The A-calculus: from simple types to non-idempotent intersection types

Day 3: The untyped A-calculus

Giulio Guerrieri

Department of Informatics, University of Sussex (Brighton, UK)
X g.guerrieri@sussex.ac.uk @ https://pageperso.lis-lab.fr/ giulio.guerrieri/

37th Escuela de Ciencias Informaticas (ECI 2024)
Buenos Aires (Argentina), 31 July 2024

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 1/23

mailto:g.guerrieri@sussex.ac.uk
https://pageperso.lis-lab.fr/~giulio.guerrieri/

Outline

© The syntax and the operational semantics of the untyped A-calculus

© Programming with the untyped A-calculus

© Conclusion, exercises and bibliography

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3

Outline

© The syntax and the operational semantics of the untyped A-calculus

G. Guerrieri (Sussex) A-calculus, ple & non-idempotent intersection types — Day 3

The A-calculus beyond simple types

Term and f-reduction of the simply typed A-calculus can be defined without types.
~ Let us explore the word of the A-calculus without types.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 4 /23

The A-calculus beyond simple types

Term and S-reduction of the simply typed A-calculus can be defined without types.
~ Let us explore the word of the A-calculus without types.

@ What do we gain?

© What do we lose?

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 4 /23

The A-calculus beyond simple types

Term and S-reduction of the simply typed A-calculus can be defined without types.

~ Let us explore the word of the A-calculus without types.
@ What do we gain?
@ What do we lose?

We can freely apply s to t to get st, without requiring s : A= Bor t: A.

G. Guerrieri (Sussex)

A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31

4 /23

The A-calculus beyond simple types

Term and S-reduction of the simply typed A-calculus can be defined without types.
~ Let us explore the word of the A-calculus without types.

@ What do we gain?
© What do we lose?

We can freely apply s to t to get st, without requiring s : A= Bor t: A.

Consider the term Ax.xx. It not a term for the simply typed A-calculus.
@ Why is there no A such that - Ax.xx : A is derivable?

o (Ax.xx)(Ax.xx) =g (xx){Ax.xx/x} = (Ax.xx)(Ax.xx) =3 ... (normalization fails).

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 4 /23

The untyped A-calculus: the philosophy

The functions can be treated anonymously, that is without giving them a name:

d(x)=x ~ x~—x sq_sum(x,y) =X +y° ~ (x,y) = X" +y°

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 5 /23

The untyped A-calculus: the philosophy

The functions can be treated anonymously, that is without giving them a name:

d(x)=x ~ x~—x sq_sum(x,y) =X +y° ~ (x,y) = X" +y°

Functions of several arguments can be transformed into function of a single argument:

(x,y) — X2 —|—y2 ~ x = (y— X%+ y2) (currying)

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 5 /23

The untyped A-calculus: the philosophy

The functions can be treated anonymously, that is without giving them a name:

d(x)=x ~ x~—x sq_sum(x,y) =X +y° ~ (x,y) = X" +y°

Functions of several arguments can be transformed into function of a single argument:

(x,y) — X2 —|—y2 ~ x = (y— X%+ y2) (currying)

Functions can be applied to functions and can return functions (higher-order):

(x—x)5=5 (x»—)x)(yb—>y2)=yl—>y2

G. Guerrieri (Sussex)

A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 5 /23

The untyped A-calculus: the philosophy

The functions can be treated anonymously, that is without giving them a name:

d(x) =x ~ x—x sq_sum(x,y) =x>4+y> ~ (x,y) = xX*+y?

Functions of several arguments can be transformed into function of a single argument:

(x,y) — X2+ y? > x = (y— x>+ y2) (currying)

Functions can be applied to functions and can return functions (higher-order):

(x—x)5=5 (x»—)x)(yb—>y2)=yl—>y2

The untyped A-calculus performs higher-order computation:
@ everything is an anonymous function with a single argument (\-calculus);

@ functions can be applied to other functions without any restriction. (untyped)

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 5 /23

The untyped A-calculus, formally

Terms: s, t == X (variable) | AX.t (abstraction) | St (application) Rmk: stu stands for (st)u.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3

The untyped A-calculus, formally

Terms: s, t == X (variable) | AX.t (abstraction) | St (application) Rmk: stu stands for (st)u.

The free variables of a term t are the variables that are not bound to a A. Formally,

fv(x) = {x} fv(st) = fv(s) U fu(t) fv(dx.t) = fv(t) \ {x}

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 6 /23

The untyped A-calculus, formally

Terms: s, t == X (variable) | AX.t (abstraction) | St (application) Rmk: stu stands for (st)u.

The free variables of a term t are the variables that are not bound to a A. Formally,

fv(x) = {x} fv(st) = fv(s) U fu(t) fv(dx.t) = fv(t) \ {x}

Terms are identified up to renaming of bound variables (a-equivalence), e.g. Ax.x = Ay.y

G. Guerrieri (Sussex)

A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 6 /23

The untyped A-calculus, formally

Terms: s, t == X (variable) | AX.t (abstraction) | St (application) Rmk: stu stands for (st)u.

The free variables of a term t are the variables that are not bound to a A. Formally,

fv(x) = {x} fv(st) = fv(s) U fu(t) fv(dx.t) = fv(t) \ {x}

Terms are identified up to renaming of bound variables (a-equivalence), e.g. Ax.x = Ay.y

(B-reduction

(the term on the left is a S-redex) ()\X.t)s —3 t{S/X}

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 6 /23

The untyped A-calculus, formally

Terms: s, t == X (variable) | AX.t (abstraction) | St (application) Rmk: stu stands for (st)u.

The free variables of a term t are the variables that are not bound to a A. Formally,

fv(x) = {x} fv(st) = fv(s) U fu(t) fv(dx.t) = fv(t) \ {x}

Terms are identified up to renaming of bound variables (a-equivalence), e.g. Ax.x = Ay.y

B-reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(the term on the left is a S-redex) ()\X.t)s —3 t{S/X}

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 6 /23

The untyped A-calculus, formally

Terms: S, t :i= X (variable) | Ax.t (abstraction) | St (application) Rmk: stu stands for (st)u.
The free variables of a term t are the variables that are not bound to a A. Formally,

fv(x) = {x} fv(st) = fv(s) U fu(t) fv(dx.t) = fv(t) \ {x}

Terms are identified up to renaming of bound variables (a-equivalence), e.g. Ax.x = Ay.y

B-reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(the term on the left is a S-redex) ()\x.t)s —3 t{S/X}

Substitution t{s/x} should be defined carefully to avoid capture of variables.

(Ax.yx){x/y} # Ax.xx but (Ax.yx){x/y} = Az.yz){x/y} = Az.xz

To write t{s/x}, first take t such that its bound variables are not in fv(s) then substitute.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 6 /23

The structure of a term

Rmk. Every term s can be written in a unique way as

S=Ax1...\xp.ht1 ...ty with m,n € N

where h (the head of s) is either a variable (head variable) or a 3-redex (head S-redex).

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3

ECI 2024/07/31

7 /23

The structure of a term

Rmk. Every term s can be written in a unique way as
S=Ax1...\xp.ht1 ...ty with m,n € N

where h (the head of s) is either a variable (head variable) or a 3-redex (head S-redex).

)\X1

In a tree representation: ©

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 7 /23

The structure of a term

Rmk. Every term s can be written in a unique way as
S=Ax1...\xp.ht1 ...ty with m,n € N

where h (the head of s) is either a variable (head variable) or a 3-redex (head S-redex).

)\X1

In a tree representation: ©

©
/ \
h s}

Compare this tree with a derivation in natural deduction. Similarities? Differences?

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 7 /23

B-reduction from a graphical point of view

(Ax.t)s —p t{s/x}

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3

B-reduction from a graphical point of view

(Ax.t)s —p t{s/x}

@
)\x/ \s

i

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3

[-reduction from a graphical point of view

(Ax.t)s —p t{s/x}

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3

[-reduction from a graphical point of view

(Ax.t)s —p t{s/x}

e t{s/x}

—B

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3

[-reduction from a graphical point of view

(Ax.t)s —p t{s/x}

N t{s/x}

—B

Compare this figure with the cut-elimination step for natural deduction (see Day 1).

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 8 /23

Different notions of reduction

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3

Different notions of reduction

(Full) B-reduction —4 fires a S-redex anywhere in a term. Formally,

t gt t gt t gt

(xt)s =5 t{s/x} Ax.t =g Ax.t! ts »g t's st —g st

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3

Different notions of reduction

(Full) B-reduction — g fires a B-redex anywhere in a term. Formally,

t gt t—pt’ t—pgt

(xt)s =5 t{s/x} Ax.t =g Ax.t’ ts »g t's st —g st

Head B-reduction — s fires a B-redex only in the “head” of a term. Formally,

t—pg t’ t —hg t’ t # \x.r

(Ax.t)s —pp t{s/x}

Ax.t —>hB Ax.t/ ts —p3 t's

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31

9 /23

Different notions of reduction

(Full) B-reduction — g fires a B-redex anywhere in a term. Formally,

t gt t—pt’ t—pgt

(xt)s =5 t{s/x} Ax.t =g Ax.t’ ts »g t's st —g st

Head B-reduction — s fires a B-redex only in the “head” of a term. Formally,

t—pg t’ t —hg t’ t # \x.r

(Axt)s —ng t{s/x} 7 —hp Ax.t! ts —ng t's

Leftmost-outermost B-reduction — g fires the leftmost-outermost (B-redex in a term.

t—ep t t et t # Ax.r t —¢s t' s neutral
Ax.t)s = t{s/x
(xt)s —es t{s/x} —op Ax.t! ts —¢p t's st =g st’
where neutral means s = xs; ... x, and s1,...,s, normal, for some n € N.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31

9 /23

Different notions of reduction

(Full) B-reduction — g fires a B-redex anywhere in a term. Formally,

t—gt t—gt t—gt

(xt)s =5 t{s/x} Ax.t =g Ax.t’ ts »g t's st —g st

Head B-reduction — s fires a B-redex only in the “head” of a term. Formally,

t—pg t’ t —hg t’ t # \x.r

(Axt)s —ng t{s/x} 7 —hp Ax.t! ts —ng t's

Leftmost-outermost B-reduction — g fires the leftmost-outermost (-redex in a term.

t—ep t t et t # Ax.r t —¢s t' s neutral
Ax.t)s = t{s/x
(xt)s —es t{s/x} —op Ax.t! ts —¢p t's st =g st’
where neutral means s = xs; ... x, and s1,...,s, normal, for some n € N.

Rmk. —p3 C —13 C —p. For strictness, consider | = Ax.x and t = (Ix)(ly)(/z). Then,
o t —ng x(ly)(Iz) but t Ang (IX)y(Iz) and t A4s (IX)(ly)z;
o x(Iy)(Iz) —>es xy(l2) but x(Iy)(Iz) Aes x(Iy)z;
o t =5 (Ix)(ly)z and x(ly)(Iz) =3 x(ly)z.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 9 /23

Properties of different reductions
Rmk. Reductions —43 and —s are deterministic (they can fire at most one redex). So:

If t =, 51 and t —, s, then 51 = s, for r € {hp,13}.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3

Properties of different reductions
Rmk. Reductions —43 and —s are deterministic (they can fire at most one redex). So:

If t =, 51 and t —, s, then 51 = s, for r € {hp,13}.
Reduction — 4 is not deterministic, it chooses among several S-redexes to fire in a term.

((Az.2)y)(Az.2)y)

outermost 3-redex B
—_—
(Axxx)((Az.2)y) —— (Ax.xx)z
—— B

inner (3-redex

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 10 / 23

Properties of different reductions
Rmk. Reductions —43 and —s are deterministic (they can fire at most one redex). So:

If t =, 51 and t —, s, then 51 = s, for r € {hp,13}.
Reduction — 4 is not deterministic, it chooses among several S-redexes to fire in a term.

((Az.2)y)(Az.2)y)

outermost 3-redex B
—_—
(Mxxx)((Az.z)y) — (Ax.xx)z
——

inner [3-redex

for some neN

Notation. t —* s means that t = to — t1 — - -+ — t, = s (in particular, t = s for n = 0).

Theorem (Confluence) J

If t =% s1 and t —% s2, then there is a term r such that s; =5 r and so =5 r.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 10 / 23

Properties of different reductions
Rmk. Reductions —43 and —s are deterministic (they can fire at most one redex). So:

If t =, 51 and t —, s, then 51 = s, for r € {hp,13}.
Reduction — 4 is not deterministic, it chooses among several S-redexes to fire in a term.

((Az.2)y)(Az.2)y)

outermost 3-redex B
—_—
(Mxxx)((Az.z)y) — (Ax.xx)z
——

inner [3-redex

for some neN

Notation. t —* s means that t = to — t1 — - -+ — t, = s (in particular, t = s for n = 0).

Theorem (Confluence) J

If t =% s1 and t —% s2, then there is a term r such that s; =5 r and so =5 r.

Def. Let r € {B3,€8, h3}. A term t is r-normal if there is no s such that t —, s.

Corollary (Uniqueness of normal form) J

If t =% s1 and t =7 s> where s; and s, are -normal, then s; = s,.

Proof. By confluence, s —>?3 rand s, =% r for some r. By normality, s; = r = s,. O

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 10 / 23

Normalization, strong normalization and divergence

Def. Let t be a term and r € {3,483, h3}.
@ tis r-normalizing if there is a r-normal term s such that t — s.

@ t is strongly r-normalizing if there is no (ti)ien such that t = to and t; — tij1.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 11 / 23

Normalization, strong normalization and divergence

Def. Let t be a term and r € {3,483, h3}.
@ tis r-normalizing if there is a r-normal term s such that t — s.

@ t is strongly r-normalizing if there is no (ti)ien such that t = to and t; — tij1.

Ex. Every B-normal form is strongly 8-normalizing. Let § = Ax.xx.
@ 44 is not S-normalizing: if 8§ —p t then t = §6.

o (Ax.y)(66) is B-normalizing (indeed (Ax.y)(d0) — y which is B-normal) but not
strongly S-normalizing (indeed (Ax.y)(00) =5 (Ax.y)(d6) =5 ...).

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 11 / 23

Normalization, strong normalization and divergence

Def. Let t be a term and r € {3,483, h3}.
@ tis r-normalizing if there is a r-normal term s such that t — s.

@ t is strongly r-normalizing if there is no (ti)ien such that t = to and t; — tij1.

Ex. Every B-normal form is strongly 8-normalizing. Let § = Ax.xx.
@ 44 is not S-normalizing: if 8§ —p t then t = §6.

o (Ax.y)(66) is B-normalizing (indeed (Ax.y)(d0) — y which is B-normal) but not
strongly S-normalizing (indeed (Ax.y)(00) =5 (Ax.y)(d6) =5 ...).

Rmk. Strong normalization implies normalization, but the converse fails, see above.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 11 / 23

Normalization, strong normalization and divergence

Def. Let t be a term and r € {3,483, h3}.
@ tis r-normalizing if there is a r-normal term s such that t — s.

@ t is strongly r-normalizing if there is no (ti)ien such that t = to and t; — tij1.

Ex. Every B-normal form is strongly 8-normalizing. Let § = Ax.xx.
@ 44 is not S-normalizing: if 8§ —p t then t = §6.

o (Ax.y)(66) is B-normalizing (indeed (Ax.y)(d0) — y which is B-normal) but not
strongly S-normalizing (indeed (Ax.y)(00) =5 (Ax.y)(d6) =5 ...).

Rmk. Strong normalization implies normalization, but the converse fails, see above.

Rmk. Strong normalization and normalization coincide for —x3 and — 3, not for — 4.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 11 / 23

Normalization, strong normalization and divergence

Def. Let t be a term and r € {3,483, h3}.
@ tis r-normalizing if there is a r-normal term s such that t — s.

@ t is strongly r-normalizing if there is no (ti)ien such that t = to and t; — tij1.

Ex. Every B-normal form is strongly 8-normalizing. Let § = Ax.xx.
@ 00 is not S-normalizing: if §§ — 3 t then t = §4.

o (Ax.y)(66) is B-normalizing (indeed (Ax.y)(d0) — y which is B-normal) but not
strongly S-normalizing (indeed (Ax.y)(00) =5 (Ax.y)(d6) =5 ...).

Rmk. Strong normalization implies normalization, but the converse fails, see above.
Rmk. Strong normalization and normalization coincide for —x3 and — 3, not for — 4.

Rmk. In the simply typed A-calculus, every term is 8-normalizing (actually, strongly).

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 11 / 23

Fixed point combinator

Def. A fixed point of a term t is a term s such that s =7 ts.
A fixed point combinator is a term Y such that Yt is a fixed point of t, for every term t.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3

Fixed point combinator

Def. A fixed point of a term t is a term s such that s =7 ts.
A fixed point combinator is a term Y such that Yt is a fixed point of t, for every term t.

Proposition (Fixed point combinator)
Let A= Aa.\f.f(aaf) and © = AA. Then, © is a fixed point combinator. J

Proof. © = (Aa.Af.f(aaf))A —ng AF.F(AAF) = Af.f(OF). Therefore, for every term t,
ot —hB ()\f.f(@f))t —hp t(@t). O

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 12 / 23

Fixed point combinator

Def. A fixed point of a term t is a term s such that s =} ts.
A fixed point combinator is a term Y such that Yt is a fixed point of t, for every term t.

Proposition (Fixed point combinator)
Let A= Aa.\f.f(aaf) and © = AA. Then, © is a fixed point combinator. J

Proof. © = (Aa.Af.f(aaf))A —ng AF.F(AAF) = Af.f(OF). Therefore, for every term t,
ot —hB ()\f.f(@f))t —hp t(@t). O

Rmk. © is h-normalizing but not 8-normalizing.
Rmk. © is not a term of the simply typed A-calculus, because of the subterm aa.

Rmk. Fixed point combinators such has © are crucial to represent recursive functions.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 12 / 23

Simply typed versus untyped

The simply typed A-calculus (in Curry-style) is a restriction of the untyped A-calculus
~ the latter just take terms and S-reduction from the former without checking typability.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3

Simply typed versus untyped

The simply typed A-calculus (in Curry-style) is a restriction of the untyped A-calculus
~ the latter just take terms and S-reduction from the former without checking typability.

But the untyped A-calculus can also be seen as a “special case” of the simply type one.
Consider that the simple types are generated by only one ground type X.

Def. Let = be the least congruence on simple types generated by X = X = X, that is:

A=B A=B B=C - A=A B=F
X=X B=a A=C X=X=X AL B=A=B

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 13 / 23

Simply typed versus untyped

The simply typed A-calculus (in Curry-style) is a restriction of the untyped A-calculus
~ the latter just take terms and S-reduction from the former without checking typability.

But the untyped A-calculus can also be seen as a “special case” of the simply type one.
Consider that the simple types are generated by only one ground type X.

Def. Let = be the least congruence on simple types generated by X = X = X, that is:

A=B A=B B=C - A=A B=F
X=X B=A A=C X=X=X ALB=pA=B

Rmk. A = X for every simple type A (proof by induction on A) ~~ All types are the samel!

Proposition (Untyped = simply typed + recursive type identity =)
Every untyped term is typable in Curry's simply typed A-calculus extended with the rule:

Ft:A A=B_
r-t:8

Proof. By straightforward induction on t (exercise!). O

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 13 / 23

Outline

© Programming with the untyped A-calculus

G. Guerrieri (Sussex) A-calculus, ple & non-idempotent intersection types — Day 3

Encoding Booleans
Goal. Encode propositional classical logic in the untyped A-calculus.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3

Encoding Booleans

Goal. Encode propositional classical logic in the untyped A-calculus.

We choose (arbitrarily) two terms to represents true T and false L.

T = AxAy.x L =XxAy.y

Rmk. For every term s, t, we have Tst —}5sand Lst =5 t.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3

ECI 2024/07/31

15 / 23

Encoding Booleans
Goal. Encode propositional classical logic in the untyped A-calculus.

We choose (arbitrarily) two terms to represents true T and false L.
T = AxAy.x L =XxAy.y

Rmk. For every term s, t, we have Tst —}5sand Lst =5 t.

@ We look for a term to encode the NOT: not T —5 L and not L

not =

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3

—5 T.

ECI 2024/07/31

15 / 23

Encoding Booleans
Goal. Encode propositional classical logic in the untyped A-calculus.

We choose (arbitrarily) two terms to represents true T and false L.
T = AxAy.x L =XxAy.y

Rmk. For every term s, t, we have Tst —}5sand Lst =5 t.

@ We look for a term to encode the NOT: not T —5 L and not L

not = Ap.pLl T

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3

—5 T.

ECI 2024/07/31

15 / 23

Encoding Booleans
Goal. Encode propositional classical logic in the untyped A-calculus.

We choose (arbitrarily) two terms to represents true T and false L.
T = AxAy.x L =XxAy.y

Rmk. For every term s, t, we have Tst —}5sand Lst =5 t.

© We look for a term to encode the NOT: not T —7% L and not L —% T.

not = Ap.pLl T

@ To encode the AND: andst —5 T ifs=t=T, butandst =3 Lifs=_Lort=_1.

and =

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 15 / 23

Encoding Booleans
Goal. Encode propositional classical logic in the untyped A-calculus.

We choose (arbitrarily) two terms to represents true T and false L.
T = AxAy.x L =XxAy.y

Rmk. For every term s, t, we have Tst —}5sand Lst =5 t.

© We look for a term to encode the NOT: not T —7% L and not L —% T.
not = Ap.pLl T

@ To encode the AND: andst —5 T ifs=t=T, butandst =3 Lifs=_Lort=_1.

and = Ap.A\q.pqp

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 15 / 23

Encoding Booleans
Goal. Encode propositional classical logic in the untyped A-calculus.

We choose (arbitrarily) two terms to represents true T and false L.
T = AxAy.x L =XxAy.y

Rmk. For every term s, t, we have Tst —}5sand Lst =5 t.

© We look for a term to encode the NOT: not T —7% L and not L —% T.
not = Ap.pLl T
@ To encode the AND: andst —5 T ifs=t=T, butandst =3 Lifs=_Lort=_1.

and = Ap.A\q.pqp
© Toencodethe OR: orst —j; Lifs=t=_1, butorst =5 Lifs=Tort

I
I

or =

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 15 / 23

Encoding Booleans
Goal. Encode propositional classical logic in the untyped A-calculus.

We choose (arbitrarily) two terms to represents true T and false L.
T = AxAy.x L =XxAy.y

Rmk. For every term s, t, we have Tst —}5sand Lst =5 t.

© We look for a term to encode the NOT: not T —7% L and not L —% T.
not = Ap.pLl T
@ To encode the AND: andst —5 T ifs=t=T, butandst =3 Lifs=_Lort=_1.

and = Ap.A\q.pqp
© Toencodethe OR: orst —j; Lifs=t=_1, butorst =5 Lifs=Tort

I
I

or = Ap.\q.ppq

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 15 / 23

Encoding Booleans
Goal. Encode propositional classical logic in the untyped A-calculus.

We choose (arbitrarily) two terms to represents true T and false L.
T = AxAy.x L =XxAy.y

Rmk. For every term s, t, we have Tst —}5sand Lst =5 t.

© We look for a term to encode the NOT: not T —7% L and not L —% T.
not = Ap.pLl T

@ To encode the AND: andst —5 T ifs=t=T, butandst =3 Lifs=_Lort=_1.
and = Ap.A\q.pqp

© Toencodethe OR: orst 5 Lifs=t=_1, butorst =5 Lifs=Tort=T.
or = Ap.\q.ppq

Q To encode the IF-THEN-ELSE: if rst =5 sifr=Tand if rst w5 tifr=_1

if =

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 15 / 23

Encoding Booleans
Goal. Encode propositional classical logic in the untyped A-calculus.

We choose (arbitrarily) two terms to represents true T and false L.
T = AxAy.x L =XxAy.y

Rmk. For every term s, t, we have Tst —}5sand Lst =5 t.

© We look for a term to encode the NOT: not T —7% L and not L —% T.
not = Ap.pLl T

@ To encode the AND: andst —5 T ifs=t=T, butandst =3 Lifs=_Lort=_1.
and = Ap.A\q.pqp

© Toencodethe OR: orst 5 Lifs=t=_1, butorst =5 Lifs=Tort=T.
or = Ap.\q.ppq

Q To encode the IF-THEN-ELSE: if rst =5 sifr=Tand if rst w5 tifr=_1

if = Ap.\a.\b.pab

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 15 / 23

Encoding arithmetic
Goal. Encode the arithmetic in the untyped A-calculus.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3

Encoding arithmetic
Goal. Encode the arithmetic in the untyped A-calculus.

We choose a term n to represents any n € N (Church numeral).

n=MM.f"x =M. f(f...(Fx)...) (in particular, 0 = Af.Ax.x)
———

n times f n times s

——
Rmk. For every term s, t, we have nst —;5 s"t = s(s...(st)...) (n-iterator).

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31

16 / 23

Encoding arithmetic
Goal. Encode the arithmetic in the untyped A-calculus.

We choose a term n to represents any n € N (Church numeral).

n=MM.f"x =M. f(f...(Fx)...) (in particular, 0 = Af.Ax.x)
———

n times f n times s

——
Rmk. For every term s, t, we have nst —;5 s"t = s(s...(st)...) (n-iterator).

© We look for a term to encode the successor: succn —j n+ 1.

succ =

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31

16 / 23

Encoding arithmetic
Goal. Encode the arithmetic in the untyped A-calculus.

We choose a term n to represents any n € N (Church numeral).

n=MM.f"x =M. f(f...(Fx)...) (in particular, 0 = Af.Ax.x)
———

n times f n times s

——
Rmk. For every term s, t, we have nst —;5 s"t = s(s...(st)...) (n-iterator).

© We look for a term to encode the successor: succn —j n+ 1.

succ = AnAf.x.f(nfx)

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31

16 / 23

Encoding arithmetic
Goal. Encode the arithmetic in the untyped A-calculus.
We choose a term n to represents any n € N (Church numeral).

n=MMf"x=AMIx.f(f...(fx)...) (in particular, 0 = Af.Ax.x)
———

n times f n times s

—_— .
Rmk. For every term s, t, we have nst —;5 s"t = s(s...(st)...) (n-iterator).
© We look for a term to encode the successor: succn —j n+ 1.
succ = AnAf.x.f(nfx)

@ To encode the addition: add mn —% m+4 m.

add =

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31

16 / 23

Encoding arithmetic
Goal. Encode the arithmetic in the untyped A-calculus.
We choose a term n to represents any n € N (Church numeral).

n=MM.f"x =M. f(f...(Fx)...) (in particular, 0 = Af.Ax.x)
———

n times f n times s

—_— .
Rmk. For every term s, t, we have nst —;5 s"t = s(s...(st)...) (n-iterator).
© We look for a term to encode the successor: succn —j n+ 1.
succ = AnAf.x.f(nfx)

@ To encode the addition: add mn —% m+4 m.

add = Am.AnAf . Ax.mf (nfx)

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31

16 / 23

Encoding arithmetic
Goal. Encode the arithmetic in the untyped A-calculus.
We choose a term n to represents any n € N (Church numeral).

n=MM.f"x =M. f(f...(Fx)...) (in particular, 0 = Af.Ax.x)
———

n times f n times s

Rmk. For every term s, t, we have nst —}5 s"t = ﬂt) ...) (n-iterator).
© We look for a term to encode the successor: succn —j n+ 1.
succ = AnAf.) x.f(nfx)
@ To encode the addition: add mn —% m+4 m.
add = Am.AnAf . Ax.mf (nfx)

© To encode the multiplication: mult mn —5 m x n.

mult =

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31

16 / 23

Encoding arithmetic
Goal. Encode the arithmetic in the untyped A-calculus.
We choose a term n to represents any n € N (Church numeral).

n=MM.f"x =M. f(f...(Fx)...) (in particular, 0 = Af.Ax.x)
———

n times f n times s

Rmk. For every term s, t, we have nst —}5 s"t = ﬂt) ...) (n-iterator).
© We look for a term to encode the successor: succn —j n+ 1.
succ = AnAf.) x.f(nfx)
@ To encode the addition: add mn —% m+4 m.
add = Am.AnAf . Ax.mf (nfx)

© To encode the multiplication: mult mn —5 m x n.

mult = Am.An.Af.m(nf)

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31

16 / 23

Encoding arithmetic
Goal. Encode the arithmetic in the untyped A-calculus.
We choose a term n to represents any n € N (Church numeral).

n=MM.f"x =M. f(f...(Fx)...) (in particular, 0 = Af.Ax.x)
———

n times f n times s

Rmk. For every term s, t, we have nst —}5 s"t = ﬂt) ...) (n-iterator).
© We look for a term to encode the successor: succn —j n+ 1.
succ = AnAf.) x.f(nfx)
@ To encode the addition: add mn —% m+4 m.
add = Am.An.\f.Ax.mf (nfx)
© To encode the multiplication: mult mn —5 m x n.
mult = Am.An.Af.m(nf)

© To encode the exponentiation: pow mn —j m”.

pow =

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31

16 / 23

Encoding arithmetic
Goal. Encode the arithmetic in the untyped A-calculus.
We choose a term n to represents any n € N (Church numeral).

n=MM.f"x =M. f(f...(Fx)...) (in particular, 0 = Af.Ax.x)
———

n times f n times s

Rmk. For every term s, t, we have nst —}5 s"t = ﬂt) ...) (n-iterator).
© We look for a term to encode the successor: succn —j n+ 1.
succ = AnAf.) x.f(nfx)
@ To encode the addition: add mn —% m+4 m.
add = Am.An.\f.Ax.mf (nfx)
© To encode the multiplication: mult mn —5 m x n.
mult = Am.An.Af.m(nf)

© To encode the exponentiation: pow mn —j m”.

pow = Am.An.nm

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31

16 / 23

More about encoding arithmetic: recursion

We can encode the functions: iszero: N — {1, T} testing if a natural number is 0 or not,
and the predecessor pred: N — N such that pred(0) = 0 and pred(n+ 1) = n.

T ifn=0

. pred = ...
L otherwise. —_—

iszero = An.n(Ax..L)T iszeron —j {

Question. How can the A-calculus represent the factorial (typical recursive function)?

fact(n) = {1 ifn =0

n x fact(n — 1) otherwise.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 17 / 23

More about encoding arithmetic: recursion

We can encode the functions: iszero: N — {1 T} testing if a natural number is 0 or not,
and the predecessor pred: N — N such that pred(0) = 0 and pred(n+ 1) = n.

T ifn=0

. pred = ...
L otherwise. e

iszero = An.n(Ax..L)T iszero n — {

Question. How can the A-calculus represent the factorial (typical recursive function)?

fact(n) = {1 ifn =0

n X fact(n —1) otherwise.
Let us rewrite the definition in a A-calculus-like style, using IF-THEN-ELSE and mult:

fact should satisfies the equation: fact n = if (iszero n) 1 (mult n (fact (pred n)))

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 17 / 23

More about encoding arithmetic: recursion

We can encode the functions: iszero: N — {1 T} testing if a natural number is 0 or not,
and the predecessor pred: N — N such that pred(0) = 0 and pred(n+ 1) = n.

T ifn=0

. pred = ...
L otherwise. e

iszero = An.n(Ax..L)T iszero n — {

Question. How can the A-calculus represent the factorial (typical recursive function)?

fact(n) = {1 ifn =0

n X fact(n —1) otherwise.
Let us rewrite the definition in a A-calculus-like style, using IF-THEN-ELSE and mult:

fact should satisfies the equation: fact = An.if (iszero n) 1 (mult n(fact (pred n)))

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 17 / 23

More about encoding arithmetic: recursion

We can encode the functions: iszero: N — {1 T} testing if a natural number is 0 or not,
and the predecessor pred: N — N such that pred(0) = 0 and pred(n+ 1) = n.

T ifn=0

. pred = ...
L otherwise. e

iszero = An.n(Ax..L)T iszero n — {

Question. How can the A-calculus represent the factorial (typical recursive function)?

fact(n) = {1 ifn =0

n X fact(n —1) otherwise.
Let us rewrite the definition in a A-calculus-like style, using IF-THEN-ELSE and mult:

fact should satisfies the equation: fact = An.if (iszero n) 1 (mult n(fact (pred n)))

F = Af.\n.if (iszero n) 1 (mult n (f (pred n)))

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 17 / 23

More about encoding arithmetic: recursion

We can encode the functions: iszero: N — {1 T} testing if a natural number is 0 or not,
and the predecessor pred: N — N such that pred(0) = 0 and pred(n+ 1) = n.

T ifn=0

. pred = ...
L otherwise. e

iszero = An.n(Ax..L)T iszero n — {

Question. How can the A-calculus represent the factorial (typical recursive function)?

fact(n) = {1 ifn =0

n X fact(n —1) otherwise.
Let us rewrite the definition in a A-calculus-like style, using IF-THEN-ELSE and mult:

fact should satisfies the equation: fact = An.if (iszero n) 1 (mult n(fact (pred n)))

F = Af.\n.if (iszero n) 1 (mult n (f (pred n)))
fact .= YF

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 17 / 23

More about encoding arithmetic: recursion

We can encode the functions: iszero: N — {1 T} testing if a natural number is 0 or not,
and the predecessor pred: N — N such that pred(0) = 0 and pred(n+ 1) = n.

T ifn=0

. pred = ...
L otherwise. e

iszero = An.n(Ax..L)T iszero n — {

Question. How can the A-calculus represent the factorial (typical recursive function)?

fact(n) = {1 ifn =0

n X fact(n —1) otherwise.
Let us rewrite the definition in a A-calculus-like style, using IF-THEN-ELSE and mult:

fact should satisfies the equation: fact = An.if (iszero n) 1 (mult n(fact (pred n)))

F = Af.\n.if (iszero n) 1 (mult n (f (pred n)))
fact .= YF —}3 F(YF) = F fact — An.if (iszero n) 1 (mult n (fact (pred n)))

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 17 / 23

The untyped A-calculus is Turing-complete!

Def. Let f: N” — N be partial. A term & represents f when, for all ky,..., k, € N:
@ if f(ky,...,kn) is undefined, then ® k; ... k, is not hf3-normalizing;
Q if f(k,..., k) = k €N, then ® ki ... ko —7 k.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3

The untyped A-calculus is Turing-complete!

Def. Let f: N” — N be partial. A term & represents f when, for all ky,..., k, € N:
@ if f(ky,...,kn) is undefined, then ® k; ... k, is not hf3-normalizing;
Q if f(ki,...,ka) =k €N, then ® ki ...k, = k.

Theorem (Representability)
Every partial recursive function f: N” — N is representable by a term in the A-calculus. J

Rmk. According to Church's thesis, the A-calculus can represent everything is computable.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 18 / 23

The untyped A-calculus is Turing-complete!

Def. Let f: N” — N be partial. A term & represents f when, for all ky,..., k, € N:
@ if f(ky,...,kn) is undefined, then ® k; ... k, is not hf3-normalizing;
Q if f(ki,...,ka) =k €N, then ki ...k, =5 k

Theorem (Representability)

Every partial recursive function f: N” — N is representable by a term in the A-calculus. J

Rmk. According to Church's thesis, the A-calculus can represent everything is computable.

Rmk. If ® represents a partial function f: N — N, then ® could have whatever behavior
when applied to arguments ti, ..., tx that are not Church numerals.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 18 / 23

The untyped A-calculus is Turing-complete!

Def. Let f: N” — N be partial. A term & represents f when, for all ky,..., k, € N:
@ if f(ky,...,kn) is undefined, then ® k; ... k, is not hf3-normalizing;
Q if f(ki,...,ka) =k €N, then ® ki ...k, = k.

Theorem (Representability) J

Every partial recursive function f: N” — N is representable by a term in the A-calculus.

Rmk. According to Church's thesis, the A-calculus can represent everything is computable.

Rmk. If ® represents a partial function f: N — N, then ® could have whatever behavior
when applied to arguments ti, ..., tx that are not Church numerals.

Rmk. In Point 1 of the definition, h3-normalizing can be replaced by B-normalizing.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 18 / 23

The A-calculus as a programming language

A-calculus = kernel of all functional programming languages (Haskell, OCaml, Lisp, ...).

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3

The A-calculus as a programming language
A-calculus = kernel of all functional programming languages (Haskell, OCaml, Lisp, ...).

@ An abstraction Ax.t is an anonymous function fun x -> t in OCaml.

@ A application tu (resp. variable x) is an application tu (resp. variable x) in OCaml.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 19 / 23

The A-calculus as a programming language
A-calculus = kernel of all functional programming languages (Haskell, OCaml, Lisp, ...).

@ An abstraction Ax.t is an anonymous function fun x -> t in OCaml.

@ A application tu (resp. variable x) is an application tu (resp. variable x) in OCaml.

OCaml A-calculus
(fun x -> x + 3)7 (Ax.add x3)7
I s
7+3 add73
)’ s
10 10

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 19 / 23

The A-calculus as a programming language
A-calculus = kernel of all functional programming languages (Haskell, OCaml, Lisp, ...).

@ An abstraction Ax.t is an anonymous function fun x -> t in OCaml.

@ A application tu (resp. variable x) is an application tu (resp. variable x) in OCaml.

OCaml A-calculus
(fun x -> x + 3)7 (Ax.add x3)7
I s
7+3 add73
¢ s
10 10

@ OCaml imposes eager evaluation: evaluate arguments before applying the function.

@ In the A-calculus the order of evaluation is irrelevant (because of confluence).

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 19 / 23

Outline

© Conclusion, exercises and bibliography

G. Guerrieri (Sussex) A-calculus, ple & non-idempotent intersection types — Day 3

What we have learned today?

© Syntax and operational semantics of the untyped A-calculus.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3

What we have learned today?

© Syntax and operational semantics of the untyped A-calculus.

@ Different notions of S-reduction (full, leftmost, head).

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 21 /23

What we have learned today?

© Syntax and operational semantics of the untyped A-calculus.

@ Different notions of S-reduction (full, leftmost, head).

© Different notions of normalization (strong or not).

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 21 /23

What we have learned today?

© Syntax and operational semantics of the untyped A-calculus.
@ Different notions of S-reduction (full, leftmost, head).
© Different notions of normalization (strong or not).

@ How to encode arithmetic and propositional classical logic in the untyped A-calculus.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 21 /23

What we have learned today?

© Syntax and operational semantics of the untyped A-calculus.

@ Different notions of S-reduction (full, leftmost, head).

© Different notions of normalization (strong or not).

@ How to encode arithmetic and propositional classical logic in the untyped A-calculus.

@ Representability of every partial recursive function in the untyped A-calculus

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 21 /23

What we have learned today?

© Syntax and operational semantics of the untyped A-calculus.

@ Different notions of S-reduction (full, leftmost, head).

© Different notions of normalization (strong or not).

@ How to encode arithmetic and propositional classical logic in the untyped A-calculus.

@ Representability of every partial recursive function in the untyped A-calculus

Questions?

b 4
&
e Il

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 21 /23

Exercises

o

(2]

o

©0 O 0000

Write the tree representation of following terms (as on p. 7), specifying m,n € N and
the subtrees corresponding to h, t1, ..., tm: x, I, Ax.Ixx, Ax.[(xx), Ax.xxx(xx), II.
The B-reduction graph of a term t is the directed graph with nodes {s | t =% s} and

with edges the single 3-steps. Draw the 3-reduction graph of the following terms:
O (Ax.Ixx)(Ax.Ixx) where | = A\z.z. O 96 where § = Ax.xx.
0 (Ax.I(xx))(Ax.1(xx)). O 9303 where §3 = Ax.xxx.
e (IN(). O 7mrm where T = Ax.\y.xyy.

Consider the n-reduction —,, defined below, which can be fired everywhere in a
term. Prove that —, is strongly normalizing.

AX.tX —q t if x ¢ fv(t)
Prove rigorously the remark and proposition on p. 13.
Find a term r such that rt —} t(tr) for every t (Hint: use fixpoint combinator ©).
Prove that succn =5 n+41forall n €N, and add mn —5 m + n for all m,n € N.
Find terms t,t',s,s’ such that t =, t, s =, s’ and t[s/x] #a t'[s'/x] (where =4 is
a-equivalence and t[s/x] is naive substitution, see p. 10 on Day 2 slides).
Define a term add that represents the addition of natural numbers starting from its
inductive definition below (Hint: Use the fixpoint combinator ©, pred, iszero).
Define a term mul that represents the multiplication of natural numbers starting
from its inductive definition below (Hint: Use fixpoint combinator ©, pred, iszero).

man— m ifn=20 mxon— 0 ifn=20
T Im+(n—1) otherwise; T Im+mx(n—1) otherwise.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 22 /23

Bibliography

@ For more about the untyped A-calculus:

@ Jean-Louis Krivine. Lambda-Calculus. Types and Models. Ellis Horwood. 1990.
[Chapters 1-2] https://wuw.irif.fr/ krivine/articles/Lambda.pdf

@ Peter Selinger. Lecture Notes on the Lambda Calculus. vol. 0804, Department
of Mathematics and Statistics, University of Ottawa. 2008 [Chapters 2-3]
http://wuw.mathstat.dal.ca/"selinger/papers/lambdanotes.pdf

¥ Henk P. Barendregt. The Lambda-Calculus. Its Syntax and Semantics. Studies
in Logic and the Foundations of Mathematics, vol. 103, North Holland, 1984.
[Chapters 2-3, 6, 8]

@ For an elegant proof of the confluence of 3-reduction:

@ Masako Takahashi. Parallel Reductions in A\-Calculus. Information and
Computation, vol. 118, issue 1, pages 120-127. 1995.
https://doi.org/10.1006/inco.1995.1057

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types — Day 3 ECI 2024/07/31 23 /23

https://www.irif.fr/~krivine/articles/Lambda.pdf
http://www.mathstat.dal.ca/~selinger/papers/lambdanotes.pdf
https://doi.org/10.1006/inco.1995.1057

	The syntax and the operational semantics of the untyped lambda-calculus
	Programming with the untyped lambda-calculus
	Conclusion, exercises and bibliography

