The λ -calculus: from simple types to non-idempotent intersection types

Day 3: The untyped λ -calculus

Giulio Guerrieri

Department of Informatics, University of Sussex (Brighton, UK)

In g.guerrieri@sussex.ac.uk

This://pageperso.lis-lab.fr/~giulio.guerrieri/

37th Escuela de Ciencias Informáticas (ECI 2024) Buenos Aires (Argentina), 31 July 2024

Outline

1 The syntax and the operational semantics of the untyped λ -calculus

2 Programming with the untyped λ -calculus

3 Conclusion, exercises and bibliography

Outline

1 The syntax and the operational semantics of the untyped λ -calculus

 $oxed{2}$ Programming with the untyped λ -calculus

3 Conclusion, exercises and bibliography

Term and β -reduction of the simply typed λ -calculus can be defined without types. Let us explore the word of the λ -calculus without types.

- What do we gain?
- What do we lose?

We can freely apply s to t to get st, without requiring $s: A \Rightarrow B$ or t: A.

- Why is there no A such that $\vdash \lambda x.xx : A$ is derivable?
- $(\lambda x.xx)(\lambda x.xx) \rightarrow_{\beta} (xx)\{\lambda x.xx/x\} = (\lambda x.xx)(\lambda x.xx) \rightarrow_{\beta} \dots$ (normalization fails).

Term and β -reduction of the simply typed λ -calculus can be defined without types. Let us explore the word of the λ -calculus without types.

- What do we gain?
- What do we lose?

We can freely apply s to t to get st, without requiring $s:A\Rightarrow B$ or t:A.

- Why is there no A such that $\vdash \lambda x.xx : A$ is derivable?
- $(\lambda x.xx)(\lambda x.xx) \rightarrow_{\beta} (xx)\{\lambda x.xx/x\} = (\lambda x.xx)(\lambda x.xx) \rightarrow_{\beta} \dots$ (normalization fails).

Term and β -reduction of the simply typed λ -calculus can be defined without types. Let us explore the word of the λ -calculus without types.

- What do we gain?
- What do we lose?

We can freely apply s to t to get st, without requiring $s: A \Rightarrow B$ or t: A.

- Why is there no A such that $\vdash \lambda x.xx : A$ is derivable?
- $(\lambda x.xx)(\lambda x.xx) \rightarrow_{\beta} (xx)\{\lambda x.xx/x\} = (\lambda x.xx)(\lambda x.xx) \rightarrow_{\beta} \dots$ (normalization fails).

Term and β -reduction of the simply typed λ -calculus can be defined without types. Let us explore the word of the λ -calculus without types.

- What do we gain?
- What do we lose?

We can freely apply s to t to get st, without requiring $s: A \Rightarrow B$ or t: A.

- Why is there no A such that $\vdash \lambda x.xx: A$ is derivable?
- $(\lambda x.xx)(\lambda x.xx) \rightarrow_{\beta} (xx)\{\lambda x.xx/x\} = (\lambda x.xx)(\lambda x.xx) \rightarrow_{\beta} \dots$ (normalization fails).

The functions can be treated anonymously, that is without giving them a name:

$$id(x) = x \longrightarrow x \mapsto x$$
 $sq_sum(x, y) = x^2 + y^2 \longrightarrow (x, y) \mapsto x^2 + y^2$

Functions of several arguments can be transformed into function of a single argument:

$$(x,y) \mapsto x^2 + y^2 \longrightarrow x \mapsto (y \mapsto x^2 + y^2)$$
 (currying)

Functions can be applied to functions and can return functions (higher-order):

$$(x \mapsto x)5 = 5$$
 $(x \mapsto x)(y \mapsto y^2) = y \mapsto y^2$

The untyped λ -calculus performs higher-order computation

- everything is an anonymous function with a single argument (λ -calculus);
- functions can be applied to other functions without any restriction. (untyped)

The functions can be treated anonymously, that is without giving them a name:

$$id(x) = x \longrightarrow x \mapsto x$$
 $sq_sum(x, y) = x^2 + y^2 \longrightarrow (x, y) \mapsto x^2 + y^2$

Functions of several arguments can be transformed into function of a single argument:

$$(x,y) \mapsto x^2 + y^2 \longrightarrow x \mapsto (y \mapsto x^2 + y^2)$$
 (currying)

Functions can be applied to functions and can return functions (higher-order):

$$(x \mapsto x)5 = 5$$
 $(x \mapsto x)(y \mapsto y^2) = y \mapsto y^2$

The untyped λ -calculus performs higher-order computation:

- everything is an anonymous function with a single argument (λ -calculus);
- functions can be applied to other functions without any restriction. (untyped)

The functions can be treated anonymously, that is without giving them a name:

$$id(x) = x \rightarrow x \mapsto x$$
 $sq_sum(x, y) = x^2 + y^2 \rightarrow (x, y) \mapsto x^2 + y^2$

Functions of several arguments can be transformed into function of a single argument:

$$(x,y) \mapsto x^2 + y^2 \longrightarrow x \mapsto (y \mapsto x^2 + y^2)$$
 (currying)

Functions can be applied to functions and can return functions (higher-order):

$$(x \mapsto x)5 = 5$$
 $(x \mapsto x)(y \mapsto y^2) = y \mapsto y^2$

The untyped λ -calculus performs higher-order computation:

- everything is an anonymous function with a single argument (λ -calculus);
- functions can be applied to other functions without any restriction. (untyped)

The functions can be treated anonymously, that is without giving them a name:

$$id(x) = x \rightarrow x \mapsto x$$
 $sq_sum(x, y) = x^2 + y^2 \rightarrow (x, y) \mapsto x^2 + y^2$

Functions of several arguments can be transformed into function of a single argument:

$$(x,y) \mapsto x^2 + y^2 \longrightarrow x \mapsto (y \mapsto x^2 + y^2)$$
 (currying)

Functions can be applied to functions and can return functions (higher-order):

$$(x \mapsto x)5 = 5$$
 $(x \mapsto x)(y \mapsto y^2) = y \mapsto y^2$

The untyped λ -calculus performs higher-order computation:

- everything is an anonymous function with a single argument (λ -calculus);
- functions can be applied to other functions without any restriction. (untyped)

Terms: s, t := x (variable) $| \lambda x.t$ (abstraction) | st (application) Rmk: stu stands for (st)u.

The free variables of a term t are the variables that are not bound to a λ . Formally,

$$fv(x) = \{x\}$$
 $fv(st) = fv(s) \cup fv(t)$ $fv(\lambda x.t) = fv(t) \setminus \{x\}$

Terms are identified up to renaming of bound variables (α -equivalence), e.g. $\lambda x.x = \lambda y.y$

 β -reduction $(t\{s/x\})$ is the capture-avoiding substitution of s for the free occurrences of x in t)

(the term on the left is a
$$\beta$$
-redex) $(\lambda x.t)s
ightarrow_{eta} t\{s/x\}$

Substitution $t\{s/x\}$ should be defined carefully to avoid capture of variables.

$$(\lambda x.yx)\{x/y\} \neq \lambda x.xx$$
 but $(\lambda x.yx)\{x/y\} = (\lambda z.yz)\{x/y\} = \lambda z.xz$

To write $t\{s/x\}$, first take t such that its bound variables are not in tv(s) then substitute.

Terms:
$$s,t := x$$
 (variable) $| \lambda x.t$ (abstraction) $| st$ (application) Rmk: stu stands for $(st)u$.

The free variables of a term t are the variables that are not bound to a λ . Formally,

$$fv(x) = \{x\}$$
 $fv(st) = fv(s) \cup fv(t)$ $fv(\lambda x.t) = fv(t) \setminus \{x\}$

Terms are identified up to renaming of bound variables (lpha-equivalence), e.g. $\lambda x.x=\lambda y.y$

 β -reduction $(t\{s/x\})$ is the capture-avoiding substitution of s for the free occurrences of x in t)

(the term on the left is a
$$\beta$$
-redex) $(\lambda x.t)s \to_{\beta} t\{s/x\}$

Substitution $t\{s/x\}$ should be defined carefully to avoid capture of variables.

$$(\lambda x.yx)\{x/y\} \neq \lambda x.xx$$
 but $(\lambda x.yx)\{x/y\} = (\lambda z.yz)\{x/y\} = \lambda z.xz$

To write $t\{s/x\}$, first take t such that its bound variables are not in tv(s) then substitute.

Terms: $s,t := x \text{ (variable)} \mid \lambda x.t \text{ (abstraction)} \mid st \text{ (application)}$ Rmk: stu stands for (st)u.

The free variables of a term t are the variables that are not bound to a λ . Formally,

$$fv(x) = \{x\}$$
 $fv(st) = fv(s) \cup fv(t)$ $fv(\lambda x.t) = fv(t) \setminus \{x\}$

Terms are identified up to renaming of bound variables (α -equivalence), e.g. $\lambda x.x = \lambda y.y$

 β -reduction $(t\{s/x\})$ is the capture-avoiding substitution of s for the free occurrences of x in t):

(the term on the left is a
$$\beta$$
-redex) $(\lambda x.t)s o_{eta} t\{s/x\}$

Substitution $t\{s/x\}$ should be defined carefully to avoid capture of variables.

$$(\lambda x.yx)\{x/y\} \neq \lambda x.xx$$
 but $(\lambda x.yx)\{x/y\} = (\lambda z.yz)\{x/y\} = \lambda z.xz$

To write $t\{s/x\}$, first take t such that its bound variables are not in tv(s) then substitute.

Terms: $s,t := x \text{ (variable)} \mid \lambda x.t \text{ (abstraction)} \mid st \text{ (application)}$ Rmk: stu stands for (st)u.

The free variables of a term t are the variables that are not bound to a λ . Formally,

$$fv(x) = \{x\}$$
 $fv(st) = fv(s) \cup fv(t)$ $fv(\lambda x.t) = fv(t) \setminus \{x\}$

Terms are identified up to renaming of bound variables (α -equivalence), e.g. $\lambda x.x = \lambda y.y$

 β -reduction ($t\{s/x\}$) is the capture-avoiding substitution of s for the free occurrences of x in t):

(the term on the left is a
$$eta$$
-redex) $(\lambda x.t)s
ightarrow_eta t\{s/x\}$

Substitution $t\{s/x\}$ should be defined carefully to avoid capture of variables.

$$(\lambda x.yx)\{x/y\} \neq \lambda x.xx$$
 but $(\lambda x.yx)\{x/y\} = (\lambda z.yz)\{x/y\} = \lambda z.xz$

To write $t\{s/x\}$, first take t such that its bound variables are not in tv(s) then substitute

The free variables of a term t are the variables that are not bound to a λ . Formally,

$$fv(x) = \{x\}$$
 $fv(st) = fv(s) \cup fv(t)$ $fv(\lambda x.t) = fv(t) \setminus \{x\}$

Terms are identified up to renaming of bound variables (α -equivalence), e.g. $\lambda x.x = \lambda y.y$

 β -reduction ($t\{s/x\}$) is the capture-avoiding substitution of s for the free occurrences of x in t):

(the term on the left is a
$$\beta$$
-redex) $(\lambda x.t)s
ightharpoonup_{eta} t\{s/x\}$

Substitution $t\{s/x\}$ should be defined carefully to avoid capture of variables.

$$(\lambda x.yx)\{x/y\} \neq \lambda x.xx$$
 but $(\lambda x.yx)\{x/y\} = (\lambda z.yz)\{x/y\} = \lambda z.xz$

To write $t\{s/x\}$, first take t such that its bound variables are not in tv(s) then substitute

Terms: s, t := x (variable) $| \lambda x.t$ (abstraction) | st (application) Rmk: stu stands for (st)u.

The free variables of a term t are the variables that are not bound to a λ . Formally,

$$fv(x) = \{x\}$$
 $fv(st) = fv(s) \cup fv(t)$ $fv(\lambda x.t) = fv(t) \setminus \{x\}$

Terms are identified up to renaming of bound variables (α -equivalence), e.g. $\lambda x.x = \lambda y.y$

 β -reduction ($t\{s/x\}$ is the capture-avoiding substitution of s for the free occurrences of x in t): (the term on the left is a β -redex) ($\lambda x.t$) $s \to_{\beta} t\{s/x\}$

Substitution $t\{s/x\}$ should be defined carefully to avoid capture of variables.

$$(\lambda x.yx)\{x/y\} \neq \lambda x.xx$$
 but $(\lambda x.yx)\{x/y\} = (\lambda z.yz)\{x/y\} = \lambda z.xz$

To write $t\{s/x\}$, first take t such that its bound variables are not in fv(s) then substitute.

The structure of a term

Rmk. Every term s can be written in a unique way as

$$s = \lambda x_1 \dots \lambda x_n . ht_1 \dots t_m$$
 with $m, n \in \mathbb{N}$

where h (the head of s) is either a variable (head variable) or a β -redex (head β -redex).

Compare this tree with a derivation in natural deduction. Similarities? Differences?

The structure of a term

In a tree representation:

Rmk. Every term s can be written in a unique way as

$$s = \lambda x_1 \dots \lambda x_n . ht_1 \dots t_m$$
 with $m, n \in \mathbb{N}$

where h (the head of s) is either a variable (head variable) or a β -redex (head β -redex).

Compare this tree with a derivation in natural deduction. Similarities? Differences?

The structure of a term

In a tree representation:

Rmk. Every term s can be written in a unique way as

$$s = \lambda x_1 \dots \lambda x_n . ht_1 \dots t_m$$
 with $m, n \in \mathbb{N}$

where h (the head of s) is either a variable (head variable) or a β -redex (head β -redex).

 λx_1

Compare this tree with a derivation in natural deduction. Similarities? Differences?

$$(\lambda x.t)s \rightarrow_{\beta} t\{s/x\}$$

$$(\lambda x.t)s \rightarrow_{\beta} t\{s/x\}$$

$$(\lambda x.t)s \rightarrow_{\beta} t\{s/x\}$$

$$(\lambda x.t)s \rightarrow_{\beta} t\{s/x\}$$

$$(\lambda x.t)s \rightarrow_{\beta} t\{s/x\}$$

(Full) β -reduction \rightarrow_{β} fires a β -redex anywhere in a term. Formally,

$$\frac{1}{(\lambda x.t)s \to_{\beta} t\{s/x\}} \qquad \frac{t \to_{\beta} t'}{\lambda x.t \to_{\beta} \lambda x.t'} \qquad \frac{t \to_{\beta} t'}{ts \to_{\beta} t's} \qquad \frac{t \to_{\beta} t'}{st \to_{\beta} st}$$

Head β -reduction $\rightarrow_{h\beta}$ fires a β -redex only in the "head" of a term. Formally,

$$\frac{1}{(\lambda x.t)s \to_{h\beta} t\{s/x\}} \qquad \frac{t \to_{h\beta} t'}{\lambda x.t \to_{h\beta} \lambda x.t'} \qquad \frac{t \to_{h\beta} t' \qquad t \neq \lambda x.r}{ts \to_{h\beta} t's}$$

Leftmost-outermost β -reduction $\rightarrow_{\ell\beta}$ fires the leftmost-outermost β -redex in a term.

$$\frac{t \to_{\ell\beta} t'}{(\lambda x.t)s \to_{\ell\beta} t \{s/x\}} \qquad \frac{t \to_{\ell\beta} t'}{\lambda x.t \to_{\ell\beta} \lambda x.t'} \qquad \frac{t \to_{\ell\beta} t'}{ts \to_{\ell\beta} t's} \qquad \frac{t \to_{\ell\beta} t'}{st \to_{\ell\beta} st'}$$

where neutral means $s = xs_1 \dots x_n$ and s_1, \dots, s_n normal, for some $n \in \mathbb{N}$.

Rmk. $\rightarrow_{h\beta} \subsetneq \rightarrow_{I\beta} \subsetneq \rightarrow_{\beta}$. For strictness, consider $I = \lambda x.x$ and t = (Ix)(Iy)(Iz). Then,

- $t \rightarrow_{h\beta} x(Iy)(Iz)$ but $t \not\rightarrow_{h\beta} (Ix)y(Iz)$ and $t \not\rightarrow_{h\beta} (Ix)(Iy)z$;
- $x(Iy)(Iz) \rightarrow_{\ell\beta} xy(Iz)$ but $x(Iy)(Iz) \not\rightarrow_{\ell\beta} x(Iy)z$;
- $t \to_{\beta} (Ix)(Iy)z$ and $x(Iy)(Iz) \to_{\beta} x(Iy)z$.

(Full) β -reduction \rightarrow_{β} fires a β -redex anywhere in a term. Formally,

$$\frac{t \to_{\beta} t'}{(\lambda x.t)s \to_{\beta} t\{s/x\}} \qquad \frac{t \to_{\beta} t'}{\lambda x.t \to_{\beta} \lambda x.t'} \qquad \frac{t \to_{\beta} t'}{ts \to_{\beta} t's} \qquad \frac{t \to_{\beta} t'}{st \to_{\beta} st'}$$

Head β -reduction $\rightarrow_{h\beta}$ fires a β -redex only in the "head" of a term. Formally,

$$\frac{1}{(\lambda x.t)s \to_{h\beta} t\{s/x\}} \qquad \frac{t \to_{h\beta} t'}{\lambda x.t \to_{h\beta} \lambda x.t'} \qquad \frac{t \to_{h\beta} t' \qquad t \neq \lambda x.r}{ts \to_{h\beta} t's}$$

Leftmost-outermost β -reduction $\rightarrow_{\ell\beta}$ fires the leftmost-outermost β -redex in a term.

$$\frac{t \to_{\ell\beta} t'}{(\lambda x.t)s \to_{\ell\beta} t \{s/x\}} \qquad \frac{t \to_{\ell\beta} t'}{\lambda x.t \to_{\ell\beta} \lambda x.t'} \qquad \frac{t \to_{\ell\beta} t'}{ts \to_{\ell\beta} t's} \qquad \frac{t \to_{\ell\beta} t' s \text{ neutral}}{st \to_{\ell\beta} st'}$$

where neutral means $s = xs_1 \dots x_n$ and s_1, \dots, s_n normal, for some $n \in \mathbb{N}$.

Rmk. $\rightarrow_{h\beta} \subsetneq \rightarrow_{l\beta} \subsetneq \rightarrow_{\beta}$. For strictness, consider $l = \lambda x.x$ and t = (lx)(ly)(lz). Then,

- $t \rightarrow_{h\beta} x(Iy)(Iz)$ but $t \not\rightarrow_{h\beta} (Ix)y(Iz)$ and $t \not\rightarrow_{h\beta} (Ix)(Iy)z$;
- $x(Iy)(Iz) \rightarrow_{\ell\beta} xy(Iz)$ but $x(Iy)(Iz) \not\rightarrow_{\ell\beta} x(Iy)z$;
- $t \to_{\beta} (Ix)(Iy)z$ and $x(Iy)(Iz) \to_{\beta} x(Iy)z$.

(Full) β -reduction \rightarrow_{β} fires a β -redex anywhere in a term. Formally,

$$\frac{t \to_{\beta} t'}{(\lambda x.t)s \to_{\beta} t\{s/x\}} \qquad \frac{t \to_{\beta} t'}{\lambda x.t \to_{\beta} \lambda x.t'} \qquad \frac{t \to_{\beta} t'}{ts \to_{\beta} t's} \qquad \frac{t \to_{\beta} t'}{st \to_{\beta} st'}$$

Head β -reduction $\rightarrow_{h\beta}$ fires a β -redex only in the "head" of a term. Formally,

$$\frac{}{(\lambda x.t)s \rightarrow_{h\beta} t\{s/x\}} \qquad \frac{t \rightarrow_{h\beta} t'}{\lambda x.t \rightarrow_{h\beta} \lambda x.t'} \qquad \frac{t \rightarrow_{h\beta} t' \qquad t \neq \lambda x.r}{ts \rightarrow_{h\beta} t's}$$

Leftmost-outermost β -reduction $\rightarrow_{\ell\beta}$ fires the leftmost-outermost β -redex in a term.

$$\frac{t \to_{\ell\beta} t'}{(\lambda x.t)s \to_{\ell\beta} t \{s/x\}} \qquad \frac{t \to_{\ell\beta} t'}{\lambda x.t \to_{\ell\beta} \lambda x.t'} \qquad \frac{t \to_{\ell\beta} t'}{ts \to_{\ell\beta} t's} \qquad \frac{t \to_{\ell\beta} t'}{st \to_{\ell\beta} st'} \qquad \frac{t \to_{\ell\beta} t'}{st \to_{\ell\beta} st'}$$

where neutral means $s = xs_1 \dots x_n$ and s_1, \dots, s_n normal, for some $n \in \mathbb{N}$.

Rmk. $\rightarrow_{h\beta} \subsetneq \rightarrow_{l\beta} \subsetneq \rightarrow_{\beta}$. For strictness, consider $l = \lambda x.x$ and t = (lx)(ly)(lz). Then,

- $t \rightarrow_{h\beta} x(Iy)(Iz)$ but $t \not\rightarrow_{h\beta} (Ix)y(Iz)$ and $t \not\rightarrow_{h\beta} (Ix)(Iy)z$;
- $x(ly)(lz) \rightarrow_{\ell\beta} xy(lz)$ but $x(ly)(lz) \not\rightarrow_{\ell\beta} x(ly)z$;
- $t \to_{\beta} (Ix)(Iy)z$ and $x(Iy)(Iz) \to_{\beta} x(Iy)z$.

(Full) β -reduction \rightarrow_{β} fires a β -redex anywhere in a term. Formally,

$$\frac{t \to_{\beta} t'}{(\lambda x.t)s \to_{\beta} t\{s/x\}} \qquad \frac{t \to_{\beta} t'}{\lambda x.t \to_{\beta} \lambda x.t'} \qquad \frac{t \to_{\beta} t'}{ts \to_{\beta} t's} \qquad \frac{t \to_{\beta} t'}{st \to_{\beta} st'}$$

Head β -reduction $\rightarrow_{h\beta}$ fires a β -redex only in the "head" of a term. Formally,

$$\frac{}{(\lambda x.t)s \rightarrow_{h\beta} t\{s/x\}} \qquad \frac{t \rightarrow_{h\beta} t'}{\lambda x.t \rightarrow_{h\beta} \lambda x.t'} \qquad \frac{t \rightarrow_{h\beta} t' \qquad t \neq \lambda x.r}{ts \rightarrow_{h\beta} t's}$$

Leftmost-outermost β -reduction $\rightarrow_{\ell\beta}$ fires the leftmost-outermost β -redex in a term.

$$\frac{t\to_{\ell\beta} t'}{(\lambda x.t)s\to_{\ell\beta} t\{s/x\}} \qquad \frac{t\to_{\ell\beta} t'}{\lambda x.t\to_{\ell\beta} \lambda x.t'} \qquad \frac{t\to_{\ell\beta} t'}{ts\to_{\ell\beta} t's} \qquad \frac{t\to_{\ell\beta} t'}{st\to_{\ell\beta} st'}$$

where neutral means $s = xs_1 \dots x_n$ and s_1, \dots, s_n normal, for some $n \in \mathbb{N}$.

Rmk. $\rightarrow_{h\beta} \subsetneq \rightarrow_{l\beta} \subsetneq \rightarrow_{\beta}$. For strictness, consider $l = \lambda x.x$ and t = (lx)(ly)(lz). Then,

- $t \rightarrow_{h\beta} x(Iy)(Iz)$ but $t \not\rightarrow_{h\beta} (Ix)y(Iz)$ and $t \not\rightarrow_{h\beta} (Ix)(Iy)z$;
- $x(ly)(lz) \rightarrow_{\ell\beta} xy(lz)$ but $x(ly)(lz) \not\rightarrow_{\ell\beta} x(ly)z$;
- $t \to_{\beta} (Ix)(Iy)z$ and $x(Iy)(Iz) \to_{\beta} x(Iy)z$.

(Full) β -reduction \rightarrow_{β} fires a β -redex anywhere in a term. Formally,

$$\frac{1}{(\lambda x.t)s \to_{\beta} t\{s/x\}} \qquad \frac{t \to_{\beta} t'}{\lambda x.t \to_{\beta} \lambda x.t'} \qquad \frac{t \to_{\beta} t'}{ts \to_{\beta} t's} \qquad \frac{t \to_{\beta} t'}{st \to_{\beta} st'}$$

Head β -reduction $\rightarrow_{h\beta}$ fires a β -redex only in the "head" of a term. Formally,

$$\frac{}{(\lambda x.t)s \rightarrow_{h\beta} t\{s/x\}} \qquad \frac{t \rightarrow_{h\beta} t'}{\lambda x.t \rightarrow_{h\beta} \lambda x.t'} \qquad \frac{t \rightarrow_{h\beta} t' \qquad t \neq \lambda x.r}{ts \rightarrow_{h\beta} t's}$$

Leftmost-outermost β -reduction $\rightarrow_{\ell\beta}$ fires the leftmost-outermost β -redex in a term.

$$\frac{}{(\lambda x.t)s \rightarrow_{\ell\beta} t \{s/x\}} \qquad \frac{t \rightarrow_{\ell\beta} t'}{\lambda x.t \rightarrow_{\ell\beta} \lambda x.t'} \qquad \frac{t \rightarrow_{\ell\beta} t' \qquad t \neq \lambda x.r}{ts \rightarrow_{\ell\beta} t's} \qquad \frac{t \rightarrow_{\ell\beta} t' \quad s \text{ neutral}}{st \rightarrow_{\ell\beta} st'}$$

where neutral means $s = xs_1 \dots x_n$ and s_1, \dots, s_n normal, for some $n \in \mathbb{N}$.

Rmk. $\rightarrow_{h\beta} \subsetneq \rightarrow_{I\beta} \subsetneq \rightarrow_{\beta}$. For strictness, consider $I = \lambda x.x$ and t = (Ix)(Iy)(Iz). Then,

- $t \rightarrow_{h\beta} x(Iy)(Iz)$ but $t \not\rightarrow_{h\beta} (Ix)y(Iz)$ and $t \not\rightarrow_{h\beta} (Ix)(Iy)z$;
- $x(Iy)(Iz) \rightarrow_{\ell\beta} xy(Iz)$ but $x(Iy)(Iz) \not\rightarrow_{\ell\beta} x(Iy)z$;
- $t \rightarrow_{\beta} (Ix)(Iy)z$ and $x(Iy)(Iz) \rightarrow_{\beta} x(Iy)z$.

Rmk. Reductions $\rightarrow_{h\beta}$ and $\rightarrow_{\ell\beta}$ are deterministic (they can fire at most one redex). So:

If
$$t \rightarrow_r s_1$$
 and $t \rightarrow_r s_2$ then $s_1 = s_2$, for $r \in \{h\beta, l\beta\}$.

Reduction $ightarrow_eta$ is not deterministic, it chooses among several eta-redexes to fire in a term.

$$((\lambda z.z)y)((\lambda z.z)y)$$
outermost β -redex
$$(\lambda x.xx)((\lambda z.z)y)$$

$$(\lambda x.xx)z$$

$$\beta$$

$$(\lambda x.xx)z$$

for some $n \in \mathbb{N}$

Notation. $t \to^* s$ means that $t = t_0 \to t_1 \to \cdots \to t_n = s$ (in particular, t = s for n = 0)

Theorem (Confluence)

If $t \to_{\beta}^* s_1$ and $t \to_{\beta}^* s_2$, then there is a term r such that $s_1 \to_{\beta}^* r$ and $s_2 \to_{\beta}^* r$.

Def. Let $r \in \{\beta, \ell\beta, h\beta\}$. A term t is r-normal if there is no s such that $t \to_r s$.

Corollary (Uniqueness of normal form)

If $t \to_{\beta}^* s_1$ and $t \to_{\beta}^* s_2$ where s_1 and s_2 are β -normal, then $s_1 = s_2$.

Proof. By confluence, $s_1 \to_{\beta}^{*} r$ and $s_2 \to_{\beta}^{*} r$ for some r. By normality, $s_1 = r = s_2$.

Rmk. Reductions $\rightarrow_{h\beta}$ and $\rightarrow_{\ell\beta}$ are deterministic (they can fire at most one redex). So:

If
$$t \rightarrow_r s_1$$
 and $t \rightarrow_r s_2$ then $s_1 = s_2$, for $r \in \{h\beta, l\beta\}$.

Reduction \rightarrow_{β} is not deterministic, it chooses among several β -redexes to fire in a term.

$$((\lambda z.z)y)((\lambda z.z)y)$$
outermost β -redex
$$(\lambda x.xx)((\lambda z.z)y)$$

$$(\lambda x.xx)z$$

$$\beta$$

$$((\lambda z.z)y)((\lambda z.z)y)$$

$$\beta$$

$$((\lambda x.xx)z$$

for some $n \in \mathbb{N}$

Notation. $t \to^* s$ means that $t = t_0 \xrightarrow{} t_1 \xrightarrow{} \cdots \xrightarrow{} t_n = s$ (in particular, t = s for n = 0).

Theorem (Confluence)

If $t \to_{\beta}^* s_1$ and $t \to_{\beta}^* s_2$, then there is a term r such that $s_1 \to_{\beta}^* r$ and $s_2 \to_{\beta}^* r$.

Def. Let $r \in \{\beta, \ell\beta, h\beta\}$. A term t is r-normal if there is no s such that $t \to_r s$.

Corollary (Uniqueness of normal form)

If $t \to_{\beta}^* s_1$ and $t \to_{\beta}^* s_2$ where s_1 and s_2 are β -normal, then $s_1 = s_2$.

Proof. By confluence, $s_1 \to_{\beta}^* r$ and $s_2 \to_{\beta}^* r$ for some r. By normality, $s_1 = r = s_2$.

Rmk. Reductions $\rightarrow_{h\beta}$ and $\rightarrow_{\ell\beta}$ are deterministic (they can fire at most one redex). So:

If
$$t \rightarrow_r s_1$$
 and $t \rightarrow_r s_2$ then $s_1 = s_2$, for $r \in \{h\beta, l\beta\}$.

Reduction \rightarrow_{β} is not deterministic, it chooses among several β -redexes to fire in a term.

$$((\lambda z.z)y)((\lambda z.z)y)$$
outermost β -redex
$$(\lambda x.xx)((\lambda z.z)y)$$

$$\beta (\lambda x.xx)z$$
inner β -redex

for some $n \in \mathbb{N}$

Notation. $t \to^* s$ means that $t = t_0 \xrightarrow{} t_1 \xrightarrow{} \cdots \xrightarrow{} t_n = s$ (in particular, t = s for n = 0).

Theorem (Confluence)

If $t \to_{\beta}^* s_1$ and $t \to_{\beta}^* s_2$, then there is a term r such that $s_1 \to_{\beta}^* r$ and $s_2 \to_{\beta}^* r$.

Def. Let $r \in \{\beta, \ell\beta, h\beta\}$. A term t is r-normal if there is no s such that $t \to_r s$.

Corollary (Uniqueness of normal form)

If $t \to_{\beta}^* s_1$ and $t \to_{\beta}^* s_2$ where s_1 and s_2 are β -normal, then $s_1 = s_2$

Proof. By confluence, $s_1 \to_{\beta}^* r$ and $s_2 \to_{\beta}^* r$ for some r. By normality, $s_1 = r = s_2$.

Rmk. Reductions $\rightarrow_{h\beta}$ and $\rightarrow_{\ell\beta}$ are deterministic (they can fire at most one redex). So:

If $t \rightarrow_r s_1$ and $t \rightarrow_r s_2$ then $s_1 = s_2$, for $r \in \{h\beta, l\beta\}$.

Reduction \rightarrow_{β} is not deterministic, it chooses among several β -redexes to fire in a term.

$$((\lambda z.z)y)((\lambda z.z)y)$$
outermost β -redex
$$(\lambda x.xx)((\lambda z.z)y)$$

$$\beta (\lambda x.xx)z$$
inner β -redex

for some $n \in \mathbb{N}$

Notation. $t \to^* s$ means that $t = t_0 \xrightarrow{} t_1 \xrightarrow{} \cdots \xrightarrow{} t_n = s$ (in particular, t = s for n = 0).

Theorem (Confluence)

If $t \to_{\beta}^* s_1$ and $t \to_{\beta}^* s_2$, then there is a term r such that $s_1 \to_{\beta}^* r$ and $s_2 \to_{\beta}^* r$.

Def. Let $r \in \{\beta, \ell\beta, h\beta\}$. A term t is r-normal if there is no s such that $t \to_r s$.

Corollary (Uniqueness of normal form)

If $t \to_{\beta}^* s_1$ and $t \to_{\beta}^* s_2$ where s_1 and s_2 are β -normal, then $s_1 = s_2$.

Proof. By confluence, $s_1 \to_{\beta}^* r$ and $s_2 \to_{\beta}^* r$ for some r. By normality, $s_1 = r = s_2$.

Normalization, strong normalization and divergence

- Def. Let t be a term and $r \in \{\beta, \ell\beta, h\beta\}$.
 - ① t is r-normalizing if there is a r-normal term s such that $t \to_r^* s$.
 - \bullet t is strongly r-normalizing if there is no $(t_i)_{i\in\mathbb{N}}$ such that $t=t_0$ and $t_i\to_r t_{i+1}$.
- Ex. Every β -normal form is strongly β -normalizing. Let $\delta = \lambda x.xx$.
 - $\delta\delta$ is not β -normalizing: if $\delta\delta \to_{\beta} t$ then $t = \delta\delta$.
 - $(\lambda x.y)(\delta \delta)$ is β -normalizing (indeed $(\lambda x.y)(\delta \delta) \to_{\beta} y$ which is β -normal) but not strongly β -normalizing (indeed $(\lambda x.y)(\delta \delta) \to_{\beta} (\lambda x.y)(\delta \delta) \to_{\beta} \dots$).
- Rmk. Strong normalization implies normalization, but the converse fails, see above.
- Rmk. Strong normalization and normalization coincide for $\rightarrow_{h\beta}$ and $\rightarrow_{l\beta}$, not for \rightarrow_{β} .
- Rmk. In the simply typed λ -calculus, every term is β -normalizing (actually, strongly).

Normalization, strong normalization and divergence

- Def. Let t be a term and $r \in \{\beta, \ell\beta, h\beta\}$.
 - **1 t** is *r*-normalizing if there is a *r*-normal term *s* such that $t \to_r^* s$.
 - \bullet t is strongly r-normalizing if there is no $(t_i)_{i\in\mathbb{N}}$ such that $t=t_0$ and $t_i\to_r t_{i+1}$.
- Ex. Every β -normal form is strongly β -normalizing. Let $\delta = \lambda x.xx$.
 - $\delta\delta$ is not β -normalizing: if $\delta\delta \to_{\beta} t$ then $t = \delta\delta$.
 - $(\lambda x.y)(\delta \delta)$ is β -normalizing (indeed $(\lambda x.y)(\delta \delta) \to_{\beta} y$ which is β -normal) but not strongly β -normalizing (indeed $(\lambda x.y)(\delta \delta) \to_{\beta} (\lambda x.y)(\delta \delta) \to_{\beta} \dots$).
- Rmk. Strong normalization implies normalization, but the converse fails, see above.
- Rmk. Strong normalization and normalization coincide for $\rightarrow_{h\beta}$ and $\rightarrow_{l\beta}$, not for \rightarrow_{β} .
- Rmk. In the simply typed λ -calculus, every term is β -normalizing (actually, strongly).

Normalization, strong normalization and divergence

- Def. Let t be a term and $r \in \{\beta, \ell\beta, h\beta\}$.
 - ① t is r-normalizing if there is a r-normal term s such that $t \to_r^* s$.
 - **3** t is strongly r-normalizing if there is no $(t_i)_{i\in\mathbb{N}}$ such that $t=t_0$ and $t_i\to_r t_{i+1}$.
- Ex. Every β -normal form is strongly β -normalizing. Let $\delta = \lambda x.xx$.
 - $\delta\delta$ is not β -normalizing: if $\delta\delta \to_{\beta} t$ then $t = \delta\delta$.
 - $(\lambda x.y)(\delta \delta)$ is β -normalizing (indeed $(\lambda x.y)(\delta \delta) \to_{\beta} y$ which is β -normal) but not strongly β -normalizing (indeed $(\lambda x.y)(\delta \delta) \to_{\beta} (\lambda x.y)(\delta \delta) \to_{\beta} \dots$).
- Rmk. Strong normalization implies normalization, but the converse fails, see above.
- Rmk. Strong normalization and normalization coincide for $\rightarrow_{h\beta}$ and $\rightarrow_{l\beta}$, not for \rightarrow_{β} .
- Rmk. In the simply typed λ -calculus, every term is β -normalizing (actually, strongly).

Normalization, strong normalization and divergence

- Def. Let t be a term and $r \in \{\beta, \ell\beta, h\beta\}$.
 - ① t is r-normalizing if there is a r-normal term s such that $t \to_r^* s$.
- \bullet t is strongly r-normalizing if there is no $(t_i)_{i\in\mathbb{N}}$ such that $t=t_0$ and $t_i\to_r t_{i+1}$.
- Ex. Every β -normal form is strongly β -normalizing. Let $\delta = \lambda x.xx$.
 - $\delta\delta$ is not β -normalizing: if $\delta\delta \to_{\beta} t$ then $t = \delta\delta$.
 - $(\lambda x.y)(\delta \delta)$ is β -normalizing (indeed $(\lambda x.y)(\delta \delta) \to_{\beta} y$ which is β -normal) but not strongly β -normalizing (indeed $(\lambda x.y)(\delta \delta) \to_{\beta} (\lambda x.y)(\delta \delta) \to_{\beta} \dots$).
- Rmk. Strong normalization implies normalization, but the converse fails, see above.
- Rmk. Strong normalization and normalization coincide for $\rightarrow_{h\beta}$ and $\rightarrow_{l\beta}$, not for \rightarrow_{β} .
- Rmk. In the simply typed λ -calculus, every term is β -normalizing (actually, strongly).

Normalization, strong normalization and divergence

- Def. Let t be a term and $r \in \{\beta, \ell\beta, h\beta\}$.
 - ① t is r-normalizing if there is a r-normal term s such that $t \to_r^* s$.
 - \bullet t is strongly r-normalizing if there is no $(t_i)_{i\in\mathbb{N}}$ such that $t=t_0$ and $t_i\to_r t_{i+1}$.
- Ex. Every β -normal form is strongly β -normalizing. Let $\delta = \lambda x.xx$.
 - $\delta\delta$ is not β -normalizing: if $\delta\delta \to_{\beta} t$ then $t = \delta\delta$.
 - $(\lambda x.y)(\delta \delta)$ is β -normalizing (indeed $(\lambda x.y)(\delta \delta) \to_{\beta} y$ which is β -normal) but not strongly β -normalizing (indeed $(\lambda x.y)(\delta \delta) \to_{\beta} (\lambda x.y)(\delta \delta) \to_{\beta} \dots$).
- Rmk. Strong normalization implies normalization, but the converse fails, see above.
- Rmk. Strong normalization and normalization coincide for $\rightarrow_{h\beta}$ and $\rightarrow_{l\beta}$, not for \rightarrow_{β} .
- Rmk. In the simply typed λ -calculus, every term is β -normalizing (actually, strongly).

Fixed point combinator

Def. A fixed point of a term t is a term s such that $s \to_{\beta}^* ts$.

A fixed point combinator is a term Y such that Yt is a fixed point of t, for every term t.

Proposition (Fixed point combinator)

Let $A = \lambda a.\lambda f.f(aaf)$ and $\Theta = AA$. Then, Θ is a fixed point combinator

Proof.
$$\Theta = (\lambda a.\lambda f.f(aaf))A \rightarrow_{h\beta} \lambda f.f(AAf) = \lambda f.f(\Theta f)$$
. Therefore, for every term t ,

Rmk. Θ is $h\beta$ -normalizing but not β -normalizing.

Rmk. Θ is not a term of the simply typed λ -calculus, because of the subterm aa.

Rmk. Fixed point combinators such has Θ are crucial to represent recursive functions.

Fixed point combinator

Def. A fixed point of a term t is a term s such that $s \to_{\beta}^* ts$.

A fixed point combinator is a term Y such that Yt is a fixed point of t, for every term t.

Proposition (Fixed point combinator)

Let $A = \lambda a.\lambda f.f(aaf)$ and $\Theta = AA$. Then, Θ is a fixed point combinator.

Proof.
$$\Theta = (\lambda a. \lambda f. f(aaf))A \rightarrow_{h\beta} \lambda f. f(AAf) = \lambda f. f(\Theta f)$$
. Therefore, for every term t ,

$$\Theta t \rightarrow_{h\beta} (\lambda f. f(\Theta f)) t \rightarrow_{h\beta} t(\Theta t).$$

Rmk. Θ is $h\beta$ -normalizing but not β -normalizing.

Rmk. Θ is not a term of the simply typed λ -calculus, because of the subterm aa.

Rmk. Fixed point combinators such has Θ are crucial to represent recursive functions.

Fixed point combinator

Def. A fixed point of a term t is a term s such that $s \to_{\beta}^* ts$.

A fixed point combinator is a term Y such that Yt is a fixed point of t, for every term t.

Proposition (Fixed point combinator)

Let $A = \lambda a.\lambda f.f(aaf)$ and $\Theta = AA$. Then, Θ is a fixed point combinator.

Proof. $\Theta = (\lambda a.\lambda f.f(aaf))A \rightarrow_{h\beta} \lambda f.f(AAf) = \lambda f.f(\Theta f)$. Therefore, for every term t,

$$\Theta t \rightarrow_{h\beta} (\lambda f. f(\Theta f)) t \rightarrow_{h\beta} t(\Theta t).$$

Rmk. Θ is $h\beta$ -normalizing but not β -normalizing.

Rmk. Θ is not a term of the simply typed λ -calculus, because of the subterm aa.

Rmk. Fixed point combinators such has Θ are crucial to represent recursive functions.

Simply typed versus untyped

The simply typed λ -calculus (in Curry-style) is a restriction of the untyped λ -calculus \leadsto the latter just take terms and β -reduction from the former without checking typability.

But the untyped λ -calculus can also be seen as a "special case" of the simply type one. Consider that the simple types are generated by only one ground type X.

Def. Let \equiv be the least congruence on simple types generated by $X \equiv X \Rightarrow X$, that is:

$$\frac{A \equiv B}{B \equiv A} \qquad \frac{A \equiv B}{A \equiv C} \qquad \frac{A \equiv B \quad B \equiv C}{A \equiv C} \qquad \frac{A \equiv A' \quad B \equiv B'}{A \Rightarrow B \equiv A' \Rightarrow B'}$$

Rmk. $A \equiv X$ for every simple type A (proof by induction on A) \leadsto All types are the same

Proposition (Untyped = simply typed + recursive type identity \equiv)

Every untyped term is typable in Curry's simply typed λ -calculus extended with the rule:

$$\frac{\Gamma \vdash t : A \quad A \equiv B}{\Gamma \vdash t : B} \equiv$$

Proof. By straightforward induction on t (exercise!).

Simply typed versus untyped

The simply typed λ -calculus (in Curry-style) is a restriction of the untyped λ -calculus \leadsto the latter just take terms and β -reduction from the former without checking typability.

But the untyped λ -calculus can also be seen as a "special case" of the simply type one. Consider that the simple types are generated by only one ground type X.

Def. Let \equiv be the least congruence on simple types generated by $X \equiv X \Rightarrow X$, that is:

$$\overline{X \equiv X} \qquad \frac{A \equiv B}{B \equiv A} \qquad \frac{A \equiv B \quad B \equiv C}{A \equiv C} \qquad \overline{X \equiv X \Rightarrow X} \qquad \frac{A \equiv A' \quad B \equiv B'}{A \Rightarrow B \equiv A' \Rightarrow B'}$$

Rmk. $A \equiv X$ for every simple type A (proof by induction on A) \leadsto All types are the same

Proposition (Untyped = simply typed + recursive type identity \equiv)

Every untyped term is typable in Curry's simply typed λ -calculus extended with the rule:

$$\frac{\Gamma \vdash t : A \quad A \equiv B}{\Gamma \vdash t : B} \equiv$$

Proof. By straightforward induction on t (exercise!).

Simply typed versus untyped

The simply typed λ -calculus (in Curry-style) is a restriction of the untyped λ -calculus \leadsto the latter just take terms and β -reduction from the former without checking typability.

But the untyped λ -calculus can also be seen as a "special case" of the simply type one. Consider that the simple types are generated by only one ground type X.

Def. Let \equiv be the least congruence on simple types generated by $X \equiv X \Rightarrow X$, that is:

$$\frac{A \equiv B}{B \equiv A} \qquad \frac{A \equiv B}{A \equiv C} \qquad \frac{A \equiv A \equiv B}{A \equiv C} \qquad \frac{A \equiv A' \qquad B \equiv B'}{A \Rightarrow B \equiv A' \Rightarrow B'}$$

Rmk. $A \equiv X$ for every simple type A (proof by induction on A) \leadsto All types are the same!

Proposition (Untyped = simply typed + recursive type identity \equiv)

Every untyped term is typable in Curry's simply typed λ -calculus extended with the rule:

$$\frac{\Gamma \vdash t : A \quad A \equiv B}{\Gamma \vdash t : B} \equiv$$

Proof. By straightforward induction on t (exercise!).

Outline

1 The syntax and the operational semantics of the untyped λ -calculus

2 Programming with the untyped λ -calculus

3 Conclusion, exercises and bibliography

Goal. Encode propositional classical logic in the untyped λ -calculus.

We choose (arbitrarily) two terms to represents true \top and false \bot .

$$\underline{\top} = \lambda x. \lambda y. x$$
 $\underline{\bot} = \lambda x. \lambda y. y$

Rmk. For every term s, t, we have $\underline{\top} s t \rightarrow_{h\beta}^* s$ and $\underline{\bot} s t \rightarrow_{h\beta}^* t$.

① We look for a term to encode the NOT: $\underline{not} \perp \to_{\beta}^* \perp$ and $\underline{not} \perp \to_{\beta}^* \perp$.

② To encode the AND: $\underline{and}s\ t \to_{\beta}^* \underline{\top}$ if $s = t = \underline{\top}$, but $\underline{and}s\ t \to_{\beta}^* \underline{\bot}$ if $s = \underline{\bot}$ or $t = \underline{\bot}$.

$$\underline{and} =$$

② To encode the OR: $\underline{ors} \ t \to_{\beta}^* \underline{\bot} \ \text{if} \ s = t = \underline{\bot}, \ \text{but} \ \underline{ors} \ t \to_{\beta}^* \underline{\bot} \ \text{if} \ s = \underline{\top} \ \text{or} \ t = \underline{\top}.$

① To encode the IF-THEN-ELSE: $\underline{if} \ rst \to_{\beta}^* s$ if $r = \underline{\top}$ and $\underline{if} \ rst \to_{\beta}^* t$ if $r = \underline{\bot}$.

$$if =$$

Goal. Encode propositional classical logic in the untyped λ -calculus.

We choose (arbitrarily) two terms to represents true \top and false \bot .

$$\underline{\top} = \lambda x. \lambda y. x$$
 $\underline{\bot} = \lambda x. \lambda y. y$

Rmk. For every term s, t, we have $\underline{\top} s t \rightarrow_{h\beta}^* s$ and $\underline{\bot} s t \rightarrow_{h\beta}^* t$.

① We look for a term to encode the NOT: $\underline{not} \perp \to_{\beta}^* \perp \underline{\bot}$ and $\underline{not} \perp \to_{\beta}^* \perp \underline{\bot}$.

② To encode the AND: $\underline{and}s\ t \to_{\beta}^* \underline{\top}$ if $s = t = \underline{\top}$, but $\underline{and}s\ t \to_{\beta}^* \underline{\bot}$ if $s = \underline{\bot}$ or $t = \underline{\bot}$.

② To encode the OR: $\underline{ors} \ t \to_{\beta}^* \underline{\bot} \ \text{if} \ s = t = \underline{\bot}, \ \text{but} \ \underline{ors} \ t \to_{\beta}^* \underline{\bot} \ \text{if} \ s = \underline{\top} \ \text{or} \ t = \underline{\top}.$

$$or =$$

① To encode the IF-THEN-ELSE: $\underline{if} rst \rightarrow_{\beta}^* s$ if $r = \underline{\top}$ and $\underline{if} rst \rightarrow_{\beta}^* t$ if $r = \underline{\bot}$.

$$if =$$

Goal. Encode propositional classical logic in the untyped λ -calculus.

We choose (arbitrarily) two terms to represents true \top and false \bot .

$$\underline{\top} = \lambda x. \lambda y. x$$
 $\underline{\bot} = \lambda x. \lambda y. y$

Rmk. For every term s, t, we have $\underline{\top} s t \rightarrow_{h\beta}^* s$ and $\underline{\bot} s t \rightarrow_{h\beta}^* t$.

9 We look for a term to encode the NOT: $\underline{not} \perp \to_{\beta}^* \perp$ and $\underline{not} \perp \to_{\beta}^* \perp$.

② To encode the AND: $\underline{and}s\ t \to_{\beta}^* \underline{\top}$ if $s = t = \underline{\top}$, but $\underline{and}s\ t \to_{\beta}^* \underline{\bot}$ if $s = \underline{\bot}$ or $t = \underline{\bot}$.

② To encode the OR: $\underline{ors} \ t \to_{\beta}^* \underline{\bot} \ \text{if} \ s = t = \underline{\bot}, \ \text{but} \ \underline{ors} \ t \to_{\beta}^* \underline{\bot} \ \text{if} \ s = \underline{\top} \ \text{or} \ t = \underline{\top}.$

$$or =$$

• To encode the IF-THEN-ELSE: $\underline{if} \, rst \to_{\beta}^* s$ if $r = \underline{\top}$ and $\underline{if} \, rst \to_{\beta}^* t$ if $r = \underline{\bot}$.

$$if =$$

Goal. Encode propositional classical logic in the untyped λ -calculus.

We choose (arbitrarily) two terms to represents true \top and false \bot .

$$\underline{\top} = \lambda x. \lambda y. x$$
 $\underline{\bot} = \lambda x. \lambda y. y$

Rmk. For every term s, t, we have $\underline{\top} s t \rightarrow_{h\beta}^* s$ and $\underline{\bot} s t \rightarrow_{h\beta}^* t$.

• We look for a term to encode the NOT: $\underline{not} \perp \to_{\beta}^* \perp$ and $\underline{not} \perp \to_{\beta}^* \perp$.

$$\underline{not} = \lambda p.p \underline{\perp} \underline{\top}$$

② To encode the AND: $\underline{and}s\ t \to_{\beta}^* \underline{\top}$ if $s = t = \underline{\top}$, but $\underline{and}s\ t \to_{\beta}^* \underline{\bot}$ if $s = \underline{\bot}$ or $t = \underline{\bot}$.

② To encode the OR: $\underline{ors} \ t \to_{\beta}^* \underline{\bot} \ \text{if} \ s = t = \underline{\bot}, \ \text{but} \ \underline{ors} \ t \to_{\beta}^* \underline{\bot} \ \text{if} \ s = \underline{\top} \ \text{or} \ t = \underline{\top}.$

① To encode the IF-THEN-ELSE: $\underline{if} \ rst \to_{\beta}^* s$ if $r = \underline{\top}$ and $\underline{if} \ rst \to_{\beta}^* t$ if $r = \underline{\bot}$.

$$if =$$

Goal. Encode propositional classical logic in the untyped λ -calculus.

We choose (arbitrarily) two terms to represents true \top and false \bot .

$$\underline{\top} = \lambda x. \lambda y. x$$
 $\underline{\bot} = \lambda x. \lambda y. y$

Rmk. For every term s, t, we have $\underline{\top} s t \rightarrow_{h\beta}^* s$ and $\underline{\bot} s t \rightarrow_{h\beta}^* t$.

• We look for a term to encode the NOT: $\underline{not} \perp \to_{\beta}^* \perp$ and $\underline{not} \perp \to_{\beta}^* \perp$.

$$\underline{not} = \lambda p.p \underline{\perp} \underline{\top}$$

② To encode the AND: $\underline{and}s\ t \to_{\beta}^* \underline{\top}$ if $s = t = \underline{\top}$, but $\underline{and}s\ t \to_{\beta}^* \underline{\bot}$ if $s = \underline{\bot}$ or $t = \underline{\bot}$.

$$\underline{and} =$$

② To encode the OR: $\underline{ors}\ t \to_{\beta}^* \underline{\bot}\ \text{if}\ s = t = \underline{\bot},\ \text{but}\ \underline{ors}\ t \to_{\beta}^* \underline{\bot}\ \text{if}\ s = \underline{\top}\ \text{or}\ t = \underline{\top}.$

• To encode the IF-THEN-ELSE: $\underline{if} \, rst \to_{\beta}^* s$ if $r = \underline{\top}$ and $\underline{if} \, rst \to_{\beta}^* t$ if $r = \underline{\bot}$.

$$if =$$

Goal. Encode propositional classical logic in the untyped λ -calculus.

We choose (arbitrarily) two terms to represents true \top and false \bot .

$$\underline{\top} = \lambda x. \lambda y. x$$
 $\underline{\bot} = \lambda x. \lambda y. y$

Rmk. For every term s, t, we have $\underline{\top} s t \rightarrow_{h\beta}^* s$ and $\underline{\bot} s t \rightarrow_{h\beta}^* t$.

1 We look for a term to encode the NOT: $\underline{not} \perp \to_{\beta}^* \perp$ and $\underline{not} \perp \to_{\beta}^* \perp$.

$$\underline{not} = \lambda p.p \underline{\perp} \underline{\top}$$

② To encode the AND: $\underline{and}s\ t \to_{\beta}^* \underline{\top}$ if $s=t=\underline{\top}$, but $\underline{and}s\ t \to_{\beta}^* \underline{\bot}$ if $s=\underline{\bot}$ or $t=\underline{\bot}$.

$$\underline{and} = \lambda p. \lambda q. pqp$$

① To encode the OR: $\underline{ors} \ t \to_{\beta}^* \underline{\bot} \ \text{if} \ s = t = \underline{\bot}, \ \text{but} \ \underline{ors} \ t \to_{\beta}^* \underline{\bot} \ \text{if} \ s = \underline{\top} \ \text{or} \ t = \underline{\top}.$

① To encode the IF-THEN-ELSE: $\underline{if} rst \rightarrow_{\beta}^* s$ if $r = \underline{\top}$ and $\underline{if} rst \rightarrow_{\beta}^* t$ if $r = \underline{\bot}$.

$$if =$$

Goal. Encode propositional classical logic in the untyped λ -calculus.

We choose (arbitrarily) two terms to represents true \top and false \bot .

$$\underline{\top} = \lambda x. \lambda y. x$$
 $\underline{\bot} = \lambda x. \lambda y. y$

Rmk. For every term s, t, we have $\underline{\top} s t \rightarrow_{h\beta}^* s$ and $\underline{\bot} s t \rightarrow_{h\beta}^* t$.

9 We look for a term to encode the NOT: $\underline{not} \perp \to_{\beta}^* \perp$ and $\underline{not} \perp \to_{\beta}^* \perp$.

$$\underline{not} = \lambda p.p \underline{\perp} \underline{\top}$$

② To encode the AND: $\underline{and}s\ t \to_{\beta}^* \underline{\top}$ if $s=t=\underline{\top}$, but $\underline{and}s\ t \to_{\beta}^* \underline{\bot}$ if $s=\underline{\bot}$ or $t=\underline{\bot}$.

$$\underline{and} = \lambda p. \lambda q. pqp$$

② To encode the OR: $\underline{ors}\ t \to_{\beta}^* \underline{\bot}$ if $s = t = \underline{\bot}$, but $\underline{ors}\ t \to_{\beta}^* \underline{\bot}$ if $s = \underline{\top}$ or $t = \underline{\top}$.

① To encode the IF-THEN-ELSE: $\underline{if} \ rst \to_{\beta}^* s$ if $r = \underline{\top}$ and $\underline{if} \ rst \to_{\beta}^* t$ if $r = \underline{\bot}$.

Goal. Encode propositional classical logic in the untyped λ -calculus.

We choose (arbitrarily) two terms to represents true \top and false \bot .

$$\underline{\top} = \lambda x. \lambda y. x$$
 $\underline{\bot} = \lambda x. \lambda y. y$

Rmk. For every term s, t, we have $\underline{\top} s t \rightarrow_{h\beta}^* s$ and $\underline{\bot} s t \rightarrow_{h\beta}^* t$.

9 We look for a term to encode the NOT: $\underline{not} \perp \to_{\beta}^* \perp$ and $\underline{not} \perp \to_{\beta}^* \perp$.

$$\underline{not} = \lambda p.p \underline{\perp} \underline{\top}$$

② To encode the AND: $\underline{and}s\ t \to_{\beta}^* \underline{\top}$ if $s = t = \underline{\top}$, but $\underline{and}s\ t \to_{\beta}^* \underline{\bot}$ if $s = \underline{\bot}$ or $t = \underline{\bot}$.

$$\underline{and} = \lambda p. \lambda q. pqp$$

② To encode the OR: $\underline{ors}\ t \to_{\beta}^* \underline{\bot}$ if $s = t = \underline{\bot}$, but $\underline{ors}\ t \to_{\beta}^* \underline{\bot}$ if $s = \underline{\top}$ or $t = \underline{\top}$.

$$\underline{or} = \lambda p. \lambda q. ppq$$

① To encode the IF-THEN-ELSE: $\underline{if} rst \rightarrow_{\beta}^* s$ if $r = \underline{\top}$ and $\underline{if} rst \rightarrow_{\beta}^* t$ if $r = \underline{\bot}$.

$$if =$$

Goal. Encode propositional classical logic in the untyped λ -calculus.

We choose (arbitrarily) two terms to represents true \top and false \bot .

$$\underline{\top} = \lambda x. \lambda y. x$$
 $\underline{\bot} = \lambda x. \lambda y. y$

Rmk. For every term s, t, we have $\underline{\top} s t \rightarrow_{h\beta}^* s$ and $\underline{\bot} s t \rightarrow_{h\beta}^* t$.

9 We look for a term to encode the NOT: $\underline{not} \perp \to_{\beta}^* \perp$ and $\underline{not} \perp \to_{\beta}^* \perp$.

$$\underline{not} = \lambda p.p \underline{\perp} \underline{\top}$$

② To encode the AND: $\underline{and}s\ t \to_{\beta}^* \underline{\top}$ if $s = t = \underline{\top}$, but $\underline{and}s\ t \to_{\beta}^* \underline{\bot}$ if $s = \underline{\bot}$ or $t = \underline{\bot}$.

$$\underline{and} = \lambda p. \lambda q. pqp$$

② To encode the OR: $\underline{ors}\ t \to_{\beta}^* \underline{\bot}\ \text{if}\ s = t = \underline{\bot},\ \text{but}\ \underline{ors}\ t \to_{\beta}^* \underline{\bot}\ \text{if}\ s = \underline{\top}\ \text{or}\ t = \underline{\top}.$

$$\underline{or} = \lambda p. \lambda q. ppq$$

① To encode the IF-THEN-ELSE: $\underline{if} \, r \, s \, t \, \to_{\beta}^* s \, \text{if} \, r = \underline{\top} \, \text{and} \, \underline{if} \, r \, s \, t \, \to_{\beta}^* t \, \text{if} \, r = \underline{\bot}.$

$$\underline{if} =$$

Goal. Encode propositional classical logic in the untyped λ -calculus.

We choose (arbitrarily) two terms to represents true \top and false \bot .

$$\underline{\top} = \lambda x. \lambda y. x$$
 $\underline{\bot} = \lambda x. \lambda y. y$

Rmk. For every term s, t, we have $\underline{\top} s t \rightarrow_{h\beta}^* s$ and $\underline{\bot} s t \rightarrow_{h\beta}^* t$.

9 We look for a term to encode the NOT: $\underline{not} \perp \to_{\beta}^* \perp$ and $\underline{not} \perp \to_{\beta}^* \perp$.

$$\underline{not} = \lambda p.p \underline{\perp} \underline{\top}$$

③ To encode the AND: $\underline{and}s\ t \to_{\beta}^* \underline{\top}$ if $s = t = \underline{\top}$, but $\underline{and}s\ t \to_{\beta}^* \underline{\bot}$ if $s = \underline{\bot}$ or $t = \underline{\bot}$.

$$\underline{and} = \lambda p. \lambda q. pqp$$

9 To encode the OR: $\underline{ors} \ t \to_{\beta}^* \underline{\bot}$ if $s = t = \underline{\bot}$, but $\underline{ors} \ t \to_{\beta}^* \underline{\bot}$ if $s = \underline{\top}$ or $t = \underline{\top}$.

$$\underline{or} = \lambda p. \lambda q. ppq$$

① To encode the IF-THEN-ELSE: $\underline{if} \ r \ s \ t \to_{\beta}^* s \ \text{if} \ r = \underline{\top} \ \text{and} \ \underline{if} \ r \ s \ t \to_{\beta}^* t \ \text{if} \ r = \underline{\bot}.$

$$\underline{if} = \lambda p. \lambda a. \lambda b. pab$$

Goal. Encode the arithmetic in the untyped λ -calculus.

We choose a term \underline{n} to represents any $n \in \mathbb{N}$ (Church numeral).

$$\underline{n} = \lambda f. \lambda x. f^{n} x = \lambda f. \lambda x. \underbrace{f(f...(f x)...)}_{n \text{ times } f}$$
 (in particular, $\underline{0} = \lambda f. \lambda x. x$)

Rmk. For every term s,t, we have $\underline{n} s t \to_{h\beta}^* s^n t = s(s...(s t)...)$ (*n*-iterator)

① We look for a term to encode the successor: $\underline{succ} \, \underline{n} \to_{\beta}^* \underline{n+1}$

② To encode the addition: $\underline{add \ m \ n} \rightarrow_{\beta}^* \underline{m} + \underline{m}$.

3 To encode the multiplication: $\underline{mult} \ \underline{m} \ \underline{n} \rightarrow_{\beta}^{*} \ m \times n$

$$mult =$$

9 To encode the exponentiation: $pow \underline{m} \underline{n} \rightarrow_{\beta}^* \underline{m}^n$.

Goal. Encode the arithmetic in the untyped λ -calculus.

We choose a term \underline{n} to represents any $n \in \mathbb{N}$ (Church numeral).

$$\underline{n} = \lambda f. \lambda x. f^{n} x = \lambda f. \lambda x. \underbrace{f(f...(f x)...)}_{n \text{ times } f}$$
 (in particular, $\underline{0} = \lambda f. \lambda x. x$)

Rmk. For every term s,t, we have $\underline{n} s t \to_{h\beta}^* s^n t = \overbrace{s(s \dots (s t) \dots)}^* (n\text{-iterator}).$

① We look for a term to encode the successor: $\underline{succ \, n} \rightarrow_{\beta}^* n + 1$

2 To encode the addition: $\underline{add} \ \underline{m} \ \underline{n} \rightarrow_{\beta}^* \underline{m+m}$.

3 To encode the multiplication: $\underline{mult} \underline{m} \underline{n} \rightarrow_{\beta}^* \underline{m} \times \underline{n}$.

$$mult =$$

① To encode the exponentiation: $pow \underline{m} \underline{n} \rightarrow_{\beta}^* \underline{m}^n$.

Goal. Encode the arithmetic in the untyped λ -calculus.

We choose a term \underline{n} to represents any $n \in \mathbb{N}$ (Church numeral).

$$\underline{n} = \lambda f. \lambda x. f^{n} x = \lambda f. \lambda x. \underbrace{f(f...(f x)...)}_{n \text{ times } f}$$
 (in particular, $\underline{0} = \lambda f. \lambda x. x$)

Rmk. For every term s,t, we have $\underline{n} s t \to_{h\beta}^* s^n t = \overbrace{s(s \dots (s t) \dots)}^* (n\text{-iterator}).$

• We look for a term to encode the successor: $\underline{succ} \, \underline{n} \to_{\beta}^* \underline{n+1}$.

$$\underline{succ} =$$

② To encode the addition: $\underline{add} \ \underline{m} \ \underline{n} \rightarrow_{\beta}^* \underline{m+m}$.

3 To encode the multiplication: $\underline{mult} \underline{m} \underline{n} \rightarrow_{\beta}^* \underline{m} \times \underline{n}$.

$$mult =$$

① To encode the exponentiation: $pow \underline{m} \underline{n} \rightarrow_{\beta}^* \underline{m}^n$.

Goal. Encode the arithmetic in the untyped λ -calculus.

We choose a term n to represents any $n \in \mathbb{N}$ (Church numeral).

$$\underline{n} = \lambda f. \lambda x. f^n x = \lambda f. \lambda x. \underbrace{f(f \dots (f \times) \dots)}_{n \text{ times } f} \qquad \text{(in particular, } \underline{0} = \lambda f. \lambda x. x)$$
 Rmk. For every term s, t , we have $\underline{n} s t \to_{h\beta}^* s^n t = \underbrace{s(s \dots (s t) \dots)}_{n \text{ times } s} (n \text{-times } s)$.

1 We look for a term to encode the successor: $\underline{succ} \, \underline{n} \to_{\beta}^* n + 1$.

$$\underline{\mathit{succ}} = \lambda \mathit{n.} \lambda \mathit{f.} \lambda \mathit{x.} \mathit{f} (\mathit{nfx})$$

$$mult =$$

Goal. Encode the arithmetic in the untyped λ -calculus.

We choose a term n to represents any $n \in \mathbb{N}$ (Church numeral).

$$\underline{n} = \lambda f. \lambda x. f^n x = \lambda f. \lambda x. \underbrace{f(f \dots (f \times) \dots)}_{n \text{ times } f} \qquad \text{(in particular, } \underline{0} = \lambda f. \lambda x. x)$$
 Rmk. For every term s, t , we have $\underline{n} s t \to_{h\beta}^* s^n t = \underbrace{s(s \dots (s t) \dots)}_{n \text{ times } s} (n \text{-times } s)$.

1 We look for a term to encode the successor: $\underline{succ} \, \underline{n} \to_{\beta}^* n + 1$.

$$\underline{\mathit{succ}} = \lambda \mathit{n.} \lambda \mathit{f.} \lambda \mathit{x.} \mathit{f} (\mathit{nfx})$$

② To encode the addition: $\underline{add} \ \underline{m} \ \underline{n} \rightarrow_{\beta}^* \ m + m$.

$$mult =$$

Goal. Encode the arithmetic in the untyped λ -calculus.

We choose a term n to represents any $n \in \mathbb{N}$ (Church numeral).

$$\underline{n} = \lambda f. \lambda x. f^n x = \lambda f. \lambda x. \underbrace{f(f \dots (f \times) \dots)}_{n \text{ times } f} \qquad \text{(in particular, } \underline{0} = \lambda f. \lambda x. x)$$
 Rmk. For every term s, t , we have $\underline{n} s t \to_{h\beta}^* s^n t = \underbrace{s(s \dots (s t) \dots)}_{n \text{ times } s} (n \text{-times } s)$.

1 We look for a term to encode the successor: $\underline{succ} \, \underline{n} \to_{\beta}^* n + 1$.

$$\underline{\mathit{succ}} = \lambda \mathit{n.} \lambda \mathit{f.} \lambda \mathit{x.} \mathit{f} (\mathit{nfx})$$

② To encode the addition: $\underline{add} \ \underline{m} \ \underline{n} \rightarrow_{\beta}^{*} \underline{m+m}$.

$$\underline{add} = \lambda m. \lambda n. \lambda f. \lambda x. mf(nfx)$$

Goal. Encode the arithmetic in the untyped λ -calculus.

We choose a term n to represents any $n \in \mathbb{N}$ (Church numeral).

$$\underline{n} = \lambda f. \lambda x. f^n x = \lambda f. \lambda x. \underbrace{f(f \dots (f \times) \dots)}_{n \text{ times } f} \qquad \text{(in particular, } \underline{0} = \lambda f. \lambda x. x)$$
 Rmk. For every term s, t , we have $\underline{n} s t \to_{h\beta}^* s^n t = \underbrace{s(s \dots (s t) \dots)}_{n \text{ times } s} (n \text{-times } s)$.

1 We look for a term to encode the successor: $\underline{succ} \, \underline{n} \to_{\beta}^* n + 1$.

$$\underline{\mathit{succ}} = \lambda \mathit{n.} \lambda \mathit{f.} \lambda \mathit{x.} \mathit{f} (\mathit{nfx})$$

② To encode the addition: $\underline{add} \ \underline{m} \ \underline{n} \rightarrow_{\beta}^{*} \underline{m+m}$.

$$\underline{add} = \lambda m. \lambda n. \lambda f. \lambda x. mf(nfx)$$

3 To encode the multiplication: $\underline{mult} \ \underline{m} \ \underline{n} \rightarrow_{\beta}^* \ m \times n$.

$$\underline{mult} =$$

Goal. Encode the arithmetic in the untyped λ -calculus.

We choose a term n to represents any $n \in \mathbb{N}$ (Church numeral).

$$\underline{n} = \lambda f. \lambda x. f^n x = \lambda f. \lambda x. \underbrace{f(f \dots (f \times) \dots)}_{n \text{ times } f} \qquad \text{(in particular, } \underline{0} = \lambda f. \lambda x. x)$$
 Rmk. For every term s, t , we have $\underline{n} s t \to_{h\beta}^* s^n t = \underbrace{s(s \dots (s t) \dots)}_{n \text{ times } s} (n \text{-times } s)$.

1 We look for a term to encode the successor: $\underline{succ} \, \underline{n} \to_{\beta}^* n + 1$.

$$\underline{\mathit{succ}} = \lambda \mathit{n.} \lambda \mathit{f.} \lambda \mathit{x.} \mathit{f} (\mathit{nfx})$$

② To encode the addition: $\underline{add} \ \underline{m} \ \underline{n} \rightarrow_{\beta}^{*} m + m$.

$$\underline{add} = \lambda m. \lambda n. \lambda f. \lambda x. mf(nfx)$$

3 To encode the multiplication: $\underline{mult} \ \underline{m} \ \underline{n} \rightarrow_{\beta}^* \ m \times n$.

$$\underline{\textit{mult}} = \lambda \textit{m.} \lambda \textit{n.} \lambda \textit{f.} \textit{m(nf)}$$

Goal. Encode the arithmetic in the untyped λ -calculus.

We choose a term n to represents any $n \in \mathbb{N}$ (Church numeral).

$$\underline{n} = \lambda f. \lambda x. f^n x = \lambda f. \lambda x. \underbrace{f(f \dots (f \times) \dots)}_{n \text{ times } f} \qquad \text{(in particular, } \underline{0} = \lambda f. \lambda x. x)$$
 Rmk. For every term s, t , we have $\underline{n} s t \to_{h\beta}^* s^n t = \underbrace{s(s \dots (s t) \dots)}_{n \text{ times } s} (n \text{-times } s)$.

1 We look for a term to encode the successor: $\underline{succ} \, \underline{n} \to_{\beta}^* n + 1$.

$$\underline{\mathit{succ}} = \lambda \mathit{n.} \lambda \mathit{f.} \lambda \mathit{x.} \mathit{f} (\mathit{nfx})$$

② To encode the addition: $\underline{add} \ \underline{m} \ \underline{n} \rightarrow_{\beta}^{*} m + m$.

$$\underline{add} = \lambda m. \lambda n. \lambda f. \lambda x. mf(nfx)$$

3 To encode the multiplication: $\underline{mult} \ \underline{m} \ \underline{n} \rightarrow_{\beta}^* \ m \times n$.

$$\underline{\textit{mult}} = \lambda \textit{m.} \lambda \textit{n.} \lambda \textit{f.} \textit{m(nf)}$$

• To encode the exponentiation: $pow \underline{m} \underline{n} \rightarrow_{\beta}^{*} \underline{m}^{n}$.

Goal. Encode the arithmetic in the untyped λ -calculus.

We choose a term n to represents any $n \in \mathbb{N}$ (Church numeral).

$$\underline{n} = \lambda f. \lambda x. f^n x = \lambda f. \lambda x. \underbrace{f(f \dots (f \times) \dots)}_{n \text{ times } f} \qquad \text{(in particular, } \underline{0} = \lambda f. \lambda x. x)$$
 Rmk. For every term s, t , we have $\underline{n} s t \to_{h\beta}^* s^n t = \underbrace{s(s \dots (s t) \dots)}_{n \text{ times } s} (n \text{-times } s)$.

1 We look for a term to encode the successor: $\underline{succ} \, \underline{n} \to_{\beta}^* n + 1$.

$$\underline{\mathit{succ}} = \lambda \mathit{n.} \lambda \mathit{f.} \lambda \mathit{x.} \mathit{f} (\mathit{nfx})$$

② To encode the addition: $\underline{add} \ \underline{m} \ \underline{n} \rightarrow_{\beta}^{*} m + m$.

$$\underline{add} = \lambda m. \lambda n. \lambda f. \lambda x. mf(nfx)$$

3 To encode the multiplication: $\underline{mult} \ \underline{m} \ \underline{n} \rightarrow_{\beta}^* \ m \times n$.

$$\underline{\textit{mult}} = \lambda \textit{m.} \lambda \textit{n.} \lambda \textit{f.} \textit{m(nf)}$$

• To encode the exponentiation: $pow \underline{m} \underline{n} \rightarrow_{\beta}^* \underline{m}^n$.

$$pow = \lambda m.\lambda n.nm$$

We can encode the functions: $iszero: \mathbb{N} \to \{\bot, \top\}$ testing if a natural number is 0 or not, and the predecessor $pred: \mathbb{N} \to \mathbb{N}$ such that pred(0) = 0 and pred(n+1) = n.

$$\underline{\textit{iszero}} = \lambda \textit{n.n}(\lambda x.\underline{\bot})\underline{\top} \qquad \qquad \underline{\textit{iszero}} \; \underline{\textit{n}} \to_{\beta}^{*} \begin{cases} \underline{\top} & \text{if } \textit{n} = 0 \\ \underline{\bot} & \text{otherwise.} \end{cases} \qquad \underline{\textit{pred}} = \dots$$

Question. How can the λ -calculus represent the factorial (typical recursive function)?

$$fact(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \times fact(n-1) & \text{otherwise.} \end{cases}$$

Let us rewrite the definition in a λ -calculus-like style, using IF-THEN-ELSE and <u>mult</u>:

 $F := \lambda f.\lambda n.\underline{if(iszero n)} \underline{1}(\underline{mult} n(f(\underline{pred} n)))$ $\underline{fact} := YF \rightarrow_{\beta}^{*} F(YF) = F \underline{fact} \rightarrow_{\beta} \lambda n.\underline{if(iszero n)} \underline{1}(\underline{mult} n(\underline{fact}(pred n)))$

We can encode the functions: $iszero: \mathbb{N} \to \{\bot, \top\}$ testing if a natural number is 0 or not, and the predecessor $pred: \mathbb{N} \to \mathbb{N}$ such that pred(0) = 0 and pred(n+1) = n.

$$\underline{iszero} = \lambda n. n(\lambda x. \underline{\perp}) \underline{\top} \qquad \underline{iszero} \ \underline{n} \rightarrow_{\beta}^{*} \begin{cases} \underline{\top} & \text{if } n = 0 \\ \underline{\perp} & \text{otherwise.} \end{cases}$$

Question. How can the λ -calculus represent the factorial (typical recursive function)?

$$fact(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \times fact(n-1) & \text{otherwise.} \end{cases}$$

Let us rewrite the definition in a λ -calculus-like style, using IF-THEN-ELSE and $\underline{\textit{mult}}$:

 $\underline{\mathit{fact}} \; \mathsf{should} \; \mathsf{satisfies} \; \mathsf{the} \; \mathsf{equation} \colon \; \underline{\mathit{fact}} \; \underline{\mathit{n}} = \underline{\mathit{if}} (\underline{\mathit{iszero}} \; \underline{\mathit{n}}) \, \underline{1} \, (\underline{\mathit{mult}} \; \underline{\mathit{n}} \, (\underline{\mathit{fact}} \, (\underline{\mathit{pred}} \; \underline{\mathit{n}})))$

$$F := \lambda f.\lambda n.\underline{if(iszero\ n)} \ \underline{1} \ (\underline{mult}\ n \ (f(\underline{pred}\ n)))$$

$$\underline{fact} := YF \ \rightarrow_{\beta}^{*} F(YF) = F \ \underline{fact} \rightarrow_{\beta} \lambda n.\underline{if(iszero\ n)} \ \underline{1} \ (\underline{mult}\ n \ (\underline{fact}\ (\underline{pred}\ n)))$$

We can encode the functions: $iszero: \mathbb{N} \to \{\bot, \top\}$ testing if a natural number is 0 or not, and the predecessor $pred: \mathbb{N} \to \mathbb{N}$ such that pred(0) = 0 and pred(n+1) = n.

$$\underline{iszero} = \lambda n. n(\lambda x. \underline{\perp}) \underline{\top} \qquad \underline{iszero} \ \underline{n} \to_{\beta}^{*} \begin{cases} \underline{\top} & \text{if } n = 0 \\ \underline{\perp} & \text{otherwise.} \end{cases}$$

Question. How can the λ -calculus represent the factorial (typical recursive function)?

$$fact(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \times fact(n-1) & \text{otherwise.} \end{cases}$$

Let us rewrite the definition in a λ -calculus-like style, using IF-THEN-ELSE and $\underline{\textit{mult}}$:

 $\underline{\mathit{fact}}$ should satisfies the equation: $\underline{\mathit{fact}} = \lambda n.\underline{\mathit{if}}(\underline{\mathit{iszero}}\,n)\,\underline{1}\,(\underline{\mathit{mult}}\,n\,(\underline{\mathit{fact}}\,(\underline{\mathit{pred}}\,n)))$

$$F := \lambda f. \lambda n. \underline{if(iszero\ n)} \ \underline{1} \ (\underline{mult}\ n \ (f(\underline{pred\ n})))$$

$$\underline{fact} := YF \ \rightarrow_{\beta}^{*} F(YF) = F \ \underline{fact} \rightarrow_{\beta} \lambda n. \underline{if(iszero\ n)} \ \underline{1} \ (\underline{mult}\ n \ (\underline{fact}\ (\underline{pred\ n})))$$

We can encode the functions: $iszero: \mathbb{N} \to \{\bot, \top\}$ testing if a natural number is 0 or not, and the predecessor $pred: \mathbb{N} \to \mathbb{N}$ such that pred(0) = 0 and pred(n+1) = n.

$$\underline{iszero} = \lambda n. n(\lambda x. \underline{\perp}) \underline{\top} \qquad \underline{iszero} \ \underline{n} \rightarrow_{\beta}^{*} \begin{cases} \underline{\top} & \text{if } n = 0 \\ \underline{\perp} & \text{otherwise.} \end{cases}$$

Question. How can the λ -calculus represent the factorial (typical recursive function)?

$$fact(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \times fact(n-1) & \text{otherwise.} \end{cases}$$

Let us rewrite the definition in a λ -calculus-like style, using IF-THEN-ELSE and \underline{mult} :

 \underline{fact} should satisfies the equation: $\underline{fact} = \lambda n.\underline{if(iszero\ n)}\,\underline{1}\,(\underline{mult}\ n\,(\underline{fact}\,(\underline{pred}\ n)))$

$$F := \lambda f. \lambda n. \underline{if(iszero\ n)} \, \underline{1} \, (\underline{mult}\ n \, (f\, (pred\ n)))$$

$$\underline{fact} := YF \rightarrow_{\beta}^{*} F(YF) = F \underline{fact} \rightarrow_{\beta} \lambda n.\underline{if}(\underline{iszero} n) \underline{1}(\underline{mult} n(\underline{fact}(pred n)))$$

We can encode the functions: $iszero: \mathbb{N} \to \{\bot, \top\}$ testing if a natural number is 0 or not, and the predecessor $pred: \mathbb{N} \to \mathbb{N}$ such that pred(0) = 0 and pred(n+1) = n.

$$\underline{iszero} = \lambda n. n(\lambda x. \underline{\perp}) \underline{\top} \qquad \underline{iszero} \ \underline{n} \rightarrow_{\beta}^{*} \begin{cases} \underline{\top} & \text{if } n = 0 \\ \underline{\perp} & \text{otherwise.} \end{cases}$$

Question. How can the λ -calculus represent the factorial (typical recursive function)?

$$fact(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \times fact(n-1) & \text{otherwise.} \end{cases}$$

Let us rewrite the definition in a λ -calculus-like style, using IF-THEN-ELSE and $\underline{\textit{mult}}$:

 $\underline{\textit{fact}}$ should satisfies the equation: $\underline{\textit{fact}} = \lambda n.\underline{\textit{if}}(\underline{\textit{iszero}}\,\textit{n})\,\underline{1}\,(\underline{\textit{mult}}\,\textit{n}\,(\underline{\textit{fact}}\,(\underline{\textit{pred}}\,\textit{n})))$

$$F := \lambda f.\lambda n.\underline{if(iszero\ n)} \ \underline{1(mult\ n(f(\underline{pred\ n})))}$$

$$\underline{fact} := YF \ \rightarrow_{\beta}^{\ast} F(YF) = F \ \underline{fact} \ \rightarrow_{\beta} \lambda n.\underline{if(iszero\ n)} \ \underline{1(mult\ n(fact\ (pred\ n)))}$$

We can encode the functions: $iszero: \mathbb{N} \to \{\bot, \top\}$ testing if a natural number is 0 or not, and the predecessor $pred: \mathbb{N} \to \mathbb{N}$ such that pred(0) = 0 and pred(n+1) = n.

$$\underline{iszero} = \lambda n. n(\lambda x. \underline{\perp}) \underline{\top} \qquad \underline{iszero} \ \underline{n} \to_{\beta}^{*} \begin{cases} \underline{\top} & \text{if } n = 0 \\ \underline{\perp} & \text{otherwise.} \end{cases}$$

Question. How can the λ -calculus represent the factorial (typical recursive function)?

$$fact(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \times fact(n-1) & \text{otherwise.} \end{cases}$$

Let us rewrite the definition in a λ -calculus-like style, using IF-THEN-ELSE and $\underline{\textit{mult}}$:

 $\underline{\textit{fact}}$ should satisfies the equation: $\underline{\textit{fact}} = \lambda n.\underline{\textit{if}}(\underline{\textit{iszero}}\,\textit{n})\,\underline{1}\,(\underline{\textit{mult}}\,\textit{n}\,(\underline{\textit{fact}}\,(\underline{\textit{pred}}\,\textit{n})))$

$$F := \lambda f.\lambda n.\underline{if(iszero\ n)} \ \underline{1(mult\ n(f(\underline{pred\ n})))}$$

$$\underline{fact} := YF \ \rightarrow_{\beta}^* F(YF) = F \ \underline{fact} \ \rightarrow_{\beta} \lambda n.\underline{if(iszero\ n)} \ \underline{1(mult\ n(\underline{fact(pred\ n)}))}$$

Def. Let $f: \mathbb{N}^n \to \mathbb{N}$ be partial. A term Φ represents f when, for all $k_1, \ldots, k_n \in \mathbb{N}$:

- if $f(k_1, \ldots, k_n)$ is undefined, then $\Phi(k_1, \ldots, k_n)$ is not $h\beta$ -normalizing;
- ② if $f(k_1, \ldots, k_n) = k \in \mathbb{N}$, then $\Phi \underline{k_1} \ldots \underline{k_n} \to_{\beta}^* \underline{k}$.

Theorem (Representability)

Every partial recursive function $f: \mathbb{N}^n \to \mathbb{N}$ is representable by a term in the λ -calculus.

Rmk. According to Church's thesis, the λ -calculus can represent everything is computable

Rmk. If Φ represents a partial function $f: \mathbb{N}^k \to \mathbb{N}$, then Φ could have whatever behavior when applied to arguments t_1, \ldots, t_k that are not Church numerals.

Def. Let $f: \mathbb{N}^n \to \mathbb{N}$ be partial. A term Φ represents f when, for all $k_1, \ldots, k_n \in \mathbb{N}$:

- if $f(k_1, \ldots, k_n)$ is undefined, then $\Phi \underline{k_1} \ldots \underline{k_n}$ is not $h\beta$ -normalizing;
- ② if $f(k_1, \ldots, k_n) = k \in \mathbb{N}$, then $\Phi k_1 \ldots k_n \to_{\beta}^* \underline{k}$.

Theorem (Representability)

Every partial recursive function $f: \mathbb{N}^n \to \mathbb{N}$ is representable by a term in the λ -calculus.

Rmk. According to Church's thesis, the λ -calculus can represent everything is computable.

Rmk. If Φ represents a partial function $f: \mathbb{N}^k \to \mathbb{N}$, then Φ could have whatever behavior when applied to arguments t_1, \ldots, t_k that are not Church numerals.

Def. Let $f: \mathbb{N}^n \to \mathbb{N}$ be partial. A term Φ represents f when, for all $k_1, \ldots, k_n \in \mathbb{N}$:

- if $f(k_1, \ldots, k_n)$ is undefined, then $\Phi \underline{k_1} \ldots \underline{k_n}$ is not $h\beta$ -normalizing;
- ② if $f(k_1, \ldots, k_n) = k \in \mathbb{N}$, then $\Phi \underline{k_1} \ldots \underline{k_n} \to_{\beta}^* \underline{k}$.

Theorem (Representability)

Every partial recursive function $f: \mathbb{N}^n \to \mathbb{N}$ is representable by a term in the λ -calculus.

Rmk. According to Church's thesis, the λ -calculus can represent everything is computable.

Rmk. If Φ represents a partial function $f: \mathbb{N}^k \to \mathbb{N}$, then Φ could have whatever behavior when applied to arguments t_1, \ldots, t_k that are not Church numerals.

Def. Let $f: \mathbb{N}^n \to \mathbb{N}$ be partial. A term Φ represents f when, for all $k_1, \ldots, k_n \in \mathbb{N}$:

- if $f(k_1, ..., k_n)$ is undefined, then $\Phi \underline{k_1} ... \underline{k_n}$ is not $h\beta$ -normalizing;
- ② if $f(k_1, \ldots, k_n) = k \in \mathbb{N}$, then $\Phi k_1 \ldots k_n \to_{\beta}^* \underline{k}$.

Theorem (Representability)

Every partial recursive function $f: \mathbb{N}^n \to \mathbb{N}$ is representable by a term in the λ -calculus.

Rmk. According to Church's thesis, the λ -calculus can represent everything is computable.

Rmk. If Φ represents a partial function $f: \mathbb{N}^k \rightharpoonup \mathbb{N}$, then Φ could have whatever behavior when applied to arguments t_1, \ldots, t_k that are not Church numerals.

- An abstraction $\lambda x.t$ is an anonymous function fun x -> t in OCaml.
- A application tu (resp. variable x) is an application tu (resp. variable x) in OCaml.

(fun x -> x + 3)7	$(\lambda x.\underline{add} \times \underline{3}) \underline{7}$
	\downarrow_{eta}
7 + 3	<u>add 7 3</u>
	$* \downarrow \beta$
10	<u>10</u>

- OCaml imposes eager evaluation: evaluate arguments before applying the function.
- In the λ -calculus the order of evaluation is irrelevant (because of confluence).

- An abstraction $\lambda x.t$ is an anonymous function fun x -> t in OCaml.
- A application tu (resp. variable x) is an application tu (resp. variable x) in OCaml.

(fun x -> x + 3)7	$(\lambda x.\underline{add} \times \underline{3}) \underline{7}$
	\downarrow_{eta}
7 + 3	<u>add 7 3</u>
	$* \downarrow \beta$
10	<u>10</u>

- OCaml imposes eager evaluation: evaluate arguments before applying the function.
- In the λ -calculus the order of evaluation is irrelevant (because of confluence).

- An abstraction $\lambda x.t$ is an anonymous function fun x -> t in OCaml.
- A application tu (resp. variable x) is an application tu (resp. variable x) in OCaml.

OCaml	λ -calculus
(fun x -> x + 3)7	$(\lambda x.\underline{add} \times \underline{3})\underline{7}$
\	\downarrow_{eta}
7 + 3	<u>add 7 3</u>
	$* \downarrow \beta$
10	<u>10</u>

- OCaml imposes eager evaluation: evaluate arguments before applying the function.
- In the λ -calculus the order of evaluation is irrelevant (because of confluence).

- An abstraction $\lambda x.t$ is an anonymous function fun x -> t in OCaml.
- A application tu (resp. variable x) is an application tu (resp. variable x) in OCaml.

OCaml	λ -calculus
(fun x -> x + 3)7	$(\lambda x.\underline{add} \times \underline{3})\underline{7}$
‡	\downarrow_{eta}
7 + 3	<u>add 7 3</u>
‡	$* \downarrow \beta$
10	<u>10</u>

- OCaml imposes eager evaluation: evaluate arguments before applying the function.
- In the λ -calculus the order of evaluation is irrelevant (because of confluence).

Outline

 $lue{1}$ The syntax and the operational semantics of the untyped λ -calculus

 $oxed{2}$ Programming with the untyped λ -calculus

3 Conclusion, exercises and bibliography

- **①** Syntax and operational semantics of the untyped λ -calculus.
- ② Different notions of β -reduction (full, leftmost, head)
- Oifferent notions of normalization (strong or not).
- ullet How to encode arithmetic and propositional classical logic in the untyped λ -calculus
- ullet Representability of every partial recursive function in the untyped λ -calculus

- **①** Syntax and operational semantics of the untyped λ -calculus.
- **②** Different notions of β -reduction (full, leftmost, head).
- Open Different notions of normalization (strong or not).
- ullet How to encode arithmetic and propositional classical logic in the untyped λ -calculus
- ullet Representability of every partial recursive function in the untyped λ -calculus

- Syntax and operational semantics of the untyped λ -calculus.
- ② Different notions of β -reduction (full, leftmost, head).
- Oifferent notions of normalization (strong or not).
- ullet How to encode arithmetic and propositional classical logic in the untyped λ -calculus
- ullet Representability of every partial recursive function in the untyped λ -calculus

- Syntax and operational semantics of the untyped λ -calculus.
- **②** Different notions of β -reduction (full, leftmost, head).
- Oifferent notions of normalization (strong or not).
- lacktriangle How to encode arithmetic and propositional classical logic in the untyped λ -calculus.
- **o** Representability of every partial recursive function in the untyped λ -calculus

- Syntax and operational semantics of the untyped λ -calculus.
- **②** Different notions of β -reduction (full, leftmost, head).
- Oifferent notions of normalization (strong or not).
- lacktriangle How to encode arithmetic and propositional classical logic in the untyped λ -calculus.
- **3** Representability of every partial recursive function in the untyped λ -calculus

- Syntax and operational semantics of the untyped λ -calculus.
- ② Different notions of β -reduction (full, leftmost, head).
- Different notions of normalization (strong or not).
- lacktriangle How to encode arithmetic and propositional classical logic in the untyped λ -calculus.
- **\odot** Representability of every partial recursive function in the untyped λ -calculus

Exercises

- Write the tree representation of following terms (as on p. 7), specifying $m, n \in \mathbb{N}$ and the subtrees corresponding to h, t_1, \ldots, t_m : $x, I, \lambda x.Ixx, \lambda x.I(xx), \lambda x.xxx(xx), II$.
- **②** The β -reduction graph of a term t is the directed graph with nodes $\{s \mid t \to_{\beta}^* s\}$ and with edges the single β -steps. Draw the β -reduction graph of the following terms: • $(\lambda x.lxx)(\lambda x.lxx)$ where $l = \lambda z.z$. • $(\lambda x.lxx)(\lambda x.lxx)$ where $l = \lambda z.z$. • $(\lambda x.l(xx))(\lambda x.l(xx))$. • $(\lambda x.l(xx))(\lambda x.l(xx))$.

 - **6** (II)(III).

- **6** $\pi\pi\pi$ where $\pi = \lambda x.\lambda y.xyy$.
- ② Consider the η -reduction \rightarrow_{η} defined below, which can be fired everywhere in a term. Prove that \rightarrow_{η} is strongly normalizing.

$$\lambda x.tx \to_{\eta} t$$
 if $x \notin fv(t)$

- Prove rigorously the remark and proposition on p. 13.
- **§** Find a term r such that $rt \to_{\beta}^* t(tr)$ for every t (*Hint*: use fixpoint combinator Θ).
- **9** Prove that $succ n \to_{\beta}^* n+1$ for all $n \in \mathbb{N}$, and $add m n \to_{\beta}^* m+n$ for all $m, n \in \mathbb{N}$.
- Find terms t, t', s, s' such that t = t', s = s' and $t[s/x] \neq t'[s'/x]$ (where t = t' is α -equivalence and t[s/x] is naïve substitution, see p. 10 on Day 2 slides).
- Define a term add that represents the addition of natural numbers starting from its inductive definition below (*Hint*: Use the fixpoint combinator Θ , pred, iszero).
- Define a term mul that represents the multiplication of natural numbers starting from its inductive definition below (*Hint*: Use fixpoint combinator Θ , pred, iszero).

$$m+n= egin{cases} m & \text{if } n=0 \\ m+(n-1) & \text{otherwise;} \end{cases} \qquad m\times n= egin{cases} 0 & \text{if } n=0 \\ m+m\times(n-1) & \text{otherwise.} \end{cases}$$

Bibliography

- For more about the untyped λ -calculus:
 - Jean-Louis Krivine. Lambda-Calculus. Types and Models. Ellis Horwood. 1990. [Chapters 1-2] https://www.irif.fr/~krivine/articles/Lambda.pdf
 - Peter Selinger. Lecture Notes on the Lambda Calculus. vol. 0804, Department of Mathematics and Statistics, University of Ottawa. 2008 [Chapters 2-3] http://www.mathstat.dal.ca/~selinger/papers/lambdanotes.pdf
 - Henk P. Barendregt. The Lambda-Calculus. Its Syntax and Semantics. Studies in Logic and the Foundations of Mathematics, vol. 103, North Holland, 1984. [Chapters 2-3, 6, 8]
- For an elegant proof of the confluence of β -reduction:
 - Masako Takahashi. *Parallel Reductions in λ-Calculus*. Information and Computation, vol. 118, issue 1, pages 120-127. 1995. https://doi.org/10.1006/inco.1995.1057