The λ-calculus: from simple types to non-idempotent intersection types

Day 3: The untyped λ -calculus

Giulio Guerrieri

Department of Informatics, University of Sussex (Brighton, UK) \boxtimes g.guerrieri@sussex.ac.uk \bullet <https://pageperso.lis-lab.fr/~giulio.guerrieri/>

> 37th Escuela de Ciencias Informáticas (ECI 2024) Buenos Aires (Argentina), 31 July 2024

Outline

1 [The syntax and the operational semantics of the untyped](#page-2-0) λ -calculus

2 [Programming with the untyped](#page-45-0) λ -calculus

³ [Conclusion, exercises and bibliography](#page-80-0)

Outline

1 [The syntax and the operational semantics of the untyped](#page-2-0) λ -calculus

2 [Programming with the untyped](#page-45-0) λ -calculus

³ [Conclusion, exercises and bibliography](#page-80-0)

Term and β -reduction of the simply typed λ -calculus can be defined without types. \rightarrow Let us explore the word of the λ -calculus without types.

- **1** What do we gain?
- **2** What do we lose?

We can freely apply s to t to get st, without requiring $s : A \Rightarrow B$ or $t : A$.

- Why is there no A such that $\vdash \lambda x.xx : A$ is derivable?
- \bullet $(\lambda x. x x)(\lambda x. x x) \rightarrow_{\beta} (x x)\{\lambda x. x x/x\} = (\lambda x. x x)(\lambda x. x x) \rightarrow_{\beta} \dots$ (normalization fails).

Term and β -reduction of the simply typed λ -calculus can be defined without types. \rightarrow Let us explore the word of the λ -calculus without types.

- **1** What do we gain?
- **2** What do we lose?

We can freely apply s to t to get st, without requiring $s : A \Rightarrow B$ or $t : A$.

- \bullet Why is there no A such that $\vdash \lambda x.xx : A$ is derivable?
- \bullet $(\lambda x. x x)(\lambda x. x x) \rightarrow_{\beta} (x x)\{\lambda x. x x/x\} = (\lambda x. x x)(\lambda x. x x) \rightarrow_{\beta} \dots$ (normalization fails).

Term and β -reduction of the simply typed λ -calculus can be defined without types. \rightarrow Let us explore the word of the λ -calculus without types.

- **1** What do we gain?
- **2** What do we lose?

We can freely apply s to t to get st, without requiring $s : A \Rightarrow B$ or $t : A$.

- \bullet Why is there no A such that $\vdash \lambda x.xx : A$ is derivable?
- \bullet $(\lambda x. x x)(\lambda x. x x) \rightarrow_{\beta} (x x)\{\lambda x. x x/x\} = (\lambda x. x x)(\lambda x. x x) \rightarrow_{\beta} \dots$ (normalization fails).

Term and β -reduction of the simply typed λ -calculus can be defined without types. \rightarrow Let us explore the word of the λ -calculus without types.

- **1** What do we gain?
- **2** What do we lose?

We can freely apply s to t to get st, without requiring $s : A \Rightarrow B$ or $t : A$.

- \bullet Why is there no A such that $\vdash \lambda x.x$: A is derivable?
- $(\lambda x. x x)(\lambda x. x x) \rightarrow_{\beta} (xx)\{\lambda x. x x/x\} = (\lambda x. x x)(\lambda x. x x) \rightarrow_{\beta} \dots$ (normalization fails).

The functions can be treated anonymously, that is without giving them a name:

$$
id(x) = x \quad \leadsto \quad x \mapsto x \qquad \qquad \mathsf{sq_sum}(x, y) = x^2 + y^2 \quad \leadsto \quad (x, y) \mapsto x^2 + y^2
$$

Functions of several arguments can be transformed into function of a single argument: $(x, y) \mapsto x^2 + y^2$ \longrightarrow $x \mapsto (y \mapsto x^2 + y^2)$ (currying)

Functions can be applied to functions and can return functions (higher-order):

$$
(x \mapsto x)5 = 5 \qquad (x \mapsto x)(y \mapsto y^2) = y \mapsto y^2
$$

The untyped λ -calculus performs higher-order computation:

- everything is an anonymous function with a single argument (λ -calculus);
- functions can be applied to other functions without any restriction. (untyped)

The functions can be treated anonymously, that is without giving them a name:

$$
id(x) = x \quad \rightsquigarrow \quad x \mapsto x \qquad \qquad \mathsf{sq_sum}(x, y) = x^2 + y^2 \quad \rightsquigarrow \quad (x, y) \mapsto x^2 + y^2
$$

Functions of several arguments can be transformed into function of a single argument:

$$
(x,y) \mapsto x^2 + y^2 \qquad \rightsquigarrow \qquad x \mapsto (y \mapsto x^2 + y^2) \qquad \qquad \text{(currying)}
$$

Functions can be applied to functions and can return functions (higher-order):

$$
(x \mapsto x)5 = 5 \qquad (x \mapsto x)(y \mapsto y^2) = y \mapsto y^2
$$

The untyped λ -calculus performs higher-order computation:

- everything is an anonymous function with a single argument (λ -calculus);
- functions can be applied to other functions without any restriction. (untyped)

The functions can be treated anonymously, that is without giving them a name:

$$
id(x) = x \quad \leadsto \quad x \mapsto x \qquad \qquad \mathsf{sq_sum}(x, y) = x^2 + y^2 \quad \leadsto \quad (x, y) \mapsto x^2 + y^2
$$

Functions of several arguments can be transformed into function of a single argument:

$$
(x,y) \mapsto x^2 + y^2 \qquad \rightsquigarrow \qquad x \mapsto (y \mapsto x^2 + y^2) \qquad \qquad \text{(currying)}
$$

Functions can be applied to functions and can return functions (higher-order):

$$
(x \mapsto x)5 = 5 \qquad (x \mapsto x)(y \mapsto y^2) = y \mapsto y^2
$$

The untyped λ -calculus performs higher-order computation:

• everything is an anonymous function with a single argument (λ -calculus);

• functions can be applied to other functions without any restriction. (untyped)

The functions can be treated anonymously, that is without giving them a name:

$$
id(x) = x \quad \leadsto \quad x \mapsto x \qquad \qquad \mathsf{sq_sum}(x, y) = x^2 + y^2 \quad \leadsto \quad (x, y) \mapsto x^2 + y^2
$$

Functions of several arguments can be transformed into function of a single argument:

$$
(x,y) \mapsto x^2 + y^2 \qquad \leadsto \qquad x \mapsto (y \mapsto x^2 + y^2) \qquad \qquad \text{(currying)}
$$

Functions can be applied to functions and can return functions (higher-order):

$$
(x \mapsto x)5 = 5 \qquad (x \mapsto x)(y \mapsto y^2) = y \mapsto y^2
$$

The untyped λ -calculus performs higher-order computation:

- **•** everything is an anonymous function with a single argument (λ -calculus);
- functions can be applied to other functions without any restriction. (untyped)

Terms: $s, t \coloneqq x$ (variable) $\lambda x. t$ (abstraction) st (application) Rmk: stu stands for $(st)u$.

The free variables of a term t are the variables that are not bound to a λ . Formally,

$$
fv(x) = \{x\} \qquad fv(st) = fv(s) \cup fv(t) \qquad fv(\lambda x.t) = fv(t) \setminus \{x\}
$$

Terms are identified up to renaming of bound variables (α -equivalence), e.g. $\lambda x.x = \lambda y.y$

(the term on the left is a β -redex) $(\lambda x.t)s \rightarrow_{\beta} t\{s/x\}$

Substitution $t{s/x}$ should be defined carefully to avoid capture of variables.

 $(\lambda x. yx) \{x/y\} \neq \lambda x. xx$ but $(\lambda x. yx) \{x/y\} = (\lambda z. yz) \{x/y\} = \lambda z. xz$

Terms: $s, t := x$ (variable) $\lambda x. t$ (abstraction) | st (application) Rmk: stu stands for $(st)u$.

The free variables of a term t are the variables that are not bound to a λ . Formally,

$$
fv(x) = \{x\} \qquad fv(st) = fv(s) \cup fv(t) \qquad fv(\lambda x.t) = fv(t) \setminus \{x\}
$$

Terms are identified up to renaming of bound variables (α -equivalence), e.g. $\lambda x.x = \lambda y.y$

(the term on the left is a β -redex) $(\lambda x.t)s \rightarrow_{\beta} t\{s/x\}$

Substitution $t{s/x}$ should be defined carefully to avoid capture of variables.

 $(\lambda x. yx) \{x/y\} \neq \lambda x. xx$ but $(\lambda x. yx) \{x/y\} = (\lambda z. yz) \{x/y\} = \lambda z. xz$

Terms: $s, t := x$ (variable) $\left| \lambda x. t \right|$ (abstraction) $\left| st \right|$ (application) Rmk: stu stands for $(st)u$.

The free variables of a term t are the variables that are not bound to a λ . Formally,

$$
fv(x) = \{x\} \qquad fv(st) = fv(s) \cup fv(t) \qquad fv(\lambda x.t) = fv(t) \setminus \{x\}
$$

Terms are identified up to renaming of bound variables (α -equivalence), e.g. $\lambda x.x = \lambda y.y$

(the term on the left is a β -redex) $(\lambda x.t)s \rightarrow_{\beta} t\{s/x\}$

Substitution $t{s/x}$ should be defined carefully to avoid capture of variables.

 $(\lambda x. yx) \{x/y\} \neq \lambda x. xx$ but $(\lambda x. yx) \{x/y\} = (\lambda z. yz) \{x/y\} = \lambda z. xz$

Terms: $s, t := x$ (variable) $\lambda x. t$ (abstraction) st (application) Rmk: stu stands for $(st)u$.

The free variables of a term t are the variables that are not bound to a λ . Formally,

$$
fv(x) = \{x\} \qquad fv(st) = fv(s) \cup fv(t) \qquad fv(\lambda x.t) = fv(t) \setminus \{x\}
$$

Terms are identified up to renaming of bound variables (α -equivalence), e.g. $\lambda x.x = \lambda y.y$

 $β$ -reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(the term on the left is a β -redex) $(\lambda x.t)s \rightarrow_{\beta} t\{s/x\}$

Substitution $t{s/x}$ should be defined carefully to avoid capture of variables.

 $(\lambda x. yx) \{x/y\} \neq \lambda x. xx$ but $(\lambda x. yx) \{x/y\} = (\lambda z. yz) \{x/y\} = \lambda z. xz$

Terms: $s, t := x$ (variable) $\lambda x. t$ (abstraction) st (application) Rmk: stu stands for $(st)u$.

The free variables of a term t are the variables that are not bound to a λ . Formally,

$$
fv(x) = \{x\} \qquad fv(st) = fv(s) \cup fv(t) \qquad fv(\lambda x.t) = fv(t) \setminus \{x\}
$$

Terms are identified up to renaming of bound variables (α -equivalence), e.g. $\lambda x.x = \lambda y.y$

 β -reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t): (the term on the left is a β -redex) $(\lambda x.t)s \rightarrow_{\beta} t\{s/x\}$

Substitution $t{s/x}$ should be defined carefully to avoid capture of variables.

 $(\lambda x. yx) \{x/y\} \neq \lambda x. xx$ but $(\lambda x. yx) \{x/y\} = (\lambda z. yz) \{x/y\} = \lambda z. xz$

Terms: $s, t := x$ (variable) $\lambda x. t$ (abstraction) st (application) Rmk: stu stands for $(st)u$.

The free variables of a term t are the variables that are not bound to a λ . Formally,

$$
fv(x) = \{x\} \qquad fv(st) = fv(s) \cup fv(t) \qquad fv(\lambda x.t) = fv(t) \setminus \{x\}
$$

Terms are identified up to renaming of bound variables (α -equivalence), e.g. $\lambda x.x = \lambda y.y$

 β -reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t): (the term on the left is a β -redex) $(\lambda x.t)s \rightarrow_{\beta} t\{s/x\}$

Substitution $t\{s/x\}$ should be defined carefully to avoid capture of variables.

 $(\lambda x. yx) \{x/y\} \neq \lambda x. xx$ but $(\lambda x. yx) \{x/y\} = (\lambda z. yz) \{x/y\} = \lambda z. xz$

The structure of a term

Rmk. Every term s can be written in a unique way as

 $s = \lambda x_1 \ldots \lambda x_n. h t_1 \ldots t_m$ with $m, n \in \mathbb{N}$

where h (the head of s) is either a variable (head variable) or a β -redex (head β -redex).

Compare this tree with a derivation in natural deduction. Similarities? Differences?

The structure of a term

Rmk. Every term s can be written in a unique way as

 $s = \lambda x_1 \ldots \lambda x_n. h t_1 \ldots t_m$ with $m, n \in \mathbb{N}$

where h (the head of s) is either a variable (head variable) or a β -redex (head β -redex).

Compare this tree with a derivation in natural deduction. Similarities? Differences?

The structure of a term

Rmk. Every term s can be written in a unique way as

 $s = \lambda x_1 \ldots \lambda x_n. h t_1 \ldots t_m$ with $m, n \in \mathbb{N}$

where h (the head of s) is either a variable (head variable) or a β -redex (head β -redex).

Compare this tree with a derivation in natural deduction. Similarities? Differences?

 $(\lambda x.t)s \rightarrow_{\beta} t\{s/x\}$

 $(\lambda x.t)s \rightarrow_{\beta} t\{s/x\}$

 $(\lambda x.t)s \rightarrow_{\beta} t\{s/x\}$

 $(\lambda x.t)s \rightarrow_{\beta} t\{s/x\}$

 $(\lambda x.t)s \rightarrow_{\beta} t\{s/x\}$

(Full) β -reduction \rightarrow _β fires a β -redex anywhere in a term. Formally,

$$
\frac{t\to \beta t'}{(\lambda x.t)s\to \beta t\{s/x\}} \quad \frac{t\to \beta t'}{\lambda x.t\to \beta \lambda x.t'} \quad \frac{t\to \beta t'}{ts\to \beta t's} \quad \frac{t\to \beta t'}{st\to \beta st'}
$$

Head β -reduction $\rightarrow_{h\beta}$ fires a β -redex only in the "head" of a term. Formally,

$$
\frac{t\rightarrow_{h\beta}t'}{(\lambda x.t)s\rightarrow_{h\beta}t\{s/x\}}\qquad \frac{t\rightarrow_{h\beta}t'}{\lambda x.t\rightarrow_{h\beta}\lambda x.t'}\qquad \frac{t\rightarrow_{h\beta}t'}{ts\rightarrow_{h\beta}t's}
$$

Leftmost-outermost β -reduction $\rightarrow_{\ell\beta}$ fires the leftmost-outermost β -redex in a term.

 $(\lambda x.t)s \rightarrow_{\ell\beta} t\{s/x\}$ $t\rightarrow_{\ell\beta} t'$ $\lambda x. t \rightarrow_{\ell \beta} \lambda x. t'$ $t \rightarrow_{\ell\beta} t'$ $t \neq \lambda x.r$ ts $\rightarrow_{\ell\beta}$ t's $t\rightarrow_{\ell\beta} t'$ s neutral st $\rightarrow_{\ell\beta}$ st $'$

where neutral means $s = xs_1 \ldots x_n$ and s_1, \ldots, s_n normal, for some $n \in \mathbb{N}$.

Rmk. $\rightarrow_{h\beta} \subsetneq \rightarrow_{f\beta} \subsetneq \rightarrow_{\beta}$. For strictness, consider $I = \lambda x.x$ and $t = (lx)(ly)(lz)$. Then, • $t \rightarrow_{h\beta} x(Iy)(Iz)$ but $t \nrightarrow_{h\beta} (Ix)y(Iz)$ and $t \nrightarrow_{h\beta} (Ix)(Iy)z$; \bullet x(ly)(lz) $\rightarrow_{\ell\beta}$ xy(lz) but x(ly)(lz) $\rightarrow_{\ell\beta}$ x(ly)z; • $t \rightarrow_{\beta} (k)(ly)z$ and $x(ly)(lz) \rightarrow_{\beta} x(ly)z$.

(Full) β -reduction \rightarrow _β fires a β -redex anywhere in a term. Formally,

$$
\frac{t\to_\beta t'}{(\lambda x.t)s\to_\beta t\{s/x\}} \quad \frac{t\to_\beta t'}{\lambda x.t\to_\beta \lambda x.t'} \quad \frac{t\to_\beta t'}{ts\to_\beta t's} \quad \frac{t\to_\beta t'}{st\to_\beta st'}
$$

Head *β*-reduction \rightarrow _{*hβ*} fires a *β*-redex only in the "head" of a term. Formally, $(\lambda x.t)s \rightarrow_{h\beta} t\{s/x\}$ $t\rightarrow_{h\beta} t'$ $\lambda x.t \rightarrow_{h\beta} \lambda x.t'$ $t \rightarrow_{h\beta} t'$ $t \neq \lambda x.r$ ts \rightarrow _{hβ} t's

Leftmost-outermost β -reduction $\rightarrow_{\ell\beta}$ fires the leftmost-outermost β -redex in a term.

 $(\lambda x.t)s \rightarrow_{\ell\beta} t\{s/x\}$ $t\rightarrow_{\ell\beta} t'$ $\lambda x. t \rightarrow_{\ell \beta} \lambda x. t'$ $t \rightarrow_{\ell\beta} t'$ $t \neq \lambda x.r$ ts $\rightarrow_{\ell\beta}$ t's $t\rightarrow_{\ell\beta} t'$ s neutral st $\rightarrow_{\ell\beta}$ st $'$

where neutral means $s = xs_1 \ldots x_n$ and s_1, \ldots, s_n normal, for some $n \in \mathbb{N}$.

Rmk. $\rightarrow_{h\beta} \subsetneq \rightarrow_{f\beta} \subsetneq \rightarrow_{\beta}$. For strictness, consider $I = \lambda x.x$ and $t = (lx)(ly)(lz)$. Then, • $t \rightarrow_{h\beta} x(Iy)(Iz)$ but $t \nrightarrow_{h\beta} (Ix)y(Iz)$ and $t \nrightarrow_{h\beta} (Ix)(Iy)z$; \bullet x(ly)(lz) $\rightarrow_{\ell\beta}$ xy(lz) but x(ly)(lz) $\rightarrow_{\ell\beta}$ x(ly)z; • $t \rightarrow_B (lx)(ly)z$ and $x(ly)(lz) \rightarrow_B x(ly)z$.

(Full) β -reduction \rightarrow _β fires a β -redex anywhere in a term. Formally,

$$
\frac{t\to_\beta t'}{(\lambda x. t)s\to_\beta t\{s/x\}} \quad \frac{t\to_\beta t'}{\lambda x. t\to_\beta \lambda x. t'} \quad \frac{t\to_\beta t'}{ts\to_\beta t's} \quad \frac{t\to_\beta t'}{st\to_\beta st'}
$$

Head β -reduction $\rightarrow_{h\beta}$ fires a β -redex only in the "head" of a term. Formally,

$$
\frac{t\rightarrow_{h\beta}t'}{(\lambda x.t)s\rightarrow_{h\beta}t\{s/x\}}\qquad\frac{t\rightarrow_{h\beta}t'}{\lambda x.t\rightarrow_{h\beta}\lambda x.t'}\qquad\frac{t\rightarrow_{h\beta}t'}{ts\rightarrow_{h\beta}t's}
$$

Leftmost-outermost β -reduction $\rightarrow_{\ell\beta}$ fires the leftmost-outermost β -redex in a term.

 $(\lambda x.t)s \rightarrow_{\ell\beta} t\{s/x\}$ $t\rightarrow_{\ell\beta} t'$ $\lambda x. t \rightarrow_{\ell \beta} \lambda x. t'$ $t \rightarrow_{\ell\beta} t'$ $t \neq \lambda x.r$ ts $\rightarrow_{\ell\beta}$ t's $t\rightarrow_{\ell\beta} t'$ s neutral st $\rightarrow_{\ell\beta}$ st $'$ where neutral means $s = xs_1 \ldots x_n$ and s_1, \ldots, s_n normal, for some $n \in \mathbb{N}$.

Rmk. $\rightarrow_{h\beta} \subsetneq \rightarrow_{f\beta} \subsetneq \rightarrow_{\beta}$. For strictness, consider $I = \lambda x.x$ and $t = (lx)(ly)(lz)$. Then, • $t \rightarrow_{h\beta} x(Iy)(Iz)$ but $t \nrightarrow_{h\beta} (Ix)y(Iz)$ and $t \nrightarrow_{h\beta} (Ix)(Iy)z$; \bullet x(ly)(lz) $\rightarrow_{\ell\beta}$ xy(lz) but x(ly)(lz) $\rightarrow_{\ell\beta}$ x(ly)z; • $t \rightarrow \beta$ $(k)(ly)z$ and $x(ly)(lz) \rightarrow \beta$ $x(ly)z$.

(Full) β -reduction \rightarrow _β fires a β -redex anywhere in a term. Formally,

$$
\frac{t\to_{\beta} t'}{(\lambda x. t)s\to_{\beta} t\{s/x\}} \quad \frac{t\to_{\beta} t'}{\lambda x. t\to_{\beta} \lambda x. t'} \quad \frac{t\to_{\beta} t'}{ts\to_{\beta} t's} \quad \frac{t\to_{\beta} t'}{st\to_{\beta} st'}
$$

Head β -reduction $\rightarrow_{h\beta}$ fires a β -redex only in the "head" of a term. Formally,

$$
\frac{t\rightarrow_{h\beta}t'}{(\lambda x.t)s\rightarrow_{h\beta}t\{s/x\}}\qquad\frac{t\rightarrow_{h\beta}t'}{\lambda x.t\rightarrow_{h\beta}\lambda x.t'}\qquad\frac{t\rightarrow_{h\beta}t'}{ts\rightarrow_{h\beta}t's}
$$

Leftmost-outermost β -reduction $\rightarrow_{\ell\beta}$ fires the leftmost-outermost β -redex in a term.

 $(\lambda x.t)s \rightarrow_{\ell\beta} t\{s/x\}$ $t\rightarrow_{\ell\beta} t'$ $\lambda x. t \rightarrow_{\ell \beta} \lambda x. t'$ $t \rightarrow_{\ell\beta} t'$ $t \neq \lambda x.r$ ts $\rightarrow_{\ell\beta}$ t's $t\rightarrow_{\ell\beta} t'$ s neutral st $\rightarrow_{\ell\beta}$ st $'$ where neutral means $s = x s_1 \dots x_n$ and s_1, \dots, s_n normal, for some $n \in \mathbb{N}$.

Rmk. $\rightarrow_{h\beta} \subsetneq \rightarrow_{f\beta} \subsetneq \rightarrow_{\beta}$. For strictness, consider $I = \lambda x.x$ and $t = (lx)(ly)(lz)$. Then, • $t \rightarrow_{h\beta} x(Iy)(Iz)$ but $t \nrightarrow_{h\beta} (Ix)y(Iz)$ and $t \nrightarrow_{h\beta} (Ix)(Iy)z$; \bullet x(ly)(lz) \rightarrow_{e} g xy(lz) but x(ly)(lz) \rightarrow_{e} g x(ly)z; • $t \rightarrow_B (lx)(ly)z$ and $x(ly)(lz) \rightarrow_B x(ly)z$.

(Full) β -reduction \rightarrow _β fires a β -redex anywhere in a term. Formally,

$$
\frac{t\to_\beta t'}{(\lambda x.t)s\to_\beta t\{s/x\}} \quad \frac{t\to_\beta t'}{\lambda x.t\to_\beta \lambda x.t'} \quad \frac{t\to_\beta t'}{ts\to_\beta t's} \quad \frac{t\to_\beta t'}{st\to_\beta st'}
$$

Head β -reduction $\rightarrow_{h\beta}$ fires a β -redex only in the "head" of a term. Formally,

$$
\frac{t\rightarrow_{h\beta}t'}{(\lambda x.t)s\rightarrow_{h\beta}t\{s/x\}}\qquad\frac{t\rightarrow_{h\beta}t'}{\lambda x.t\rightarrow_{h\beta}\lambda x.t'}\qquad\frac{t\rightarrow_{h\beta}t'}{ts\rightarrow_{h\beta}t's}
$$

Leftmost-outermost β -reduction $\rightarrow_{\ell\beta}$ fires the leftmost-outermost β -redex in a term.

 $(\lambda x.t)s \rightarrow_{\ell\beta} t\{s/x\}$ $t\rightarrow_{\ell\beta} t'$ $\lambda x. t \rightarrow_{\ell \beta} \lambda x. t'$ $t \rightarrow_{\ell\beta} t'$ $t \neq \lambda x.r$ ts $\rightarrow_{\ell\beta}$ t's $t\rightarrow_{\ell\beta} t'$ s neutral st $\rightarrow_{\ell\beta}$ st $'$

where neutral means $s = x s_1 \dots x_n$ and s_1, \dots, s_n normal, for some $n \in \mathbb{N}$.

Rmk. $\rightarrow_{h\beta} \subsetneq \rightarrow_{\beta} \subsetneq \rightarrow_{\beta}$. For strictness, consider $I = \lambda x.x$ and $t = (lx)(ly)(lz)$. Then, • $t \rightarrow_{h\beta} x(Iy)(Iz)$ but $t \not\rightarrow_{h\beta} (Ix)y(Iz)$ and $t \not\rightarrow_{h\beta} (Ix)(Iy)z$; \bullet x(Iv)(Iz) $\rightarrow_{\ell\beta}$ xv(Iz) but x(Iv)(Iz) $\nrightarrow_{\ell\beta}$ x(Iv)z; • $t \rightarrow_B (lx)(ly)z$ and $x(ly)(lz) \rightarrow_B x(ly)z$.

Rmk. Reductions $\rightarrow_{h\beta}$ and $\rightarrow_{\ell\beta}$ are deterministic (they can fire at most one redex). So:

If $t \rightarrow r$ s₁ and $t \rightarrow r$ s₂ then s₁ = s₂, for $r \in \{h\beta, \beta\}$.

Reduction \rightarrow _β is not deterministic, it chooses among several *β*-redexes to fire in a term.

Notation. $t \to^* s$ means that $t = t_0 \to t_1 \to \cdots \to t_n = s$ (in particular, $t = s$ for $n = 0$).

If $t\to^\ast_\beta s_1$ and $t\to^\ast_\beta s_2$, then there is a term r such that $s_1\to^\ast_\beta r$ and $s_2\to^\ast_\beta r$.

Def. Let $r \in \{\beta, \ell\beta, h\beta\}$. A term t is r-normal if there is no s such that $t \to r$ s.

If $t \to_{\beta}^* s_1$ and $t \to_{\beta}^* s_2$ where s_1 and s_2 are β -normal, then $s_1 = s_2$.

Proof. By confluence, $s_1 \rightarrow^*_{\beta} r$ and $s_2 \rightarrow^*_{\beta} r$ for some r. By normality, $s_1 = r = s_2$.

Rmk. Reductions $\rightarrow_{h\beta}$ and $\rightarrow_{\ell\beta}$ are deterministic (they can fire at most one redex). So:

If $t \rightarrow_r s_1$ and $t \rightarrow_r s_2$ then $s_1 = s_2$, for $r \in \{h\beta, \beta\}$.

Reduction \rightarrow _β is not deterministic, it chooses among several β -redexes to fire in a term.

Notation. $t \to^* s$ means that $t = t_0 \to t_1 \to \cdots \to t_n = s$ (in particular, $t = s$ for $n = 0$).

If $t\to^\ast_\beta s_1$ and $t\to^\ast_\beta s_2$, then there is a term r such that $s_1\to^\ast_\beta r$ and $s_2\to^\ast_\beta r$.

Def. Let $r \in \{\beta, \ell\beta, h\beta\}$. A term t is r-normal if there is no s such that $t \to r$ s.

Rmk. Reductions $\rightarrow_{h\beta}$ and $\rightarrow_{\ell\beta}$ are deterministic (they can fire at most one redex). So:

If $t \to r$ s₁ and $t \to r$ s₂ then s₁ = s₂, for $r \in \{h\beta, \beta\}$.

Reduction \rightarrow _β is not deterministic, it chooses among several β -redexes to fire in a term.

Notation. $t \to^* s$ means that $t = t_0 \to t_1 \to \cdots \to t_n = s$ (in particular, $t = s$ for $n = 0$). for some n∈N

Theorem (Confluence) If $t\to^\ast_\beta s_1$ and $t\to^\ast_\beta s_2$, then there is a term r such that $s_1\to^\ast_\beta r$ and $s_2\to^\ast_\beta r$.

Def. Let $r \in \{\beta, \ell\beta, h\beta\}$. A term t is r-normal if there is no s such that $t \to r$ s.

If $t \to_{\beta}^* s_1$ and $t \to_{\beta}^* s_2$ where s_1 and s_2 are β -normal, then $s_1 = s_2$.

Proof. By confluence, $s_1 \rightarrow^*_{\beta} r$ and $s_2 \rightarrow^*_{\beta} r$ for some r. By normality, $s_1 = r = s_2$.

G. Guerrieri (Sussex) λ[-calculus, simple & non-idempotent intersection types – Day 3](#page-0-0) ECI 2024/07/31 10 / 23

Rmk. Reductions $\rightarrow_{h\beta}$ and $\rightarrow_{\ell\beta}$ are deterministic (they can fire at most one redex). So:

If $t \rightarrow r$ s_1 and $t \rightarrow r$ s_2 then $s_1 = s_2$, for $r \in \{h\beta, l\beta\}$.

Reduction \rightarrow _β is not deterministic, it chooses among several β -redexes to fire in a term.

Notation. $t \to^* s$ means that $t = t_0 \to t_1 \to \cdots \to t_n = s$ (in particular, $t = s$ for $n = 0$). for some n∈N

Theorem (Confluence) If $t\to^\ast_\beta s_1$ and $t\to^\ast_\beta s_2$, then there is a term r such that $s_1\to^\ast_\beta r$ and $s_2\to^\ast_\beta r$.

Def. Let $r \in \{\beta, \ell\beta, h\beta\}$. A term t is r-normal if there is no s such that $t \to r$ s.

Normalization, strong normalization and divergence

Def. Let t be a term and $r \in \{\beta, \ell\beta, h\beta\}.$

- $\bullet\hspace{0.1cm}$ t is r-normalizing if there is a r-normal term s such that $t\rightarrow^{*}_{r}s.$
- **2** t is strongly r-normalizing if there is no $(t_i)_{i\in\mathbb{N}}$ such that $t = t_0$ and $t_i \rightarrow t_{i+1}$.

Ex. Every β-normal form is strongly β-normalizing. Let $\delta = \lambda x.xx$.

- δδ is not β -normalizing: if $\delta\delta \rightarrow_{\beta} t$ then $t = \delta\delta$.
- \bullet ($\lambda x. y$)(δδ) is β-normalizing (indeed ($\lambda x. y$)(δδ) \rightarrow _β y which is β-normal) but not strongly β -normalizing (indeed $(\lambda x.y)(\delta\delta) \rightarrow_{\beta} (\lambda x.y)(\delta\delta) \rightarrow_{\beta} \ldots$).

Rmk. Strong normalization implies normalization, but the converse fails, see above.

Rmk. Strong normalization and normalization coincide for $\rightarrow_{h\beta}$ and $\rightarrow_{l\beta}$, not for \rightarrow_{β} .

Rmk. In the simply typed λ -calculus, every term is β -normalizing (actually, strongly).

Normalization, strong normalization and divergence

- Def. Let t be a term and $r \in \{\beta, \ell\beta, h\beta\}.$
	- $\bullet\hspace{0.1cm}$ t is r-normalizing if there is a r-normal term s such that $t\rightarrow^{*}_{r}s.$
	- **2** t is strongly r-normalizing if there is no $(t_i)_{i\in\mathbb{N}}$ such that $t = t_0$ and $t_i \rightarrow t_{i+1}$.
- Ex. Every β -normal form is strongly β -normalizing. Let $\delta = \lambda x.xx$.
	- **•** δδ is not β -normalizing: if $\delta\delta \rightarrow_{\beta} t$ then $t = \delta\delta$.
	- ($\lambda x.y$)($\delta\delta$) is β -normalizing (indeed $(\lambda x.y)(\delta\delta) \rightarrow_{\beta} y$ which is β -normal) but not strongly β -normalizing (indeed $(\lambda x.y)(\delta\delta) \rightarrow_{\beta} (\lambda x.y)(\delta\delta) \rightarrow_{\beta} \ldots$).

Rmk. Strong normalization implies normalization, but the converse fails, see above.

Rmk. Strong normalization and normalization coincide for $\rightarrow_{h\beta}$ and $\rightarrow_{l\beta}$, not for \rightarrow_{β} .

Rmk. In the simply typed λ -calculus, every term is β -normalizing (actually, strongly).
Normalization, strong normalization and divergence

- Def. Let t be a term and $r \in \{\beta, \ell\beta, h\beta\}.$
	- $\bullet\hspace{0.1cm}$ t is r-normalizing if there is a r-normal term s such that $t\rightarrow^{*}_{r}s.$
	- **2** t is strongly r-normalizing if there is no $(t_i)_{i\in\mathbb{N}}$ such that $t = t_0$ and $t_i \rightarrow r t_{i+1}$.
- Ex. Every β -normal form is strongly β -normalizing. Let $\delta = \lambda x.xx$.
	- **•** δδ is not β -normalizing: if $\delta\delta \rightarrow_{\beta} t$ then $t = \delta\delta$.
	- (λx.y)(δδ) is β-normalizing (indeed (λx.y)(δδ) \rightarrow g y which is β-normal) but not strongly β -normalizing (indeed $(\lambda x.y)(\delta\delta) \rightarrow_{\beta} (\lambda x.y)(\delta\delta) \rightarrow_{\beta} \ldots$).

Rmk. Strong normalization implies normalization, but the converse fails, see above.

Rmk. Strong normalization and normalization coincide for $\rightarrow_{h\beta}$ and $\rightarrow_{l\beta}$, not for \rightarrow_{β} .

Rmk. In the simply typed λ -calculus, every term is β -normalizing (actually, strongly).

Normalization, strong normalization and divergence

- Def. Let t be a term and $r \in \{\beta, \ell\beta, h\beta\}.$
	- $\bullet\hspace{0.1cm}$ t is r-normalizing if there is a r-normal term s such that $t\rightarrow^{*}_{r}s.$
	- **2** t is strongly r-normalizing if there is no $(t_i)_{i\in\mathbb{N}}$ such that $t = t_0$ and $t_i \rightarrow r t_{i+1}$.
- Ex. Every β -normal form is strongly β -normalizing. Let $\delta = \lambda x.xx$.
	- **•** δδ is not β -normalizing: if $\delta\delta \rightarrow_{\beta} t$ then $t = \delta\delta$.
	- ($\lambda x.\mathsf{y}$)($\delta\delta$) is β -normalizing (indeed $(\lambda x.\mathsf{y})(\delta\delta) \to_\beta \mathsf{y}$ which is β -normal) but not strongly β -normalizing (indeed $(\lambda x.y)(\delta\delta) \rightarrow_{\beta} (\lambda x.y)(\delta\delta) \rightarrow_{\beta} \ldots$).

Rmk. Strong normalization implies normalization, but the converse fails, see above.

Rmk. Strong normalization and normalization coincide for $\rightarrow_{h\beta}$ and $\rightarrow_{l\beta}$, not for \rightarrow_{β} .

Rmk. In the simply typed λ -calculus, every term is β -normalizing (actually, strongly).

Normalization, strong normalization and divergence

- Def. Let t be a term and $r \in \{\beta, \ell\beta, h\beta\}.$
	- $\bullet\hspace{0.1cm}$ t is r-normalizing if there is a r-normal term s such that $t\rightarrow^{*}_{r}s.$
	- **2** t is strongly r-normalizing if there is no $(t_i)_{i\in\mathbb{N}}$ such that $t = t_0$ and $t_i \rightarrow r t_{i+1}$.
- Ex. Every β -normal form is strongly β -normalizing. Let $\delta = \lambda x.xx$.
	- **•** δδ is not β -normalizing: if $\delta\delta \rightarrow_{\beta} t$ then $t = \delta\delta$.
	- ($\lambda x.\mathsf{y}$)($\delta\delta$) is β -normalizing (indeed $(\lambda x.\mathsf{y})(\delta\delta) \to_\beta \mathsf{y}$ which is β -normal) but not strongly β -normalizing (indeed $(\lambda x.y)(\delta\delta) \rightarrow_{\beta} (\lambda x.y)(\delta\delta) \rightarrow_{\beta} \ldots$).

Rmk. Strong normalization implies normalization, but the converse fails, see above.

Rmk. Strong normalization and normalization coincide for $\rightarrow_{h\beta}$ and $\rightarrow_{l\beta}$, not for \rightarrow_{β} .

Rmk. In the simply typed λ -calculus, every term is β -normalizing (actually, strongly).

Fixed point combinator

Def. A fixed point of a term t is a term s such that $s \rightarrow^*_\beta ts$. A fixed point combinator is a term Y such that Yt is a fixed point of t, for every term t.

Let $A = \lambda a.\lambda f.f(aaf)$ and $\Theta = AA$. Then, Θ is a fixed point combinator.

Proof. $\Theta = (\lambda a.\lambda f.f(aaf))A \rightarrow_{h\beta} \lambda f.f(AAf) = \lambda f.f(\Theta f)$. Therefore, for every term t,

 $\Theta t \rightarrow_{h} \Omega (\lambda f.f(\Theta f))t \rightarrow_{h} \Omega t(\Theta t).$

Rmk. Θ is h β -normalizing but not β -normalizing.

Rmk. Θ is not a term of the simply typed λ -calculus, because of the subterm aa.

Rmk. Fixed point combinators such has Θ are crucial to represent recursive functions.

Fixed point combinator

Def. A fixed point of a term t is a term s such that $s \rightarrow^*_\beta ts$. A fixed point combinator is a term Y such that Yt is a fixed point of t, for every term t.

Proposition (Fixed point combinator)

Let $A = \lambda a.\lambda f.f(aaf)$ and $\Theta = AA$. Then, Θ is a fixed point combinator.

Proof. $\Theta = (\lambda a.\lambda f.f(aaf))A \rightarrow_{h\beta} \lambda f.f(AAf) = \lambda f.f(\Theta f)$. Therefore, for every term t, $\Theta t \rightarrow_{h\beta} (\lambda f.f(\Theta f))t \rightarrow_{h\beta} t(\Theta t).$

Rmk. Θ is h β -normalizing but not β -normalizing.

Rmk. Θ is not a term of the simply typed λ -calculus, because of the subterm aa.

Rmk. Fixed point combinators such has Θ are crucial to represent recursive functions.

Fixed point combinator

Def. A fixed point of a term t is a term s such that $s \rightarrow^*_\beta ts$. A fixed point combinator is a term Y such that Yt is a fixed point of t, for every term t.

Proposition (Fixed point combinator)

Let $A = \lambda a.\lambda f.f(aaf)$ and $\Theta = AA$. Then, Θ is a fixed point combinator.

Proof. $\Theta = (\lambda a.\lambda f.f(aaf))A \rightarrow_{h\beta} \lambda f.f(AAf) = \lambda f.f(\Theta f)$. Therefore, for every term t, $\Theta t \rightarrow_{h\beta} (\lambda f.f(\Theta f))t \rightarrow_{h\beta} t(\Theta t).$ П

Rmk. Θ is $h\beta$ -normalizing but not β -normalizing.

Rmk. Θ is not a term of the simply typed λ -calculus, because of the subterm aa.

Rmk. Fixed point combinators such has Θ are crucial to represent recursive functions.

Simply typed versus untyped

The simply typed λ -calculus (in Curry-style) is a restriction of the untyped λ -calculus \rightsquigarrow the latter just take terms and β -reduction from the former without checking typability.

But the untyped λ-calculus can also be seen as a "special case" of the simply type one. Consider that the simple types are generated by only one ground type X .

Def. Let \equiv be the least congruence on simple types generated by $X \equiv X \Rightarrow X$, that is:

$$
\overline{X \equiv X} \qquad \frac{A \equiv B}{B \equiv A} \qquad \frac{A \equiv B \quad B \equiv C}{A \equiv C} \qquad \overline{X \equiv X \Rightarrow X} \qquad \frac{A \equiv A' \quad B \equiv B'}{A \Rightarrow B \equiv A' \Rightarrow B'}
$$

Rmk. $A \equiv X$ for every simple type A (proof by induction on A) \sim All types are the same!

Every untyped term is typable in Curry's simply typed λ -calculus extended with the rule:

$$
\frac{\Gamma\vdash t:A\quad A\equiv B}{\Gamma\vdash t:B}
$$

Proof. By straightforward induction on t (exercise!).

Simply typed versus untyped

The simply typed λ -calculus (in Curry-style) is a restriction of the untyped λ -calculus \rightsquigarrow the latter just take terms and β -reduction from the former without checking typability.

But the untyped λ-calculus can also be seen as a "special case" of the simply type one. Consider that the simple types are generated by only one ground type X .

Def. Let \equiv be the least congruence on simple types generated by $X \equiv X \Rightarrow X$, that is:

$$
\frac{A \equiv B}{X \equiv X} \qquad \frac{A \equiv B}{B \equiv A} \qquad \frac{A \equiv B \quad B \equiv C}{A \equiv C} \qquad \frac{X \equiv X \Rightarrow X}{X \equiv X \Rightarrow X} \qquad \frac{A \equiv A' \quad B \equiv B'}{A \Rightarrow B \equiv A' \Rightarrow B'}
$$

Rmk. $A \equiv X$ for every simple type A (proof by induction on A) \rightsquigarrow All types are the same!

Every untyped term is typable in Curry's simply typed λ -calculus extended with the rule:

$$
\frac{\Gamma\vdash t:A\quad A\equiv B}{\Gamma\vdash t:B}
$$

Proof. By straightforward induction on t (exercise!).

Simply typed versus untyped

The simply typed λ -calculus (in Curry-style) is a restriction of the untyped λ -calculus \rightsquigarrow the latter just take terms and β -reduction from the former without checking typability.

But the untyped λ-calculus can also be seen as a "special case" of the simply type one. Consider that the simple types are generated by only one ground type X .

Def. Let \equiv be the least congruence on simple types generated by $X \equiv X \Rightarrow X$, that is:

$$
\overline{X \equiv X} \qquad \frac{A \equiv B}{B \equiv A} \qquad \frac{A \equiv B \quad B \equiv C}{A \equiv C} \qquad \overline{X \equiv X \Rightarrow X} \qquad \frac{A \equiv A' \quad B \equiv B'}{A \Rightarrow B \equiv A' \Rightarrow B'}
$$

Rmk. $A \equiv X$ for every simple type A (proof by induction on A) \rightsquigarrow All types are the same!

Proposition (Untyped = simply typed + recursive type identity \equiv)

Every untyped term is typable in Curry's simply typed λ -calculus extended with the rule:

$$
\frac{\Gamma\vdash t:A\quad A\equiv B}{\Gamma\vdash t:B}\equiv
$$

Proof. By straightforward induction on t (exercise!).

Outline

1 [The syntax and the operational semantics of the untyped](#page-2-0) λ -calculus

2 [Programming with the untyped](#page-45-0) λ -calculus

³ [Conclusion, exercises and bibliography](#page-80-0)

Encoding Booleans Goal. Encode propositional classical logic in the untyped λ -calculus.

We choose (arbitrarily) two terms to represents true T and false ⊥.

 $\top = \lambda x.\lambda y.x \qquad \bot = \lambda x.\lambda y.y$

Rmk. For every term s,t , we have \Box s $t\rightarrow^*_{h\beta}$ s and \bot s $t\rightarrow^*_{h\beta}$ $t.$

■ We look for a term to encode the NOT: <u>not T</u> $\rightarrow^*_\beta \bot$ and <u>not $\bot \rightarrow^*_\beta \top$ </u>.

 $not =$

 $\bullet\,$ To encode the AND: <u>and</u>s $t\to^*_\beta\,\overline{\bot}$ if $s=t=\overline{\bot}$, but <u>and</u>s $t\to^*_\beta\,\underline{\bot}$ if $s=\underline{\bot}$ or $t\!=\!\underline{\bot}.$

 $and =$

 \bullet To encode the OR: <u>or</u>s $t\to^*_\beta\bot$ if $s=t=\bot$, but <u>or</u>s $t\to^*_\beta\bot$ if $s=\top$ or $t=\top.$

 $or =$

 \bullet To encode the IF-THEN-ELSE: <u>if</u> r s $t\to^*_\beta$ s if $r=\bot$ and <u>if</u> r s $t\to^*_\beta t$ if $r=\bot.$ $if =$

Goal. Encode propositional classical logic in the untyped λ -calculus.

We choose (arbitrarily) two terms to represents true ⊤ and false ⊥.

 $\top = \lambda x.\lambda y.x \qquad \bot = \lambda x.\lambda y.y$

Rmk. For every term s,t , we have \Box s $t\rightarrow^*_{h\beta}$ s and \bot s $t\rightarrow^*_{h\beta}$ $t.$

■ We look for a term to encode the NOT: <u>not T</u> $\rightarrow^*_\beta \bot$ and <u>not $\bot \rightarrow^*_\beta \top$ </u>.

 $not =$

 $\bullet\,$ To encode the AND: <u>and</u>s $t\to^*_\beta\,\overline{\bot}$ if $s=t=\overline{\bot}$, but <u>and</u>s $t\to^*_\beta\,\underline{\bot}$ if $s=\underline{\bot}$ or $t\!=\!\underline{\bot}.$

$and =$

 \bullet To encode the OR: <u>or</u>s $t\to^*_\beta\bot$ if $s=t=\bot$, but <u>or</u>s $t\to^*_\beta\bot$ if $s=\top$ or $t=\top.$

 $or =$

 \bullet To encode the IF-THEN-ELSE: <u>if</u> r s $t\to^*_\beta$ s if $r=\bot$ and <u>if</u> r s $t\to^*_\beta t$ if $r=\bot.$ $if =$

Goal. Encode propositional classical logic in the untyped λ -calculus.

We choose (arbitrarily) two terms to represents true ⊤ and false ⊥.

$$
\underline{\top} = \lambda x. \lambda y. x \qquad \underline{\bot} = \lambda x. \lambda y. y
$$

Rmk. For every term s,t , we have \Box s $t\rightarrow^*_{h\beta}$ s and \bot s $t\rightarrow^*_{h\beta}$ $t.$

● We look for a term to encode the NOT: <u>not T</u> $\rightarrow^*_\beta \bot$ and <u>not $\bot \rightarrow^*_\beta \top$ </u>.

$not =$

 $\bullet\,$ To encode the AND: <u>and</u>s $t\to^*_\beta\,\overline{\bot}$ if $s=t=\overline{\bot}$, but <u>and</u>s $t\to^*_\beta\,\underline{\bot}$ if $s=\underline{\bot}$ or $t\!=\!\underline{\bot}.$ $and =$

 $\bullet\,$ To encode the OR: <u>or</u>s $t\to^*_\beta\,\underline\bot$ if $s=t=\underline\bot,$ but <u>or</u>s $t\to^*_\beta\,\underline\bot$ if $s=\underline\top$ or $t=\underline\top.$

 $or =$

 $if =$

 \bullet To encode the IF-THEN-ELSE: <u>if</u> r s $t\to^*_\beta$ s if $r=\bot$ and <u>if</u> r s $t\to^*_\beta t$ if $r=\bot.$

Goal. Encode propositional classical logic in the untyped λ -calculus.

We choose (arbitrarily) two terms to represents true ⊤ and false ⊥.

$$
\underline{\top} = \lambda x. \lambda y. x \qquad \underline{\bot} = \lambda x. \lambda y. y
$$

Rmk. For every term s,t , we have \Box s $t\rightarrow^*_{h\beta}$ s and \bot s $t\rightarrow^*_{h\beta}$ $t.$

● We look for a term to encode the NOT: <u>not T</u> $\rightarrow^*_\beta \bot$ and <u>not $\bot \rightarrow^*_\beta \top$ </u>.

$$
\underline{\textit{not}} = \lambda p.\textit{p}\underline{\perp}\underline{\top}
$$

 $\bullet\,$ To encode the AND: <u>and</u>s $t\to^*_\beta\,\overline{\bot}$ if $s=t=\overline{\bot}$, but <u>and</u>s $t\to^*_\beta\,\underline{\bot}$ if $s=\underline{\bot}$ or $t\!=\!\underline{\bot}.$ $and =$

 $\bullet\,$ To encode the OR: <u>or</u>s $t\to^*_\beta\,\underline\bot$ if $s=t=\underline\bot,$ but <u>or</u>s $t\to^*_\beta\,\underline\bot$ if $s=\underline\top$ or $t=\underline\top.$

 $or =$

 \bullet To encode the IF-THEN-ELSE: <u>if</u> r s $t\to^*_\beta$ s if $r=\bot$ and <u>if</u> r s $t\to^*_\beta t$ if $r=\bot.$ $if =$

Goal. Encode propositional classical logic in the untyped λ -calculus.

We choose (arbitrarily) two terms to represents true ⊤ and false ⊥.

$$
\underline{\top} = \lambda x. \lambda y. x \qquad \underline{\bot} = \lambda x. \lambda y. y
$$

Rmk. For every term s,t , we have \Box s $t\rightarrow^*_{h\beta}$ s and \bot s $t\rightarrow^*_{h\beta}$ $t.$

● We look for a term to encode the NOT: <u>not T</u> $\rightarrow^*_\beta \bot$ and <u>not $\bot \rightarrow^*_\beta \top$ </u>.

$$
\underline{\textit{not}} = \lambda p. p \underline{\perp} \underline{\top}
$$

 \bullet To encode the AND: <u>and</u>s $t\to^*_\beta\,\top$ if $s=t=\top$, but <u>and</u>s $t\to^*_\beta\bot$ if $s=\bot$ or $t=\bot.$ $and =$

 $\bullet\,$ To encode the OR: <u>or</u>s $t\to^*_\beta\,\underline\bot$ if $s=t=\underline\bot,$ but <u>or</u>s $t\to^*_\beta\,\underline\bot$ if $s=\underline\top$ or $t=\underline\top.$

 $or =$

 \bullet To encode the IF-THEN-ELSE: <u>if</u> r s $t\to^*_\beta$ s if $r=\bot$ and <u>if</u> r s $t\to^*_\beta t$ if $r=\bot.$

Goal. Encode propositional classical logic in the untyped λ -calculus.

We choose (arbitrarily) two terms to represents true ⊤ and false ⊥.

$$
\underline{\top} = \lambda x. \lambda y. x \qquad \underline{\bot} = \lambda x. \lambda y. y
$$

Rmk. For every term s,t , we have \Box s $t\rightarrow^*_{h\beta}$ s and \bot s $t\rightarrow^*_{h\beta}$ $t.$

● We look for a term to encode the NOT: <u>not T</u> $\rightarrow^*_\beta \bot$ and <u>not $\bot \rightarrow^*_\beta \top$ </u>.

$$
\underline{\textit{not}} = \lambda p. p \underline{\perp} \underline{\top}
$$

 \bullet To encode the AND: <u>and</u>s $t\to^*_\beta\,\top$ if $s=t=\top$, but <u>and</u>s $t\to^*_\beta\bot$ if $s=\bot$ or $t=\bot.$ and $= \lambda p.\lambda q.pqp$

 $\bullet\,$ To encode the OR: <u>or</u>s $t\to^*_\beta\,\underline\bot$ if $s=t=\underline\bot,$ but <u>or</u>s $t\to^*_\beta\,\underline\bot$ if $s=\underline\top$ or $t=\underline\top.$

 $or =$

 \bullet To encode the IF-THEN-ELSE: <u>if</u> r s $t\to^*_\beta$ s if $r=\bot$ and <u>if</u> r s $t\to^*_\beta t$ if $r=\bot.$

 $if =$

Goal. Encode propositional classical logic in the untyped λ -calculus.

We choose (arbitrarily) two terms to represents true ⊤ and false ⊥.

$$
\underline{\top} = \lambda x. \lambda y. x \qquad \underline{\bot} = \lambda x. \lambda y. y
$$

Rmk. For every term s,t , we have \Box s $t\rightarrow^*_{h\beta}$ s and \bot s $t\rightarrow^*_{h\beta}$ $t.$

● We look for a term to encode the NOT: <u>not T</u> $\rightarrow^*_\beta \bot$ and <u>not $\bot \rightarrow^*_\beta \top$ </u>.

$$
\underline{\textit{not}} = \lambda p. p \underline{\perp} \underline{\top}
$$

 \bullet To encode the AND: <u>and</u>s $t\to^*_\beta\,\top$ if $s=t=\top$, but <u>and</u>s $t\to^*_\beta\bot$ if $s=\bot$ or $t=\bot.$ and $= \lambda p.\lambda q.pqp$

 \bullet To encode the OR: <u>or</u>s $t\to^*_\beta\bot$ if $s=t=\bot$, but <u>or</u>s $t\to^*_\beta\bot$ if $s=\top$ or $t=\top.$

 $or =$

 \bullet To encode the IF-THEN-ELSE: <u>if</u> r s $t\to^*_\beta$ s if $r=\bot$ and <u>if</u> r s $t\to^*_\beta t$ if $r=\bot.$

 $if =$

Goal. Encode propositional classical logic in the untyped λ -calculus.

We choose (arbitrarily) two terms to represents true ⊤ and false ⊥.

$$
\underline{\top} = \lambda x. \lambda y. x \qquad \underline{\bot} = \lambda x. \lambda y. y
$$

Rmk. For every term s,t , we have \Box s $t\rightarrow^*_{h\beta}$ s and \bot s $t\rightarrow^*_{h\beta}$ $t.$

● We look for a term to encode the NOT: <u>not T</u> $\rightarrow^*_\beta \bot$ and <u>not $\bot \rightarrow^*_\beta \top$ </u>.

$$
\underline{\textit{not}} = \lambda p. p \underline{\perp} \underline{\top}
$$

 \bullet To encode the AND: <u>and</u>s $t\to^*_\beta\,\top$ if $s=t=\top$, but <u>and</u>s $t\to^*_\beta\bot$ if $s=\bot$ or $t=\bot.$ and $= \lambda p.\lambda q.pqp$

 \bullet To encode the OR: <u>or</u>s $t\to^*_\beta\bot$ if $s=t=\bot$, but <u>or</u>s $t\to^*_\beta\bot$ if $s=\top$ or $t=\top.$

$$
\underline{\textit{or}} = \lambda p.\lambda q.\textit{ppq}
$$

 \bullet To encode the IF-THEN-ELSE: <u>if</u> r s $t\to^*_\beta$ s if $r=\bot$ and <u>if</u> r s $t\to^*_\beta t$ if $r=\bot.$ $if =$

Goal. Encode propositional classical logic in the untyped λ -calculus.

We choose (arbitrarily) two terms to represents true ⊤ and false ⊥.

$$
\underline{\top} = \lambda x. \lambda y. x \qquad \underline{\bot} = \lambda x. \lambda y. y
$$

Rmk. For every term s,t , we have \Box s $t\rightarrow^*_{h\beta}$ s and \bot s $t\rightarrow^*_{h\beta}$ $t.$

● We look for a term to encode the NOT: <u>not T</u> $\rightarrow^*_\beta \bot$ and <u>not $\bot \rightarrow^*_\beta \top$ </u>.

$$
\underline{\textit{not}} = \lambda p. p \underline{\perp} \underline{\top}
$$

 \bullet To encode the AND: <u>and</u>s $t\to^*_\beta\,\top$ if $s=t=\top$, but <u>and</u>s $t\to^*_\beta\bot$ if $s=\bot$ or $t=\bot.$ and $= \lambda p.\lambda q.pqp$

 \bullet To encode the OR: <u>or</u>s $t\to^*_\beta\bot$ if $s=t=\bot$, but <u>or</u>s $t\to^*_\beta\bot$ if $s=\top$ or $t=\top.$

 $or = \lambda p.\lambda q.ppq$

 \bullet To encode the IF-THEN-ELSE: <u>if</u> r s $t\to^*_\beta$ s if $r=\top$ and <u>if</u> r s $t\to^*_\beta t$ if $r=\bot.$ $if =$

Goal. Encode propositional classical logic in the untyped λ -calculus.

We choose (arbitrarily) two terms to represents true ⊤ and false ⊥.

$$
\underline{\top} = \lambda x. \lambda y. x \qquad \underline{\bot} = \lambda x. \lambda y. y
$$

Rmk. For every term s,t , we have \Box s $t\rightarrow^*_{h\beta}$ s and \bot s $t\rightarrow^*_{h\beta}$ $t.$

● We look for a term to encode the NOT: <u>not T</u> $\rightarrow^*_\beta \bot$ and <u>not $\bot \rightarrow^*_\beta \top$ </u>.

$$
\underline{\textit{not}} = \lambda p. p \underline{\perp} \underline{\top}
$$

 \bullet To encode the AND: <u>and</u>s $t\to^*_\beta\,\top$ if $s=t=\top$, but <u>and</u>s $t\to^*_\beta\bot$ if $s=\bot$ or $t=\bot.$ and $= \lambda p.\lambda q.pqp$

 \bullet To encode the OR: <u>or</u>s $t\to^*_\beta\bot$ if $s=t=\bot$, but <u>or</u>s $t\to^*_\beta\bot$ if $s=\top$ or $t=\top.$

 $or = \lambda p.\lambda q.ppq$

 \bullet To encode the IF-THEN-ELSE: <u>if</u> r s $t\to^*_\beta$ s if $r=\top$ and <u>if</u> r s $t\to^*_\beta t$ if $r=\bot.$ $if = \lambda p.\lambda a.\lambda b.$ pab

Encoding arithmetic Goal. Encode the arithmetic in the untyped λ -calculus.

We choose a term *n* to represents any $n \in \mathbb{N}$ (Church numeral).

 $n = \lambda f \cdot \lambda x. f^n x = \lambda f \cdot \lambda x. f(f \dots)$ n times f $(x) \ldots$) (in particular, $\underline{0} = \lambda f. \lambda x. x$) Rmk. For every term s, t , we have <u>n</u> s $t \rightarrow_{h\beta}^* s^n t = \widehat{s(s \dots (s t) \dots)}$ (n-iterator). n times s

 \Box We look for a term to encode the successor: $\overline{\text{succ}}$ $\overline{n} \to^*_{\beta} \overline{n+1}.$

 \bullet To encode the addition: <u>add m n</u> \rightarrow^*_β <u>m + m</u>.

 $add =$

 $mult =$

3 To encode the multiplication: $\underline{mult} \underline{m} \underline{n} \rightarrow^*_{\beta} \underline{m} \times \underline{n}.$

 \bullet To encode the exponentiation: $pow_m_n \rightarrow^*_\beta m''.$

Goal. Encode the arithmetic in the untyped λ -calculus.

We choose a term \underline{n} to represents any $n \in \mathbb{N}$ (Church numeral).

$$
\underline{n} = \lambda f. \lambda x. f^{n}x = \lambda f. \lambda x. \underbrace{f(f \dots (f x) \dots)}_{n \text{ times } f} \quad \text{(in particular, } \underline{0} = \lambda f. \lambda x. x)
$$
\nRmk. For every term s, t , we have $\underline{n} s t \to_{h\beta}^{h} s^{n} t = \overbrace{s(s \dots (s t) \dots)}^{n \text{ times } s} \quad (n \text{-iterator}).$

 \Box We look for a term to encode the successor: $\overline{\text{succ}}$ $\overline{n} \to^*_{\beta} \overline{n+1}.$

 $succ =$

 \bullet To encode the addition: <u>add m n</u> \rightarrow^*_β <u>m + m</u>.

 $add =$

3 To encode the multiplication: $\underline{mult} \underline{m} \underline{n} \rightarrow^*_{\beta} \underline{m} \times \underline{n}.$

 $mult =$

 \bullet To encode the exponentiation: $pow_m_n \rightarrow^*_\beta m''.$

Goal. Encode the arithmetic in the untyped λ -calculus.

We choose a term \underline{n} to represents any $n \in \mathbb{N}$ (Church numeral).

$$
\underline{n} = \lambda f. \lambda x. f^{n}x = \lambda f. \lambda x. \underbrace{f(f \dots (f x) \dots)}_{n \text{ times } f} \quad \text{(in particular, } \underline{0} = \lambda f. \lambda x. x)
$$
\nRmk. For every term s, t , we have $\underline{n} s t \to_{h\beta}^{h} s^{n} t = \overbrace{s(s \dots (s t) \dots)}^{n \text{ times } s} \quad (n \text{-iterator}).$

 \bullet We look for a term to encode the successor: \overline{succ} $n\to^*_\beta$ $n+1.$

$succ =$

 \bullet To encode the addition: <u>add m n</u> \rightarrow^*_β <u>m + m</u>.

 $add =$

3 To encode the multiplication: $\underline{mult} \underline{m} \underline{n} \rightarrow^*_{\beta} \underline{m} \times \underline{n}.$

 $mult =$

 \bullet To encode the exponentiation: $pow_m_n \rightarrow^*_\beta m''.$

Goal. Encode the arithmetic in the untyped λ -calculus.

We choose a term \underline{n} to represents any $n \in \mathbb{N}$ (Church numeral).

$$
\underline{n} = \lambda f. \lambda x. f^{n}x = \lambda f. \lambda x. \underbrace{f(f \dots (f x) \dots)}_{n \text{ times } f} \quad \text{(in particular, } \underline{0} = \lambda f. \lambda x. x)
$$
\nRmk. For every term s, t , we have $\underline{n} s t \to_{h\beta}^{h} s^{n} t = \overbrace{s(s \dots (s t) \dots)}^{n \text{ times } s} \quad (n \text{-iterator}).$

 \bullet We look for a term to encode the successor: \overline{succ} $n\to^*_\beta$ $n+1.$ $succ = \lambda n.\lambda f.\lambda x.f(nfx)$

 \bullet To encode the addition: <u>add m n</u> \rightarrow^*_β <u>m + m</u>.

 $add =$

3 To encode the multiplication: $\underline{mult} \underline{m} \underline{n} \rightarrow^*_{\beta} \underline{m} \times \underline{n}.$

 $mult =$

 \bullet To encode the exponentiation: $pow_m_n \rightarrow^*_\beta m''.$

Goal. Encode the arithmetic in the untyped λ -calculus.

We choose a term *n* to represents any $n \in \mathbb{N}$ (Church numeral).

$$
\underline{n} = \lambda f. \lambda x. f^{n}x = \lambda f. \lambda x. \underbrace{f(f \dots (f x) \dots)}_{n \text{ times } f} \quad \text{(in particular, } \underline{0} = \lambda f. \lambda x. x)
$$
\nRmk. For every term s, t , we have $\underline{n} s t \to_{h\beta}^{h} s^{n} t = \overbrace{s(s \dots (s t) \dots)}^{n \text{ times } s} \quad (n \text{-iterator}).$

 \bullet We look for a term to encode the successor: \overline{succ} $n\to^*_\beta$ $n+1.$

$$
\underline{\text{succ}} = \lambda n. \lambda f. \lambda x. f(nfx)
$$

2 To encode the addition: <u>add m n</u> \rightarrow^*_{β} <u>m + m</u>.

$$
\underline{\mathit{add}} =
$$

3 To encode the multiplication: $\underline{mult} \underline{m} \underline{n} \rightarrow^*_{\beta} \underline{m} \times \underline{n}.$

 $mult =$

 \bullet To encode the exponentiation: $pow_m_n \rightarrow^*_\beta m''.$

Goal. Encode the arithmetic in the untyped λ -calculus.

We choose a term \underline{n} to represents any $n \in \mathbb{N}$ (Church numeral).

$$
\underline{n} = \lambda f. \lambda x. f^{n}x = \lambda f. \lambda x. \underbrace{f(f \dots (f x) \dots)}_{n \text{ times } f} \quad \text{(in particular, } \underline{0} = \lambda f. \lambda x. x)
$$
\nRmk. For every term s, t , we have $\underline{n} s t \to_{h\beta}^{h} s^{n} t = \overbrace{s(s \dots (s t) \dots)}^{n \text{ times } s} \quad (n \text{-iterator}).$

 \bullet We look for a term to encode the successor: \overline{succ} $n\to^*_\beta$ $n+1.$ $succ = \lambda n.\lambda f.\lambda x.f(nfx)$

• To encode the addition:
$$
\frac{\text{add} \, m \, n \rightarrow \frac{a}{\beta} \, m + m}{\text{add}} = \lambda m \cdot \lambda n \cdot \lambda f \cdot \lambda x \cdot m f(n \cdot k)
$$

3 To encode the multiplication: $\underline{mult} \underline{m} \underline{n} \rightarrow^*_{\beta} \underline{m} \times \underline{n}.$

 $mult =$

 \bullet To encode the exponentiation: $pow_m_n \rightarrow^*_\beta m''.$

Goal. Encode the arithmetic in the untyped λ -calculus.

We choose a term \underline{n} to represents any $n \in \mathbb{N}$ (Church numeral).

$$
\underline{n} = \lambda f. \lambda x. f^{n}x = \lambda f. \lambda x. \underbrace{f(f \dots (f x) \dots)}_{n \text{ times } f} \quad \text{(in particular, } \underline{0} = \lambda f. \lambda x. x)
$$
\nRmk. For every term s, t , we have $\underline{n} s t \to_{h\beta}^{h} s^{n} t = \overbrace{s(s \dots (s t) \dots)}^{n \text{ times } s} \quad (n \text{-iterator}).$

 \bullet We look for a term to encode the successor: \overline{succ} $n\to^*_\beta$ $n+1.$

$$
\underline{\text{succ}} = \lambda n. \lambda f. \lambda x. f(nfx)
$$

2 To encode the addition: <u>add m n</u> \rightarrow^*_{β} <u>m + m</u>. add = $\lambda m \cdot \lambda n \cdot \lambda f \cdot \lambda x \cdot m f(n f x)$

3 To encode the multiplication: $\frac{mult}{m} \underline{m} \rightarrow^*_{\beta} \underline{m} \times \underline{n}$.

 $mult =$

 \bullet To encode the exponentiation: $pow_m_n \rightarrow^*_\beta m''.$

Goal. Encode the arithmetic in the untyped λ -calculus.

We choose a term \underline{n} to represents any $n \in \mathbb{N}$ (Church numeral).

$$
\underline{n} = \lambda f. \lambda x. f^{n}x = \lambda f. \lambda x. \underbrace{f(f \dots (f x) \dots)}_{n \text{ times } f} \quad \text{(in particular, } \underline{0} = \lambda f. \lambda x. x)
$$
\nRmk. For every term s, t , we have $\underline{n} s t \to_{h\beta}^{h} s^{n} t = \overbrace{s(s \dots (s t) \dots)}^{n \text{ times } s} \quad (n \text{-iterator}).$

 \bullet We look for a term to encode the successor: \overline{succ} $n\to^*_\beta$ $n+1.$ $succ = \lambda n.\lambda f.\lambda x.f(nfx)$

• To encode the addition:
$$
\frac{\text{add } m \cdot n}{\text{add}} = \lambda m \cdot \lambda n \cdot \lambda f \cdot \lambda x \cdot m f(n \cdot x)
$$

3 To encode the multiplication: $\frac{mult}{m} \underline{m} \rightarrow^*_{\beta} \underline{m} \times \underline{n}$.

 $mult = \lambda m.\lambda n.\lambda f.m(nf)$

 \bullet To encode the exponentiation: $pow_m_n \rightarrow^*_\beta m''.$

Goal. Encode the arithmetic in the untyped λ -calculus.

We choose a term *n* to represents any $n \in \mathbb{N}$ (Church numeral).

$$
\underline{n} = \lambda f. \lambda x. f^{n}x = \lambda f. \lambda x. \underbrace{f(f \dots (f x) \dots)}_{n \text{ times } f} \quad \text{(in particular, } \underline{0} = \lambda f. \lambda x. x)
$$
\nRmk. For every term s, t , we have $\underline{n} s t \to_{h\beta}^{h} s^{n} t = \overbrace{s(s \dots (s t) \dots)}^{n \text{ times } s} \quad (n \text{-iterator}).$

 \bullet We look for a term to encode the successor: \overline{succ} $n\to^*_\beta$ $n+1.$ $succ = \lambda n.\lambda f.\lambda x.f(nfx)$

2 To encode the addition: <u>add m n</u> \rightarrow^*_{β} <u>m + m</u>. add = λ m. λ n. λ f. λ x.mf(nfx)

3 To encode the multiplication: $\frac{mult}{m} \underline{m} \rightarrow^*_{\beta} \underline{m} \times \underline{n}$.

 $mult = \lambda m.\lambda n.\lambda f.m(nf)$

• To encode the exponentiation: $pow \underline{m} \underline{n} \rightarrow^*_{\beta} \underline{m}^n$.

Goal. Encode the arithmetic in the untyped λ -calculus.

We choose a term *n* to represents any $n \in \mathbb{N}$ (Church numeral).

$$
\underline{n} = \lambda f. \lambda x. f^{n}x = \lambda f. \lambda x. \underbrace{f(f \dots (f x) \dots)}_{n \text{ times } f} \quad \text{(in particular, } \underline{0} = \lambda f. \lambda x. x)
$$
\nRmk. For every term s, t , we have $\underline{n} s t \to_{h\beta}^{h} s^{n} t = \overbrace{s(s \dots (s t) \dots)}^{n \text{ times } s} \quad (n \text{-iterator}).$

 \bullet We look for a term to encode the successor: \overline{succ} $n\to^*_\beta$ $n+1.$ $succ = \lambda n.\lambda f.\lambda x.f(nfx)$

2 To encode the addition: <u>add m n</u> \rightarrow^*_{β} <u>m + m</u>. add = λ m. λ n. λ f. λ x.mf(nfx)

3 To encode the multiplication: $\frac{mult}{m} \underline{m} \rightarrow^*_{\beta} \underline{m} \times \underline{n}$.

 $mult = \lambda m \cdot \lambda n \cdot \lambda f$. m(nf)

• To encode the exponentiation: $pow \underline{m} \underline{n} \rightarrow^*_{\beta} \underline{m}^n$.

$$
pow = \lambda m.\lambda n.nm
$$

We can encode the functions: $iszero : \mathbb{N} \to \{\perp,\top\}$ testing if a natural number is 0 or not, and the predecessor pred: $\mathbb{N} \to \mathbb{N}$ such that pred(0) = 0 and pred(n + 1) = n.

iszero =
$$
\lambda n.n(\lambda x.\perp)\perp
$$
 iszero $n \rightarrow \stackrel{*}{\beta} \begin{cases} \perp & \text{if } n = 0 \\ \perp & \text{otherwise.} \end{cases}$ pred = ...

Question. How can the λ-calculus represent the factorial (typical recursive function)?

$$
fact(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \times fact(n-1) & \text{otherwise.} \end{cases}
$$

Let us rewrite the definition in a λ -calculus-like style, using IF-THEN-ELSE and mult:

We can encode the functions: $iszero : \mathbb{N} \to \{\perp,\top\}$ testing if a natural number is 0 or not, and the predecessor pred: $\mathbb{N} \to \mathbb{N}$ such that pred(0) = 0 and pred(n + 1) = n.

iszero =
$$
\lambda n.n(\lambda x.\perp)\perp
$$
 iszero $n \rightarrow \stackrel{*}{\beta} \begin{cases} \perp & \text{if } n = 0 \\ \perp & \text{otherwise.} \end{cases}$ pred = ...

Question. How can the λ -calculus represent the factorial (typical recursive function)?

$$
fact(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \times fact(n-1) & \text{otherwise.} \end{cases}
$$

Let us rewrite the definition in a λ -calculus-like style, using IF-THEN-ELSE and mult:

fact should satisfies the equation: $\frac{fact}{m} = \frac{if (iszero n)}{1 (mult n (fact (pred n)))}$ $F \coloneqq \lambda f \cdot \lambda n$. if (iszero n) 1 (mult n (f (pred n))) $\frac{fact}{f} := YF \rightarrow^*_\beta F(YF) = F \frac{fact}{f} \rightarrow_\beta \lambda n.\text{if}(\text{iszero n}) 1 \text{ (mult n (fact (pred n))})$

We can encode the functions: $iszero : \mathbb{N} \to \{\perp,\top\}$ testing if a natural number is 0 or not, and the predecessor pred: $\mathbb{N} \to \mathbb{N}$ such that pred(0) = 0 and pred(n + 1) = n.

iszero =
$$
\lambda n.n(\lambda x.\perp)\perp
$$
 iszero $n \to \stackrel{*}{\beta} \begin{cases} \perp & \text{if } n = 0 \\ \perp & \text{otherwise.} \end{cases}$ pred = ...

Question. How can the λ -calculus represent the factorial (typical recursive function)?

$$
fact(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \times fact(n-1) & \text{otherwise.} \end{cases}
$$

Let us rewrite the definition in a λ -calculus-like style, using IF-THEN-ELSE and mult:

fact should satisfies the equation: $\frac{fact}{} = \lambda n \cdot \frac{if (iszero n)}{1}$ (mult n (fact (pred n))) $F \coloneqq \lambda f \cdot \lambda n$. if (iszero n) 1 (mult n (f (pred n))) $\frac{fact}{fact} := YF \rightarrow^*_{\beta} F(YF) = F \frac{fact}{fact} \rightarrow_{\beta} \lambda n.\text{if} (\frac{iszero}{f} n) \underline{1} (\frac{mult}{fact} (\text{pred } n)))$

We can encode the functions: $iszero : \mathbb{N} \to \{\perp,\top\}$ testing if a natural number is 0 or not, and the predecessor pred: $\mathbb{N} \to \mathbb{N}$ such that pred(0) = 0 and pred(n + 1) = n.

iszero =
$$
\lambda n.n(\lambda x.\perp)\perp
$$
 iszero $n \to \stackrel{*}{\beta} \begin{cases} \perp & \text{if } n = 0 \\ \perp & \text{otherwise.} \end{cases}$ pred = ...

Question. How can the λ -calculus represent the factorial (typical recursive function)?

$$
fact(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \times fact(n-1) & \text{otherwise.} \end{cases}
$$

Let us rewrite the definition in a λ -calculus-like style, using IF-THEN-ELSE and mult:

fact should satisfies the equation: $\frac{fact}{} = \lambda n \cdot \frac{if (iszero n)}{1}$ (mult n (fact (pred n))) $F := \lambda f \cdot \lambda n \cdot \text{if}(\text{iszero } n) 1 \text{ (mult } n \text{ (} f \text{ (pred } n))$ $\frac{fact}{fact} := YF \rightarrow^*_{\beta} F(YF) = F \frac{fact}{fact} \rightarrow_{\beta} \lambda n.\text{if} (\frac{iszero}{f} n) \underline{1} (\frac{mult}{fact} (\text{pred } n)))$

We can encode the functions: $iszero : \mathbb{N} \to \{\perp,\top\}$ testing if a natural number is 0 or not, and the predecessor pred: $\mathbb{N} \to \mathbb{N}$ such that pred(0) = 0 and pred(n + 1) = n.

iszero =
$$
\lambda n.n(\lambda x.\perp)\perp
$$
 iszero $n \to \stackrel{*}{\beta} \begin{cases} \perp & \text{if } n = 0 \\ \perp & \text{otherwise.} \end{cases}$ pred = ...

Question. How can the λ -calculus represent the factorial (typical recursive function)?

$$
fact(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \times fact(n-1) & \text{otherwise.} \end{cases}
$$

Let us rewrite the definition in a λ -calculus-like style, using IF-THEN-ELSE and mult:

fact should satisfies the equation: $\frac{fact}{} = \lambda n \cdot \frac{if (iszero n)}{1}$ (mult n (fact (pred n))) $F := \lambda f \cdot \lambda n$. if (iszero n) 1 (mult n (f (pred n))) <u>fact</u> = $YF \rightarrow^*_{\beta} F(YF) = F$ <u>fact</u> → $_{\beta} \lambda n$.<u>if (iszero</u> n) 1 (mult n (fact (pred n)))

We can encode the functions: $iszero : \mathbb{N} \to \{\perp,\top\}$ testing if a natural number is 0 or not, and the predecessor pred: $\mathbb{N} \to \mathbb{N}$ such that pred(0) = 0 and pred(n + 1) = n.

iszero =
$$
\lambda n.n(\lambda x.\perp)\perp
$$
 iszero $n \to \stackrel{*}{\beta} \begin{cases} \perp & \text{if } n = 0 \\ \perp & \text{otherwise.} \end{cases}$ pred = ...

Question. How can the λ -calculus represent the factorial (typical recursive function)?

$$
fact(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \times fact(n-1) & \text{otherwise.} \end{cases}
$$

Let us rewrite the definition in a λ -calculus-like style, using IF-THEN-ELSE and mult:

fact should satisfies the equation: $\frac{fact}{} = \lambda n \cdot \frac{if (iszero n)}{1} (\frac{mult}{n} (\frac{fact}{} (\text{pred } n)))$ $F := \lambda f \cdot \lambda n \cdot \text{if}(\text{iszero } n) 1 \text{ (mult } n \text{ (} f \text{ (pred } n))$ $\frac{fact}{fact} := YF \rightarrow^*_{\beta} F(YF) = F \frac{fact}{f} \rightarrow_{\beta} \lambda n.\text{if} (\text{iszero n}) 1 \text{ (mult n} (\text{fact} (pred n)))$
Def. Let $f: \mathbb{N}^n \to \mathbb{N}$ be partial. A term Φ represents f when, for all $k_1, \ldots, k_n \in \mathbb{N}$: **1** if f (k_1, \ldots, k_n) is undefined, then Φ $k_1 \ldots k_n$ is not $h\beta$ -normalizing; **3** if $f(k_1, ..., k_n) = k \in \mathbb{N}$, then $\Phi \underline{k_1} ... \underline{k_n} \rightarrow_{\beta}^* \underline{k}$.

Every partial recursive function $f: \mathbb{N}^n \to \mathbb{N}$ is representable by a term in the λ -calculus.

Rmk. According to Church's thesis, the λ -calculus can represent everything is computable.

Rmk. If Φ represents a partial function $f: \mathbb{N}^k \to \mathbb{N}$, then Φ could have whatever behavior when applied to arguments t_1, \ldots, t_k that are not Church numerals.

Def. Let $f: \mathbb{N}^n \to \mathbb{N}$ be partial. A term Φ represents f when, for all $k_1, \ldots, k_n \in \mathbb{N}$: **1** if $f(k_1, \ldots, k_n)$ is undefined, then $\Phi k_1 \ldots k_n$ is not $h\beta$ -normalizing; **3** if $f(k_1, ..., k_n) = k \in \mathbb{N}$, then $\Phi \underline{k_1} ... \underline{k_n} \rightarrow_{\beta}^* \underline{k}$.

Theorem (Representability)

Every partial recursive function $f: \mathbb{N}^n \to \mathbb{N}$ is representable by a term in the λ -calculus.

Rmk. According to Church's thesis, the λ -calculus can represent everything is computable.

Rmk. If Φ represents a partial function $f: \mathbb{N}^k \to \mathbb{N}$, then Φ could have whatever behavior when applied to arguments t_1, \ldots, t_k that are not Church numerals.

Def. Let $f: \mathbb{N}^n \to \mathbb{N}$ be partial. A term Φ represents f when, for all $k_1, \ldots, k_n \in \mathbb{N}$: **1** if $f(k_1, \ldots, k_n)$ is undefined, then $\Phi k_1 \ldots k_n$ is not $h\beta$ -normalizing; **3** if $f(k_1, ..., k_n) = k \in \mathbb{N}$, then $\Phi \underline{k_1} ... \underline{k_n} \rightarrow_{\beta}^* \underline{k}$.

Theorem (Representability)

Every partial recursive function $f: \mathbb{N}^n \to \mathbb{N}$ is representable by a term in the λ -calculus.

Rmk. According to Church's thesis, the λ -calculus can represent everything is computable.

Rmk. If Φ represents a partial function $f\colon\mathbb{N}^k\to\mathbb{N}$, then Φ could have whatever behavior when applied to arguments t_1, \ldots, t_k that are not Church numerals.

Def. Let $f: \mathbb{N}^n \to \mathbb{N}$ be partial. A term Φ represents f when, for all $k_1, \ldots, k_n \in \mathbb{N}$: **1** if $f(k_1, \ldots, k_n)$ is undefined, then $\Phi k_1 \ldots k_n$ is not $h\beta$ -normalizing; **3** if $f(k_1, ..., k_n) = k \in \mathbb{N}$, then $\Phi \underline{k_1} ... \underline{k_n} \rightarrow_{\beta}^* \underline{k}$.

Theorem (Representability)

Every partial recursive function $f: \mathbb{N}^n \to \mathbb{N}$ is representable by a term in the λ -calculus.

Rmk. According to Church's thesis, the λ -calculus can represent everything is computable.

Rmk. If Φ represents a partial function $f\colon\mathbb{N}^k\to\mathbb{N}$, then Φ could have whatever behavior when applied to arguments t_1, \ldots, t_k that are not Church numerals.

λ -calculus = kernel of all functional programming languages (Haskell, OCaml, Lisp, ...).

• An abstraction $\lambda x. t$ is an anonymous function fun $x \rightarrow t$ in OCaml.

A application tu (resp. variable x) is an application tu (resp. variable x) in OCaml.

OCaml imposes eager evaluation: evaluate arguments before applying the function. \bullet In the λ -calculus the order of evaluation is irrelevant (because of confluence).

 λ -calculus = kernel of all functional programming languages (Haskell, OCaml, Lisp, ...).

- An abstraction $\lambda x.t$ is an anonymous function fun $x \rightarrow t$ in OCaml.
- A application tu (resp. variable x) is an application tu (resp. variable x) in OCaml.

OCaml imposes eager evaluation: evaluate arguments before applying the function. \bullet In the λ -calculus the order of evaluation is irrelevant (because of confluence).

 λ -calculus = kernel of all functional programming languages (Haskell, OCaml, Lisp, ...).

- An abstraction $\lambda x.t$ is an anonymous function fun $x \rightarrow t$ in OCaml.
- A application tu (resp. variable x) is an application tu (resp. variable x) in OCaml.

OCaml imposes eager evaluation: evaluate arguments before applying the function. \bullet In the λ -calculus the order of evaluation is irrelevant (because of confluence).

 λ -calculus = kernel of all functional programming languages (Haskell, OCaml, Lisp, ...).

- An abstraction $\lambda x.t$ is an anonymous function fun $x \rightarrow t$ in OCaml.
- A application tu (resp. variable x) is an application tu (resp. variable x) in OCaml.

OCaml imposes eager evaluation: evaluate arguments before applying the function.

 \bullet In the λ -calculus the order of evaluation is irrelevant (because of confluence).

Outline

1 [The syntax and the operational semantics of the untyped](#page-2-0) λ -calculus

2 [Programming with the untyped](#page-45-0) λ -calculus

³ [Conclusion, exercises and bibliography](#page-80-0)

• Syntax and operational semantics of the untyped λ -calculus.

- **2** Different notions of $β$ -reduction (full, leftmost, head).
- **3** Different notions of normalization (strong or not).
- \bullet How to encode arithmetic and propositional classical logic in the untyped λ -calculus.
- \bullet Representability of every partial recursive function in the untyped λ -calculus

- **•** Syntax and operational semantics of the untyped λ -calculus.
- **2** Different notions of β -reduction (full, leftmost, head).
- **3** Different notions of normalization (strong or not).
- \bullet How to encode arithmetic and propositional classical logic in the untyped λ -calculus.
- \bullet Representability of every partial recursive function in the untyped λ -calculus

- **•** Syntax and operational semantics of the untyped λ -calculus.
- **2** Different notions of β -reduction (full, leftmost, head).
- **3** Different notions of normalization (strong or not).
- \bullet How to encode arithmetic and propositional classical logic in the untyped λ -calculus.
- **•** Representability of every partial recursive function in the untyped λ -calculus

- **•** Syntax and operational semantics of the untyped λ -calculus.
- **2** Different notions of β -reduction (full, leftmost, head).
- **3** Different notions of normalization (strong or not).
- \bullet How to encode arithmetic and propositional classical logic in the untyped λ -calculus.
- Representability of every partial recursive function in the untyped λ -calculus

- **•** Syntax and operational semantics of the untyped λ -calculus.
- **2** Different notions of β -reduction (full, leftmost, head).
- **3** Different notions of normalization (strong or not).
- \bullet How to encode arithmetic and propositional classical logic in the untyped λ -calculus.
- **6** Representability of every partial recursive function in the untyped λ -calculus

- **•** Syntax and operational semantics of the untyped λ -calculus.
- **2** Different notions of β -reduction (full, leftmost, head).
- **3** Different notions of normalization (strong or not).
- \bullet How to encode arithmetic and propositional classical logic in the untyped λ -calculus.
- **6** Representability of every partial recursive function in the untyped λ -calculus

Exercises

O Write the tree representation of following terms (as on p. 7), specifying $m, n \in \mathbb{N}$ and the subtrees corresponding to h, t_1, \ldots, t_m : x, I, $\lambda x. Ixx$, $\lambda x. I(xx)$, $\lambda x.xxx(xx)$, II.

 \bullet The β -reduction graph of a term t is the directed graph with nodes $\{s \mid t \rightarrow^*_\beta s\}$ and with edges the single β -steps. Draw the β -reduction graph of the following terms:

- $\Delta x.$ Ixx)($\lambda x.$ Ixx) where $I = \lambda z. z$. $\delta \delta$ where $\delta = \lambda x.xx$.
	- Θ ($\lambda x. I(xx)$)($\lambda x. I(xx)$). \bullet $(11)(111)$.
- $\delta_3 \delta_3$ where $\delta_3 = \lambda x. x x x$.
- **6** $\pi \pi \pi$ where $\pi = \lambda x. \lambda y. xyy$.
- **3** Consider the η -reduction \rightarrow _n defined below, which can be fired everywhere in a term. Prove that \rightarrow_n is strongly normalizing.

$$
\lambda x. t x \rightarrow_{\eta} t \quad \text{if } x \notin \text{fv}(t)
$$

- **•** Prove rigorously the remark and proposition on p. 13.
- \bullet Find a term r such that $rt\rightarrow^*_{\beta}t(tr)$ for every t (Hint: use fixpoint combinator $\Theta).$
- \bullet Prove that $\frac{\mathsf{succ}\;n\to_\beta^*}n+1$ for all $n\in\mathbb{N}.$ and $\frac{\mathsf{add}\;m\;n\to_\beta^*}m+n$ for all $m,n\in\mathbb{N}.$
- \bullet Find terms t,t',s,s' such that $t =_{\alpha} t',\, s =_{\alpha} s'$ and $t[s/x] \neq_{\alpha} t'[s'/x]$ (where $=_\alpha$ is α -equivalence and t[s/x] is naïve substitution, see p. 10 on Day 2 slides).
- **E** Define a term *add* that represents the addition of natural numbers starting from its inductive definition below (Hint: Use the fixpoint combinator Θ , pred, iszero).
- **•** Define a term *mul* that represents the multiplication of natural numbers starting from its inductive definition below (Hint: Use fixpoint combinator Θ, pred, iszero).

$$
m + n = \begin{cases} m & \text{if } n = 0 \\ m + (n - 1) & \text{otherwise}; \end{cases} \qquad m \times n = \begin{cases} 0 & \text{if } n = 0 \\ m + m \times (n - 1) & \text{otherwise}. \end{cases}
$$

G. Guerrieri (Sussex) λ -calculus, simple & non-idempotent intersection types - Day 3 \leq 22 (23/07/31 22/23)

Bibliography

- For more about the untyped λ -calculus:
	- Jean-Louis Krivine. Lambda-Calculus. Types and Models. Ellis Horwood. 1990. [Chapters 1-2] <https://www.irif.fr/~krivine/articles/Lambda.pdf>

- Peter Selinger. Lecture Notes on the Lambda Calculus. vol. 0804, Department of Mathematics and Statistics, University of Ottawa. 2008 [Chapters 2-3] <http://www.mathstat.dal.ca/~selinger/papers/lambdanotes.pdf>
- **Henk P. Barendregt. The Lambda-Calculus. Its Syntax and Semantics. Studies** in Logic and the Foundations of Mathematics, vol. 103, North Holland, 1984. [Chapters 2-3, 6, 8]
- For an elegant proof of the confluence of β -reduction:
	- Masako Takahashi. Parallel Reductions in λ -Calculus. Information and Computation, vol. 118, issue 1, pages 120-127. 1995. <https://doi.org/10.1006/inco.1995.1057>