The λ-calculus: from simple types to non-idempotent intersection types

Day 4: Non-idempotent intersection types for the λ -calculus

Giulio Guerrieri

Department of Informatics, University of Sussex (Brighton, UK) \boxtimes g.guerrieri@sussex.ac.uk \bullet <https://pageperso.lis-lab.fr/~giulio.guerrieri/>

> 37th Escuela de Ciencias Informáticas (ECI 2024) Buenos Aires (Argentina), 1 August 2024

Outline

1 [Non-idempotent intersection types for the](#page-2-0) λ -calculus

² [Characterizing head normalization in NI](#page-31-0)

³ [Conclusion, exercises and bibliography](#page-59-0)

Outline

1 [Non-idempotent intersection types for the](#page-2-0) λ -calculus

² [Characterizing head normalization in NI](#page-31-0)

³ [Conclusion, exercises and bibliography](#page-59-0)

The λ -calculus between simple types and the untyped one

The simply typed λ -calculus:

- **1** has very nice operational properties (e.g. normalization, confluence);
- **2** has a clear logical meaning (Curry-Howard correspondence);
- **3** is not very expressive (recursion cannot be represented, Turing-completeness fails).

The untyped λ -calculus:

- **1** has some very nice properties (e.g. confluence, Turing-completeness);
- ² misses some nice properties (e.g. normalization);
- **3** has no logical meaning;
- **4** contains diverging terms without any meaning (e.g. $\delta\delta$).

- **1** Is there a more liberal type system which only takes the pros of the two worlds?
- **2** Can it characterize all and only the "meaningful" terms of the untyped λ -calculus?

The λ -calculus between simple types and the untyped one

The simply typed λ -calculus:

- **1** has very nice operational properties (e.g. normalization, confluence);
- **2** has a clear logical meaning (Curry-Howard correspondence);
- **3** is not very expressive (recursion cannot be represented, Turing-completeness fails).

The untyped λ -calculus:

- **1** has some very nice properties (e.g. confluence, Turing-completeness);
- **2** misses some nice properties (e.g. normalization);
- **3** has no logical meaning;
- **•** contains diverging terms without any meaning (e.g. $\delta\delta$).

- **1** Is there a more liberal type system which only takes the pros of the two worlds?
- \bullet Can it characterize all and only the "meaningful" terms of the untyped λ -calculus?

The λ -calculus between simple types and the untyped one

The simply typed λ -calculus:

- **1** has very nice operational properties (e.g. normalization, confluence);
- **2** has a clear logical meaning (Curry-Howard correspondence);
- **3** is not very expressive (recursion cannot be represented, Turing-completeness fails).

The untyped λ -calculus:

- **1** has some very nice properties (e.g. confluence, Turing-completeness);
- **2** misses some nice properties (e.g. normalization);
- **3** has no logical meaning;
- **•** contains diverging terms without any meaning (e.g. $\delta\delta$).

Questions.

- **1** Is there a more liberal type system which only takes the pros of the two worlds?
- **2** Can it characterize all and only the "meaningful" terms of the untyped λ -calculus?

The syntax for non-idempotent intersection types

We fix a countably infinite set of atoms, denoted by X, Y, Z, \ldots .

Linear types: $A, B ::= X \mid M \rightarrow A$ Multi types: $M, N ::= [A_1, \ldots, A_n]$ (with $n \in \mathbb{N}$) (Non-idempotent intersection) types: $S, T ::= A | M$

where $[A_1, \ldots, A_n]$ with $n \in \mathbb{N}$ is a finite multiset ([] is the empty multiset for $n = 0$).

Idea. $[A_1, \ldots, A_n]$ stands for a conjunction $A_1 \wedge \cdots \wedge A_n$ where \wedge is:

- commutative $A \wedge B \equiv B \wedge A$ (multisets do not take order into account);
- associative $A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C$ (multisets are associative);
- non-idempotent $A \wedge A \not\equiv A$ (multisets take multiplicites into account).

Def. A judgment is a sequent of the form $\Gamma \vdash t : T$ where

- \bullet t is a term, T is a type, Γ is an environment, that is,
- **2** Γ is a function from variables to multi types such that $\{x \mid \Gamma(x) \neq \lceil \}$ is a finite set.

Notation. \forall is the multiset union (e.g. $[A, B] \forall [A] = [A, A, B] \neq [A, B]$) whose unit is []. Extended to type environments pointwise: $(\Gamma \boxplus \Delta)(x) = \Gamma(x) \boxplus \Delta(x)$.

The syntax for non-idempotent intersection types

We fix a countably infinite set of atoms, denoted by X, Y, Z, \ldots .

Linear types: $A, B ::= X \mid M \multimap A$ Multi types: $M, N ::= [A_1, \ldots, A_n]$ (with $n \in \mathbb{N}$) (Non-idempotent intersection) types: $S, T ::= A | M$

where $[A_1, \ldots, A_n]$ with $n \in \mathbb{N}$ is a finite multiset ([] is the empty multiset for $n = 0$).

Idea. $[A_1, \ldots, A_n]$ stands for a conjunction $A_1 \wedge \cdots \wedge A_n$ where \wedge is:

- commutative $A \wedge B \equiv B \wedge A$ (multisets do not take order into account);
- associative $A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C$ (multisets are associative);
- non-idempotent $A \wedge A \not\equiv A$ (multisets take multiplicites into account).

Def. A judgment is a sequent of the form $\Gamma \vdash t : T$ where

- \bullet t is a term, T is a type, Γ is an environment, that is,
- **2** Γ is a function from variables to multi types such that $\{x \mid \Gamma(x) \neq \lceil \}$ is a finite set.

Notation. \forall is the multiset union (e.g. $[A, B] \forall [A] = [A, A, B] \neq [A, B]$) whose unit is []. Extended to type environments pointwise: $(\Gamma \boxplus \Delta)(x) = \Gamma(x) \boxplus \Delta(x)$.

The syntax for non-idempotent intersection types

We fix a countably infinite set of atoms, denoted by X, Y, Z, \ldots .

Linear types: $A, B ::= X \mid M \rightarrow A$ Multi types: $M, N ::= [A_1, \ldots, A_n]$ (with $n \in \mathbb{N}$) (Non-idempotent intersection) types: $S, T ::= A | M$

where $[A_1, \ldots, A_n]$ with $n \in \mathbb{N}$ is a finite multiset ([] is the empty multiset for $n = 0$).

Idea. $[A_1, \ldots, A_n]$ stands for a conjunction $A_1 \wedge \cdots \wedge A_n$ where \wedge is:

- commutative $A \wedge B \equiv B \wedge A$ (multisets do not take order into account);
- associative $A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C$ (multisets are associative);
- non-idempotent $A \wedge A \neq A$ (multisets take multiplicites into account).

Def. A judgment is a sequent of the form $\Gamma \vdash t : T$ where

- \bullet t is a term, T is a type, Γ is an environment, that is,
- **2** Γ is a function from variables to multi types such that $\{x \mid \Gamma(x) \neq \lceil \}$ is a finite set.

Notation. \forall is the multiset union (e.g. $[A, B] \forall [A] = [A, A, B] \neq [A, B]$) whose unit is []. Extended to type environments pointwise: $(\Gamma \boxplus \Delta)(x) = \Gamma(x) \boxplus \Delta(x)$.

Notation. An environment Γ is denoted by $x_1 : M_1, \ldots, x_n : M_n$ if: variables x_1, \ldots, x_n are pariwise distinct and $\Gamma(x) = \begin{cases} M_i & \text{if } x = x_i \text{ for some } 1 \le i \le n, \\ \Omega & \text{otherwise.} \end{cases}$ [] otherwise.

Typing rules for NI: $\qquad \qquad \frac{}{x:[A]\vdash x:A}$ ^{var}

$$
\frac{\Gamma, x: M \vdash t: A}{\Gamma \vdash \lambda x. t: M \multimap A} \lambda \qquad \frac{\Gamma \vdash s: M \multimap A \quad \Delta \vdash t: M}{\Gamma \uplus \Delta \vdash st: A} \otimes \qquad \frac{(\Gamma_i \vdash t: A_i)_{1 \leq i \leq n} \quad n \in \mathbb{N}}{\biguplus_{i=1}^{n} \Gamma_i \vdash t: [A_1, \ldots, A_n]}.
$$

Idea. A term typed $t : [A, A, B]$ means that, during evaluation, t can be used: \bullet once as a data of type B, and \bullet twice as a data of type A.

Notation. $\mathcal{D} \triangleright_{\text{NI}} \Gamma \vdash t : \top$ means that \mathcal{D} is a derivation in NI with conclusion $\Gamma \vdash t : \top$. $\Gamma \vdash_{NI} t : T$ means that there is a derivation $D \triangleright_{NI} \Gamma \vdash t : T$.

Rmk. $\vdash_{NI} t : []$ for every term t (take ! with no premises).

Def. The size $|\mathcal{D}|$ of a derivation \mathcal{D} is the number of its rules, not counting the rules !. $|\mathcal{D}|_{var}$ (resp. $|\mathcal{D}|_{\lambda}$; $|\mathcal{D}|_{\mathcal{O}}$) is the number of rules var (resp. λ ; \mathcal{O}) in \mathcal{D} .

Notation. An environment Γ is denoted by $x_1 : M_1, \ldots, x_n : M_n$ if: variables x_1, \ldots, x_n are pariwise distinct and $\Gamma(x) = \begin{cases} M_i & \text{if } x = x_i \text{ for some } 1 \le i \le n, \\ \Omega & \text{otherwise.} \end{cases}$ [] otherwise.

Typing rules for NI: $x : [A] \vdash x : A$

$$
x:[A]\vdash x:A
$$
 var

$$
\frac{\Gamma, x : M \vdash t : A}{\Gamma \vdash \lambda x. t : M \multimap A} \qquad \frac{\Gamma \vdash s : M \multimap A \quad \Delta \vdash t : M}{\Gamma \uplus \Delta \vdash st : A} \qquad \frac{(\Gamma_i \vdash t : A_i)_{1 \leq i \leq n} \quad n \in \mathbb{N}}{\biguplus_{i=1}^{n} \Gamma_i \vdash t : [A_1, \ldots, A_n]}.
$$

Idea. A term typed $t : [A, A, B]$ means that, during evaluation, t can be used: \bullet once as a data of type B, and \bullet twice as a data of type A.

Notation. $\mathcal{D} \triangleright_{\text{NI}} \Gamma \vdash t : \top$ means that \mathcal{D} is a derivation in NI with conclusion $\Gamma \vdash t : \top$. $\Gamma \vdash_{NI} t : T$ means that there is a derivation $D \triangleright_{NI} \Gamma \vdash t : T$.

Rmk. $\vdash_{NI} t : []$ for every term t (take ! with no premises).

Def. The size $|\mathcal{D}|$ of a derivation \mathcal{D} is the number of its rules, not counting the rules !. $|\mathcal{D}|_{var}$ (resp. $|\mathcal{D}|_{\lambda}$; $|\mathcal{D}|_{\mathcal{Q}}$) is the number of rules var (resp. λ ; \mathcal{Q}) in \mathcal{D} .

Notation. An environment Γ is denoted by $x_1 : M_1, \ldots, x_n : M_n$ if: variables x_1, \ldots, x_n are pariwise distinct and $\Gamma(x) = \begin{cases} M_i & \text{if } x = x_i \text{ for some } 1 \le i \le n, \\ \Omega & \text{otherwise.} \end{cases}$ [] otherwise.

Typing rules for NI: $x : [A] \vdash x : A$

$$
x:[A]\vdash x:A^{\text{var}}
$$

$$
\frac{\Gamma, x : M \vdash t : A}{\Gamma \vdash \lambda x. t : M \multimap A} \qquad \frac{\Gamma \vdash s : M \multimap A \quad \Delta \vdash t : M}{\Gamma \uplus \Delta \vdash st : A} \qquad \frac{(\Gamma_i \vdash t : A_i)_{1 \leq i \leq n} \quad n \in \mathbb{N}}{\biguplus_{i=1}^{n} \Gamma_i \vdash t : [A_1, \ldots, A_n]}.
$$

Idea. A term typed $t : [A, A, B]$ means that, during evaluation, t can be used: \bullet once as a data of type B, and \bullet twice as a data of type A.

Notation. $\mathcal{D} \triangleright_{\mathsf{N}} \Gamma \vdash t : \mathcal{T}$ means that \mathcal{D} is a derivation in NI with conclusion $\Gamma \vdash t : \mathcal{T}$. Γ $\vdash_{\mathsf{NI}} t$: T means that there is a derivation $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma \vdash t$: T.

Rmk. $\vdash_{\mathsf{NI}} t : []$ for every term t (take ! with no premises).

Def. The size $|\mathcal{D}|$ of a derivation \mathcal{D} is the number of its rules, not counting the rules !. $|\mathcal{D}|_{var}$ (resp. $|\mathcal{D}|_{\lambda}$; $|\mathcal{D}|_{\mathcal{Q}}$) is the number of rules var (resp. λ ; \mathcal{Q}) in \mathcal{D} .

Notation. An environment Γ is denoted by $x_1 : M_1, \ldots, x_n : M_n$ if: variables x_1, \ldots, x_n are pariwise distinct and $\Gamma(x) = \begin{cases} M_i & \text{if } x = x_i \text{ for some } 1 \le i \le n, \\ \Omega & \text{otherwise.} \end{cases}$ [] otherwise.

Typing rules for NI: $x:[A]\vdash x:A$ ^{var}

$$
\frac{\Gamma, x : M \vdash t : A}{\Gamma \vdash \lambda x.t : M \multimap A} \qquad \frac{\Gamma \vdash s : M \multimap A \quad \Delta \vdash t : M}{\Gamma \uplus \Delta \vdash st : A} \otimes \qquad \frac{(\Gamma_i \vdash t : A_i)_{1 \leq i \leq n} \quad n \in \mathbb{N}}{\biguplus_{i=1}^n \Gamma_i \vdash t : [A_1, \ldots, A_n]}.
$$

Idea. A term typed $t : [A, A, B]$ means that, during evaluation, t can be used: \bullet once as a data of type B, and \bullet twice as a data of type A.

Notation. $\mathcal{D} \triangleright_{\text{NI}} \Gamma \vdash t : \mathcal{T}$ means that \mathcal{D} is a derivation in NI with conclusion $\Gamma \vdash t : \mathcal{T}$. Γ $\vdash_{\mathsf{NI}} t$: T means that there is a derivation $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma \vdash t$: T.

Rmk. $\vdash_{NI} t : []$ for every term t (take ! with no premises).

Def. The size $|\mathcal{D}|$ of a derivation $\mathcal D$ is the number of its rules, not counting the rules !. $|\mathcal{D}|_{var}$ (resp. $|\mathcal{D}|_{\lambda}$; $|\mathcal{D}|_{\mathcal{Q}}$) is the number of rules var (resp. λ ; \mathcal{Q}) in \mathcal{D} .

Ex. Find all the derivations with conclusion $\vdash \lambda x.x : C$, for any linear type C.

Ex. Find all the derivations with conclusion $\vdash \lambda x.x : C$, for any linear type C.

Ex. Find all the derivations with conclusion $\vdash \lambda x.x : C$, for any linear type C.

$$
\mathcal{D}_{A}^{I} = \frac{\overline{x : [A] \vdash x : A}}{\vdash \lambda x.x : [A] \multimap A}^{\text{var}} \qquad \text{fc}
$$

or any linear type A .

Ex. Find all the derivations with conclusion $\vdash \lambda x.x : C$, for any linear type C.

Ex. Find all the derivations with conclusion $\vdash \lambda x.x : C$, for any linear type C.

$$
\mathcal{D}_A^I = \frac{\overline{x : [A] \vdash x : A}}{\vdash \lambda x . x : [A] \multimap A} \quad \text{for any linear type } A.
$$

Ex. Find all the derivations with conclusion $\vdash \lambda x.x : C$, for any linear type C.

Ex. Find all the derivations with conclusion $\vdash \lambda x.x : C$, for any linear type C.

$$
\mathcal{D}_A' = \frac{\overline{x : [A] \vdash x : A}}{\vdash \lambda x . x : [A] \multimap A} \quad \text{for any linear type } A.
$$

Ex. Find all the derivations with conclusion $\vdash \lambda x.x : C$, for any linear type C.

$$
\mathcal{D}_{A_0,\ldots,A_n}^{\delta,n} = \frac{\overline{x} : [[A_1,\ldots,A_n] \multimap A_0] \vdash x : [A_1,\ldots,A_n] \multimap A_0}{\overline{x} : [A_1,\ldots,A_n] \multimap A_0} \text{var } \frac{\left(\overline{x} : [A_i] \vdash x : A_i \text{var}\right)}{x : [A_1,\ldots,A_n] \vdash x : A_i \ldots,A_n]}}{\overline{x} : [[A_1,\ldots,A_n] \multimap A_0, A_1,\ldots,A_n] \vdash xx : A_0} \text{var } \frac{\overline{x} : [A_1,\ldots,A_n] \multimap A_0}{\overline{x} : [A_1,\ldots,A_n] \multimap A_0, A_1,\ldots,A_n]} \text{var } \frac{\overline{x} : [A_1,\ldots,A_n] \multimap A_0}{\overline{x} : [A_1,\ldots,A_n] \multimap A_0} \text{var } \frac{\overline{x} : [A_1,\ldots,A_n] \multimap A_0}{\overline{x} : [A_1,\ldots,A_n] \multimap A_0} \text{var } \frac{\overline{x} : [A_1,\ldots,A_n] \multimap A_0}{\overline{x} : [A_1,\ldots,A_n] \multimap A_0} \text{var } \frac{\overline{x} : [A_1,\ldots,A_n] \multimap A_0}{\overline{x} : [A_1,\ldots,A_n] \multimap A_0} \text{var } \frac{\overline{x} : [A_1,\ldots,A_n] \multimap A_0}{\overline{x} : [A_1,\ldots,A_n] \multimap A_0}{\overline{x} : [A_1,\ldots,A_n] \multimap A_0}
$$

for any $n \in \mathbb{N}$ and any linear types A_0, \ldots, A_n (in particular, for $n = 0, \vdash \lambda x.x : [[] \multimap A_0] \multimap A_0$).

Ex. Find all the derivations with conclusion $\vdash (\lambda x.x)\lambda y.y : C$, for any linear type C.

Ex. Find a derivation with conclusion $\vdash (\lambda x.x)\lambda y.y : C$, for some linear type C.

Rmk. In the derivation \mathcal{D}_A^H (resp. $\mathcal{D}_A^{\delta,l})$ the rule ! has 1 premise (resp. 2 premises) because 1 copy (resp. 2 copies) of $\lambda y. y$ is (resp. are) needed in the evaluation $(\lambda x.x)\lambda y.y \rightarrow_{h\beta} \lambda y.y$ (resp. $(\lambda x.x)\lambda y.y \rightarrow_{h\beta} (\lambda y.y)\lambda y.y$).

G. Guerrieri (Sussex) λ[-calculus, simple & non-idempotent intersection types – Day 4](#page-0-0) ECI 2024/08/01 8 / 22

Ex. Find all the derivations with conclusion $\vdash (\lambda x.x)\lambda y.y : C$, for any linear type C.

$$
\mathcal{D}_{A}^{\prime\prime} = \frac{\overline{x : [[A] \multimap A] \vdash x : [A] \multimap A}}{\frac{\vdash \lambda x.x : [[A] \multimap A] \vdash x \vdash \lambda y.y : [A] \multimap A}{\vdash \lambda y.y : [[A] \multimap A]} \text{ for any linear type } A.}{\overline{(\lambda x.x) \lambda y.y : [[A] \multimap A]} \otimes}
$$

var

Ex. Find a derivation with conclusion $\vdash (\lambda x.x)\lambda y.y : C$, for some linear type C.

Rmk. In the derivation \mathcal{D}_A^H (resp. $\mathcal{D}_A^{\delta,l})$ the rule ! has 1 premise (resp. 2 premises) because 1 copy (resp. 2 copies) of $\lambda y. y$ is (resp. are) needed in the evaluation $(\lambda x.x)\lambda y.y \rightarrow_{h\beta} \lambda y.y$ (resp. $(\lambda x.x)\lambda y.y \rightarrow_{h\beta} (\lambda y.y)\lambda y.y$).

G. Guerrieri (Sussex) λ [-calculus, simple & non-idempotent intersection types – Day 4](#page-0-0) ECI 2024/08/01 8 / 22

Ex. Find all the derivations with conclusion $\vdash (\lambda x.x)\lambda y.y : C$, for any linear type C.

D II ^A = D I [A]⊸A ⊢ λx.x : [[A] ⊸ A] ⊸ [A] ⊸ A D I A ⊢ λy.y : [A] ⊸ A ! ⊢ λy.y : [[A] ⊸ A] @ (λx.x)λy.y : [A] ⊸ A for any linear type A.

Ex. Find a derivation with conclusion $\vdash (\lambda x.x\lambda)y.y : C$, for some linear type C.

Rmk. In the derivation \mathcal{D}_A^H (resp. $\mathcal{D}_A^{\delta,l})$ the rule ! has 1 premise (resp. 2 premises) because 1 copy (resp. 2 copies) of $\lambda y. y$ is (resp. are) needed in the evaluation $(\lambda x.x)\lambda y.y \rightarrow_{h\beta} \lambda y.y$ (resp. $(\lambda x.x)\lambda y.y \rightarrow_{h\beta} (\lambda y.y)\lambda y.y$).

G. Guerrieri (Sussex) λ[-calculus, simple & non-idempotent intersection types – Day 4](#page-0-0) ECI 2024/08/01 8 / 22

Ex. Find all the derivations with conclusion $\vdash (\lambda x.x)\lambda y.y : C$, for any linear type C.

D II ^A = D I [A]⊸A ⊢ λx.x : [[A] ⊸ A] ⊸ [A] ⊸ A D I A ⊢ λy.y : [A] ⊸ A ! ⊢ λy.y : [[A] ⊸ A] @ (λx.x)λy.y : [A] ⊸ A for any linear type A.

Ex. Find a derivation with conclusion $\vdash (\lambda x.xx)\lambda y.y : C$, for some linear type C.

Rmk. In the derivation \mathcal{D}_A^H (resp. $\mathcal{D}_A^{\delta,l})$ the rule ! has 1 premise (resp. 2 premises) because 1 copy (resp. 2 copies) of $\lambda y. y$ is (resp. are) needed in the evaluation $(\lambda x.x)\lambda y.y \rightarrow_{h\beta} \lambda y.y$ (resp. $(\lambda x.x)\lambda y.y \rightarrow_{h\beta} (\lambda y.y)\lambda y.y$).

G. Guerrieri (Sussex) λ[-calculus, simple & non-idempotent intersection types – Day 4](#page-0-0) ECI 2024/08/01 8 / 22

Ex. Find all the derivations with conclusion $\vdash (\lambda x.x)\lambda y.y : C$, for any linear type C.

D II ^A = D I [A]⊸A ⊢ λx.x : [[A] ⊸ A] ⊸ [A] ⊸ A D I A ⊢ λy.y : [A] ⊸ A ! ⊢ λy.y : [[A] ⊸ A] @ (λx.x)λy.y : [A] ⊸ A for any linear type A.

Ex. Find a derivation with conclusion $\vdash (\lambda x.xx)\lambda y.y : C$, for some linear type C.

D δ,I ^A = D δ,1 [A]⊸A,[A]⊸A ⊢ λx.xx : [[A]⊸A] ⊸ [A]⊸A, [A]⊸A ⊸ [A] ⊸ A DI [A]⊸A ⊢ λy.y : [[A]⊸A] ⊸ [A]⊸A DI A ⊢ λy.y : [A] ⊸ A ! ⊢ λy.y : -[[A]⊸A] ⊸ [A]⊸A, [A]⊸A @ ⊢ (λx.xx)λy.y : [A] ⊸ A

for any linear type A (actually, all derivations for $(\lambda x. x x) \lambda y. y$ have the form above).

Rmk. In the derivation \mathcal{D}_A^H (resp. $\mathcal{D}_A^{\delta,l}$) the rule ! has 1 premise (resp. 2 premises) because 1 copy (resp. 2 copies) of $\lambda y.y$ is (resp. are) needed in the evaluation $(\lambda x.x)\lambda y.y \rightarrow_{h\beta} \lambda y.y$ (resp. $(\lambda x.x)\lambda y.y \rightarrow_{h\beta} (\lambda y.y)\lambda y.y$).

Ex. Find a derivation with conclusion $\vdash (\lambda x.x)((\lambda y.y)\lambda z.z) : C$, for some linear type C.

Rmk. In the derivation $\mathcal{D}_{A}^{\delta,H}$, the rule ! has 2 premises because 2 copies of $(\lambda y.y)\lambda z.z$ are needed in the evaluation $(\lambda x. x)((\lambda y. y)\lambda z. z) \rightarrow_{h\beta} ((\lambda y. y)\lambda z. z)((\lambda y. y)\lambda z. z).$ In turn, in each of the derivations $\mathcal{D}^{II}_{[[A]-\circ A]-\circ[A]-\circ A}$ and $\mathcal{D}^{II}_{[A]-\circ A}$ the rule ! has 2 premises, hence the derivation $\mathcal{D}_A^{\delta,H}$ has 4 subderivations with conclusion $\lambda x.x$, because 4 copies of $\lambda x.x$ are needed in the evaluation $(\lambda x.x)\cdot ((\lambda y.y)\lambda z.z) \rightarrow_{h\beta} ((\lambda y.y)\lambda z.z)\cdot ((\lambda y.y)\lambda z.z)$.

Ex. Find a derivation with conclusion $\vdash (\lambda x.x\alpha)\lambda y.yy : C$, for some linear type C.

Ex. Find a derivation with conclusion $\vdash (\lambda x.x)((\lambda y.y)\lambda z.z) : C$, for some linear type C.

$$
\mathcal{D}_{A}^{\delta,II} = \newline \begin{array}{c}\n\vdots \\
\mathcal{D}_{[A] \multimap A}^{\delta,1} \\
\vdots \\
\mathcal{D}_{
$$

for any linear type A (actually, all derivations for $(\lambda x.xx)((\lambda y. y)\lambda z. z)$ have that form).

Rmk. In the derivation $\mathcal{D}_{A}^{\delta,H}$, the rule ! has 2 premises because 2 copies of $(\lambda y.y)\lambda z.z$ are needed in the evaluation $(\lambda x. x)((\lambda y. y)\lambda z. z) \rightarrow_{h\beta} ((\lambda y. y)\lambda z. z)((\lambda y. y)\lambda z. z).$ In turn, in each of the derivations $\mathcal{D}^{II}_{[[A]-\circ A]-\circ[A]-\circ A}$ and $\mathcal{D}^{II}_{[A]-\circ A}$ the rule ! has 2 premises, hence the derivation $\mathcal{D}_A^{\delta,H}$ has 4 subderivations with conclusion $\lambda x.x$, because 4 copies of $\lambda x.x$ are needed in the evaluation $(\lambda x.x)((\lambda y.y)\lambda z.z) \rightarrow_{h\beta} ((\lambda y.y)\lambda z.z)((\lambda y.y)\lambda z.z)$.

Ex. Find a derivation with conclusion $\vdash (\lambda x.x\alpha)\lambda y.yy : C$, for some linear type C.

Ex. Find a derivation with conclusion $\vdash (\lambda x.x)((\lambda y.y)\lambda z.z)$: C, for some linear type C.

$$
\mathcal{D}_{A}^{\delta,II} = \newline \begin{array}{c}\n\vdots \\
\mathcal{D}_{[A] \multimap A}^{\delta,1} \\
\vdots \\
\mathcal{D}_{
$$

for any linear type A (actually, all derivations for $(\lambda x.xx)((\lambda y. y)\lambda z. z)$ have that form).

Rmk. In the derivation $\mathcal{D}_A^{\delta,H}$, the rule ! has 2 premises because 2 copies of $(\lambda y.y)\lambda z.z$ are needed in the evaluation $(\lambda x.xx)((\lambda y. y)\lambda z. z) \rightarrow_{h\beta} ((\lambda y. y)\lambda z. z)((\lambda y. y)\lambda z. z).$ In turn, in each of the derivations $\mathcal{D}''_{[[A]-\circ A]-\circ[A]-\circ A}$ and $\mathcal{D}''_{[A]-\circ A}$ the rule ! has 2 premises, hence the derivation $\mathcal{D}_A^{\delta, H}$ has 4 subderivations with conclusion $\lambda x.x$, because 4 copies of $\lambda x.x$ are needed in the evaluation $(\lambda x.x)((\lambda y.y)\lambda z.z) \rightarrow_{h\beta} ((\lambda y.y)\lambda z.z)((\lambda y.y)\lambda z.z)$.

Ex. Find a derivation with conclusion $\vdash (\lambda x.xx)\lambda y.yy : C$, for some linear type C.

Ex. Find a derivation with conclusion $\vdash (\lambda x.x)((\lambda y.y)\lambda z.z)$: C, for some linear type C.

$$
\mathcal{D}_{A}^{\delta,II} = \newline \begin{array}{c}\n\vdots \\
\mathcal{D}_{[A] \multimap A}^{\delta,1} \\
\vdots \\
\mathcal{D}_{
$$

for any linear type A (actually, all derivations for $(\lambda x.xx)((\lambda y. y)\lambda z. z)$ have that form).

Rmk. In the derivation $\mathcal{D}_A^{\delta,H}$, the rule ! has 2 premises because 2 copies of $(\lambda y.y)\lambda z.z$ are needed in the evaluation $(\lambda x.xx)((\lambda y. y)\lambda z. z) \rightarrow_{h\beta} ((\lambda y. y)\lambda z. z)((\lambda y. y)\lambda z. z).$ In turn, in each of the derivations $\mathcal{D}''_{[[A]-\circ A]-\circ[A]-\circ A}$ and $\mathcal{D}''_{[A]-\circ A}$ the rule ! has 2 premises, hence the derivation $\mathcal{D}_A^{\delta, H}$ has 4 subderivations with conclusion $\lambda x.x$, because 4 copies of $\lambda x.x$ are needed in the evaluation $(\lambda x.x)((\lambda y.y)\lambda z.z) \rightarrow_{h\beta} ((\lambda y.y)\lambda z.z)((\lambda y.y)\lambda z.z)$.

Ex. Find a derivation with conclusion $\vdash (\lambda x.xx)\lambda y.yy : C$, for some linear type C.

Ex. Find a derivation with conclusion $\vdash (\lambda x.x)((\lambda y.y)\lambda z.z)$: C, for some linear type C.

$$
\mathcal{D}_{A}^{\delta,II} = \newline \begin{array}{c}\n\vdots \\
\mathcal{D}_{[A] \multimap A}^{\delta,1} \\
\vdots \\
\mathcal{D}_{
$$

for any linear type A (actually, all derivations for $(\lambda x.xx)((\lambda y. y)\lambda z. z)$ have that form).

Rmk. In the derivation $\mathcal{D}_A^{\delta,H}$, the rule ! has 2 premises because 2 copies of $(\lambda y.y)\lambda z.z$ are needed in the evaluation $(\lambda x.xx)((\lambda y. y)\lambda z. z) \rightarrow_{h\beta} ((\lambda y. y)\lambda z. z)((\lambda y. y)\lambda z. z).$ In turn, in each of the derivations $\mathcal{D}''_{[[A]-\circ A]-\circ[A]-\circ A}$ and $\mathcal{D}''_{[A]-\circ A}$ the rule ! has 2 premises, hence the derivation $\mathcal{D}_A^{\delta, H}$ has 4 subderivations with conclusion $\lambda x.x$, because 4 copies of $\lambda x.x$ are needed in the evaluation $(\lambda x.x)((\lambda y.y)\lambda z.z) \rightarrow_{h\beta} ((\lambda y.y)\lambda z.z)((\lambda y.y)\lambda z.z)$.

Ex. Find a derivation with conclusion $\vdash (\lambda x.xx)\lambda y.yy : C$, for some linear type C.

Good luck!

Ex. Find all derivations with conclusion $\vdash \lambda x.x((\lambda y.yy)\lambda z.zz):C$, for any linear type C.

Ex. Find a derivation for $F = \lambda a.\lambda f.f(aaf)$ and one for $\Theta = FF$ with some linear type.

Ex. Find all derivations with conclusion $\vdash \lambda x.x((\lambda y.yy)\lambda z.zz):C$, for any linear type C.

$$
\mathcal{D}_{A}^{l,\delta\delta} = \frac{\overline{x : [[] \multimap A] \vdash x : [] \multimap A}^{\text{var}} \vdash (\lambda y.yy) \lambda z.zz : []}{\underline{x : [[] \multimap A] \vdash x((\lambda y.yy) \lambda z.zz) : A}^{\text{var}}}
$$

Ex. Find a derivation for $F = \lambda a.\lambda f.f(aaf)$ and one for $\Theta = FF$ with some linear type.

Ex. Find all derivations with conclusion $\vdash \lambda x.x((\lambda y.yy)\lambda z.zz):C$, for any linear type C.

$$
\mathcal{D}_{A}^{l,\delta\delta} = \frac{\overline{x : [[] \multimap A] \vdash x : [] \multimap A}^{\text{var}} \quad \overline{\vdash (\lambda y.yy) \lambda z.zz : []}}{\overline{x : [[] \multimap A] \vdash x((\lambda y.yy) \lambda z.zz) : A}} \otimes
$$
\n
$$
\overline{\vdash \lambda x.x((\lambda y.yy) \lambda z.zz) : [[] \multimap A] \multimap A}
$$

Ex. Find a derivation for $F = \lambda a.\lambda f.f(aaf)$ and one for $\Theta = FF$ with some linear type.

Ex. Find all derivations with conclusion $\vdash \lambda x.x((\lambda y.yy)\lambda z.zz)$: C, for any linear type C.

$$
\mathcal{D}_{A}^{1,\delta\delta} = \frac{\overline{x : [[] \multimap A] \vdash x : [] \multimap A}^{\text{var}} \quad \overline{\vdash (\lambda y.yy) \lambda z.zz : []}}{\overline{x : [[] \multimap A] \vdash x((\lambda y.yy) \lambda z.zz) : A}} \otimes
$$

$$
\overline{\vdash \lambda x. x((\lambda y.yy) \lambda z.zz) : [[] \multimap A] \multimap A}
$$

Ex. Find a derivation for $F = \lambda a.\lambda f.f(aaf)$ and one for $\Theta = FF$ with some linear type. This is a good exercise, old man!

Outline

1 [Non-idempotent intersection types for the](#page-2-0) λ -calculus

² [Characterizing head normalization in NI](#page-31-0)

³ [Conclusion, exercises and bibliography](#page-59-0)

What can we do with non-idempotent intersection types?

Goal. We want to characterize all and only the $h\beta$ -normalizing terms via NI. Motivation. There are many theoretical reasons to say "meaningful" = $h\beta$ -normalizing.

To achieve this qualitative characterization, we need to prove two properties.

- **4** Correctness: if a term is typable in NI then it is $h\beta$ -normalizing.
- **2** Completeness: if a term is $h\beta$ -normalizing then it is typable in NI.

Bonus. We can extract some quantitative information from NI about:

- **1** the length of evaluation (the number of $h\beta$ -steps to reach the $h\beta$ -normal form);
- **2** the size of the output (i.e. of the $h\beta$ -normal form).

What can we do with non-idempotent intersection types?

Goal. We want to characterize all and only the $h\beta$ -normalizing terms via NI. Motivation. There are many theoretical reasons to say "meaningful" = $h\beta$ -normalizing.

To achieve this qualitative characterization, we need to prove two properties.

- **1** Correctness: if a term is typable in NI then it is $h\beta$ -normalizing.
- **2** Completeness: if a term is $h\beta$ -normalizing then it is typable in NI.

Bonus. We can extract some quantitative information from NI about:

- **1** the length of evaluation (the number of $h\beta$ -steps to reach the $h\beta$ -normal form);
- **2** the size of the output (i.e. of the $h\beta$ -normal form).

What can we do with non-idempotent intersection types?

Goal. We want to characterize all and only the $h\beta$ -normalizing terms via NI. Motivation. There are many theoretical reasons to say "meaningful" = $h\beta$ -normalizing.

To achieve this qualitative characterization, we need to prove two properties.

- **1** Correctness: if a term is typable in NI then it is $h\beta$ -normalizing.
- **2** Completeness: if a term is $h\beta$ -normalizing then it is typable in NI.

Bonus. We can extract some quantitative information from NI about:

- **1** the length of evaluation (the number of $h\beta$ -steps to reach the $h\beta$ -normal form);
- **2** the size of the output (i.e. of the $h\beta$ -normal form).

Ingredients to prove correctness

Def. The head size $|t|_{h\beta}$ of a term t is defined by induction on t as follows:

 $|x|_{h\beta} = 1$ $|\lambda x. t|_{h\beta} = 1 + |t|_{h\beta}$ $|st|_{h\beta} = 1 + |s|_{h\beta}$

Lemma (Typing $h\beta$ -normal forms)

Let t be h β -normal. If \mathcal{D} \triangleright _{NI} $\Gamma \vdash t : A$ then $|t|_{h\beta} < |\mathcal{D}|$.

Proof. Every h β -normal term is of the form $t = \lambda x_n \dots \lambda x_1 y_1 \dots t_m$ for some $m, n \in \mathbb{N}$. The lemma is proved by induction on $|t|_{h\beta} \in \mathbb{N}$.

Notation. For a finite multiset M over a set X , its cardinality is $|M| = \sum_{x \in X} M(x) \in \mathbb{N}$.

If $\mathcal{D}\triangleright_{\sf NI}\Gamma,$ $x:M\vdash t:A$ and $\mathcal{D}'\triangleright_{\sf NI}\Delta\vdash s:M,$ then there is $\mathcal{D}''\triangleright_{\sf NI}\Gamma\uplus\Delta\vdash t\{s/x\}:A$ with $|\mathcal{D}''| = |\mathcal{D}| + |\mathcal{D}'| - |M|.$

Proof. By structural induction on D . The base case is when the last rule of D is var. The other cases follow easily from the inductive hypothesis.

Ingredients to prove correctness

Def. The head size $|t|_{h\beta}$ of a term t is defined by induction on t as follows:

 $|x|_{h\beta} = 1$ $|\lambda x. t|_{h\beta} = 1 + |t|_{h\beta}$ $|st|_{h\beta} = 1 + |s|_{h\beta}$

Lemma (Typing $h\beta$ -normal forms)

Let t be h β -normal. If \mathcal{D} \rhd _{NI} $\Gamma \vdash t : A$ then $|t|_{h\beta} < |\mathcal{D}|$.

Proof. Every $h\beta$ -normal term is of the form $t = \lambda x_n \dots \lambda x_1 \dots x_n$ for some $m, n \in \mathbb{N}$. The lemma is proved by induction on $|t|_{h\beta} \in \mathbb{N}$.

Notation. For a finite multiset M over a set X , its cardinality is $|M| = \sum_{x \in X} M(x) \in \mathbb{N}$.

Lemma (Substitution)

If $\mathcal{D} \triangleright_{\sf NI} \Gamma, x : M \vdash t : A$ and $\mathcal{D}' \triangleright_{\sf NI} \Delta \vdash s : M$, then there is $\mathcal{D}'' \triangleright_{\sf NI} \Gamma \uplus \Delta \vdash t \{s/x\} : A$ with $|\mathcal{D}^{\prime\prime}| = |\mathcal{D}| + |\mathcal{D}^{\prime}| - |\mathcal{M}|$.

Proof. By structural induction on D. The base case is when the last rule of D is var. The other cases follow easily from the inductive hypothesis.

Like natural deduction, derivations in NI can be depicted by a tree-like structure where:

- edges are labeled by typed terms, nodes are the typing rules,
- **•** leaves form the environment, the root types the subject.

If $\mathcal{D} \triangleright_{\sf NI} \Gamma, x : [A_1, \ldots A_k] \vdash t : A$ (with $k \in \mathbb{N}$) and $\mathcal{D}' \triangleright_{\sf NI} \Delta \vdash s : [A_1, \ldots A_k]$, then there is $\mathcal{D}'' \triangleright_{\mathsf{NI}} \Gamma \uplus \Delta \vdash t\{s/x\} : A$ with $|\mathcal{D}''| = |\mathcal{D}| + |\mathcal{D}'| - k.$

Like natural deduction, derivations in NI can be depicted by a tree-like structure where:

- edges are labeled by typed terms, nodes are the typing rules,
- leaves form the environment, the root types the subject.

$$
\vdots \mathcal{D}
$$

$$
x_1 : [A_{11}, \ldots A_{1k_1}], \ldots, x_n : [A_{n1}, \ldots A_{nk_n}] \vdash t : \top
$$

If $\mathcal{D} \triangleright_{\sf NI} \Gamma, x : [A_1, \ldots A_k] \vdash t : A$ (with $k \in \mathbb{N}$) and $\mathcal{D}' \triangleright_{\sf NI} \Delta \vdash s : [A_1, \ldots A_k]$, then there is $\mathcal{D}'' \triangleright_{\mathsf{NI}} \Gamma \uplus \Delta \vdash t\{s/x\} : A$ with $|\mathcal{D}''| = |\mathcal{D}| + |\mathcal{D}'| - k.$

Like natural deduction, derivations in NI can be depicted by a tree-like structure where:

- edges are labeled by typed terms, nodes are the typing rules,
- leaves form the environment, the root types the subject.

If $\mathcal{D} \triangleright_{\sf NI} \Gamma, x : [A_1, \ldots A_k] \vdash t : A$ (with $k \in \mathbb{N}$) and $\mathcal{D}' \triangleright_{\sf NI} \Delta \vdash s : [A_1, \ldots A_k]$, then there is $\mathcal{D}'' \triangleright_{\textsf{NI}} \Gamma \uplus \Delta \vdash t\{s/x\}$: A with $|\mathcal{D}''| = |\mathcal{D}| + |\mathcal{D}'| - k.$

Like natural deduction, derivations in NI can be depicted by a tree-like structure where:

- edges are labeled by typed terms, nodes are the typing rules,
- **•** leaves form the environment, the root types the subject.

Lemma (Substitution)

If $\mathcal{D} \triangleright_{\sf NI} \Gamma, x : [A_1, \ldots A_k] \vdash t : A$ (with $k \in \mathbb{N}$) and $\mathcal{D}' \triangleright_{\sf NI} \Delta \vdash s : [A_1, \ldots A_k]$, then there is $\mathcal{D}'' \triangleright_{\mathsf{N}\mathsf{I}} \mathsf{\Gamma} \uplus \Delta \vdash t\{s/x\} : A$ with $|\mathcal{D}''| = |\mathcal{D}| + |\mathcal{D}'| - k$.

Like natural deduction, derivations in NI can be depicted by a tree-like structure where:

- edges are labeled by typed terms, nodes are the typing rules,
- leaves form the environment, the root types the subject.

Lemma (Substitution)

If $\mathcal{D} \triangleright_{\sf NI} \Gamma, x : [A_1, \ldots A_k] \vdash t : A$ (with $k \in \mathbb{N}$) and $\mathcal{D}' \triangleright_{\sf NI} \Delta \vdash s : [A_1, \ldots A_k]$, then there is $\mathcal{D}'' \triangleright_{\mathsf{N}\mathsf{I}} \mathsf{\Gamma} \uplus \Delta \vdash t\{s/x\} : A$ with $|\mathcal{D}''| = |\mathcal{D}| + |\mathcal{D}'| - k$.

Like natural deduction, derivations in NI can be depicted by a tree-like structure where:

- edges are labeled by typed terms, nodes are the typing rules,
- **•** leaves form the environment, the root types the subject.

Lemma (Substitution)

If $\mathcal{D} \triangleright_{\sf NI} \Gamma, x : [A_1, \ldots A_k] \vdash t : A$ (with $k \in \mathbb{N}$) and $\mathcal{D}' \triangleright_{\sf NI} \Delta \vdash s : [A_1, \ldots A_k]$, then there is $\mathcal{D}'' \triangleright_{\mathsf{N}\mathsf{I}} \mathsf{\Gamma} \uplus \Delta \vdash t\{s/x\} : A$ with $|\mathcal{D}''| = |\mathcal{D}| + |\mathcal{D}'| - k$.

Proposition (Quantitative subject reduction)

If $\mathcal{D}\triangleright_{\mathsf{N}\mathsf{I}}\mathsf{\Gamma}\vdash t:A$ and $t\rightarrow_{h\beta} t'$, then there is $\mathcal{D}'\triangleright_{\mathsf{N}\mathsf{I}}\mathsf{\Gamma}\vdash t':A$ with $|\mathcal{D}|>|\mathcal{D}'|.$

Proof. By induction on the definition $t \rightarrow_{h\beta} t'$ (p. 6, Day 3). The only non-trivial case is when $t=(\lambda x. u)s \rightarrow_{h\beta} u\{s/x\} = t'$: so, ${\cal D}$ must have the form below, with $\Gamma = \Gamma' \uplus \Gamma''.$ $\mathcal{D} =$. . . \vdots \mathcal{D}_u $\frac{\Gamma' x : M \vdash u : A}{\lambda}$ $\underline{\Gamma' \vdash \lambda x. u : M \multimap A \qquad \Gamma'' \vdash s : M}$ $\sum_{i=1}^{\infty} \frac{1}{\mathcal{D} s}$ with $|\mathcal{D}'| = |\mathcal{D}_u| + |\mathcal{D}_s| - |M| < |\mathcal{D}_u| + |\mathcal{D}_s| + 2 = |\mathcal{D}|.$ $Γ' \oplus Γ'' ⊢ (\lambda x. u)s : A$ By substitution lemma, there is $\mathcal{D}' \triangleright_{\sf NI} \Gamma \vdash u\{s/x\} : A$

Rmk. The quantitative aspect of subject reduction (i.e. $|\mathcal{D}| > |\mathcal{D}'|$) is false:

- if $t\to_\beta t'$ instead of $t\to_{h\beta} t'$, e.g. $\lambda x. x(\delta\delta)\to_\beta \lambda x. x(\delta\delta)$ with $\delta=\lambda z. z z$, see p. 10;
- if ${\cal D}$ and ${\cal D}'$ are derivations in the simply typed λ -calculus, instead of NI.

Proposition (Quantitative subject reduction)

If $\mathcal{D}\triangleright_{\mathsf{N}\mathsf{I}}\mathsf{\Gamma}\vdash t:A$ and $t\rightarrow_{h\beta} t'$, then there is $\mathcal{D}'\triangleright_{\mathsf{N}\mathsf{I}}\mathsf{\Gamma}\vdash t':A$ with $|\mathcal{D}|>|\mathcal{D}'|.$

Proof. By induction on the definition $t \rightarrow_{h\beta} t'$ (p. 6, Day 3). The only non-trivial case is when $t=(\lambda x. u)s \rightarrow_{h\beta} u\{s/x\} = t'$: so, ${\cal D}$ must have the form below, with $\Gamma = \Gamma' \uplus \Gamma''.$ $\frac{1}{2}$ \mathcal{D}_u By substitution lemma, there is $\mathcal{D}' \triangleright_{\sf NI} \Gamma \vdash u\{s/x\} : A$

$$
\mathcal{D} = \frac{\Gamma' \times : M \vdash u : A}{\frac{\Gamma' \vdash \lambda x. u : M \multimap A}{\Gamma' \vdash \lambda x. u : M \multimap A} \cdot \frac{\Gamma'' \vdash s : M}{\Gamma' \vdash \lambda x. u : M \multimap a} \mathfrak{G}} \text{ with } |\mathcal{D}'| = |\mathcal{D}_u| + |\mathcal{D}_s| - |M| < |\mathcal{D}_u| + |\mathcal{D}_s| + 2 = |\mathcal{D}|. \quad \Box
$$

Rmk. The quantitative aspect of subject reduction (i.e. $|\mathcal{D}| > |\mathcal{D}'|$) is false:

- if $t\to_\beta t'$ instead of $t\to_{h\beta} t'$, e.g. $\lambda x. x(\delta\delta)\to_\beta \lambda x. x(\delta\delta)$ with $\delta=\lambda z. zz$, see p. 10;
- if D and D' are derivations in the simply typed λ -calculus, instead of NI.

Proposition (Quantitative subject reduction)

If $\mathcal{D}\triangleright_{\mathsf{N}\mathsf{I}}\mathsf{\Gamma}\vdash t:A$ and $t\rightarrow_{h\beta} t'$, then there is $\mathcal{D}'\triangleright_{\mathsf{N}\mathsf{I}}\mathsf{\Gamma}\vdash t':A$ with $|\mathcal{D}|>|\mathcal{D}'|.$

Proof. By induction on the definition $t \rightarrow_{h\beta} t'$ (p. 6, Day 3). The only non-trivial case is when $t=(\lambda x. u)s \rightarrow_{h\beta} u\{s/x\} = t'$: so, ${\cal D}$ must have the form below, with $\Gamma = \Gamma' \uplus \Gamma''.$ \vdots \mathcal{D}_u By substitution lemma, there is $\mathcal{D}' \triangleright_{\sf NI} \Gamma \vdash u\{s/x\} : A$

$$
\mathcal{D} = \frac{\Gamma' \times M \vdash u : A}{\Gamma' \vdash \lambda x. u : M \multimap A} \quad \begin{cases} \n\mathcal{D}_s & \text{with } |\mathcal{D}'| = |\mathcal{D}_u| + |\mathcal{D}_s| - |M| < |\mathcal{D}_u| + |\mathcal{D}_s| + 2 = |\mathcal{D}|. \\
\frac{\Gamma' \vdash \lambda x. u : M \multimap A}{\Gamma' \vdash (\lambda x. u)s : A} & \mathbf{0} < \mathbf{0} < \mathbf{0} < |\mathcal{D}_u| + |\mathcal{D}_s| + 2 = |\mathcal{D}|. \n\end{cases}
$$

Rmk. The quantitative aspect of subject reduction (i.e. $|\mathcal{D}| > |\mathcal{D}'|$) is false:

- if $t\to_\beta t'$ instead of $t\to_{h\beta} t'$, e.g. $\lambda x. x(\delta\delta)\to_\beta \lambda x. x(\delta\delta)$ with $\delta=\lambda z. zz$, see p. 10;
- if D and D' are derivations in the simply typed λ -calculus, instead of NI.

Proposition (Quantitative subject reduction)

If $\mathcal{D}\triangleright_{\mathsf{N}\mathsf{I}}\mathsf{\Gamma}\vdash t:A$ and $t\rightarrow_{h\beta} t'$, then there is $\mathcal{D}'\triangleright_{\mathsf{N}\mathsf{I}}\mathsf{\Gamma}\vdash t':A$ with $|\mathcal{D}|>|\mathcal{D}'|.$

Proof. By induction on the definition $t \rightarrow_{h\beta} t'$ (p. 6, Day 3). The only non-trivial case is when $t=(\lambda x. u)s \rightarrow_{h\beta} u\{s/x\} = t'$: so, ${\cal D}$ must have the form below, with $\Gamma = \Gamma' \uplus \Gamma''.$

 $\mathcal{D} =$. . . \vdots \mathcal{D}_u $\frac{\Gamma' x : M \vdash u : A}{\lambda}$ $\underline{\Gamma' \vdash \lambda x. u : M \multimap A \qquad \Gamma'' \vdash s : M}$ $\sum_{i=1}^{\infty} \frac{1}{\mathcal{D} s}$ with $|\mathcal{D}'| = |\mathcal{D}_u| + |\mathcal{D}_s| - |M| < |\mathcal{D}_u| + |\mathcal{D}_s| + 2 = |\mathcal{D}|.$ $Γ' \oplus Γ'' ⊢ (\lambda x. u)s : A$ By substitution lemma, there is $\mathcal{D}' \triangleright_{\sf NI} \Gamma \vdash u\{s/x\} : A$

Rmk. The quantitative aspect of subject reduction (i.e. $|\mathcal{D}| > |\mathcal{D}'|$) is false:

- if $t\to_\beta t'$ instead of $t\to_{h\beta} t'$, e.g. $\lambda x. x(\delta\delta)\to_\beta \lambda x. x(\delta\delta)$ with $\delta=\lambda z. zz$, see p. 10;
- if D and D' are derivations in the simply typed λ -calculus, instead of NI.

Proof. By induction on $|\mathcal{D}|$. If t is $h\beta$ -normal, then the claim follows from the lemma about typing h β -normal forms, taking $s = t$ and $k = 0$.

Proposition (Quantitative subject reduction)

If $\mathcal{D}\triangleright_{\mathsf{N}\mathsf{I}}\mathsf{\Gamma}\vdash t:A$ and $t\rightarrow_{h\beta} t'$, then there is $\mathcal{D}'\triangleright_{\mathsf{N}\mathsf{I}}\mathsf{\Gamma}\vdash t':A$ with $|\mathcal{D}|>|\mathcal{D}'|.$

Proof. By induction on the definition $t \rightarrow_{h\beta} t'$ (p. 6, Day 3). The only non-trivial case is when $t=(\lambda x. u)s \rightarrow_{h\beta} u\{s/x\} = t'$: so, ${\cal D}$ must have the form below, with $\Gamma = \Gamma' \uplus \Gamma''.$

 $\mathcal{D} =$ \vdots \mathcal{D}_u . $\frac{\Gamma' x : M \vdash u : A}{\lambda}$ $\underline{\Gamma' \vdash \lambda x. u : M \multimap A \qquad \Gamma'' \vdash s : M}$ \vdots \mathcal{D}_s $Γ' \oplus Γ'' ⊢ (\lambda x. u)s : A$ By substitution lemma, there is $\mathcal{D}' \triangleright_{\sf NI} \Gamma \vdash u\{s/x\} : A$ with $|\mathcal{D}'| = |\mathcal{D}_u| + |\mathcal{D}_s| - |M| < |\mathcal{D}_u| + |\mathcal{D}_s| + 2 = |\mathcal{D}|$.

Rmk. The quantitative aspect of subject reduction (i.e. $|\mathcal{D}| > |\mathcal{D}'|$) is false:

- if $t\to_\beta t'$ instead of $t\to_{h\beta} t'$, e.g. $\lambda x. x(\delta\delta)\to_\beta \lambda x. x(\delta\delta)$ with $\delta=\lambda z. zz$, see p. 10;
- if D and D' are derivations in the simply typed λ -calculus, instead of NI.

Theorem (Correctness of NI) If $\mathcal{D}\triangleright_{\sf NI}\Gamma\vdash t$: A then there is s $h\beta$ -normal such that $t\,\overrightarrow{\to_{h\beta}\cdots\to_{h\beta}} s$ and $|\mathcal{D}|\geq k+|s|_{h\beta}$. k hβ-steps Proof. By induction on $|\mathcal{D}|$. If t is $h\beta$ -normal, then the claim follows from the lemma about typing h β -normal forms, taking $s = t$ and $k = 0$. Otherwise, $t\to_{h\beta}t'$ and by quantitative subject reduction there is $\mathcal{D}'\triangleright_{\textbf{N}\textbf{l}}\textsf{\textsf{F}}\vdash t'$: A with

 $|\mathcal{D}|>|\mathcal{D}'|$. By induction hypothesis, $t'\to_{h\beta}^* s$ in k h β -steps for some h β -normal s with $|\mathcal{D}'| \geq k+|\mathsf{s}|_{\mathsf{h}\beta}.$ Hence, $t\to_{\mathsf{h}\beta}^* \mathsf{s}$ in $k+1$ $\mathsf{h}\beta$ -steps and $|\mathcal{D}| \geq |\mathcal{D}'|+1 \geq k+1+|\mathsf{s}|_{\mathsf{h}\beta}.$

Ingredients to prove completeness

Rmk. Completeness is the converse of correctness, so their needed ingredients are "dual".

If t is h β -normal, then there is $\mathcal{D} \triangleright_{\text{NI}} \Gamma \vdash t : A$ with $|\mathcal{D}| = |t|_{h\beta}$.

Proof. Every h β -normal term is of the form $t = \lambda x_n \dots \lambda x_1 \dots x_n$ for some $m, n \in \mathbb{N}$. For $n = 0$, we prove by induction on $m \in \mathbb{N}$ the stronger property that, for all $k \in \mathbb{N}$ and linear A, there is $D \triangleright_{N} y : [A_k] \vdash y t_1 \ldots t_m : A_k$ with $|\mathcal{D}| = m + 1 = |\mathcal{D}|_{\mathfrak{D}} + |\mathcal{D}|_{\text{var}}$ and $A_k = \widehat{[\,]\multimap \cdots \multimap [\,]\!]} \multimap A \quad\quad (\text{note that}\,\,|yt_1 \ldots t_m|_{h\beta} = m+1 \text{ and}\,\,|\mathcal{D}|_{\texttt{0}} = m).$ k times $[]$

The lemma including the stronger statement is proved by induction on $|t|_{h\beta} \in \mathbb{N}$.

If $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma \vdash t\{s/u\}$: A, then there are environments Γ' and Γ'' , a multi type M and derivations $\mathcal{D}' \triangleright_{\sf NI} \Gamma', x : M \vdash t : A$ and $\mathcal{D}'' \triangleright_{\sf NI} \Gamma'' \vdash s : M$ such that $\Gamma = \Gamma' \uplus \Gamma''$ and $|\mathcal{D}| = |\mathcal{D}'| + |\mathcal{D}''| - |M|.$

Proof. By structural induction on t. The base case is when t is a variable (either x or other than x). The other cases follow easily from the inductive hypothesis.

G. Guerrieri (Sussex) λ[-calculus, simple & non-idempotent intersection types – Day 4](#page-0-0) ECI 2024/08/01 16 / 22

Ingredients to prove completeness

Rmk. Completeness is the converse of correctness, so their needed ingredients are "dual".

Lemma (Typability of $h\beta$ -normal forms)

If t is h β -normal, then there is $\mathcal{D} \triangleright_{\text{NI}} \Gamma \vdash t : A$ with $|\mathcal{D}| = |t|_{h\beta}$.

Proof. Every h β -normal term is of the form $t = \lambda x_n \dots \lambda x_1 y_1 \dots t_m$ for some $m, n \in \mathbb{N}$. For $n = 0$, we prove by induction on $m \in \mathbb{N}$ the stronger property that, for all $k \in \mathbb{N}$ and linear A, there is $\mathcal{D}\triangleright_{\mathsf{N}\mathsf{I}} y:[A_k]\vdash yt_1\ldots t_m:A_k$ with $|\mathcal{D}|=m+1=|\mathcal{D}|_\mathfrak{G}+|\mathcal{D}|_{\mathsf{var}}$ and $\mathcal{A}_k = \overline{[\,]\multimap \cdots \multimap [\,]\!]} \multimap \mathcal{A} \qquad \text{(note that $\vert yt_1 \ldots t_m\vert_{h\beta} = m+1$ and $\vert \mathcal{D} \vert_{\mathfrak{S}} = m$)}.$

The lemma including the stronger statement is proved by induction on $|t|_{h\beta} \in \mathbb{N}$.

If $\mathcal{D} \triangleright_{\sf NI} \Gamma \vdash t\{s/u\}$: A, then there are environments Γ' and Γ'' , a multi type M and derivations $\mathcal{D}' \triangleright_{\sf NI} \Gamma', x : M \vdash t : A$ and $\mathcal{D}'' \triangleright_{\sf NI} \Gamma'' \vdash s : M$ such that $\Gamma = \Gamma' \uplus \Gamma''$ and $|\mathcal{D}| = |\mathcal{D}'| + |\mathcal{D}''| - |M|.$

Proof. By structural induction on t. The base case is when t is a variable (either x or other than x). The other cases follow easily from the inductive hypothesis.

G. Guerrieri (Sussex) λ[-calculus, simple & non-idempotent intersection types – Day 4](#page-0-0) ECI 2024/08/01 16 / 22

Ingredients to prove completeness

Rmk. Completeness is the converse of correctness, so their needed ingredients are "dual".

Lemma (Typability of $h\beta$ -normal forms)

If t is h β -normal, then there is $\mathcal{D} \triangleright_{\text{NI}} \Gamma \vdash t : A$ with $|\mathcal{D}| = |t|_{h\beta}$.

Proof. Every $h\beta$ -normal term is of the form $t = \lambda x_n \dots \lambda x_1 \dots x_n$ for some $m, n \in \mathbb{N}$. For $n = 0$, we prove by induction on $m \in \mathbb{N}$ the stronger property that, for all $k \in \mathbb{N}$ and linear A, there is $\mathcal{D}\triangleright_{\mathsf{N}\mathsf{I}} y:[A_k]\vdash yt_1\ldots t_m:A_k$ with $|\mathcal{D}|=m+1=|\mathcal{D}|_\mathfrak{G}+|\mathcal{D}|_{\mathsf{var}}$ and $\mathcal{A}_k = \overline{[\,]\multimap \cdots \multimap [\,]\!]} \multimap \mathcal{A} \qquad \text{(note that $\vert yt_1 \ldots t_m\vert_{h\beta} = m+1$ and $\vert \mathcal{D} \vert_{\mathfrak{S}} = m$)}.$

The lemma including the stronger statement is proved by induction on $|t|_{h\beta} \in \mathbb{N}$.

Lemma (Anti-substitution)

If $\mathcal{D} \triangleright_{\mathsf{NI}} \Gamma \vdash t \{s/u\}$: A, then there are environments Γ' and Γ'' , a multi type M and derivations $\mathcal{D}' \triangleright_{\sf NI} \mathsf{\Gamma}', x : \mathsf{M} \vdash t : A$ and $\mathcal{D}'' \triangleright_{\sf NI} \mathsf{\Gamma}'' \vdash s : M$ such that $\mathsf{\Gamma} = \mathsf{\Gamma}' \uplus \mathsf{\Gamma}''$ and $|\mathcal{D}| = |\mathcal{D}'| + |\mathcal{D}''| - |M|.$

Proof. By structural induction on t. The base case is when t is a variable (either x or other than x). The other cases follow easily from the inductive hypothesis.

Proposition (Quantitative subject expansion)

If $\mathcal{D}' \triangleright_{\sf NI} \mathsf{\Gamma} \vdash t'$: A and $t \rightarrow_{h\beta} t'$, then there is $\mathcal{D} \triangleright_{\sf NI} \mathsf{\Gamma} \vdash t$: A with $|\mathcal{D}| > |\mathcal{D}'|$.

Proof. By induction on the definition $t \rightarrow_{h\beta} t'$ (p. 6, Day 3). The only non-trivial case is when $t=(\lambda x. u)s\rightarrow_{h\beta} u\{s/x\}=t'$: as $\mathcal{D}'\triangleright_{\mathsf{NI}}\Gamma\vdash t'$: A , by the anti-substitution lemma $\mathcal{D} =$ \vdots \mathcal{D}_u . $\frac{\Gamma' \times : M \vdash u : A}{\Gamma' \vdash \lambda \times u : M \multimap A}$ \vdots \mathcal{D}_s $x.u : M → A$ Γ'' ⊢ s : M ©
Γ' ⊎ Γ'' ⊢ (λx.u)s : A there are $\mathcal{D}_u \triangleright_{\mathsf{NI}} \Gamma', x : M \vdash u : A$ and $\mathcal{D}_s \triangleright_{\mathsf{NI}} \Gamma'' \vdash s : M$ such that $\Gamma = \Gamma' \uplus \Gamma''$ and $|\mathcal{D}'| = |\mathcal{D}_u| + |\mathcal{D}_s| - |M|.$ Hence, for $\mathcal{D} \triangleright_{\text{NI}} \Gamma \vdash (\lambda x. u)s : A$ on the left, $|\mathcal{D}| =$ $|\mathcal{D}_u| + |\mathcal{D}_s| + 2 > |\mathcal{D}_u| + |\mathcal{D}_s| - |M| = |\mathcal{D}'|.$

Rmk. We have seen (in day 2) that subject expansion fails with simple types.

Notation. Given $k\in\mathbb{N}$, we write $t\to_{h\beta}^k s$ if $t\widehat{\to}_{h\beta}\widehat{\cdots\to}_{h\beta} s$ (thus $t\to_{h\beta}^0 s$ means $t=s$).

If $t\to_{h\beta}^k\,$ s with s $h\beta$ -normal, then there is $\mathcal{D}\triangleright_{\mathsf{NI}}\mathsf{\Gamma}\vdash t:A$ with $|\mathcal{D}|\geq k+|s|_{h\beta}.$

Proof. By induction on $k \in \mathbb{N}$.

Proposition (Quantitative subject expansion)

If $\mathcal{D}' \triangleright_{\sf NI} \mathsf{\Gamma} \vdash t'$: A and $t \rightarrow_{h\beta} t'$, then there is $\mathcal{D} \triangleright_{\sf NI} \mathsf{\Gamma} \vdash t$: A with $|\mathcal{D}| > |\mathcal{D}'|$.

Proof. By induction on the definition $t \rightarrow_{h\beta} t'$ (p. 6, Day 3). The only non-trivial case is when $t=(\lambda x. u)s\rightarrow_{h\beta} u\{s/x\}=t'$: as $\mathcal{D}'\triangleright_{\mathsf{NI}}\Gamma\vdash t'$: A , by the anti-substitution lemma $\mathcal{D} =$ \vdots \mathcal{D}_u . $\frac{\Gamma' \times : M \vdash u : A}{\Gamma' \vdash \lambda \times u : M \multimap A}$ \vdots \mathcal{D}_s $x.u : M → A$ Γ'' ⊢ s : M ©
Γ' ⊎ Γ'' ⊢ (λx.u)s : A there are $\mathcal{D}_u \triangleright_{\mathsf{NI}} \Gamma', x : M \vdash u : A$ and $\mathcal{D}_s \triangleright_{\mathsf{NI}} \Gamma'' \vdash s : M$ such that $\Gamma = \Gamma' \uplus \Gamma''$ and $|\mathcal{D}'| = |\mathcal{D}_u| + |\mathcal{D}_s| - |M|.$ Hence, for $\mathcal{D} \triangleright_{\text{NI}} \Gamma \vdash (\lambda x. u)s : A$ on the left, $|\mathcal{D}| =$ $|\mathcal{D}_u| + |\mathcal{D}_s| + 2 > |\mathcal{D}_u| + |\mathcal{D}_s| - |M| = |\mathcal{D}'|.$

Rmk. We have seen (in day 2) that subject expansion fails with simple types.

Notation. Given $k\in\mathbb{N}$, we write $t\to_{h\beta}^k s$ if $t\widehat{\to}_{h\beta}\widehat{\cdots\to}_{h\beta} s$ (thus $t\to_{h\beta}^0 s$ means $t=s$).

k hβ-steps

If $t\to_{h\beta}^k\,$ s with s $h\beta$ -normal, then there is $\mathcal{D}\triangleright_{\mathsf{NI}}\mathsf{\Gamma}\vdash t:A$ with $|\mathcal{D}|\geq k+|s|_{h\beta}.$

Proof. By induction on $k \in \mathbb{N}$.

Proposition (Quantitative subject expansion)

If $\mathcal{D}' \triangleright_{\sf NI} \mathsf{\Gamma} \vdash t'$: A and $t \rightarrow_{h\beta} t'$, then there is $\mathcal{D} \triangleright_{\sf NI} \mathsf{\Gamma} \vdash t$: A with $|\mathcal{D}| > |\mathcal{D}'|$.

Proof. By induction on the definition $t \rightarrow_{h\beta} t'$ (p. 6, Day 3). The only non-trivial case is when $t=(\lambda x. u)s\rightarrow_{h\beta} u\{s/x\}=t'$: as $\mathcal{D}'\triangleright_{\mathsf{NI}}\Gamma\vdash t'$: A , by the anti-substitution lemma \vdots \mathcal{D}_u there are $\mathcal{D}_u \triangleright_{\mathsf{NI}} \Gamma', x : M \vdash u : A$ and $\mathcal{D}_s \triangleright_{\mathsf{NI}} \Gamma'' \vdash s : M$. \vdots \mathcal{D}_s such that $\Gamma = \Gamma' \uplus \Gamma''$ and $|\mathcal{D}'| = |\mathcal{D}_u| + |\mathcal{D}_s| - |M|.$ $\frac{\Gamma' \times : M \vdash u : A}{\Gamma' \vdash \lambda \times u : M \multimap A}$ $\mathcal{D} =$ Hence, for $\mathcal{D} \triangleright_{\text{NI}} \Gamma \vdash (\lambda x. u)s : A$ on the left, $|\mathcal{D}| =$ $x.u : M → A$ Γ'' ⊢ s : M ©
Γ' ⊎ Γ'' ⊢ (λx.u)s : A $|\mathcal{D}_u| + |\mathcal{D}_s| + 2 > |\mathcal{D}_u| + |\mathcal{D}_s| - |M| = |\mathcal{D}'|.$ П

Rmk. We have seen (in day 2) that subject expansion fails with simple types.

Notation. Given $k \in \mathbb{N}$, we write $t \to_{h\beta}^k s$ if $t \overline{\to_{h\beta}\cdots \to_{h\beta}} s$ (thus $t \to_{h\beta}^0 s$ means $t=s$). k hβ-steps

Theorem (Completeness of NI)

If $t\to_{h\beta}^k s$ with s $h\beta$ -normal, then there is $\mathcal{D}\triangleright_{\mathsf{NI}}\mathsf{\Gamma}\vdash t:A$ with $|\mathcal{D}|\geq k+|s|_{h\beta}.$

Proof. By induction on $k \in \mathbb{N}$.

Proposition (Quantitative subject expansion)

If $\mathcal{D}' \triangleright_{\sf NI} \mathsf{\Gamma} \vdash t'$: A and $t \rightarrow_{h\beta} t'$, then there is $\mathcal{D} \triangleright_{\sf NI} \mathsf{\Gamma} \vdash t$: A with $|\mathcal{D}| > |\mathcal{D}'|$.

Proof. By induction on the definition $t \rightarrow_{h\beta} t'$ (p. 6, Day 3). The only non-trivial case is when $t=(\lambda x. u)s\rightarrow_{h\beta} u\{s/x\}=t'$: as $\mathcal{D}'\triangleright_{\mathsf{NI}}\Gamma\vdash t'$: A , by the anti-substitution lemma \vdots \mathcal{D}_u there are $\mathcal{D}_u \triangleright_{\mathsf{NI}} \Gamma', x : M \vdash u : A$ and $\mathcal{D}_s \triangleright_{\mathsf{NI}} \Gamma'' \vdash s : M$. \vdots \mathcal{D}_s such that $\Gamma = \Gamma' \uplus \Gamma''$ and $|\mathcal{D}'| = |\mathcal{D}_u| + |\mathcal{D}_s| - |M|.$ $\frac{\Gamma' \times : M \vdash u : A}{\Gamma' \vdash \lambda \times u : M \multimap A}$ $\mathcal{D} =$ Hence, for $\mathcal{D} \triangleright_{\text{NI}} \Gamma \vdash (\lambda x. u)s : A$ on the left, $|\mathcal{D}| =$ $x.u : M → A$ Γ'' ⊢ s : M ©
Γ' ⊎ Γ'' ⊢ (λx.u)s : A $|\mathcal{D}_u| + |\mathcal{D}_s| + 2 > |\mathcal{D}_u| + |\mathcal{D}_s| - |M| = |\mathcal{D}'|.$ П

Rmk. We have seen (in day 2) that subject expansion fails with simple types.

Notation. Given $k \in \mathbb{N}$, we write $t \to_{h\beta}^k s$ if $t \overline{\to_{h\beta}\cdots \to_{h\beta}} s$ (thus $t \to_{h\beta}^0 s$ means $t=s$). k $h\beta$ -steps

Theorem (Completeness of NI)

If $t\to_{h\beta}^k s$ with s $h\beta$ -normal, then there is $\mathcal{D}\triangleright_{\mathsf{NI}}\mathsf{\Gamma}\vdash t:A$ with $|\mathcal{D}|\geq k+|s|_{h\beta}.$

Proof. By induction on $k \in \mathbb{N}$. If $k = 0$, then $t = s$ and typability of $h\beta$ -normal concludes.

Proposition (Quantitative subject expansion)

If $\mathcal{D}' \triangleright_{\sf NI} \mathsf{\Gamma} \vdash t'$: A and $t \rightarrow_{h\beta} t'$, then there is $\mathcal{D} \triangleright_{\sf NI} \mathsf{\Gamma} \vdash t$: A with $|\mathcal{D}| > |\mathcal{D}'|$.

Proof. By induction on the definition $t \rightarrow_{h\beta} t'$ (p. 6, Day 3). The only non-trivial case is when $t=(\lambda x. u)s\rightarrow_{h\beta} u\{s/x\}=t'$: as $\mathcal{D}'\triangleright_{\mathsf{NI}}\Gamma\vdash t'$: A , by the anti-substitution lemma $\mathcal{D} =$ \vdots \mathcal{D}_u . $\frac{\Gamma' \times : M \vdash u : A}{\Gamma' \vdash \lambda \times u : M \multimap A}$ \vdots \mathcal{D}_s $x.u : M → A$ Γ'' ⊢ s : M ©
Γ' ⊎ Γ'' ⊢ (λx.u)s : A there are $\mathcal{D}_u \triangleright_{\mathsf{NI}} \Gamma', x : M \vdash u : A$ and $\mathcal{D}_s \triangleright_{\mathsf{NI}} \Gamma'' \vdash s : M$ such that $\Gamma = \Gamma' \uplus \Gamma''$ and $|\mathcal{D}'| = |\mathcal{D}_u| + |\mathcal{D}_s| - |M|.$ Hence, for $\mathcal{D} \triangleright_{\text{NI}} \Gamma \vdash (\lambda x. u)s : A$ on the left, $|\mathcal{D}| =$ $|\mathcal{D}_u| + |\mathcal{D}_s| + 2 > |\mathcal{D}_u| + |\mathcal{D}_s| - |M| = |\mathcal{D}'|.$

Rmk. We have seen (in day 2) that subject expansion fails with simple types.

Notation. Given $k \in \mathbb{N}$, we write $t \to_{h\beta}^k s$ if $t \overline{\to_{h\beta}\cdots \to_{h\beta}} s$ (thus $t \to_{h\beta}^0 s$ means $t=s$). k $h\beta$ -steps

Theorem (Completeness of NI)

If $t\to_{h\beta}^k s$ with s $h\beta$ -normal, then there is $\mathcal{D}\triangleright_{\mathsf{NI}}\mathsf{\Gamma}\vdash t:A$ with $|\mathcal{D}|\geq k+|s|_{h\beta}.$

Proof. By induction on $k \in \mathbb{N}$. If $k = 0$, then $t = s$ and typability of $h\beta$ -normal concludes. Otherwise $k>0$ and $t\rightarrow_{h\beta} t'\rightarrow_{h\beta}^{k-1} s$. By induction hypothesis, there is $\mathcal{D}' \triangleright_{\sf NI} \mathsf{\Gamma} \vdash t' : \mathsf{A}$ with $|\mathcal{D}'| \geq k-1 + |s|_{h\beta}$. By quantitative subject expansion, there is $\mathcal{D} \triangleright_{\mathsf{NI}} \mathsf{\Gamma} \vdash t : \mathsf{A} \text{ with } |\mathcal{D}| > |\mathcal{D}'|, \text{ therefore } |\mathcal{D}| \geq |\mathcal{D}'| + 1 \geq k + |s|_{h\beta}.$

Summing up: characterization of head normalization

Putting together correctness and completeness of NI, we obtain:

Corollary (Characterization of head normalization)

A term t is $h\beta$ -normalizing if and only if there is $D \triangleright_{N} \Gamma \vdash t : A$. Moreover, $|\mathcal{D}| \geq k + |s|_{h\beta}$ if $t \to_{h\beta}^k s$ with s $h\beta$ -normal.

Rmk. The quantitative information about

• the length k of evaluation (head reduction) from t to its $h\beta$ -normal form s, and

• the head size $|s|_{h\beta}$ of the $h\beta$ -normal term s

are in the size |D| of D without performing head reduction $\rightarrow_{h\beta}$ or knowing s.

Rmk. $|\mathcal{D}|$ is an upper bound to k plus $|s|_{h\beta}$ together. NI can be refined so that one can: **O** disentangle the information about k and $|s|_{h\beta}$ by means of two different sizes of D, **2** obtain the exact values of k and $|s|_{h\beta}$ from these two sizes of D.

Summing up: characterization of head normalization

Putting together correctness and completeness of NI, we obtain:

Corollary (Characterization of head normalization)

A term t is $h\beta$ -normalizing if and only if there is $D \triangleright_{N} \Gamma \vdash t : A$. Moreover, $|\mathcal{D}| \geq k + |s|_{h\beta}$ if $t \to_{h\beta}^k s$ with s $h\beta$ -normal.

Rmk. The quantitative information about

- the length k of evaluation (head reduction) from t to its $h\beta$ -normal form s, and
- the head size $|s|_{h\beta}$ of the $h\beta$ -normal term s

are in the size |D| of D without performing head reduction $\rightarrow_{h\beta}$ or knowing s.

Rmk. $|\mathcal{D}|$ is an upper bound to k plus $|s|_{h\beta}$ together. NI can be refined so that one can: **O** disentangle the information about k and $|s|_{h\beta}$ by means of two different sizes of D, **2** obtain the exact values of k and $|s|_{h\beta}$ from these two sizes of D.

Summing up: characterization of head normalization

Putting together correctness and completeness of NI, we obtain:

Corollary (Characterization of head normalization)

A term t is $h\beta$ -normalizing if and only if there is $D \triangleright_{N} \Gamma \vdash t : A$. Moreover, $|\mathcal{D}| \geq k + |s|_{h\beta}$ if $t \to_{h\beta}^k s$ with s $h\beta$ -normal.

Rmk. The quantitative information about

- the length k of evaluation (head reduction) from t to its $h\beta$ -normal form s, and
- the head size $|s|_{h\beta}$ of the $h\beta$ -normal term s

are in the size $|\mathcal{D}|$ of $\mathcal D$ without performing head reduction $\rightarrow_{h\beta}$ or knowing s.

Rmk. $|\mathcal{D}|$ is an upper bound to k plus $|s|_{h\beta}$ together. NI can be refined so that one can:

- **O** disentangle the information about k and $|s|_{h\beta}$ by means of two different sizes of D,
- **2** obtain the exact values of k and $|s|_{h\beta}$ from these two sizes of D.

Outline

1 [Non-idempotent intersection types for the](#page-2-0) λ -calculus

² [Characterizing head normalization in NI](#page-31-0)

³ [Conclusion, exercises and bibliography](#page-59-0)

• The non-idempotent intersection type system NI.

² Characterization of head normalization via NI.

- ³ A combinatorial proof for that characterization.
- ⁴ How to extract quantitative information from derivations in NI.

- **The non-idempotent intersection type system NI.**
- **2** Characterization of head normalization via NI.
- ³ A combinatorial proof for that characterization.
- ⁴ How to extract quantitative information from derivations in NI.

- **The non-idempotent intersection type system NI.**
- **2** Characterization of head normalization via NI.
- ⁴ A combinatorial proof for that characterization.

⁴ How to extract quantitative information from derivations in NI.

- **The non-idempotent intersection type system NI.**
- **2** Characterization of head normalization via NI.
- ⁴ A combinatorial proof for that characterization.
- ⁴ How to extract quantitative information from derivations in NI.

- **The non-idempotent intersection type system NI.**
- **2** Characterization of head normalization via NI.
- ⁹ A combinatorial proof for that characterization.
- ⁴ How to extract quantitative information from derivations in NI.

Exercises

- **O** Find all the derivations of $x : M \vdash xx : C$, for any linear type C and any multi type M.
- **2** Find all the derivations of $x : M$, $y : N \vdash xy : C$, for any linear C and any multi M, N.
- **3** Prove that all derivations in NI for $(\lambda x.xx)\lambda y.y$ have the form $\mathcal{D}_{A}^{\delta,l}$ shown on p.8, for any linear type A.
- **4** Prove that there is no derivation of $\vdash (\lambda x.x)\lambda y.yy : C$, for any linear type C.
- **Find a derivation of** $\vdash \lambda a.\lambda f.f(aaf) : C$, for some linear type C.
- **O** Find a derivation of $\vdash (\lambda a.\lambda f.f(aaf))\lambda a.\lambda f.f(aaf) : C$, for some linear type C.
- **O** Find all the derivations of $\vdash \lambda a.\lambda f.f(aaf) : C$, for any linear type C.
- **O** Find all the derivations of $\vdash (\lambda a.\lambda f.f(aaf))\lambda a.\lambda f.f(aaf) : C$, for any linear type C.
- **•** Prove rigorously the two lemmas on p. 13 and the two lemmas on p. 16.
- \bullet Prove rigorously the quantitative subject reduction (p. 15) and expansion (p. 17), by induction on the definition of $t \rightarrow_{h\beta} t'$ (see Day 3, p. 9).

Bibliography

- For an (almost gentle) introduction to non-idempotent intersection types:
	- Antonio Bucciarelli, Delia Kesner, Daniel Ventura. Non-Idempotent Intersection types for the Lambda-Calculus. Logic Journal of the IGPL, vol. 25, issue 4, pp. 431–464, 2017. <https://doi.org/10.1093/jigpal/jzx018>
- For a very advanced study about non-idempotent intersection types:
	- Beniamino Accattoli, Stéphan Graham-Lengrand, Delia Kesner. Tight typings and split bounds, fully developed. Journal of Functional Programming, vol. 30, 14 pages, 2020. <https://doi.org/10.1017/S095679682000012X>