
The λ-calculus: from simple types to non-idempotent intersection types

Day 2: The simply typed λ-calculus and the Curry-Howard correspondence

Giulio Guerrieri

Department of Informatics, University of Sussex (Brighton, UK)
B g.guerrieri@sussex.ac.uk � https://pageperso.lis-lab.fr/~giulio.guerrieri/

37th Escuela de Ciencias Informaticas (ECI 2024)

Buenos Aires (Argentina), 30 July 2024

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 1 / 26

mailto:g.guerrieri@sussex.ac.uk
https://pageperso.lis-lab.fr/~giulio.guerrieri/

Outline

1 The Curry-Howard correspondence and the simply typed λ-calculus

2 Strong normalization of the simply typed λ-calculus

3 Conclusion, exercises and bibliography

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 2 / 26

Outline

1 The Curry-Howard correspondence and the simply typed λ-calculus

2 Strong normalization of the simply typed λ-calculus

3 Conclusion, exercises and bibliography

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 3 / 26

A computational interpretation of ND
Idea. A derivation D ▷ND A1, . . . ,An ⊢ B can be seen as a function t(x1, . . . , xn)

A1 n∈N. . . An

D

B

that associates with derivations
D1 ▷ND ⊢ A1, . . . , Dn ▷ND ⊢ An,

a derivation t(D1/x1, . . . ,Dn/xn) ▷ND ⊢ B.

⇝ Let us see how, by induction on D.

D1

A1 n∈N. . .

Dn

An

D

B

A derivation consisting of a single hypothesis A is represented by a variable x .
Different formulas are associated with different variables.
For several occurrences of A as hypotheses, we chose the same x or another variable.
⇝ A variable represents a (possibly empty) parcel of hypotheses of the same formula.
If D ends in ⇒i let s(y , x1, . . . , xn) be the function associated with the ⇒i -premise.
Let x be the variable associated with the parcel of hypotheses C discharged by ⇒i .
The function t(x1, . . . , xn) associated with D maps D′▷ND ⊢C to s(D′/y , x1, . . . , xn).

(abstraction) t(x1, . . . , xn) := λy .s(y , x1, . . . , xn) (i.e. y 7→ s(y , x1, . . . , xn))

If D ends in ⇒e , let s1(x1, . . . , xn) and s2(x1, . . . , xn) be the functions associated
with the two premises of ⇒e . The function t(x1, . . . , xn) associated with D is the
application (noted as juxtaposition) of s1(x1, . . . , xn) to s2(x1, . . . , xn).

(application) t(x1, . . . , xn) := s1(x1, . . . , xn)s2(x1, . . . , xn)

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 4 / 26

A computational interpretation of ND
Idea. A derivation D ▷ND A1, . . . ,An ⊢ B can be seen as a function t(x1, . . . , xn)

A1 n∈N. . . An

D

B

that associates with derivations
D1 ▷ND ⊢ A1, . . . , Dn ▷ND ⊢ An,

a derivation t(D1/x1, . . . ,Dn/xn) ▷ND ⊢ B.

⇝ Let us see how, by induction on D.

D1

A1 n∈N. . .

Dn

An

D

B

A derivation consisting of a single hypothesis A is represented by a variable x .
Different formulas are associated with different variables.
For several occurrences of A as hypotheses, we chose the same x or another variable.
⇝ A variable represents a (possibly empty) parcel of hypotheses of the same formula.
If D ends in ⇒i let s(y , x1, . . . , xn) be the function associated with the ⇒i -premise.
Let x be the variable associated with the parcel of hypotheses C discharged by ⇒i .
The function t(x1, . . . , xn) associated with D maps D′▷ND ⊢C to s(D′/y , x1, . . . , xn).

(abstraction) t(x1, . . . , xn) := λy .s(y , x1, . . . , xn) (i.e. y 7→ s(y , x1, . . . , xn))

If D ends in ⇒e , let s1(x1, . . . , xn) and s2(x1, . . . , xn) be the functions associated
with the two premises of ⇒e . The function t(x1, . . . , xn) associated with D is the
application (noted as juxtaposition) of s1(x1, . . . , xn) to s2(x1, . . . , xn).

(application) t(x1, . . . , xn) := s1(x1, . . . , xn)s2(x1, . . . , xn)

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 4 / 26

A computational interpretation of ND
Idea. A derivation D ▷ND A1, . . . ,An ⊢ B can be seen as a function t(x1, . . . , xn)

A1 n∈N. . . An

D

B

that associates with derivations
D1 ▷ND ⊢ A1, . . . , Dn ▷ND ⊢ An,

a derivation t(D1/x1, . . . ,Dn/xn) ▷ND ⊢ B.

⇝ Let us see how, by induction on D.

D1

A1 n∈N. . .

Dn

An

D

B

A derivation consisting of a single hypothesis A is represented by a variable x .
Different formulas are associated with different variables.
For several occurrences of A as hypotheses, we chose the same x or another variable.
⇝ A variable represents a (possibly empty) parcel of hypotheses of the same formula.
If D ends in ⇒i let s(y , x1, . . . , xn) be the function associated with the ⇒i -premise.
Let x be the variable associated with the parcel of hypotheses C discharged by ⇒i .
The function t(x1, . . . , xn) associated with D maps D′▷ND ⊢C to s(D′/y , x1, . . . , xn).

(abstraction) t(x1, . . . , xn) := λy .s(y , x1, . . . , xn) (i.e. y 7→ s(y , x1, . . . , xn))

If D ends in ⇒e , let s1(x1, . . . , xn) and s2(x1, . . . , xn) be the functions associated
with the two premises of ⇒e . The function t(x1, . . . , xn) associated with D is the
application (noted as juxtaposition) of s1(x1, . . . , xn) to s2(x1, . . . , xn).

(application) t(x1, . . . , xn) := s1(x1, . . . , xn)s2(x1, . . . , xn)

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 4 / 26

A computational interpretation of ND
Idea. A derivation D ▷ND A1, . . . ,An ⊢ B can be seen as a function t(x1, . . . , xn)

A1 n∈N. . . An

D

B

that associates with derivations
D1 ▷ND ⊢ A1, . . . , Dn ▷ND ⊢ An,

a derivation t(D1/x1, . . . ,Dn/xn) ▷ND ⊢ B.

⇝ Let us see how, by induction on D.

D1

A1 n∈N. . .

Dn

An

D

B

A derivation consisting of a single hypothesis A is represented by a variable x .
Different formulas are associated with different variables.
For several occurrences of A as hypotheses, we chose the same x or another variable.
⇝ A variable represents a (possibly empty) parcel of hypotheses of the same formula.
If D ends in ⇒i let s(y , x1, . . . , xn) be the function associated with the ⇒i -premise.
Let x be the variable associated with the parcel of hypotheses C discharged by ⇒i .
The function t(x1, . . . , xn) associated with D maps D′▷ND ⊢C to s(D′/y , x1, . . . , xn).

(abstraction) t(x1, . . . , xn) := λy .s(y , x1, . . . , xn) (i.e. y 7→ s(y , x1, . . . , xn))

If D ends in ⇒e , let s1(x1, . . . , xn) and s2(x1, . . . , xn) be the functions associated
with the two premises of ⇒e . The function t(x1, . . . , xn) associated with D is the
application (noted as juxtaposition) of s1(x1, . . . , xn) to s2(x1, . . . , xn).

(application) t(x1, . . . , xn) := s1(x1, . . . , xn)s2(x1, . . . , xn)

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 4 / 26

A computational interpretation of ND
Idea. A derivation D ▷ND A1, . . . ,An ⊢ B can be seen as a function t(x1, . . . , xn)

A1 n∈N. . . An

D

B

that associates with derivations
D1 ▷ND ⊢ A1, . . . , Dn ▷ND ⊢ An,

a derivation t(D1/x1, . . . ,Dn/xn) ▷ND ⊢ B.

⇝ Let us see how, by induction on D.

D1

A1 n∈N. . .

Dn

An

D

B

A derivation consisting of a single hypothesis A is represented by a variable x .
Different formulas are associated with different variables.
For several occurrences of A as hypotheses, we chose the same x or another variable.
⇝ A variable represents a (possibly empty) parcel of hypotheses of the same formula.
If D ends in ⇒i let s(y , x1, . . . , xn) be the function associated with the ⇒i -premise.
Let x be the variable associated with the parcel of hypotheses C discharged by ⇒i .
The function t(x1, . . . , xn) associated with D maps D′▷ND ⊢C to s(D′/y , x1, . . . , xn).

(abstraction) t(x1, . . . , xn) := λy .s(y , x1, . . . , xn) (i.e. y 7→ s(y , x1, . . . , xn))

If D ends in ⇒e , let s1(x1, . . . , xn) and s2(x1, . . . , xn) be the functions associated
with the two premises of ⇒e . The function t(x1, . . . , xn) associated with D is the
application (noted as juxtaposition) of s1(x1, . . . , xn) to s2(x1, . . . , xn).

(application) t(x1, . . . , xn) := s1(x1, . . . , xn)s2(x1, . . . , xn)

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 4 / 26

Cut-elimination as a computational step

[A]y

....
t(y , x⃗) : B

⇒y
i

λy .t(y , x⃗) : A ⇒ B

....
s(x⃗) : A

⇒e
(λy .t(y , x⃗))s(x⃗) : B

→cut

....
s(x⃗) : A

....
t(s(x⃗)/y , x⃗) : B

We can decorate each formula occurrence in a derivation with a term.
⇝ For every derivation D, its term (D)λ is the decoration of its conclusion.

This decoration commute with cut-elimination via the step:

(λx .t)s →β t{s/x}

where t{s/x} stands for the substitution of s for the free occurrences of x in t.

D D′

Dλ (Dλ)
′ = (D′)λ

decoration

cut

decoration

β

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 5 / 26

Cut-elimination as a computational step

[A]y

....
t(y , x⃗) : B

⇒y
i

λy .t(y , x⃗) : A ⇒ B

....
s(x⃗) : A

⇒e
(λy .t(y , x⃗))s(x⃗) : B

→cut

....
s(x⃗) : A

....
t(s(x⃗)/y , x⃗) : B

We can decorate each formula occurrence in a derivation with a term.
⇝ For every derivation D, its term (D)λ is the decoration of its conclusion.

This decoration commute with cut-elimination via the step:

(λx .t)s →β t{s/x}

where t{s/x} stands for the substitution of s for the free occurrences of x in t.

D D′

Dλ (Dλ)
′ = (D′)λ

decoration

cut

decoration

β

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 5 / 26

Cut-elimination as a computational step

[A]y

....
t(y , x⃗) : B

⇒y
i

λy .t(y , x⃗) : A ⇒ B

....
s(x⃗) : A

⇒e
(λy .t(y , x⃗))s(x⃗) : B

→cut

....
s(x⃗) : A

....
t(s(x⃗)/y , x⃗) : B

We can decorate each formula occurrence in a derivation with a term.
⇝ For every derivation D, its term (D)λ is the decoration of its conclusion.

This decoration commute with cut-elimination via the step:

(λx .t)s →β t{s/x}

where t{s/x} stands for the substitution of s for the free occurrences of x in t.

D D′

Dλ (Dλ)
′ = (D′)λ

decoration

cut

decoration

β

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 5 / 26

Examples of decorations of derivations in ND

x : A
[x : A]x

⇒x
i

λx .x : A⇒ A

[x : A]x
⇒i

λy .x : A⇒ A
⇒x

i
λx .λy .x : A⇒ A⇒ A

[y : A]y
⇒y

i
λy .y : A⇒ A

⇒x
i

λx .λy .y : A⇒ A⇒ A

[x : A⇒ (B ⇒ C)]x [z : A]z
⇒e

xz : B ⇒ C

[y : A⇒ B]y [z : A]z
⇒e

yz : B
⇒e

(xz)(yz) : C
⇒z

i
λz .(xz)(yz) : A⇒ C

⇒y
i

λy .λz .(xz)(yz) : (A⇒ B)⇒ (A⇒ C)
⇒x

i
λx .λy .λz .(xz)(yz) : (A⇒ (B ⇒ C))⇒ (A⇒ B)⇒ (A⇒ C)

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 6 / 26

Examples of decorations of derivations in ND

x : A
[x : A]x

⇒x
i

λx .x : A⇒ A

[x : A]x
⇒i

λy .x : A⇒ A
⇒x

i
λx .λy .x : A⇒ A⇒ A

[y : A]y
⇒y

i
λy .y : A⇒ A

⇒x
i

λx .λy .y : A⇒ A⇒ A

[x : A⇒ (B ⇒ C)]x [z : A]z
⇒e

xz : B ⇒ C

[y : A⇒ B]y [z : A]z
⇒e

yz : B
⇒e

(xz)(yz) : C
⇒z

i
λz .(xz)(yz) : A⇒ C

⇒y
i

λy .λz .(xz)(yz) : (A⇒ B)⇒ (A⇒ C)
⇒x

i
λx .λy .λz .(xz)(yz) : (A⇒ (B ⇒ C))⇒ (A⇒ B)⇒ (A⇒ C)

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 6 / 26

Examples of decorations of derivations in ND

x : A
[x : A]x

⇒x
i

λx .x : A⇒ A

[x : A]x
⇒y

i
λy .x : B ⇒ A

⇒x
i

λx .λy .x : A⇒ B ⇒ A

[x : A]x
⇒i

λy .x : A⇒ A
⇒x

i
λx .λy .x : A⇒ A⇒ A

[y : A]y
⇒y

i
λy .y : A⇒ A

⇒x
i

λx .λy .y : A⇒ A⇒ A

[x : A⇒ (B ⇒ C)]x [z : A]z
⇒e

xz : B ⇒ C

[y : A⇒ B]y [z : A]z
⇒e

yz : B
⇒e

(xz)(yz) : C
⇒z

i
λz .(xz)(yz) : A⇒ C

⇒y
i

λy .λz .(xz)(yz) : (A⇒ B)⇒ (A⇒ C)
⇒x

i
λx .λy .λz .(xz)(yz) : (A⇒ (B ⇒ C))⇒ (A⇒ B)⇒ (A⇒ C)

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 6 / 26

Examples of decorations of derivations in ND

x : A
[x : A]x

⇒x
i

λx .x : A⇒ A

[x : A]x
⇒y

i
λy .x : B ⇒ A

⇒x
i

λx .λy .x : A⇒ B ⇒ A

[x : A]x
⇒i

λy .x : A⇒ A
⇒x

i
λx .λy .x : A⇒ A⇒ A

[y : A]y
⇒y

i
λy .y : A⇒ A

⇒x
i

λx .λy .y : A⇒ A⇒ A

[x : A⇒ (B ⇒ C)]x [z : A]z
⇒e

xz : B ⇒ C

[y : A⇒ B]y [z : A]z
⇒e

yz : B
⇒e

(xz)(yz) : C
⇒z

i
λz .(xz)(yz) : A⇒ C

⇒y
i

λy .λz .(xz)(yz) : (A⇒ B)⇒ (A⇒ C)
⇒x

i
λx .λy .λz .(xz)(yz) : (A⇒ (B ⇒ C))⇒ (A⇒ B)⇒ (A⇒ C)

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 6 / 26

Examples of decorations of derivations in ND

x : A
[x : A]x

⇒x
i

λx .x : A⇒ A

[x : A]x
⇒y

i
λy .x : B ⇒ A

⇒x
i

λx .λy .x : A⇒ B ⇒ A

[x : A]x
⇒i

λy .x : A⇒ A
⇒x

i
λx .λy .x : A⇒ A⇒ A

[y : A]y
⇒y

i
λy .y : A⇒ A

⇒x
i

λx .λy .y : A⇒ A⇒ A

[x : A⇒ (B ⇒ C)]x [z : A]z
⇒e

xz : B ⇒ C

[y : A⇒ B]y [z : A]z
⇒e

yz : B
⇒e

(xz)(yz) : C
⇒z

i
λz .(xz)(yz) : A⇒ C

⇒y
i

λy .λz .(xz)(yz) : (A⇒ B)⇒ (A⇒ C)
⇒x

i
λx .λy .λz .(xz)(yz) : (A⇒ (B ⇒ C))⇒ (A⇒ B)⇒ (A⇒ C)

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 6 / 26

Examples of decorations of derivations in ND

x : A
[x : A]x

⇒x
i

λx .x : A⇒ A

[x : A]x
⇒y

i
λy .x : B ⇒ A

⇒x
i

λx .λy .x : A⇒ B ⇒ A

[x : A]x
⇒i

λy .x : A⇒ A
⇒x

i
λx .λy .x : A⇒ A⇒ A

[y : A]y
⇒y

i
λy .y : A⇒ A

⇒x
i

λx .λy .y : A⇒ A⇒ A

[x : A⇒ (B ⇒ C)]x [z : A]z
⇒e

xz : B ⇒ C

[y : A⇒ B]y [z : A]z
⇒e

yz : B
⇒e

(xz)(yz) : C
⇒z

i
λz .(xz)(yz) : A⇒ C

⇒y
i

λy .λz .(xz)(yz) : (A⇒ B)⇒ (A⇒ C)
⇒x

i
λx .λy .λz .(xz)(yz) : (A⇒ (B ⇒ C))⇒ (A⇒ B)⇒ (A⇒ C)

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 6 / 26

Example of decorations of derivations in ND with cut-elimination

x : [X ⇒ X]x
⇒x

i
λx .x : (X ⇒ X)⇒ X ⇒ X

y : [X]y
⇒y

i
λy .y : X ⇒ X

⇒e

(λx .x)λy .y : X ⇒ X

→cut
y : [X]x

⇒x
i

λy .y : X ⇒ X

Rmk. (λx .x)λy .y →β x{λy .y/x} = λy .y ⇝ cut-elimination commutes with decoration.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 7 / 26

Example of decorations of derivations in ND with cut-elimination

x : [X ⇒ X]x
⇒x

i
λx .x : (X ⇒ X)⇒ X ⇒ X

y : [X]y
⇒y

i
λy .y : X ⇒ X

⇒e

(λx .x)λy .y : X ⇒ X

→cut
y : [X]x

⇒x
i

λy .y : X ⇒ X

Rmk. (λx .x)λy .y →β x{λy .y/x} = λy .y ⇝ cut-elimination commutes with decoration.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 7 / 26

Example of decorations of derivations in ND with cut-elimination

[x : A ⇒ (B ⇒ A)]x [z : A]z

⇒e
xz : B ⇒ A

[y : A ⇒ B]y [z : A]z

⇒e
yz : B

⇒e
(xz)(yz) : A

⇒z
i

λz.(xz)(yz) : A ⇒ A
⇒y

i
λy .λz.(xz)(yz) : (A ⇒ B) ⇒ (A ⇒ A)

⇒x
i

λx.λy .λz.(xz)(yz) : (A ⇒ (B ⇒ A)) ⇒ (A ⇒ B) ⇒ (A ⇒ A)

a : [A]a

⇒i
λb.a : B ⇒ A

⇒a
i

λa.λb.a : A ⇒ (B ⇒ A)
⇒e

(λx.λy .λz.(xz)(yz))λa.λb.a : (A ⇒ B) ⇒ (A ⇒ A)

↓cut
[a : A]a

⇒i
λb.a : B ⇒ A

⇒a
i

λa.λb.a : A ⇒ (B ⇒ A) [z : A]z

⇒e
(λa.λb.a)z : B ⇒ A

[y : A ⇒ B]y [z : A]z

⇒e
yz : B

⇒e
((λa.λb.a)z)(yz) : A

⇒z
i

λz.((λa.λb.a)z)(yz) : A ⇒ A
⇒y

i
λy .λz.((λa.λb.a)z)(yz) : (A ⇒ B) ⇒ (A ⇒ A)

Rmk. (λx .λy .λz .(xz)(yz))λa.λb.a→β (λy .λz .(xz)(yz)){λa.λb.a/x} =
λy .λz .((λa.λb.a)z)(yz) ⇝ cut-elimination commutes with decoration.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 7 / 26

Example of decorations of derivations in ND with cut-elimination

[x : A ⇒ (B ⇒ A)]x [z : A]z

⇒e
xz : B ⇒ A

[y : A ⇒ B]y [z : A]z

⇒e
yz : B

⇒e
(xz)(yz) : A

⇒z
i

λz.(xz)(yz) : A ⇒ A
⇒y

i
λy .λz.(xz)(yz) : (A ⇒ B) ⇒ (A ⇒ A)

⇒x
i

λx.λy .λz.(xz)(yz) : (A ⇒ (B ⇒ A)) ⇒ (A ⇒ B) ⇒ (A ⇒ A)

a : [A]a

⇒i
λb.a : B ⇒ A

⇒a
i

λa.λb.a : A ⇒ (B ⇒ A)
⇒e

(λx.λy .λz.(xz)(yz))λa.λb.a : (A ⇒ B) ⇒ (A ⇒ A)

↓cut
[a : A]a

⇒i
λb.a : B ⇒ A

⇒a
i

λa.λb.a : A ⇒ (B ⇒ A) [z : A]z

⇒e
(λa.λb.a)z : B ⇒ A

[y : A ⇒ B]y [z : A]z

⇒e
yz : B

⇒e
((λa.λb.a)z)(yz) : A

⇒z
i

λz.((λa.λb.a)z)(yz) : A ⇒ A
⇒y

i
λy .λz.((λa.λb.a)z)(yz) : (A ⇒ B) ⇒ (A ⇒ A)

Rmk. (λx .λy .λz .(xz)(yz))λa.λb.a→β (λy .λz .(xz)(yz)){λa.λb.a/x} =
λy .λz .((λa.λb.a)z)(yz) ⇝ cut-elimination commutes with decoration.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 7 / 26

Inverse decoration: from terms to derivations

Question. Given the term λf .λx .fx , what is the derivation associated with it?

Problem. Without knowing the formulas associated with variables, there is no answer.

Question. Given the term λf X⇒X .λxX .fx , what is the derivation associated with it?
Question. Given the term λf X .λxX .fx , what is the derivation associated with it?

Rmk. Fixing formulas for variables (and hence for the whole term) is crucial!

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 8 / 26

Inverse decoration: from terms to derivations

Question. Given the term λf .λx .fx , what is the derivation associated with it?

Problem. Without knowing the formulas associated with variables, there is no answer.

Question. Given the term λf X⇒X .λxX .fx , what is the derivation associated with it?
Question. Given the term λf X .λxX .fx , what is the derivation associated with it?

Rmk. Fixing formulas for variables (and hence for the whole term) is crucial!

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 8 / 26

Inverse decoration: from terms to derivations

Question. Given the term λf .λx .fx , what is the derivation associated with it?

Problem. Without knowing the formulas associated with variables, there is no answer.

Question. Given the term λf X⇒X .λxX .fx , what is the derivation associated with it?
Question. Given the term λf X .λxX .fx , what is the derivation associated with it?

Rmk. Fixing formulas for variables (and hence for the whole term) is crucial!

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 8 / 26

Inverse decoration: from terms to derivations

Question. Given the term λf .λx .fx , what is the derivation associated with it?

Problem. Without knowing the formulas associated with variables, there is no answer.

Question. Given the term λf X⇒X .λxX .fx , what is the derivation associated with it?
Question. Given the term λf X .λxX .fx , what is the derivation associated with it?

Rmk. Fixing formulas for variables (and hence for the whole term) is crucial!

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 8 / 26

The simply typed λ-calculus in Curry-style

Types: A,B ::= X | A⇒ B (given a set of ground types ranged over by X ,Y,Z . . .)

(λ-)Terms: s, t ::= x | λx .t | st (called variable, abstraction, application, respectively)

Environment: function from finitely many variables to types (noted x1 : A1, . . . , xn : An).
The well-typed terms are the ones that can be constructed via the typing rules below.

var
Γ, x : A ⊢ x : A

Γ, x : A ⊢ t : B
λ

Γ ⊢ λx .t : A⇒ B

Γ ⊢ s : B ⇒ A Γ ⊢ t : B
@

Γ ⊢ st : A

The free variables of a term t are the variables that are not bound to a λ. Formally,

fv(x) = {x} fv(st) = fv(s) ∪ fv(t) fv(λx .t) = fv(t) \ {x}

Proposition (If Γ ⊢ t : A is derivable , Γ is essentially a type assignment for fv(t))

1 If Γ ⊢ t : A is derivable, then so is Γ, x : B ⊢ t : A, for any type B and x /∈ dom(Γ).
2 If Γ ⊢ t : A is derivable, then fv(t) ⊆ dom(Γ) and Γ↾fv(t) ⊢ t : A is derivable.

β-reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(λx .t)s →β t{s/x}

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 9 / 26

The simply typed λ-calculus in Curry-style

Types: A,B ::= X | A⇒ B (given a set of ground types ranged over by X ,Y,Z . . .)

(λ-)Terms: s, t ::= x | λx .t | st (called variable, abstraction, application, respectively)

Environment: function from finitely many variables to types (noted x1 : A1, . . . , xn : An).
The well-typed terms are the ones that can be constructed via the typing rules below.

var
Γ, x : A ⊢ x : A

Γ, x : A ⊢ t : B
λ

Γ ⊢ λx .t : A⇒ B

Γ ⊢ s : B ⇒ A Γ ⊢ t : B
@

Γ ⊢ st : A

The free variables of a term t are the variables that are not bound to a λ. Formally,

fv(x) = {x} fv(st) = fv(s) ∪ fv(t) fv(λx .t) = fv(t) \ {x}

Proposition (If Γ ⊢ t : A is derivable , Γ is essentially a type assignment for fv(t))

1 If Γ ⊢ t : A is derivable, then so is Γ, x : B ⊢ t : A, for any type B and x /∈ dom(Γ).
2 If Γ ⊢ t : A is derivable, then fv(t) ⊆ dom(Γ) and Γ↾fv(t) ⊢ t : A is derivable.

β-reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(λx .t)s →β t{s/x}

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 9 / 26

The simply typed λ-calculus in Curry-style

Types: A,B ::= X | A⇒ B (given a set of ground types ranged over by X ,Y,Z . . .)

(λ-)Terms: s, t ::= x | λx .t | st (called variable, abstraction, application, respectively)

Environment: function from finitely many variables to types (noted x1 : A1, . . . , xn : An).
The well-typed terms are the ones that can be constructed via the typing rules below.

var
Γ, x : A ⊢ x : A

Γ, x : A ⊢ t : B
λ

Γ ⊢ λx .t : A⇒ B

Γ ⊢ s : B ⇒ A Γ ⊢ t : B
@

Γ ⊢ st : A

The free variables of a term t are the variables that are not bound to a λ. Formally,

fv(x) = {x} fv(st) = fv(s) ∪ fv(t) fv(λx .t) = fv(t) \ {x}

Proposition (If Γ ⊢ t : A is derivable , Γ is essentially a type assignment for fv(t))

1 If Γ ⊢ t : A is derivable, then so is Γ, x : B ⊢ t : A, for any type B and x /∈ dom(Γ).
2 If Γ ⊢ t : A is derivable, then fv(t) ⊆ dom(Γ) and Γ↾fv(t) ⊢ t : A is derivable.

β-reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(λx .t)s →β t{s/x}

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 9 / 26

The simply typed λ-calculus in Curry-style

Types: A,B ::= X | A⇒ B (given a set of ground types ranged over by X ,Y,Z . . .)

(λ-)Terms: s, t ::= x | λx .t | st (called variable, abstraction, application, respectively)

Environment: function from finitely many variables to types (noted x1 : A1, . . . , xn : An).
The well-typed terms are the ones that can be constructed via the typing rules below.

var
Γ, x : A ⊢ x : A

Γ, x : A ⊢ t : B
λ

Γ ⊢ λx .t : A⇒ B

Γ ⊢ s : B ⇒ A Γ ⊢ t : B
@

Γ ⊢ st : A

The free variables of a term t are the variables that are not bound to a λ. Formally,

fv(x) = {x} fv(st) = fv(s) ∪ fv(t) fv(λx .t) = fv(t) \ {x}

Proposition (If Γ ⊢ t : A is derivable , Γ is essentially a type assignment for fv(t))

1 If Γ ⊢ t : A is derivable, then so is Γ, x : B ⊢ t : A, for any type B and x /∈ dom(Γ).
2 If Γ ⊢ t : A is derivable, then fv(t) ⊆ dom(Γ) and Γ↾fv(t) ⊢ t : A is derivable.

β-reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(λx .t)s →β t{s/x}

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 9 / 26

The simply typed λ-calculus in Curry-style

Types: A,B ::= X | A⇒ B (given a set of ground types ranged over by X ,Y,Z . . .)

(λ-)Terms: s, t ::= x | λx .t | st (called variable, abstraction, application, respectively)

Environment: function from finitely many variables to types (noted x1 : A1, . . . , xn : An).
The well-typed terms are the ones that can be constructed via the typing rules below.

var
Γ, x : A ⊢ x : A

Γ, x : A ⊢ t : B
λ

Γ ⊢ λx .t : A⇒ B

Γ ⊢ s : B ⇒ A Γ ⊢ t : B
@

Γ ⊢ st : A

The free variables of a term t are the variables that are not bound to a λ. Formally,

fv(x) = {x} fv(st) = fv(s) ∪ fv(t) fv(λx .t) = fv(t) \ {x}

Proposition (If Γ ⊢ t : A is derivable , Γ is essentially a type assignment for fv(t))

1 If Γ ⊢ t : A is derivable, then so is Γ, x : B ⊢ t : A, for any type B and x /∈ dom(Γ).
2 If Γ ⊢ t : A is derivable, then fv(t) ⊆ dom(Γ) and Γ↾fv(t) ⊢ t : A is derivable.

β-reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(λx .t)s →β t{s/x}

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 9 / 26

The capture-avoiding substitution

Naive substitution t[s/x]: replacement of the free occurrences of the variable x in t by s.

Ex: Let t = λy .yx and s = yy . Then, t[s/x] = λy .y(yy).
Problem: The free variable y in s has been captured by the λ in t. ⇝ Undesirable.

Solution: Capture-avoiding substitution t{s/x}
1 rename the bound variables in t with variables that do not occur in t or s;
2 perform the substitution in of s for x in t.

⇝ So, the free variables of s are not captured by the λ’s in t.

Ex: Let t = λy .yx and s = yy . Then, t{s/x} = λz .z(yy).

Rmk: The operation of renaming the bound variables in a term is called α-equivalence.
⇝ Capture-avoiding substitution makes sense, as we identify terms up to α-equivalence.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 10 / 26

The capture-avoiding substitution

Naive substitution t[s/x]: replacement of the free occurrences of the variable x in t by s.

Ex: Let t = λy .yx and s = yy . Then, t[s/x] = λy .y(yy).
Problem: The free variable y in s has been captured by the λ in t. ⇝ Undesirable.

Solution: Capture-avoiding substitution t{s/x}
1 rename the bound variables in t with variables that do not occur in t or s;
2 perform the substitution in of s for x in t.

⇝ So, the free variables of s are not captured by the λ’s in t.

Ex: Let t = λy .yx and s = yy . Then, t{s/x} = λz .z(yy).

Rmk: The operation of renaming the bound variables in a term is called α-equivalence.
⇝ Capture-avoiding substitution makes sense, as we identify terms up to α-equivalence.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 10 / 26

The capture-avoiding substitution

Naive substitution t[s/x]: replacement of the free occurrences of the variable x in t by s.

Ex: Let t = λy .yx and s = yy . Then, t[s/x] = λy .y(yy).
Problem: The free variable y in s has been captured by the λ in t. ⇝ Undesirable.

Solution: Capture-avoiding substitution t{s/x}
1 rename the bound variables in t with variables that do not occur in t or s;
2 perform the substitution in of s for x in t.

⇝ So, the free variables of s are not captured by the λ’s in t.

Ex: Let t = λy .yx and s = yy . Then, t{s/x} = λz .z(yy).

Rmk: The operation of renaming the bound variables in a term is called α-equivalence.
⇝ Capture-avoiding substitution makes sense, as we identify terms up to α-equivalence.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 10 / 26

The capture-avoiding substitution

Naive substitution t[s/x]: replacement of the free occurrences of the variable x in t by s.

Ex: Let t = λy .yx and s = yy . Then, t[s/x] = λy .y(yy).
Problem: The free variable y in s has been captured by the λ in t. ⇝ Undesirable.

Solution: Capture-avoiding substitution t{s/x}
1 rename the bound variables in t with variables that do not occur in t or s;
2 perform the substitution in of s for x in t.

⇝ So, the free variables of s are not captured by the λ’s in t.

Ex: Let t = λy .yx and s = yy . Then, t{s/x} = λz .z(yy).

Rmk: The operation of renaming the bound variables in a term is called α-equivalence.
⇝ Capture-avoiding substitution makes sense, as we identify terms up to α-equivalence.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 10 / 26

Some remarks about the simply typed λ-calculus in Curry-style

Rmk. The search for a derivation is uniquely determined by the term (syntax-directed).
⇝ To build a derivation D of Γ ⊢ t : A, just look at t to know the last rule of D (if any).

The types used in the simply typed λ-calculus are exactly the formulas of minimal logic.
The inference rules for the simply typed λ-calculus are the ones of NDseq plus decoration.
⇝ Every derivation in ND/NDseq corresponds to a unique λ-term typed in Curry-style.

Question: With every typable term in Curry-style is it associated a unique derivation? No!

var
x : X ⊢ x : X

λ
⊢ λx .x : X ⇒ X

var
x : X ⇒ X ⊢ x : X ⇒ X

λ
⊢ λx .x : (X ⇒ X)⇒ X ⇒ X

⇝ The map from typable terms in Curry-style to ND/NDseq derivations is not injective!

Idea: In Curry-style, types are extrinsic to terms (dynamic typing, a posteriori)
⇝ Let us make them intrinsic to terms (static typing, a priori): Church-style.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 11 / 26

Some remarks about the simply typed λ-calculus in Curry-style

Rmk. The search for a derivation is uniquely determined by the term (syntax-directed).
⇝ To build a derivation D of Γ ⊢ t : A, just look at t to know the last rule of D (if any).

The types used in the simply typed λ-calculus are exactly the formulas of minimal logic.
The inference rules for the simply typed λ-calculus are the ones of NDseq plus decoration.
⇝ Every derivation in ND/NDseq corresponds to a unique λ-term typed in Curry-style.

Question: With every typable term in Curry-style is it associated a unique derivation? No!

var
x : X ⊢ x : X

λ
⊢ λx .x : X ⇒ X

var
x : X ⇒ X ⊢ x : X ⇒ X

λ
⊢ λx .x : (X ⇒ X)⇒ X ⇒ X

⇝ The map from typable terms in Curry-style to ND/NDseq derivations is not injective!

Idea: In Curry-style, types are extrinsic to terms (dynamic typing, a posteriori)
⇝ Let us make them intrinsic to terms (static typing, a priori): Church-style.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 11 / 26

Some remarks about the simply typed λ-calculus in Curry-style

Rmk. The search for a derivation is uniquely determined by the term (syntax-directed).
⇝ To build a derivation D of Γ ⊢ t : A, just look at t to know the last rule of D (if any).

The types used in the simply typed λ-calculus are exactly the formulas of minimal logic.
The inference rules for the simply typed λ-calculus are the ones of NDseq plus decoration.
⇝ Every derivation in ND/NDseq corresponds to a unique λ-term typed in Curry-style.

Question: With every typable term in Curry-style is it associated a unique derivation? No!

var
x : X ⊢ x : X

λ
⊢ λx .x : X ⇒ X

var
x : X ⇒ X ⊢ x : X ⇒ X

λ
⊢ λx .x : (X ⇒ X)⇒ X ⇒ X

⇝ The map from typable terms in Curry-style to ND/NDseq derivations is not injective!

Idea: In Curry-style, types are extrinsic to terms (dynamic typing, a posteriori)
⇝ Let us make them intrinsic to terms (static typing, a priori): Church-style.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 11 / 26

Some remarks about the simply typed λ-calculus in Curry-style

Rmk. The search for a derivation is uniquely determined by the term (syntax-directed).
⇝ To build a derivation D of Γ ⊢ t : A, just look at t to know the last rule of D (if any).

The types used in the simply typed λ-calculus are exactly the formulas of minimal logic.
The inference rules for the simply typed λ-calculus are the ones of NDseq plus decoration.
⇝ Every derivation in ND/NDseq corresponds to a unique λ-term typed in Curry-style.

Question: With every typable term in Curry-style is it associated a unique derivation? No!

var
x : X ⊢ x : X

λ
⊢ λx .x : X ⇒ X

var
x : X ⇒ X ⊢ x : X ⇒ X

λ
⊢ λx .x : (X ⇒ X)⇒ X ⇒ X

⇝ The map from typable terms in Curry-style to ND/NDseq derivations is not injective!

Idea: In Curry-style, types are extrinsic to terms (dynamic typing, a posteriori)
⇝ Let us make them intrinsic to terms (static typing, a priori): Church-style.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 11 / 26

The simply typed λ-calculus in Church-style

Idea: Let us make types intrinsic to terms (static typing, a priori): Church-style.
⇝ Every abstracted variable in a term is associated with some type.

(λ-)Terms: s, t ::= x | λxA.t | st (where A is any type, as defined for Curry-style)

Environment: function from finitely many variables to types (noted x1 : A1, . . . , xn : An).
The well-typed terms are the ones that can be constructed via the typing rules below.

var
Γ, x : A ⊢ x : A

Γ, x : A ⊢ t : B
λ

Γ ⊢ λxA.t : A⇒ B

Γ ⊢ s : B ⇒ A Γ ⊢ t : B
@

Γ ⊢ st : A

β-reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(λxA.t)s →β t{s/x}

Rmk. Syntax-directedness and proposition on p. 11 hold true in Church-style as well.

Notation: Γ ⊢Curry/Church t : A if there is a derivation of Γ ⊢ t : A in Curry/Church-style.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 12 / 26

The simply typed λ-calculus in Church-style

Idea: Let us make types intrinsic to terms (static typing, a priori): Church-style.
⇝ Every abstracted variable in a term is associated with some type.

(λ-)Terms: s, t ::= x | λxA.t | st (where A is any type, as defined for Curry-style)

Environment: function from finitely many variables to types (noted x1 : A1, . . . , xn : An).
The well-typed terms are the ones that can be constructed via the typing rules below.

var
Γ, x : A ⊢ x : A

Γ, x : A ⊢ t : B
λ

Γ ⊢ λxA.t : A⇒ B

Γ ⊢ s : B ⇒ A Γ ⊢ t : B
@

Γ ⊢ st : A

β-reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(λxA.t)s →β t{s/x}

Rmk. Syntax-directedness and proposition on p. 11 hold true in Church-style as well.

Notation: Γ ⊢Curry/Church t : A if there is a derivation of Γ ⊢ t : A in Curry/Church-style.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 12 / 26

The simply typed λ-calculus in Church-style

Idea: Let us make types intrinsic to terms (static typing, a priori): Church-style.
⇝ Every abstracted variable in a term is associated with some type.

(λ-)Terms: s, t ::= x | λxA.t | st (where A is any type, as defined for Curry-style)

Environment: function from finitely many variables to types (noted x1 : A1, . . . , xn : An).
The well-typed terms are the ones that can be constructed via the typing rules below.

var
Γ, x : A ⊢ x : A

Γ, x : A ⊢ t : B
λ

Γ ⊢ λxA.t : A⇒ B

Γ ⊢ s : B ⇒ A Γ ⊢ t : B
@

Γ ⊢ st : A

β-reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(λxA.t)s →β t{s/x}

Rmk. Syntax-directedness and proposition on p. 11 hold true in Church-style as well.

Notation: Γ ⊢Curry/Church t : A if there is a derivation of Γ ⊢ t : A in Curry/Church-style.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 12 / 26

The simply typed λ-calculus in Church-style

Idea: Let us make types intrinsic to terms (static typing, a priori): Church-style.
⇝ Every abstracted variable in a term is associated with some type.

(λ-)Terms: s, t ::= x | λxA.t | st (where A is any type, as defined for Curry-style)

Environment: function from finitely many variables to types (noted x1 : A1, . . . , xn : An).
The well-typed terms are the ones that can be constructed via the typing rules below.

var
Γ, x : A ⊢ x : A

Γ, x : A ⊢ t : B
λ

Γ ⊢ λxA.t : A⇒ B

Γ ⊢ s : B ⇒ A Γ ⊢ t : B
@

Γ ⊢ st : A

β-reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(λxA.t)s →β t{s/x}

Rmk. Syntax-directedness and proposition on p. 11 hold true in Church-style as well.

Notation: Γ ⊢Curry/Church t : A if there is a derivation of Γ ⊢ t : A in Curry/Church-style.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 12 / 26

The simply typed λ-calculus in Church-style

Idea: Let us make types intrinsic to terms (static typing, a priori): Church-style.
⇝ Every abstracted variable in a term is associated with some type.

(λ-)Terms: s, t ::= x | λxA.t | st (where A is any type, as defined for Curry-style)

Environment: function from finitely many variables to types (noted x1 : A1, . . . , xn : An).
The well-typed terms are the ones that can be constructed via the typing rules below.

var
Γ, x : A ⊢ x : A

Γ, x : A ⊢ t : B
λ

Γ ⊢ λxA.t : A⇒ B

Γ ⊢ s : B ⇒ A Γ ⊢ t : B
@

Γ ⊢ st : A

β-reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(λxA.t)s →β t{s/x}

Rmk. Syntax-directedness and proposition on p. 11 hold true in Church-style as well.

Notation: Γ ⊢Curry/Church t : A if there is a derivation of Γ ⊢ t : A in Curry/Church-style.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 12 / 26

The simply typed λ-calculus in Church-style

Idea: Let us make types intrinsic to terms (static typing, a priori): Church-style.
⇝ Every abstracted variable in a term is associated with some type.

(λ-)Terms: s, t ::= x | λxA.t | st (where A is any type, as defined for Curry-style)

Environment: function from finitely many variables to types (noted x1 : A1, . . . , xn : An).
The well-typed terms are the ones that can be constructed via the typing rules below.

var
Γ, x : A ⊢ x : A

Γ, x : A ⊢ t : B
λ

Γ ⊢ λxA.t : A⇒ B

Γ ⊢ s : B ⇒ A Γ ⊢ t : B
@

Γ ⊢ st : A

β-reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(λxA.t)s →β t{s/x}

Rmk. Syntax-directedness and proposition on p. 11 hold true in Church-style as well.

Notation: Γ ⊢Curry/Church t : A if there is a derivation of Γ ⊢ t : A in Curry/Church-style.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 12 / 26

Curry-style versus Church-style

Church-style terms are related to Curry-style terms by the forgetful function ⌈·⌉:

⌈x⌉ = x ⌈λxA.t⌉ = λx .t ⌈st⌉ = ⌈s⌉⌈t⌉

Proposition
1 If Γ ⊢ t : A is derivable in Church-style, then Γ ⊢ ⌈t⌉ : A is derivable in Curry-style.
2 If Γ ⊢Curry t : A then Γ ⊢Church t′ : A for some t′ in Church-style such that ⌈t′⌉ = t.

Proof. By induction on the derivation in Church (Point 1) or Curry (Point 2) style.

Rmk: λxX.x and λxX⇒X.x are different terms in Church-style, because X ̸= X ⇒ X .

Proposition (Uniqueness of type and derivation for typable terms in Church-style)

In Church-style, if D derives Γ ⊢ t : A and D′ derives Γ ⊢ t : A′, then A = A′ and D = D′.

Proof. By structural induction on t (exercise!).

⇝ A bijection between typable terms in Church-style and derivations in ND/NDseq.
⇝ As β-reduction and cut-elimination mimic each other, it is an isomorphism.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 13 / 26

Curry-style versus Church-style

Church-style terms are related to Curry-style terms by the forgetful function ⌈·⌉:

⌈x⌉ = x ⌈λxA.t⌉ = λx .t ⌈st⌉ = ⌈s⌉⌈t⌉

Proposition
1 If Γ ⊢ t : A is derivable in Church-style, then Γ ⊢ ⌈t⌉ : A is derivable in Curry-style.
2 If Γ ⊢Curry t : A then Γ ⊢Church t′ : A for some t′ in Church-style such that ⌈t′⌉ = t.

Proof. By induction on the derivation in Church (Point 1) or Curry (Point 2) style.

Rmk: λxX.x and λxX⇒X.x are different terms in Church-style, because X ̸= X ⇒ X .

Proposition (Uniqueness of type and derivation for typable terms in Church-style)

In Church-style, if D derives Γ ⊢ t : A and D′ derives Γ ⊢ t : A′, then A = A′ and D = D′.

Proof. By structural induction on t (exercise!).

⇝ A bijection between typable terms in Church-style and derivations in ND/NDseq.
⇝ As β-reduction and cut-elimination mimic each other, it is an isomorphism.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 13 / 26

Curry-style versus Church-style

Church-style terms are related to Curry-style terms by the forgetful function ⌈·⌉:

⌈x⌉ = x ⌈λxA.t⌉ = λx .t ⌈st⌉ = ⌈s⌉⌈t⌉

Proposition
1 If Γ ⊢ t : A is derivable in Church-style, then Γ ⊢ ⌈t⌉ : A is derivable in Curry-style.
2 If Γ ⊢Curry t : A then Γ ⊢Church t′ : A for some t′ in Church-style such that ⌈t′⌉ = t.

Proof. By induction on the derivation in Church (Point 1) or Curry (Point 2) style.

Rmk: λxX.x and λxX⇒X.x are different terms in Church-style, because X ̸= X ⇒ X .

Proposition (Uniqueness of type and derivation for typable terms in Church-style)

In Church-style, if D derives Γ ⊢ t : A and D′ derives Γ ⊢ t : A′, then A = A′ and D = D′.

Proof. By structural induction on t (exercise!).

⇝ A bijection between typable terms in Church-style and derivations in ND/NDseq.
⇝ As β-reduction and cut-elimination mimic each other, it is an isomorphism.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 13 / 26

Some properties of the simply typed λ-calculus (Curry and Church style)

Lemma (Substitution)

If Γ, x : B ⊢ t : A and Γ ⊢ s : B are derivable, then so is Γ ⊢ t{s/x} : A.

Proof. By structural induction on t (exercise!).

Theorem (Subject reduction)

If Γ ⊢ t : A is derivable and t →β s, then Γ ⊢ s : A is derivable.

Proof. By structural induction on t, using the substitution lemma in the key-case.

Rmk. The converse (subject expansion) does not hold: let A = Y ⇒ (X ⇒ X), and
t = (λx .λy .λz .(xz)(yz))λx .λy .x and s = λy .λz .z , then t →∗

β s and ⊢ s : A, but ̸⊢ t : A.

Theorem (Normalization)

If Γ ⊢ t : A is derivable, then t →∗
β s and for some derivation of Γ ⊢ s : A without redexes.

Proof. Exactly the proof of cut-elimination in ND (uppermost inND ⇝ innermost inλ).

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 14 / 26

Some properties of the simply typed λ-calculus (Curry and Church style)

Lemma (Substitution)

If Γ, x : B ⊢ t : A and Γ ⊢ s : B are derivable, then so is Γ ⊢ t{s/x} : A.

Proof. By structural induction on t (exercise!).

Theorem (Subject reduction)

If Γ ⊢ t : A is derivable and t →β s, then Γ ⊢ s : A is derivable.

Proof. By structural induction on t, using the substitution lemma in the key-case.

Rmk. The converse (subject expansion) does not hold: let A = Y ⇒ (X ⇒ X), and
t = (λx .λy .λz .(xz)(yz))λx .λy .x and s = λy .λz .z , then t →∗

β s and ⊢ s : A, but ̸⊢ t : A.

Theorem (Normalization)

If Γ ⊢ t : A is derivable, then t →∗
β s and for some derivation of Γ ⊢ s : A without redexes.

Proof. Exactly the proof of cut-elimination in ND (uppermost inND ⇝ innermost inλ).

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 14 / 26

Some properties of the simply typed λ-calculus (Curry and Church style)

Lemma (Substitution)

If Γ, x : B ⊢ t : A and Γ ⊢ s : B are derivable, then so is Γ ⊢ t{s/x} : A.

Proof. By structural induction on t (exercise!).

Theorem (Subject reduction)

If Γ ⊢ t : A is derivable and t →β s, then Γ ⊢ s : A is derivable.

Proof. By structural induction on t, using the substitution lemma in the key-case.

Rmk. The converse (subject expansion) does not hold: let A = Y ⇒ (X ⇒ X), and
t = (λx .λy .λz .(xz)(yz))λx .λy .x and s = λy .λz .z , then t →∗

β s and ⊢ s : A, but ̸⊢ t : A.

Theorem (Normalization)

If Γ ⊢ t : A is derivable, then t →∗
β s and for some derivation of Γ ⊢ s : A without redexes.

Proof. Exactly the proof of cut-elimination in ND (uppermost inND ⇝ innermost inλ).

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 14 / 26

The Curry-Howard correspondence

minimal logic simply typed λ-calculus computer science
formula type specification

derivation term program
cut-elimination step β-reduction computation step

derivation without redexes normal form result
cut-elimination theorem normalization termination

Concerning the correspondence between derivations and terms:

derivation in minimal logic term in simply typed λ-calculus
hypotheses variable
⇒i abstraction λ
⇒e application @

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 15 / 26

The Curry-Howard correspondence

minimal logic simply typed λ-calculus computer science
formula type specification

derivation term program
cut-elimination step β-reduction computation step

derivation without redexes normal form result
cut-elimination theorem normalization termination

Concerning the correspondence between derivations and terms:

derivation in minimal logic term in simply typed λ-calculus
hypotheses variable
⇒i abstraction λ
⇒e application @

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 15 / 26

Outline

1 The Curry-Howard correspondence and the simply typed λ-calculus

2 Strong normalization of the simply typed λ-calculus

3 Conclusion, exercises and bibliography

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 16 / 26

Abstract rewriting systems: normalization versus strong normalization

We have seen different sets (of derivations, λ-terms) and reductions (cut elimination, β).
⇝ Let us consider them abstractly, to study their common properties uniformly.

Def: An abstract rewriting system (ARS) is a set A and a relation →⊆ A×A (reduction).
The reflexive-transitive closure of → is →∗, that is, t →∗ s means t → · · · →︸ ︷︷ ︸

n∈N times →

s.

t ∈ A is normal if there is no s ∈ A such that t → s.

t ∈ A is normalizing if there is u ∈ A such that t →∗ u.

t ∈ A is strongly normalizing if there is no infinite sequence (ti)i∈N with t0 = t and
ti → ti+1 for all i ∈N, i.e. every reduction sequence eventually reaches a normal form.

→ is normalizing/strongly normalizing if so is every t ∈ A.

→ is confluent if for all t, r1, r2∈A with r1
∗← t →∗ r2, r1 →∗ s ∗← r2 for some s∈A.

Rmk: Strong normalization implies normalization but the converse fails.

Proposition (Uniqueness of normal form)

If → is confluent, then for all t ∈ A there is at most one normal s ∈ A with t →∗ s.

Proof. If r∗← t→∗ s with r , s normal, by confluence ∃ u∈A: r→∗u ∗←s, so r=u=s.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 17 / 26

Abstract rewriting systems: normalization versus strong normalization

We have seen different sets (of derivations, λ-terms) and reductions (cut elimination, β).
⇝ Let us consider them abstractly, to study their common properties uniformly.

Def: An abstract rewriting system (ARS) is a set A and a relation →⊆ A×A (reduction).
The reflexive-transitive closure of → is →∗, that is, t →∗ s means t → · · · →︸ ︷︷ ︸

n∈N times →

s.

t ∈ A is normal if there is no s ∈ A such that t → s.

t ∈ A is normalizing if there is u ∈ A such that t →∗ u.

t ∈ A is strongly normalizing if there is no infinite sequence (ti)i∈N with t0 = t and
ti → ti+1 for all i ∈N, i.e. every reduction sequence eventually reaches a normal form.

→ is normalizing/strongly normalizing if so is every t ∈ A.

→ is confluent if for all t, r1, r2∈A with r1
∗← t →∗ r2, r1 →∗ s ∗← r2 for some s∈A.

Rmk: Strong normalization implies normalization but the converse fails.

Proposition (Uniqueness of normal form)

If → is confluent, then for all t ∈ A there is at most one normal s ∈ A with t →∗ s.

Proof. If r∗← t→∗ s with r , s normal, by confluence ∃ u∈A: r→∗u ∗←s, so r=u=s.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 17 / 26

Abstract rewriting systems: normalization versus strong normalization

We have seen different sets (of derivations, λ-terms) and reductions (cut elimination, β).
⇝ Let us consider them abstractly, to study their common properties uniformly.

Def: An abstract rewriting system (ARS) is a set A and a relation →⊆ A×A (reduction).
The reflexive-transitive closure of → is →∗, that is, t →∗ s means t → · · · →︸ ︷︷ ︸

n∈N times →

s.

t ∈ A is normal if there is no s ∈ A such that t → s.

t ∈ A is normalizing if there is u ∈ A such that t →∗ u.

t ∈ A is strongly normalizing if there is no infinite sequence (ti)i∈N with t0 = t and
ti → ti+1 for all i ∈N, i.e. every reduction sequence eventually reaches a normal form.

→ is normalizing/strongly normalizing if so is every t ∈ A.

→ is confluent if for all t, r1, r2∈A with r1
∗← t →∗ r2, r1 →∗ s ∗← r2 for some s∈A.

Rmk: Strong normalization implies normalization but the converse fails.

Proposition (Uniqueness of normal form)

If → is confluent, then for all t ∈ A there is at most one normal s ∈ A with t →∗ s.

Proof. If r∗← t→∗ s with r , s normal, by confluence ∃ u∈A: r→∗u ∗←s, so r=u=s.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 17 / 26

Abstract rewriting systems: normalization versus strong normalization

We have seen different sets (of derivations, λ-terms) and reductions (cut elimination, β).
⇝ Let us consider them abstractly, to study their common properties uniformly.

Def: An abstract rewriting system (ARS) is a set A and a relation →⊆ A×A (reduction).
The reflexive-transitive closure of → is →∗, that is, t →∗ s means t → · · · →︸ ︷︷ ︸

n∈N times →

s.

t ∈ A is normal if there is no s ∈ A such that t → s.

t ∈ A is normalizing if there is u ∈ A such that t →∗ u.

t ∈ A is strongly normalizing if there is no infinite sequence (ti)i∈N with t0 = t and
ti → ti+1 for all i ∈N, i.e. every reduction sequence eventually reaches a normal form.

→ is normalizing/strongly normalizing if so is every t ∈ A.

→ is confluent if for all t, r1, r2∈A with r1
∗← t →∗ r2, r1 →∗ s ∗← r2 for some s∈A.

Rmk: Strong normalization implies normalization but the converse fails.

Proposition (Uniqueness of normal form)

If → is confluent, then for all t ∈ A there is at most one normal s ∈ A with t →∗ s.

Proof. If r∗← t→∗ s with r , s normal, by confluence ∃ u∈A: r→∗u ∗←s, so r=u=s.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 17 / 26

Abstract rewriting systems: normalization versus strong normalization

We have seen different sets (of derivations, λ-terms) and reductions (cut elimination, β).
⇝ Let us consider them abstractly, to study their common properties uniformly.

Def: An abstract rewriting system (ARS) is a set A and a relation →⊆ A×A (reduction).
The reflexive-transitive closure of → is →∗, that is, t →∗ s means t → · · · →︸ ︷︷ ︸

n∈N times →

s.

t ∈ A is normal if there is no s ∈ A such that t → s.

t ∈ A is normalizing if there is u ∈ A such that t →∗ u.

t ∈ A is strongly normalizing if there is no infinite sequence (ti)i∈N with t0 = t and
ti → ti+1 for all i ∈N, i.e. every reduction sequence eventually reaches a normal form.

→ is normalizing/strongly normalizing if so is every t ∈ A.

→ is confluent if for all t, r1, r2∈A with r1
∗← t →∗ r2, r1 →∗ s ∗← r2 for some s∈A.

Rmk: Strong normalization implies normalization but the converse fails.

Proposition (Uniqueness of normal form)

If → is confluent, then for all t ∈ A there is at most one normal s ∈ A with t →∗ s.

Proof. If r∗← t→∗ s with r , s normal, by confluence ∃ u∈A: r→∗u ∗←s, so r=u=s.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 17 / 26

How to prove strong normalization: the combinatorial approach

Given a set A and a reduction → on A, we want to prove that → is strongly normalizing:
⇝ there is no (infinite) sequence (ti)i∈N such that ti → ti+1 for all i ∈ N.

Idea (combinatorial): For every t ∈ A, we define a measure |t| ∈ S for some well-founded
set (S , <)—for instance (N, <)—such that: for every s ∈ A, if t → s then |t| > |s|.

Problem: It is doable for the simply typed λ-calculus, but it is very tricky.
⇝ After a single β-step the size (≈ number of characters) of a term may not decrease.(
λf X⇒X.f (f (fx))

)(
z(z(z(zf)))

)
→β

(
z(z(z(zf)))

)((
z(z(z(zf)))

)((
z(z(z(zf)))

)
x
))

⇝ The measure should be defined independently of (or cannot rely on) the size of terms.

Rmk: The normalization theorem above (p. 13) does not prove strong normalization.
⇝ The proof fires a specific redex (uppermost/innermost), otherwise the argument fails.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 18 / 26

How to prove strong normalization: the combinatorial approach

Given a set A and a reduction → on A, we want to prove that → is strongly normalizing:
⇝ there is no (infinite) sequence (ti)i∈N such that ti → ti+1 for all i ∈ N.

Idea (combinatorial): For every t ∈ A, we define a measure |t| ∈ S for some well-founded
set (S , <)—for instance (N, <)—such that: for every s ∈ A, if t → s then |t| > |s|.

Problem: It is doable for the simply typed λ-calculus, but it is very tricky.
⇝ After a single β-step the size (≈ number of characters) of a term may not decrease.(
λf X⇒X.f (f (fx))

)(
z(z(z(zf)))

)
→β

(
z(z(z(zf)))

)((
z(z(z(zf)))

)((
z(z(z(zf)))

)
x
))

⇝ The measure should be defined independently of (or cannot rely on) the size of terms.

Rmk: The normalization theorem above (p. 13) does not prove strong normalization.
⇝ The proof fires a specific redex (uppermost/innermost), otherwise the argument fails.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 18 / 26

How to prove strong normalization: the combinatorial approach

Given a set A and a reduction → on A, we want to prove that → is strongly normalizing:
⇝ there is no (infinite) sequence (ti)i∈N such that ti → ti+1 for all i ∈ N.

Idea (combinatorial): For every t ∈ A, we define a measure |t| ∈ S for some well-founded
set (S , <)—for instance (N, <)—such that: for every s ∈ A, if t → s then |t| > |s|.

Problem: It is doable for the simply typed λ-calculus, but it is very tricky.
⇝ After a single β-step the size (≈ number of characters) of a term may not decrease.(
λf X⇒X.f (f (fx))

)(
z(z(z(zf)))

)
→β

(
z(z(z(zf)))

)((
z(z(z(zf)))

)((
z(z(z(zf)))

)
x
))

⇝ The measure should be defined independently of (or cannot rely on) the size of terms.

Rmk: The normalization theorem above (p. 13) does not prove strong normalization.
⇝ The proof fires a specific redex (uppermost/innermost), otherwise the argument fails.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 18 / 26

How to prove strong normalization: the combinatorial approach

Given a set A and a reduction → on A, we want to prove that → is strongly normalizing:
⇝ there is no (infinite) sequence (ti)i∈N such that ti → ti+1 for all i ∈ N.

Idea (combinatorial): For every t ∈ A, we define a measure |t| ∈ S for some well-founded
set (S , <)—for instance (N, <)—such that: for every s ∈ A, if t → s then |t| > |s|.

Problem: It is doable for the simply typed λ-calculus, but it is very tricky.
⇝ After a single β-step the size (≈ number of characters) of a term may not decrease.(
λf X⇒X.f (f (fx))

)(
z(z(z(zf)))

)
→β

(
z(z(z(zf)))

)((
z(z(z(zf)))

)((
z(z(z(zf)))

)
x
))

⇝ The measure should be defined independently of (or cannot rely on) the size of terms.

Rmk: The normalization theorem above (p. 13) does not prove strong normalization.
⇝ The proof fires a specific redex (uppermost/innermost), otherwise the argument fails.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 18 / 26

Reducibility candidates: a non-combinatorial approach

Idea: We define a set RedA of terms (reducibility candidates) by induction on the type A:

for any ground type X , RedX is the set of strongly normalizing (SN) terms of type X ;

RedA⇒B is the set of the terms s of type A⇒B such that st∈RedB for all t∈RedA.

Rmk: For every type A, every term in RedA is SN (easy proof by induction on A).

Goal: For any type A, if u :A then u∈RedA (so u is SN). Proof by induction on u. Cases:
1 If u = st :A then s :B⇒A and t :B; by IH, s ∈ RedB⇒A and t ∈ RedB , so u ∈ RedA.
2 If u = x :X , then u is SN, so u∈RedX . If u = x :B⇒C , to prove that x ∈ RedB⇒C

we have to show that xt ∈ RedC for all t ∈ RedB ⇝ A stronger hypothesis is needed.
3 If u = λxB.s : B⇒C , to prove that u ∈ RedB⇒C we have to show that

(λxB.s)t ∈ RedC for all t ∈ RedB . ⇝ How to prove that?

Idea: Suppose λxB.s : B ⇒ C and t ∈ RedB . Let us prove that s{t/x} ∈ RedC and that
if s{t/x} ∈ RedC then (λxB.s)t ∈ RedC . This way, Point 3 above is done.

Problem. The environments for λxB.s and t may be differ in some free variable.
⇝ The application of λxB.s to t may not be possible.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 19 / 26

Reducibility candidates: a non-combinatorial approach

Idea: We define a set RedA of terms (reducibility candidates) by induction on the type A:

for any ground type X , RedX is the set of strongly normalizing (SN) terms of type X ;

RedA⇒B is the set of the terms s of type A⇒B such that st∈RedB for all t∈RedA.

Rmk: For every type A, every term in RedA is SN (easy proof by induction on A).

Goal: For any type A, if u :A then u∈RedA (so u is SN). Proof by induction on u. Cases:
1 If u = st :A then s :B⇒A and t :B; by IH, s ∈ RedB⇒A and t ∈ RedB , so u ∈ RedA.
2 If u = x :X , then u is SN, so u∈RedX . If u = x :B⇒C , to prove that x ∈ RedB⇒C

we have to show that xt ∈ RedC for all t ∈ RedB ⇝ A stronger hypothesis is needed.
3 If u = λxB.s : B⇒C , to prove that u ∈ RedB⇒C we have to show that

(λxB.s)t ∈ RedC for all t ∈ RedB . ⇝ How to prove that?

Idea: Suppose λxB.s : B ⇒ C and t ∈ RedB . Let us prove that s{t/x} ∈ RedC and that
if s{t/x} ∈ RedC then (λxB.s)t ∈ RedC . This way, Point 3 above is done.

Problem. The environments for λxB.s and t may be differ in some free variable.
⇝ The application of λxB.s to t may not be possible.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 19 / 26

Reducibility candidates: a non-combinatorial approach

Idea: We define a set RedA of terms (reducibility candidates) by induction on the type A:

for any ground type X , RedX is the set of strongly normalizing (SN) terms of type X ;

RedA⇒B is the set of the terms s of type A⇒B such that st∈RedB for all t∈RedA.

Rmk: For every type A, every term in RedA is SN (easy proof by induction on A).

Goal: For any type A, if u :A then u∈RedA (so u is SN). Proof by induction on u. Cases:
1 If u = st :A then s :B⇒A and t :B; by IH, s ∈ RedB⇒A and t ∈ RedB , so u ∈ RedA.
2 If u = x :X , then u is SN, so u∈RedX . If u = x :B⇒C , to prove that x ∈ RedB⇒C

we have to show that xt ∈ RedC for all t ∈ RedB ⇝ A stronger hypothesis is needed.
3 If u = λxB.s : B⇒C , to prove that u ∈ RedB⇒C we have to show that

(λxB.s)t ∈ RedC for all t ∈ RedB . ⇝ How to prove that?

Idea: Suppose λxB.s : B ⇒ C and t ∈ RedB . Let us prove that s{t/x} ∈ RedC and that
if s{t/x} ∈ RedC then (λxB.s)t ∈ RedC . This way, Point 3 above is done.

Problem. The environments for λxB.s and t may be differ in some free variable.
⇝ The application of λxB.s to t may not be possible.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 19 / 26

Reducibility candidates: a non-combinatorial approach

Idea: We define a set RedA of terms (reducibility candidates) by induction on the type A:

for any ground type X , RedX is the set of strongly normalizing (SN) terms of type X ;

RedA⇒B is the set of the terms s of type A⇒B such that st∈RedB for all t∈RedA.

Rmk: For every type A, every term in RedA is SN (easy proof by induction on A).

Goal: For any type A, if u :A then u∈RedA (so u is SN). Proof by induction on u. Cases:
1 If u = st :A then s :B⇒A and t :B; by IH, s ∈ RedB⇒A and t ∈ RedB , so u ∈ RedA.
2 If u = x :X , then u is SN, so u∈RedX . If u = x :B⇒C , to prove that x ∈ RedB⇒C

we have to show that xt ∈ RedC for all t ∈ RedB ⇝ A stronger hypothesis is needed.
3 If u = λxB.s : B⇒C , to prove that u ∈ RedB⇒C we have to show that

(λxB.s)t ∈ RedC for all t ∈ RedB . ⇝ How to prove that?

Idea: Suppose λxB.s : B ⇒ C and t ∈ RedB . Let us prove that s{t/x} ∈ RedC and that
if s{t/x} ∈ RedC then (λxB.s)t ∈ RedC . This way, Point 3 above is done.

Problem. The environments for λxB.s and t may be differ in some free variable.
⇝ The application of λxB.s to t may not be possible.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 19 / 26

Reducibility candidates: a non-combinatorial approach

Idea: We define a set RedA of terms (reducibility candidates) by induction on the type A:

for any ground type X , RedX is the set of strongly normalizing (SN) terms of type X ;

RedA⇒B is the set of the terms s of type A⇒B such that st∈RedB for all t∈RedA.

Rmk: For every type A, every term in RedA is SN (easy proof by induction on A).

Goal: For any type A, if u :A then u∈RedA (so u is SN). Proof by induction on u. Cases:
1 If u = st :A then s :B⇒A and t :B; by IH, s ∈ RedB⇒A and t ∈ RedB , so u ∈ RedA.
2 If u = x :X , then u is SN, so u∈RedX . If u = x :B⇒C , to prove that x ∈ RedB⇒C

we have to show that xt ∈ RedC for all t ∈ RedB ⇝ A stronger hypothesis is needed.
3 If u = λxB.s : B⇒C , to prove that u ∈ RedB⇒C we have to show that

(λxB.s)t ∈ RedC for all t ∈ RedB . ⇝ How to prove that?

Idea: Suppose λxB.s : B ⇒ C and t ∈ RedB . Let us prove that s{t/x} ∈ RedC and that
if s{t/x} ∈ RedC then (λxB.s)t ∈ RedC . This way, Point 3 above is done.

Problem. The environments for λxB.s and t may be differ in some free variable.
⇝ The application of λxB.s to t may not be possible.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 19 / 26

Fixing the reducibility candidate method
Solution: Let us take the environment into account when defining RedA, for all types A.

RedX = {⟨Γ; t⟩ | t is SN, Γ ⊢ t : X}
RedA⇒B = {⟨Γ; s⟩ | Γ ⊢ s : A⇒ B, ⟨Γ,∆; st⟩ ∈ RedB for all ⟨Γ,∆; t⟩ ∈ RedA}

Lemma
1 If ⟨Γ; t⟩ ∈ RedB then t is SN.
2 If Γ ⊢ xt1 . . . tn : B and t1, . . . , tn are SN, then ⟨Γ; xt1 . . . tn⟩ ∈ RedB .
3 If ⟨Γ; s{t/x}t1 . . . tn⟩ ∈ RedB , Γ ⊢ t :A and t is SN, then ⟨Γ; (λxA.s)tt1 . . . tn⟩ ∈ RedB .

Proof. Points 1–3 are proved simultaneously by induction on the type B. If B = X then
Point 1 is by definition of RedX , for Points 2–3 see Exercise 14, p. 24. Let B = C ⇒ D.

1 Let z /∈ dom(Γ), so ⟨Γ, z :C ; z⟩ ∈ RedC by the induction hypothesis of Point 2
applied to C . As ⟨Γ; t⟩ ∈ RedC⇒D , then ⟨Γ, z :C ; tz⟩ ∈ RedD and hence tz is SN by
the induction hypothesis of Point 1 applied to D; thus t is SN too.

2 Let ⟨Γ,∆; t⟩ ∈ RedC , so t is SN by induction hypothesis of Point 1 applied to C ; as
Γ,∆ ⊢ xt1 . . . tnt : D is derivable, ⟨Γ,∆; xt1 . . . tnt⟩ ∈ RedD by induction hypothesis
of Point 2 applied to A; hence, ⟨Γ; xt1 . . . tn⟩ ∈ RedB by definition of RedC⇒D .

3 Let ⟨Γ,∆; r⟩ ∈ RedC , so ⟨Γ,∆; s{t/x}t1 . . . tnr⟩ ∈ RedD and hence, by the induction
hypothesis, ⟨Γ,∆; (λxA.s)tt1 . . . tnr⟩ ∈ RedD ; thus, ⟨Γ; (λxA.s)tt1 . . . tn⟩ ∈ RedB .

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 20 / 26

Fixing the reducibility candidate method
Solution: Let us take the environment into account when defining RedA, for all types A.

RedX = {⟨Γ; t⟩ | t is SN, Γ ⊢ t : X}
RedA⇒B = {⟨Γ; s⟩ | Γ ⊢ s : A⇒ B, ⟨Γ,∆; st⟩ ∈ RedB for all ⟨Γ,∆; t⟩ ∈ RedA}

Lemma
1 If ⟨Γ; t⟩ ∈ RedB then t is SN.
2 If Γ ⊢ xt1 . . . tn : B and t1, . . . , tn are SN, then ⟨Γ; xt1 . . . tn⟩ ∈ RedB .
3 If ⟨Γ; s{t/x}t1 . . . tn⟩ ∈ RedB , Γ ⊢ t :A and t is SN, then ⟨Γ; (λxA.s)tt1 . . . tn⟩ ∈ RedB .

Proof. Points 1–3 are proved simultaneously by induction on the type B. If B = X then
Point 1 is by definition of RedX , for Points 2–3 see Exercise 14, p. 24. Let B = C ⇒ D.

1 Let z /∈ dom(Γ), so ⟨Γ, z :C ; z⟩ ∈ RedC by the induction hypothesis of Point 2
applied to C . As ⟨Γ; t⟩ ∈ RedC⇒D , then ⟨Γ, z :C ; tz⟩ ∈ RedD and hence tz is SN by
the induction hypothesis of Point 1 applied to D; thus t is SN too.

2 Let ⟨Γ,∆; t⟩ ∈ RedC , so t is SN by induction hypothesis of Point 1 applied to C ; as
Γ,∆ ⊢ xt1 . . . tnt : D is derivable, ⟨Γ,∆; xt1 . . . tnt⟩ ∈ RedD by induction hypothesis
of Point 2 applied to A; hence, ⟨Γ; xt1 . . . tn⟩ ∈ RedB by definition of RedC⇒D .

3 Let ⟨Γ,∆; r⟩ ∈ RedC , so ⟨Γ,∆; s{t/x}t1 . . . tnr⟩ ∈ RedD and hence, by the induction
hypothesis, ⟨Γ,∆; (λxA.s)tt1 . . . tnr⟩ ∈ RedD ; thus, ⟨Γ; (λxA.s)tt1 . . . tn⟩ ∈ RedB .

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 20 / 26

Fixing the reducibility candidate method
Solution: Let us take the environment into account when defining RedA, for all types A.

RedX = {⟨Γ; t⟩ | t is SN, Γ ⊢ t : X}
RedA⇒B = {⟨Γ; s⟩ | Γ ⊢ s : A⇒ B, ⟨Γ,∆; st⟩ ∈ RedB for all ⟨Γ,∆; t⟩ ∈ RedA}

Lemma
1 If ⟨Γ; t⟩ ∈ RedB then t is SN.
2 If Γ ⊢ xt1 . . . tn : B and t1, . . . , tn are SN, then ⟨Γ; xt1 . . . tn⟩ ∈ RedB .
3 If ⟨Γ; s{t/x}t1 . . . tn⟩ ∈ RedB , Γ ⊢ t :A and t is SN, then ⟨Γ; (λxA.s)tt1 . . . tn⟩ ∈ RedB .

Proof. Points 1–3 are proved simultaneously by induction on the type B. If B = X then
Point 1 is by definition of RedX , for Points 2–3 see Exercise 14, p. 24. Let B = C ⇒ D.

1 Let z /∈ dom(Γ), so ⟨Γ, z :C ; z⟩ ∈ RedC by the induction hypothesis of Point 2
applied to C . As ⟨Γ; t⟩ ∈ RedC⇒D , then ⟨Γ, z :C ; tz⟩ ∈ RedD and hence tz is SN by
the induction hypothesis of Point 1 applied to D; thus t is SN too.

2 Let ⟨Γ,∆; t⟩ ∈ RedC , so t is SN by induction hypothesis of Point 1 applied to C ; as
Γ,∆ ⊢ xt1 . . . tnt : D is derivable, ⟨Γ,∆; xt1 . . . tnt⟩ ∈ RedD by induction hypothesis
of Point 2 applied to A; hence, ⟨Γ; xt1 . . . tn⟩ ∈ RedB by definition of RedC⇒D .

3 Let ⟨Γ,∆; r⟩ ∈ RedC , so ⟨Γ,∆; s{t/x}t1 . . . tnr⟩ ∈ RedD and hence, by the induction
hypothesis, ⟨Γ,∆; (λxA.s)tt1 . . . tnr⟩ ∈ RedD ; thus, ⟨Γ; (λxA.s)tt1 . . . tn⟩ ∈ RedB .

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 20 / 26

Fixing the reducibility candidate method
Solution: Let us take the environment into account when defining RedA, for all types A.

RedX = {⟨Γ; t⟩ | t is SN, Γ ⊢ t : X}
RedA⇒B = {⟨Γ; s⟩ | Γ ⊢ s : A⇒ B, ⟨Γ,∆; st⟩ ∈ RedB for all ⟨Γ,∆; t⟩ ∈ RedA}

Lemma
1 If ⟨Γ; t⟩ ∈ RedB then t is SN.
2 If Γ ⊢ xt1 . . . tn : B and t1, . . . , tn are SN, then ⟨Γ; xt1 . . . tn⟩ ∈ RedB .
3 If ⟨Γ; s{t/x}t1 . . . tn⟩ ∈ RedB , Γ ⊢ t :A and t is SN, then ⟨Γ; (λxA.s)tt1 . . . tn⟩ ∈ RedB .

Proof. Points 1–3 are proved simultaneously by induction on the type B. If B = X then
Point 1 is by definition of RedX , for Points 2–3 see Exercise 14, p. 24. Let B = C ⇒ D.

1 Let z /∈ dom(Γ), so ⟨Γ, z :C ; z⟩ ∈ RedC by the induction hypothesis of Point 2
applied to C . As ⟨Γ; t⟩ ∈ RedC⇒D , then ⟨Γ, z :C ; tz⟩ ∈ RedD and hence tz is SN by
the induction hypothesis of Point 1 applied to D; thus t is SN too.

2 Let ⟨Γ,∆; t⟩ ∈ RedC , so t is SN by induction hypothesis of Point 1 applied to C ; as
Γ,∆ ⊢ xt1 . . . tnt : D is derivable, ⟨Γ,∆; xt1 . . . tnt⟩ ∈ RedD by induction hypothesis
of Point 2 applied to A; hence, ⟨Γ; xt1 . . . tn⟩ ∈ RedB by definition of RedC⇒D .

3 Let ⟨Γ,∆; r⟩ ∈ RedC , so ⟨Γ,∆; s{t/x}t1 . . . tnr⟩ ∈ RedD and hence, by the induction
hypothesis, ⟨Γ,∆; (λxA.s)tt1 . . . tnr⟩ ∈ RedD ; thus, ⟨Γ; (λxA.s)tt1 . . . tn⟩ ∈ RedB .

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 20 / 26

Fixing the reducibility candidate method
Solution: Let us take the environment into account when defining RedA, for all types A.

RedX = {⟨Γ; t⟩ | t is SN, Γ ⊢ t : X}
RedA⇒B = {⟨Γ; s⟩ | Γ ⊢ s : A⇒ B, ⟨Γ,∆; st⟩ ∈ RedB for all ⟨Γ,∆; t⟩ ∈ RedA}

Lemma
1 If ⟨Γ; t⟩ ∈ RedB then t is SN.
2 If Γ ⊢ xt1 . . . tn : B and t1, . . . , tn are SN, then ⟨Γ; xt1 . . . tn⟩ ∈ RedB .
3 If ⟨Γ; s{t/x}t1 . . . tn⟩ ∈ RedB , Γ ⊢ t :A and t is SN, then ⟨Γ; (λxA.s)tt1 . . . tn⟩ ∈ RedB .

Proof. Points 1–3 are proved simultaneously by induction on the type B. If B = X then
Point 1 is by definition of RedX , for Points 2–3 see Exercise 14, p. 24. Let B = C ⇒ D.

1 Let z /∈ dom(Γ), so ⟨Γ, z :C ; z⟩ ∈ RedC by the induction hypothesis of Point 2
applied to C . As ⟨Γ; t⟩ ∈ RedC⇒D , then ⟨Γ, z :C ; tz⟩ ∈ RedD and hence tz is SN by
the induction hypothesis of Point 1 applied to D; thus t is SN too.

2 Let ⟨Γ,∆; t⟩ ∈ RedC , so t is SN by induction hypothesis of Point 1 applied to C ; as
Γ,∆ ⊢ xt1 . . . tnt : D is derivable, ⟨Γ,∆; xt1 . . . tnt⟩ ∈ RedD by induction hypothesis
of Point 2 applied to A; hence, ⟨Γ; xt1 . . . tn⟩ ∈ RedB by definition of RedC⇒D .

3 Let ⟨Γ,∆; r⟩ ∈ RedC , so ⟨Γ,∆; s{t/x}t1 . . . tnr⟩ ∈ RedD and hence, by the induction
hypothesis, ⟨Γ,∆; (λxA.s)tt1 . . . tnr⟩ ∈ RedD ; thus, ⟨Γ; (λxA.s)tt1 . . . tn⟩ ∈ RedB .

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 20 / 26

Strong normalization proved via reducibility candidates

Rmk. In the previous lemma, Point 1 needs Point 2 in its proof, and vice versa.
Point 3 is independent of Points 1–2 and is used in the proof of the lemma below.

Lemma (Substitution)

If x1 :B1, . . . , xn :Bn ⊢ t : A and ⟨Γ; si ⟩ ∈ RedBi , then ⟨Γ; t{s1/x1, . . . , sn/xn}⟩ ∈ RedA.

Proof. By structural induction on the term t, using Point 3 above (exercise!).

Theorem (Strong normalization of the simply typed λ-calculus)

Every typed term in the simply typed λ-calculus is SN.

Proof. Let x1 : B1, . . . , xn : Bn ⊢ t : A be derivable. Let Γ = x1 : B1, . . . , xn : Bn and
si = xi for all 1 ≤ i ≤ n, hence ⟨Γ; si ⟩ ∈ RedBi by Point 2 of the lemma on p. 19, for all
1 ≤ i ≤ n. By the substitution lemma above, ⟨Γ; t⟩ = ⟨Γ; t{s1/x1, . . . , sn/xn}⟩ ∈ RedA.
By Point 1 of the lemma on p. 19, t is SN.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 21 / 26

Strong normalization proved via reducibility candidates

Rmk. In the previous lemma, Point 1 needs Point 2 in its proof, and vice versa.
Point 3 is independent of Points 1–2 and is used in the proof of the lemma below.

Lemma (Substitution)

If x1 :B1, . . . , xn :Bn ⊢ t : A and ⟨Γ; si ⟩ ∈ RedBi , then ⟨Γ; t{s1/x1, . . . , sn/xn}⟩ ∈ RedA.

Proof. By structural induction on the term t, using Point 3 above (exercise!).

Theorem (Strong normalization of the simply typed λ-calculus)

Every typed term in the simply typed λ-calculus is SN.

Proof. Let x1 : B1, . . . , xn : Bn ⊢ t : A be derivable. Let Γ = x1 : B1, . . . , xn : Bn and
si = xi for all 1 ≤ i ≤ n, hence ⟨Γ; si ⟩ ∈ RedBi by Point 2 of the lemma on p. 19, for all
1 ≤ i ≤ n. By the substitution lemma above, ⟨Γ; t⟩ = ⟨Γ; t{s1/x1, . . . , sn/xn}⟩ ∈ RedA.
By Point 1 of the lemma on p. 19, t is SN.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 21 / 26

Strong normalization proved via reducibility candidates

Rmk. In the previous lemma, Point 1 needs Point 2 in its proof, and vice versa.
Point 3 is independent of Points 1–2 and is used in the proof of the lemma below.

Lemma (Substitution)

If x1 :B1, . . . , xn :Bn ⊢ t : A and ⟨Γ; si ⟩ ∈ RedBi , then ⟨Γ; t{s1/x1, . . . , sn/xn}⟩ ∈ RedA.

Proof. By structural induction on the term t, using Point 3 above (exercise!).

Theorem (Strong normalization of the simply typed λ-calculus)

Every typed term in the simply typed λ-calculus is SN.

Proof. Let x1 : B1, . . . , xn : Bn ⊢ t : A be derivable. Let Γ = x1 : B1, . . . , xn : Bn and
si = xi for all 1 ≤ i ≤ n, hence ⟨Γ; si ⟩ ∈ RedBi by Point 2 of the lemma on p. 19, for all
1 ≤ i ≤ n. By the substitution lemma above, ⟨Γ; t⟩ = ⟨Γ; t{s1/x1, . . . , sn/xn}⟩ ∈ RedA.
By Point 1 of the lemma on p. 19, t is SN.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 21 / 26

Outline

1 The Curry-Howard correspondence and the simply typed λ-calculus

2 Strong normalization of the simply typed λ-calculus

3 Conclusion, exercises and bibliography

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 22 / 26

What have we learned today?

1 How to decorate derivations in natural deduction for minimal logic with λ-terms.

2 The procedure of β-reduction on λ-terms.

3 Church and Curry styles for the simply typed λ-calculus.

4 The Curry–Howard correspondence between natural deduction for minimal logic and
the simply typed λ-calculus.

5 Some properties of the simply typed λ-calculus (subject reduction, normalization).

6 The proof of strong normalization via reducibility candidates.

Questions?

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 23 / 26

What have we learned today?

1 How to decorate derivations in natural deduction for minimal logic with λ-terms.

2 The procedure of β-reduction on λ-terms.

3 Church and Curry styles for the simply typed λ-calculus.

4 The Curry–Howard correspondence between natural deduction for minimal logic and
the simply typed λ-calculus.

5 Some properties of the simply typed λ-calculus (subject reduction, normalization).

6 The proof of strong normalization via reducibility candidates.

Questions?

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 23 / 26

What have we learned today?

1 How to decorate derivations in natural deduction for minimal logic with λ-terms.

2 The procedure of β-reduction on λ-terms.

3 Church and Curry styles for the simply typed λ-calculus.

4 The Curry–Howard correspondence between natural deduction for minimal logic and
the simply typed λ-calculus.

5 Some properties of the simply typed λ-calculus (subject reduction, normalization).

6 The proof of strong normalization via reducibility candidates.

Questions?

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 23 / 26

What have we learned today?

1 How to decorate derivations in natural deduction for minimal logic with λ-terms.

2 The procedure of β-reduction on λ-terms.

3 Church and Curry styles for the simply typed λ-calculus.

4 The Curry–Howard correspondence between natural deduction for minimal logic and
the simply typed λ-calculus.

5 Some properties of the simply typed λ-calculus (subject reduction, normalization).

6 The proof of strong normalization via reducibility candidates.

Questions?

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 23 / 26

What have we learned today?

1 How to decorate derivations in natural deduction for minimal logic with λ-terms.

2 The procedure of β-reduction on λ-terms.

3 Church and Curry styles for the simply typed λ-calculus.

4 The Curry–Howard correspondence between natural deduction for minimal logic and
the simply typed λ-calculus.

5 Some properties of the simply typed λ-calculus (subject reduction, normalization).

6 The proof of strong normalization via reducibility candidates.

Questions?

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 23 / 26

What have we learned today?

1 How to decorate derivations in natural deduction for minimal logic with λ-terms.

2 The procedure of β-reduction on λ-terms.

3 Church and Curry styles for the simply typed λ-calculus.

4 The Curry–Howard correspondence between natural deduction for minimal logic and
the simply typed λ-calculus.

5 Some properties of the simply typed λ-calculus (subject reduction, normalization).

6 The proof of strong normalization via reducibility candidates.

Questions?

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 23 / 26

Exercises
1 Find the simply typed λ-terms (in Curry-style and Church-style) associated with the

derivations in ND found for the facts below (see Exercise 1 from Day 1).
1 ⊢ X ⇒ ((X ⇒ Y) ⇒ Y).
2 (X ⇒ Y) ⇒ (X ⇒ Z) ⊢ Y ⇒ X ⇒ Z .
3 (X ⇒ Y) ⇒ X ⊢ Y ⇒ X .

4 X ⇒ (Y ⇒ Z) ⊢ Y ⇒ X ⇒ Z .
5 X ⇒ Y ⇒ Z , X ⇒ Y ⊢ X ⇒ Z .
6 (X ⇒ X) ⇒ Y ⊢ (Y ⇒ Z) ⇒ Z .

2 Perform all possible β-reduction steps from the λ-term decorating the derivation D
in ND on p. 24 of Day 1, until you get a β-normal form. Is it always the same?
Compare it with the normal derivation obtained by cut-elimination steps from D.

3 Prove rigorously the following facts (f nx =

n times f︷ ︸︸ ︷
f (. . . (f x) . . .) for any n ∈ N):

1 λx .xx is untypable in Curry-style, λxA.xx is untypable in Church-style for any type A;
2 in Church-style, λf Y.λxX.f nx is not typable for any n > 0 but λf Y.λxX.x is typable;
3 λf .λx .f nx is typable in Curry-style, for all n ∈ N.

4 Prove that if t is typable in Church or Curry style, then so is every subterm of t.
5 Prove rigorously the propositions on pp. 9 and 12, the lemma and theorems on p. 13.
6 Prove rigorously the lemma and the theorems on p. 13.
7 Let A{B/X} be the type obtained from the type A by substituting B for each

occurrence of the ground type X . Let Γ{A/X} be its generalization to environments.
Show that if Γ ⊢ t : A is derivable in Curry-style, then so is Γ{B/X} ⊢ t : A{B/X}.

8 Is the previous point valid in Church-style? What change is needed to make it true?
G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 24 / 26

More Exercises
9 Prove that (λx .(λy .y))λz .zz is not typable (in Curry-style). Deduce that subject

expansion (see p. 13) does not hold in the simply typed λ-calculus.

10 Prove that if ⟨Γ; t⟩ ∈ RedB , then ⟨Γ, x :A; t⟩ ∈ RedB , by induction on the type B.

11 Prove rigorously the lemma on p. 20.

12 Define four ARSs (A,→): in the first → is normalizing but not strongly normalizing,
in the second → is not normalizing, in the third → is strongly normalizing, in the
fourth → is not confluent but every t ∈ A has a unique normal form.

13 In a ARS (A,→), prove that t ∈ A is SN iff for every t′ ∈ A, if t → t′ then t′ is SN.
14 Prove the following facts for untyped terms:

1 for all n ∈ N, if t1, . . . , tn are SN, then so is xt1 . . . tn;
2 if t is SN, then so is λx .s;
3 for all n ∈ N, if t and s{t/x}t1 . . . tn are SN, then so is (λx .s)tt1 . . . tn;
4 for all n ∈ N, if x ∈ fv(s) and s{t/x}t1 . . . tn is SN then so is (λx .s)tt1 . . . tn.

15 Prove that if t can be constructed by applying n ∈ N times the rules below, then the
maximal length of the reduction sequences from t to its β-normal form is ≤ n.

n ∈ N (ti is SN)1≤i≤n

xt1 . . . tn is SN

t is SN
λx .t is SN

n ∈ N t is SN s{t/x}t1 . . . tn is SN

(λx .s)tt1 . . . tn is SN

Deduce that the set of SN untyped terms is the least set closed under those 3 rules.
G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 25 / 26

Bibliography

For more about the simply typed λ-calculus:

Ralph Loader. Notes on Simply Typed λ-Calculus. Technical report ECS-LFCS-
98-381, University of Edinburgh, 1998. http://www.lfcs.inf.ed.ac.uk/
reports/98/ECS-LFCS-98-381/ECS-LFCS-98-381.pdf. [Chapters 1–3]

Henk Barendregt. Lambda Calculi with Types. In S. Abramsky et al. (eds),
Handbook of Logic in Computer Science; vol. 2, 117-309, 1992. https:
//repository.ubn.ru.nl/bitstream/handle/2066/17231/17231.pdf
[Chapter 3]

For more about the Curry-Howard correspondence:

Jean-Yves Girard, Yves Lafont, Paul Taylor. Proofs and Types. Cambridge
Tracts in Theoretical Computer Science, Vol. 7, Cambridge University Press,
1989. https://www.paultaylor.eu/stable/prot.pdf. [Chapters 2–4, 6]

For a combinatorial proof of normalization for the simply typed λ-calculus:
Pablo Barenbaum, Cristian Sottile. Two Decreasing Measures for Simply Typed
λ-Terms. FSCD 2023, LIPIcs, vol. 260, 11:1–11:19, 2023.
https://doi.org/10.4230/LIPIcs.FSCD.2023.11.

G. Guerrieri (Sussex) λ-calculus, simple & non-idempotent intersection types ECI 2024/07/30 26 / 26

http://www.lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-381/ECS-LFCS-98-381.pdf
http://www.lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-381/ECS-LFCS-98-381.pdf
https://repository.ubn.ru.nl/bitstream/handle/2066/17231/17231.pdf
https://repository.ubn.ru.nl/bitstream/handle/2066/17231/17231.pdf
https://www.paultaylor.eu/stable/prot.pdf
https://doi.org/10.4230/LIPIcs.FSCD.2023.11
https://doi.org/10.4230/LIPIcs.FSCD.2023.11

	The Curry-Howard correspondence and the simply typed lambda-calculus
	Strong normalization of the simply typed lambda-calculus
	Conclusion, exercises and bibliography

