Γ ⊎∆ ⊢ st : A

(Γi ⊢ t : Ai )1≤i≤n n ∈ N
!⊎n

i=1 Γi ⊢ t : [A1, . . . ,An]

Idea. A term typed t : [A,A,B] means that, during evaluation, t can be used:

once as a data of type B, and twice as a data of type A.

Notation. D ▷NI Γ ⊢ t : T means that D is a derivation in NI with conclusion Γ ⊢ t : T .
Γ ⊢NI t : T means that there is a derivation D ▷NI Γ ⊢ t : T .

Rmk. ⊢NI t : [ ] for every term t (take ! with no premises).

Def. The size |D| of a derivation D is the number of its rules, not counting the rules !.
|D|var (resp. |D|λ; |D|@) is the number of rules var (resp. λ; @) in D.
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Some examples of derivations in NI

Ex. Find all the derivations with conclusion ⊢ λx .x : C , for any linear type C .

DI
A =

var
x : [A] ⊢ x : A

λ
⊢ λx .x : [A] ⊸ A

for any linear type A.

Ex. Find all the derivations with conclusion ⊢ λx .xx : C , for any linear type C .

Dδ,n
A0,...,An

=
var

x : [[A1, . . . ,An] ⊸ A0] ⊢ x : [A1, . . . ,An] ⊸ A0

(
var

x : [Ai ] ⊢ x : Ai

)
1≤i≤n

!
x : [A1, . . . ,An] ⊢ x : [A1, . . . ,An]

@
x : [[A1, . . . ,An] ⊸ A0,A1, . . . ,An] ⊢ xx : A0

λ
⊢ λx .xx : [[A1, . . . ,An] ⊸ A0,A1, . . . ,An] ⊸ A0

for any n ∈ N and any linear types A0, . . . ,An (in particular, for n = 0, ⊢ λx.x : [[ ] ⊸ A0] ⊸ A0).
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More examples of derivations in NI
Ex. Find all the derivations with conclusion ⊢ (λx .x)λy .y : C , for any linear type C .

DII
A =

var
x : [[A] ⊸ A] ⊢ x : [A] ⊸ A

λ
⊢ λx .x : [[A] ⊸ A] ⊸ [A] ⊸ A

var
y : [A] ⊢ y : A

λ
⊢ λy .y : [A] ⊸ A

!
⊢ λy .y : [[A] ⊸ A]

@
(λx .x)λy .y : [A] ⊸ A

for any linear type A.

Ex. Find a derivation with conclusion ⊢ (λx .xx)λy .y : C , for some linear type C .

Dδ,I
A =

.......
Dδ,1

[A]⊸A,[A]⊸A

⊢ λx.xx :
[
[[A]⊸A] ⊸ [A]⊸A, [A]⊸A

]
⊸ [A] ⊸ A

.......
DI

[A]⊸A

⊢ λy.y : [[A]⊸A] ⊸ [A]⊸A

......
DI

A

⊢ λy.y : [A] ⊸ A
!

⊢ λy.y :
[
[[A]⊸A] ⊸ [A]⊸A, [A]⊸A

]
@

⊢ (λx.xx)λy.y : [A] ⊸ A

for any linear type A (actually, all derivations for (λx .xx)λy .y have the form above).

Rmk. In the derivation DII
A (resp. Dδ,I

A ) the rule ! has 1 premise (resp. 2 premises)
because 1 copy (resp. 2 copies) of λy .y is (resp. are) needed in the evaluation
(λx .x)λy .y →hβ λy .y (resp. (λx .xx)λy .y →hβ (λy .y)λy .y).
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Ex. Find a derivation with conclusion ⊢ (λx .xx)((λy .y)λz .z) : C , for some linear type C .

Dδ,II
A =

.......
Dδ,1

[A]⊸A,[A]⊸A

⊢λx.xx :
[
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]
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.......
DII

[[A]⊸A]⊸[A]⊸A
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]
@

⊢ (λx.xx)((λy.y)λz.z) : [A] ⊸ A

for any linear type A (actually, all derivations for (λx .xx)((λy .y)λz .z) have that form).

Rmk. In the derivation Dδ,II
A , the rule ! has 2 premises because 2 copies of (λy .y)λz .z are

needed in the evaluation (λx .xx)((λy .y)λz .z) →hβ ((λy .y)λz .z)((λy .y)λz .z).

In turn, in each of the derivations DII
[[A]⊸A]⊸[A]⊸A and DII

[A]⊸A the rule ! has 2 premises,
hence the derivation Dδ,II

A has 4 subderivations with conclusion λx .x , because 4 copies of
λx .x are needed in the evaluation (λx .xx)((λy .y)λz .z) →hβ ((λy .y)λz .z)((λy .y)λz .z).

Ex. Find a derivation with conclusion ⊢ (λx .xx)λy .yy : C , for some linear type C .

Good luck!
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Enough with the examples of derivations, old man!

Ex. Find all derivations with conclusion ⊢λx .x((λy .yy)λz .zz) :C , for any linear type C .

DI ,δδ
A =

var
x : [[ ] ⊸ A] ⊢ x : [ ] ⊸ A

!
⊢ (λy .yy)λz .zz : [ ]

@
x : [[ ] ⊸ A] ⊢ x((λy .yy)λz .zz) : A

λ
⊢ λx .x((λy .yy)λz .zz) : [[ ] ⊸ A] ⊸ A

Ex. Find a derivation for F = λa.λf .f (aaf ) and one for Θ = FF with some linear type.

This is a good exercise, old man!
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What can we do with non-idempotent intersection types?

Goal. We want to characterize all and only the hβ-normalizing terms via NI.

Motivation. There are many theoretical reasons to say “meaningful” = hβ-normalizing.

To achieve this qualitative characterization, we need to prove two properties.
1 Correctness: if a term is typable in NI then it is hβ-normalizing.
2 Completeness: if a term is hβ-normalizing then it is typable in NI.

Bonus. We can extract some quantitative information from NI about:
1 the length of evaluation (the number of hβ-steps to reach the hβ-normal form);
2 the size of the output (i.e. of the hβ-normal form).
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Ingredients to prove correctness

Def. The head size |t|hβ of a term t is defined by induction on t as follows:

|x |hβ = 1 |λx .t|hβ = 1 + |t|hβ |st|hβ = 1 + |s|hβ

Lemma (Typing hβ-normal forms)

Let t be hβ-normal. If D ▷NI Γ ⊢ t : A then |t|hβ ≤ |D|.

Proof. Every hβ-normal term is of the form t = λxn. . . . λx1.yt1 . . . tm for some m, n ∈ N.
The lemma is proved by induction on |t|hβ ∈ N.

Notation. For a finite multiset M over a set X , its cardinality is |M| =
∑

x∈X M(x) ∈ N.

Lemma (Substitution)

If D ▷NI Γ, x : M ⊢ t : A and D′ ▷NI ∆ ⊢ s : M, then there is D′′ ▷NI Γ ⊎∆ ⊢ t{s/x} : A
with |D′′| = |D|+ |D′| − |M|.

Proof. By structural induction on D. The base case is when the last rule of D is var.
The other cases follow easily from the inductive hypothesis.
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A graphical view to the substitution lemma
Like natural deduction, derivations in NI can be depicted by a tree-like structure where:

edges are labeled by typed terms, nodes are the typing rules,

leaves form the environment, the root types the subject.

Lemma (Substitution)

If D ▷NI Γ, x : [A1, . . .Ak ] ⊢ t : A (with k ∈ N) and D′ ▷NI ∆ ⊢ s : [A1, . . .Ak ], then there
is D′′ ▷NI Γ ⊎∆ ⊢ t{s/x} : A with |D′′| = |D|+ |D′| − k.

D′′ =

Γ

∆1

D′
1

s : A1 . . .

∆k

D′
k

s : Ak

D{s/x}

t{s/x} : A
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Correctness of NI: typability implies hβ-normalization

Proposition (Quantitative subject reduction)
If D ▷NI Γ ⊢ t : A and t →hβ t′, then there is D′ ▷NI Γ ⊢ t′ : A with |D| > |D′|.

Proof. By induction on the definition t →hβ t′ (p. 6, Day 3). The only non-trivial case is
when t = (λx .u)s →hβ u{s/x} = t′: so, D must have the form below, with Γ = Γ′ ⊎ Γ′′.

D =

..... Du

Γ′x : M ⊢ u : A
λ

Γ′ ⊢ λx.u : M ⊸ A

..... Ds

Γ′′ ⊢ s : M
@

Γ′ ⊎ Γ′′ ⊢ (λx.u)s : A

By substitution lemma, there is D′ ▷NI Γ ⊢ u{s/x} : A
with |D′| = |Du|+|Ds |−|M| < |Du|+|Ds |+2 = |D|.

Rmk. The quantitative aspect of subject reduction (i.e. |D| > |D′|) is false:
if t →β t′ instead of t →hβ t′, e.g. λx .x(δδ) →β λx .x(δδ) with δ = λz .zz , see p. 10;
if D and D′ are derivations in the simply typed λ-calculus, instead of NI.

Theorem (Correctness of NI)
If D ▷NIΓ ⊢ t :A then there is s hβ-normal such that t

k hβ-steps︷ ︸︸ ︷
→hβ · · · →hβ s and |D| ≥ k+|s|hβ .

Proof. By induction on |D|.

If t is hβ-normal, then the claim follows from the lemma
about typing hβ-normal forms, taking s = t and k = 0.
Otherwise, t →hβ t′ and by quantitative subject reduction there is D′ ▷NI Γ ⊢ t′ : A with
|D| > |D′|. By induction hypothesis, t′ →∗

hβ s in k hβ-steps for some hβ-normal s with
|D′| ≥ k + |s|hβ . Hence, t →∗

hβ s in k+1 hβ-steps and |D| ≥ |D′|+ 1 ≥ k + 1+ |s|hβ .
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Ingredients to prove completeness
Rmk. Completeness is the converse of correctness, so their needed ingredients are “dual”.

Lemma (Typability of hβ-normal forms)

If t is hβ-normal, then there is D ▷NI Γ ⊢ t : A with |D| = |t|hβ .

Proof. Every hβ-normal term is of the form t = λxn. . . . λx1.yt1 . . . tm for some m, n ∈ N.
For n = 0, we prove by induction on m ∈ N the stronger property that, for all k ∈ N and
linear A, there is D ▷NI y : [Ak ] ⊢ yt1 . . . tm : Ak with |D| = m + 1 = |D|@ + |D|var and

Ak =

k times [ ]︷ ︸︸ ︷
[ ] ⊸ · · · ⊸ [ ] ⊸ A (note that |yt1 . . . tm|hβ = m + 1 and |D|@ = m).

The lemma including the stronger statement is proved by induction on |t|hβ ∈ N.

Lemma (Anti-substitution)

If D ▷NI Γ ⊢ t{s/u} : A, then there are environments Γ′ and Γ′′, a multi type M and
derivations D′ ▷NI Γ

′, x : M ⊢ t : A and D′′ ▷NI Γ
′′ ⊢ s : M such that Γ = Γ′ ⊎ Γ′′ and

|D| = |D′|+ |D′′| − |M|.

Proof. By structural induction on t. The base case is when t is a variable (either x or
other than x). The other cases follow easily from the inductive hypothesis.
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Completeness of NI: hβ-normalization implies typability

Proposition (Quantitative subject expansion)

If D′ ▷NI Γ ⊢ t′ : A and t →hβ t′, then there is D ▷NI Γ ⊢ t : A with |D| > |D′|.

Proof. By induction on the definition t →hβ t′ (p. 6, Day 3). The only non-trivial case is
when t = (λx .u)s →hβ u{s/x} = t′: as D′ ▷NI Γ ⊢ t′ :A, by the anti-substitution lemma

D =

..... Du

Γ′x : M ⊢ u : A
λ

Γ′ ⊢ λx.u : M ⊸ A

..... Ds

Γ′′ ⊢ s : M
@

Γ′ ⊎ Γ′′ ⊢ (λx.u)s : A

there are Du▷NIΓ
′, x : M ⊢ u : A and Ds ▷NIΓ

′′ ⊢ s : M
such that Γ = Γ′ ⊎ Γ′′ and |D′| = |Du| + |Ds | − |M|.
Hence, for D ▷NI Γ ⊢ (λx .u)s : A on the left, |D| =
|Du|+ |Ds |+ 2 > |Du|+ |Ds | − |M| = |D′|.

Rmk. We have seen (in day 2) that subject expansion fails with simple types.

Notation. Given k∈N, we write t →k
hβ s if t

k hβ-steps︷ ︸︸ ︷
→hβ · · · →hβ s (thus t →0

hβ s means t = s).

Theorem (Completeness of NI)

If t →k
hβ s with s hβ-normal, then there is D ▷NI Γ ⊢ t : A with |D| ≥ k + |s|hβ .

Proof. By induction on k∈N.

If k = 0, then t = s and typability of hβ-normal concludes.
Otherwise k > 0 and t →hβ t′ →k−1

hβ s. By induction hypothesis, there is
D′ ▷NI Γ ⊢ t′ : A with |D′| ≥ k − 1 + |s|hβ . By quantitative subject expansion, there is
D ▷NI Γ ⊢ t : A with |D| > |D′|, therefore |D| ≥ |D′|+ 1 ≥ k + |s|hβ .
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Completeness of NI: hβ-normalization implies typability
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D =

..... Du

Γ′x : M ⊢ u : A
λ

Γ′ ⊢ λx.u : M ⊸ A

..... Ds

Γ′′ ⊢ s : M
@

Γ′ ⊎ Γ′′ ⊢ (λx.u)s : A

there are Du▷NIΓ
′, x : M ⊢ u : A and Ds ▷NIΓ

′′ ⊢ s : M
such that Γ = Γ′ ⊎ Γ′′ and |D′| = |Du| + |Ds | − |M|.
Hence, for D ▷NI Γ ⊢ (λx .u)s : A on the left, |D| =
|Du|+ |Ds |+ 2 > |Du|+ |Ds | − |M| = |D′|.

Rmk. We have seen (in day 2) that subject expansion fails with simple types.

Notation. Given k∈N, we write t →k
hβ s if t

k hβ-steps︷ ︸︸ ︷
→hβ · · · →hβ s (thus t →0

hβ s means t = s).

Theorem (Completeness of NI)

If t →k
hβ s with s hβ-normal, then there is D ▷NI Γ ⊢ t : A with |D| ≥ k + |s|hβ .

Proof. By induction on k∈N. If k = 0, then t = s and typability of hβ-normal concludes.
Otherwise k > 0 and t →hβ t′ →k−1

hβ s. By induction hypothesis, there is
D′ ▷NI Γ ⊢ t′ : A with |D′| ≥ k − 1 + |s|hβ . By quantitative subject expansion, there is
D ▷NI Γ ⊢ t : A with |D| > |D′|, therefore |D| ≥ |D′|+ 1 ≥ k + |s|hβ .
G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types – Day 4 ECI 2024/08/01 17 / 22



Summing up: characterization of head normalization

Putting together correctness and completeness of NI, we obtain:

Corollary (Characterization of head normalization)

A term t is hβ-normalizing if and only if there is D ▷NI Γ ⊢ t : A. Moreover,
|D| ≥ k + |s|hβ if t →k

hβ s with s hβ-normal.

Rmk. The quantitative information about

the length k of evaluation (head reduction) from t to its hβ-normal form s, and

the head size |s|hβ of the hβ-normal term s

are in the size |D| of D without performing head reduction →hβ or knowing s.

Rmk. |D| is an upper bound to k plus |s|hβ together. NI can be refined so that one can:
1 disentangle the information about k and |s|hβ by means of two different sizes of D,
2 obtain the exact values of k and |s|hβ from these two sizes of D.
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Outline

1 Non-idempotent intersection types for the λ-calculus

2 Characterizing head normalization in NI

3 Conclusion, exercises and bibliography
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What we have learned today?

1 The non-idempotent intersection type system NI.

2 Characterization of head normalization via NI.

3 A combinatorial proof for that characterization.

4 How to extract quantitative information from derivations in NI.

Questions?
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Exercises

1 Find all the derivations of x :M ⊢ xx :C , for any linear type C and any multi type M.
2 Find all the derivations of x :M, y :N ⊢ xy :C , for any linear C and any multi M,N.
3 Prove that all derivations in NI for (λx .xx)λy .y have the form Dδ,I

A shown on p.8,
for any linear type A.

4 Prove that there is no derivation of ⊢ (λx .xx)λy .yy : C , for any linear type C .
5 Find a derivation of ⊢ λa.λf.f (aaf ) : C , for some linear type C .
6 Find a derivation of ⊢ (λa.λf.f (aaf ))λa.λf.f (aaf ) : C , for some linear type C .
7 Find all the derivations of ⊢ λa.λf.f (aaf ) : C , for any linear type C .
8 Find all the derivations of ⊢ (λa.λf.f (aaf ))λa.λf.f (aaf ) : C , for any linear type C .
9 Prove rigorously the two lemmas on p. 13 and the two lemmas on p. 16.
10 Prove rigorously the quantitative subject reduction (p. 15) and expansion (p. 17), by

induction on the definition of t →hβ t′ (see Day 3, p. 9).
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