The λ -calculus: from simple types to non-idempotent intersection types

Day 2: The simply typed λ -calculus and the Curry-Howard correspondence

Giulio Guerrieri

Department of Informatics, University of Sussex (Brighton, UK) g.guerrieri@sussex.ac.uk @https://pageperso.lis-lab.fr/~giulio.guerrieri/

> 37th Escuela de Ciencias Informaticas (ECI 2024) Buenos Aires (Argentina), 30 July 2024

Outline

1 The Curry-Howard correspondence and the simply typed λ -calculus

2 Strong normalization of the simply typed λ -calculus

3 Conclusion, exercises and bibliography

Outline

1 The Curry-Howard correspondence and the simply typed λ -calculus

2 Strong normalization of the simply typed λ -calculus

3 Conclusion, exercises and bibliography

Idea. A derivation $\mathcal{D} \triangleright_{ND} A_1, \ldots, A_n \vdash B$ can be seen as a function $t(x_1, \ldots, x_n)$

that associates with derivations $\mathcal{D}_1 \triangleright_{ND} \vdash A_1, \dots, \mathcal{D}_n \triangleright_{ND} \vdash A_n,$ a derivation $t(\mathcal{D}_1/x_1, \dots, \mathcal{D}_n/x_n) \triangleright_{ND} \vdash B.$

 \rightarrow Let us see how, by induction on \mathcal{D} .

 A derivation consisting of a single hypothesis A is represented by a variable x. Different formulas are associated with different variables.

 \sim A variable represents a (possibly empty) parcel of hypotheses of the same formula.

 If D ends in ⇒_i let s(y, x₁,...,x_n) be the function associated with the ⇒_i-premise. Let x be the variable associated with the parcel of hypotheses C discharged by ⇒_i. The function t(x₁,...,x_n) associated with D maps D'⊳_{ND} ⊢ C to s(D'/y, x₁,...,x_n).

(abstraction) $t(x_1, \ldots, x_n) \coloneqq \lambda y.s(y, x_1, \ldots, x_n)$ (i.e. $y \mapsto s(y, x_1, \ldots, x_n)$)

• If \mathcal{D} ends in \Rightarrow_e , let $s_1(x_1, \ldots, x_n)$ and $s_2(x_1, \ldots, x_n)$ be the functions associated with the two premises of \Rightarrow_e . The function $t(x_1, \ldots, x_n)$ associated with \mathcal{D} is the application (noted as juxtaposition) of $s_1(x_1, \ldots, x_n)$ to $s_2(x_1, \ldots, x_n)$.

Idea. A derivation $\mathcal{D} \triangleright_{ND} A_1, \ldots, A_n \vdash B$ can be seen as a function $t(x_1, \ldots, x_n)$

• A derivation consisting of a single hypothesis A is represented by a variable x. Different formulas are associated with different variables.

For several occurrences of A as hypotheses, we chose the same x or another variable. \rightarrow A variable represents a (possibly empty) parcel of hypotheses of the same formula.

 If D ends in ⇒_i let s(y, x₁,...,x_n) be the function associated with the ⇒_i-premise. Let x be the variable associated with the parcel of hypotheses C discharged by ⇒_i. The function t(x₁,...,x_n) associated with D maps D'⊳_{ND} ⊢ C to s(D'/y, x₁,...,x_n).

(abstraction) $t(x_1,\ldots,x_n) \coloneqq \lambda y.s(y,x_1,\ldots,x_n)$ (i.e. $y \mapsto s(y,x_1,\ldots,x_n)$)

• If \mathcal{D} ends in \Rightarrow_e , let $s_1(x_1, \ldots, x_n)$ and $s_2(x_1, \ldots, x_n)$ be the functions associated with the two premises of \Rightarrow_e . The function $t(x_1, \ldots, x_n)$ associated with \mathcal{D} is the application (noted as juxtaposition) of $s_1(x_1, \ldots, x_n)$ to $s_2(x_1, \ldots, x_n)$.

Idea. A derivation $\mathcal{D} \triangleright_{ND} A_1, \ldots, A_n \vdash B$ can be seen as a function $t(x_1, \ldots, x_n)$

A derivation consisting of a single hypothesis A is represented by a variable x.
 Different formulas are associated with different variables.
 For several occurrences of A as hypotheses, we chose the same x or another variable.

---- A variable represents a (possibly empty) parcel of hypotheses of the same formula.

 If D ends in ⇒_i let s(y, x₁,...,x_n) be the function associated with the ⇒_i-premise. Let x be the variable associated with the parcel of hypotheses C discharged by ⇒_i. The function t(x₁,...,x_n) associated with D maps D'⊳_{ND} ⊢ C to s(D'/y, x₁,...,x_n).

(abstraction) $t(x_1, \ldots, x_n) \coloneqq \lambda y.s(y, x_1, \ldots, x_n)$ (i.e. $y \mapsto s(y, x_1, \ldots, x_n)$)

• If \mathcal{D} ends in \Rightarrow_e , let $s_1(x_1, \ldots, x_n)$ and $s_2(x_1, \ldots, x_n)$ be the functions associated with the two premises of \Rightarrow_e . The function $t(x_1, \ldots, x_n)$ associated with \mathcal{D} is the application (noted as juxtaposition) of $s_1(x_1, \ldots, x_n)$ to $s_2(x_1, \ldots, x_n)$.

Idea. A derivation $\mathcal{D} \triangleright_{ND} A_1, \ldots, A_n \vdash B$ can be seen as a function $t(x_1, \ldots, x_n)$

that associates with derivations $\mathcal{D}_1 \triangleright_{ND} \vdash A_1, \ldots, \mathcal{D}_n \triangleright_{ND} \vdash A_n,$ a derivation $t(\mathcal{D}_1/x_1, \ldots, \mathcal{D}_n/x_n) \triangleright_{ND} \vdash B.$

 \rightsquigarrow Let us see how, by induction on \mathcal{D} .

• A derivation consisting of a single hypothesis A is represented by a variable x. Different formulas are associated with different variables.

For several occurrences of A as hypotheses, we chose the same x or another variable. \rightarrow A variable represents a (possibly empty) parcel of hypotheses of the same formula.

 If D ends in ⇒_i let s(y, x₁,...,x_n) be the function associated with the ⇒_i-premise. Let x be the variable associated with the parcel of hypotheses C discharged by ⇒_i. The function t(x₁,...,x_n) associated with D maps D'⊳_{ND} ⊢ C to s(D'/y, x₁,...,x_n).

(abstraction) $t(x_1, \ldots, x_n) \coloneqq \lambda y.s(y, x_1, \ldots, x_n)$ (i.e. $y \mapsto s(y, x_1, \ldots, x_n)$)

• If \mathcal{D} ends in \Rightarrow_e , let $s_1(x_1, \ldots, x_n)$ and $s_2(x_1, \ldots, x_n)$ be the functions associated with the two premises of \Rightarrow_e . The function $t(x_1, \ldots, x_n)$ associated with \mathcal{D} is the application (noted as juxtaposition) of $s_1(x_1, \ldots, x_n)$ to $s_2(x_1, \ldots, x_n)$.

Idea. A derivation $\mathcal{D} \triangleright_{ND} A_1, \ldots, A_n \vdash B$ can be seen as a function $t(x_1, \ldots, x_n)$

that associates with derivations $\mathcal{D}_1 \triangleright_{ND} \vdash A_1, \ldots, \mathcal{D}_n \triangleright_{ND} \vdash A_n,$ a derivation $t(\mathcal{D}_1/x_1, \ldots, \mathcal{D}_n/x_n) \triangleright_{ND} \vdash B.$

 \rightsquigarrow Let us see how, by induction on \mathcal{D} .

• A derivation consisting of a single hypothesis A is represented by a variable x. Different formulas are associated with different variables.

For several occurrences of A as hypotheses, we chose the same x or another variable. \rightarrow A variable represents a (possibly empty) parcel of hypotheses of the same formula.

 If D ends in ⇒_i let s(y, x₁,..., x_n) be the function associated with the ⇒_i-premise. Let x be the variable associated with the parcel of hypotheses C discharged by ⇒_i. The function t(x₁,..., x_n) associated with D maps D'⊳_{ND} ⊢ C to s(D'/y, x₁,..., x_n).

(abstraction) $t(x_1, \ldots, x_n) \coloneqq \lambda y.s(y, x_1, \ldots, x_n)$ (i.e. $y \mapsto s(y, x_1, \ldots, x_n)$)

• If \mathcal{D} ends in \Rightarrow_e , let $s_1(x_1, \ldots, x_n)$ and $s_2(x_1, \ldots, x_n)$ be the functions associated with the two premises of \Rightarrow_e . The function $t(x_1, \ldots, x_n)$ associated with \mathcal{D} is the application (noted as juxtaposition) of $s_1(x_1, \ldots, x_n)$ to $s_2(x_1, \ldots, x_n)$.

Cut-elimination as a computational step

- We can decorate each formula occurrence in a derivation with a term.
 → For every derivation D, its term (D)_λ is the decoration of its conclusion.
- This decoration commute with cut-elimination via the step:

$$(\lambda x.t)s \rightarrow_{\beta} t\{s/x\}$$

where $t\{s/x\}$ stands for the substitution of *s* for the free occurrences of *x* in *t*.

Cut-elimination as a computational step

- We can decorate each formula occurrence in a derivation with a term.
 → For every derivation D, its term (D)_λ is the decoration of its conclusion.
- This decoration commute with cut-elimination via the step:

$$(\lambda x.t)s \rightarrow_{\beta} t\{s/x\}$$

where $t\{s/x\}$ stands for the substitution of s for the free occurrences of x in t.

Cut-elimination as a computational step

- We can decorate each formula occurrence in a derivation with a term.
 → For every derivation D, its term (D)_λ is the decoration of its conclusion.
- This decoration commute with cut-elimination via the step:

$$(\lambda x.t)s \rightarrow_{\beta} t\{s/x\}$$

where $t\{s/x\}$ stands for the substitution of s for the free occurrences of x in t.

$$\mathbf{x}: \mathbf{A} \qquad \qquad \frac{[\mathbf{x}:A]^{\mathbf{x}}}{\lambda \mathbf{x}.\mathbf{x}:A \Rightarrow A} \Rightarrow_{i}^{\mathbf{x}}$$

$$\frac{\sum_{i=1}^{[x:A]^{x}} \Rightarrow_{i}}{\lambda y.x:A \Rightarrow A \Rightarrow A} \Rightarrow_{i}^{x}} \qquad \frac{\sum_{i=1}^{[y:A]^{y}} \Rightarrow_{i}^{y}}{\lambda y.y:A \Rightarrow A} \Rightarrow_{i}^{x}}{\lambda x.\lambda y.y:A \Rightarrow A \Rightarrow A} \Rightarrow_{i}^{x}$$

$$\frac{[x:A \Rightarrow (B \Rightarrow C)]^{x} \quad [z:A]^{z}}{xz:B \Rightarrow C} \Rightarrow_{e} \quad \frac{[y:A \Rightarrow B]^{y} \quad [z:A]^{z}}{yz:B} \Rightarrow_{e}}{\frac{(xz)(yz):C}{\lambda z.(xz)(yz):A \Rightarrow C}} \Rightarrow_{e}}$$

$$\frac{\frac{(xz)(yz):C}{\lambda y.\lambda z.(xz)(yz):(A \Rightarrow B) \Rightarrow (A \Rightarrow C)} \Rightarrow_{i}^{y}}{\lambda x.\lambda y.\lambda z.(xz)(yz):(A \Rightarrow (B \Rightarrow C))) \Rightarrow (A \Rightarrow B) \Rightarrow (A \Rightarrow C)} \Rightarrow_{i}^{y}$$

6 / 26

$$x: A \qquad \qquad \frac{[x:A]^x}{\lambda x.x:A \Rightarrow A} \Rightarrow_i^x$$

$$\frac{\sum_{i=1}^{[x:A]^{x}} \Rightarrow_{i}}{\lambda y.x:A \Rightarrow A \Rightarrow A} \Rightarrow_{i}^{x} \qquad \frac{\sum_{i=1}^{[y:A]^{y}} \Rightarrow_{i}^{y}}{\lambda x.\lambda y.y:A \Rightarrow A \Rightarrow A} \Rightarrow_{i}^{x}$$

 $\frac{[x:A \Rightarrow (B \Rightarrow C)]^{x} \quad [z:A]^{z}}{xz:B \Rightarrow C} \Rightarrow_{e} \frac{[y:A \Rightarrow B]^{y} \quad [z:A]^{z}}{yz:B} \Rightarrow_{e}}{\frac{(xz)(yz):C}{\lambda z.(xz)(yz):A \Rightarrow C}} \Rightarrow_{e}^{z}}$ $\frac{\frac{(xz)(yz):C}{\lambda y.\lambda z.(xz)(yz):(A \Rightarrow B) \Rightarrow (A \Rightarrow C)}}{\lambda y.\lambda z.(xz)(yz):(A \Rightarrow B) \Rightarrow (A \Rightarrow C)} \Rightarrow_{i}^{y}$

6 / 26

$$x: A \qquad \frac{[x:A]^{x}}{\lambda x.x:A \Rightarrow A} \Rightarrow_{i}^{x} \qquad \frac{[x:A]^{x}}{\lambda y.x:B \Rightarrow A} \Rightarrow_{i}^{x}}{\lambda x.\lambda y.x:A \Rightarrow B \Rightarrow A} \Rightarrow_{i}^{x}$$

$$\frac{[x:A]^{x}}{\lambda y.x:A \Rightarrow A} \Rightarrow_{i}^{x}}{\lambda x.\lambda y.x:A \Rightarrow A \Rightarrow A} \Rightarrow_{i}^{x} \qquad \frac{[y:A]^{y}}{\lambda y.y:A \Rightarrow A} \Rightarrow_{i}^{x}}{\lambda x.\lambda y.y:A \Rightarrow A \Rightarrow A} \Rightarrow_{i}^{x}$$

$$\frac{[x:A \Rightarrow (B \Rightarrow C)]^{x}}{xz:B \Rightarrow C} = \sum_{e} \frac{[y:A \Rightarrow B]^{y}}{yz:B} \Rightarrow_{e}}{\frac{(xz)(yz):C}{\lambda z.(xz)(yz):A \Rightarrow C}} \Rightarrow_{e}^{x}$$

$$x:A \qquad \frac{[x:A]^{x}}{\lambda x.x:A \Rightarrow A} \Rightarrow_{i}^{x} \qquad \frac{[x:A]^{x}}{\lambda y.x:B \Rightarrow A} \Rightarrow_{i}^{y}}{\frac{\lambda y.x:B \Rightarrow A}{\lambda x.\lambda y.x:A \Rightarrow B \Rightarrow A}} \Rightarrow_{i}^{x}$$

$$\frac{[x:A]^{x}}{\lambda y.x:A \Rightarrow A \Rightarrow A} \Rightarrow_{i}^{x} \qquad \frac{[y:A]^{y}}{\lambda y.y:A \Rightarrow A \Rightarrow A} \Rightarrow_{i}^{x}}{\frac{\lambda x.\lambda y.x:A \Rightarrow A \Rightarrow A}{\lambda x.\lambda y.y:A \Rightarrow A \Rightarrow A}} \Rightarrow_{i}^{x}$$

$$\frac{[x:A \Rightarrow (B \Rightarrow C)]^{x}}{\frac{xz:B \Rightarrow C}{xz.(xz)(yz):C}} \Rightarrow_{e}^{x} \qquad \frac{[y:A \Rightarrow B]^{y}}{yz:B} \Rightarrow_{e}^{x}}{\frac{(xz)(yz):C}{\lambda x.\lambda y.\lambda z.(xz)(yz):(A \Rightarrow B) \Rightarrow (A \Rightarrow C)}} \Rightarrow_{i}^{x}$$

$$x:A \qquad \frac{[x:A]^{x}}{\lambda x.x:A \Rightarrow A} \Rightarrow_{i}^{x} \qquad \frac{[x:A]^{x}}{\lambda y.x:B \Rightarrow A} \Rightarrow_{i}^{x}$$

$$\frac{[x:A]^{x}}{\lambda y.x:A \Rightarrow B \Rightarrow A} \Rightarrow_{i}^{x}$$

$$\frac{[x:A]^{x}}{\lambda x.\lambda y.x:A \Rightarrow A \Rightarrow A} \Rightarrow_{i}^{x} \qquad \frac{[y:A]^{y}}{\lambda y.y:A \Rightarrow A \Rightarrow A} \Rightarrow_{i}^{x}$$

$$\frac{[x:A \Rightarrow (B \Rightarrow C)]^{x}}{xz:B \Rightarrow C} = \frac{[y:A \Rightarrow B]^{y}}{yz:B} \Rightarrow_{e}^{x}$$

$$\frac{[x:A \Rightarrow (B \Rightarrow C)]^{x}}{\lambda y.\lambda z.(xz)(yz):(A \Rightarrow B) \Rightarrow (A \Rightarrow C)} \Rightarrow_{i}^{x}$$

$$x:A \qquad \frac{[x:A]^{x}}{\lambda x.x:A \Rightarrow A} \Rightarrow_{i}^{x} \qquad \frac{[x:A]^{x}}{\lambda y.x:B \Rightarrow A} \Rightarrow_{i}^{y}}{\frac{\lambda y.x:B \Rightarrow A}{\lambda x.\lambda y.x:A \Rightarrow B \Rightarrow A}} \Rightarrow_{i}^{x}$$

$$\frac{[x:A]^{x}}{\lambda x.\lambda y.x:A \Rightarrow A \Rightarrow A} \Rightarrow_{i}^{x} \qquad \frac{[y:A]^{y}}{\lambda y.y:A \Rightarrow A} \Rightarrow_{i}^{x}}{\lambda x.\lambda y.y:A \Rightarrow A \Rightarrow A} \Rightarrow_{i}^{x}$$

$$\frac{[x:A \Rightarrow (B \Rightarrow C)]^{x}}{\frac{xz:B \Rightarrow C}{xz:B \Rightarrow C}} \Rightarrow_{e}^{z} \qquad \frac{[y:A \Rightarrow B]^{y}}{yz:B} \Rightarrow_{e}}{\frac{(xz)(yz):C}{\lambda z.(xz)(yz):A \Rightarrow C}} \Rightarrow_{e}^{z}$$

$$\frac{(xz)(yz):C}{\lambda y.\lambda z.(xz)(yz):(A \Rightarrow B) \Rightarrow (A \Rightarrow C)} \Rightarrow_{i}^{x}$$

.

. . . .

$$\frac{x: [X \Rightarrow X]^{x}}{\frac{\lambda x.x: (X \Rightarrow X) \Rightarrow X \Rightarrow X}{(\lambda x.x) \lambda y.y: X \Rightarrow X}} \stackrel{\mathbf{y}: [X]^{y}}{\Rightarrow_{e}} \stackrel{\mathbf{y}_{i}}{\Rightarrow_{e}} \rightarrow_{cut} \frac{y: [X]^{x}}{\lambda y.y: X \Rightarrow X} \stackrel{\mathbf{y}_{i}}{\Rightarrow_{e}}$$

Rmk. $(\lambda x.x)\lambda y.y \rightarrow_{\beta} x\{\lambda y.y/x\} = \lambda y.y \rightsquigarrow$ cut-elimination commutes with decoration.

$$\frac{x: [X \Rightarrow X]^{x}}{\frac{\lambda x.x: (X \Rightarrow X) \Rightarrow X \Rightarrow X}{(\lambda x.x) \lambda y.y: X \Rightarrow X}} \stackrel{\Rightarrow^{x}_{i}}{\Rightarrow_{i}} \quad \frac{y: [X]^{y}}{\lambda y.y: X \Rightarrow X} \stackrel{\Rightarrow^{y}_{i}}{\Rightarrow_{e}} \quad \rightarrow_{cut} \quad \frac{y: [X]^{x}}{\lambda y.y: X \Rightarrow X} \stackrel{\Rightarrow^{x}_{i}}{\Rightarrow_{i}}$$

Rmk. $(\lambda x.x)\lambda y.y \rightarrow_{\beta} x\{\lambda y.y/x\} = \lambda y.y \rightsquigarrow$ cut-elimination commutes with decoration.

$$\frac{[x:A \Rightarrow (B \Rightarrow A)]^{x} [z:A]^{z}}{xz:B \Rightarrow A} \Rightarrow_{e} \frac{[y:A \Rightarrow B]^{y} [z:A]^{z}}{yz:B} \Rightarrow_{e}}{yz:B} \Rightarrow_{e}$$

$$\frac{(xz)(yz):A}{\lambda z.(xz)(yz):A \Rightarrow A} \Rightarrow_{i}^{z}}{\lambda y.\lambda z.(xz)(yz):(A \Rightarrow B) \Rightarrow (A \Rightarrow A)} \Rightarrow_{i}^{y}} \frac{a:[A]^{a}}{\lambda b.a:B \Rightarrow A} \Rightarrow_{i}^{a}}{\lambda a.\lambda b.a:A \Rightarrow (B \Rightarrow A)) \Rightarrow (A \Rightarrow B) \Rightarrow (A \Rightarrow A)} \Rightarrow_{i}^{x}} \frac{a:[A]^{a}}{\lambda a.\lambda b.a:A \Rightarrow (B \Rightarrow A)} \Rightarrow_{i}^{a}}{\lambda a.\lambda b.a:A \Rightarrow (B \Rightarrow A)} \Rightarrow_{e}^{a}}$$

$$\frac{[a:A]^{a}}{(\lambda x.\lambda y.\lambda z.(xz)(yz))(\lambda a.\lambda b.a:(A \Rightarrow B) \Rightarrow (A \Rightarrow A))}{(\lambda a.\lambda b.a:A \Rightarrow (B \Rightarrow A)} \Rightarrow_{e}^{a}} \frac{\downarrow_{cut}}{\lambda a.\lambda b.a:A \Rightarrow (B \Rightarrow A)} \Rightarrow_{e}^{a}}{\frac{(\lambda a.\lambda b.a:A \Rightarrow (B \Rightarrow A))}{(\lambda a.\lambda b.a)(yz)(yz):A}} \Rightarrow_{e}} \frac{[y:A \Rightarrow B]^{y} [z:A]^{z}}{yz:B}}{yz:B} \Rightarrow_{e}}{\frac{((\lambda a.\lambda b.a)z)(yz):A}{\lambda z.((\lambda a.\lambda b.a)z)(yz):A}} \Rightarrow_{e}^{a}}{\frac{((\lambda a.\lambda b.a)z)(yz):A}{\lambda z.((\lambda a.\lambda b.a)z)(yz):A}} \Rightarrow_{e}^{a}$$
Rmk. $(\lambda x.\lambda y.\lambda z.(xz)(yz))\lambda a.\lambda b.a \rightarrow_{B} (\lambda y.\lambda z.(xz)(yz))\{\lambda a.\lambda b.a/x\} = \lambda y.\lambda z.(((\lambda a.\lambda b.a)z)(yz) \rightsquigarrow commutes with decoration.$

Inverse decoration: from terms to derivations

Question. Given the term $\lambda f \cdot \lambda x \cdot f x$, what is the derivation associated with it?

Problem. Without knowing the formulas associated with variables, there is no answer.

Question. Given the term $\lambda f^{X \Rightarrow X} . \lambda x^X . f_X$, what is the derivation associated with it? Question. Given the term $\lambda f^X . \lambda x^X . f_X$, what is the derivation associated with it?

Inverse decoration: from terms to derivations

Question. Given the term $\lambda f \cdot \lambda x \cdot f x$, what is the derivation associated with it?

Problem. Without knowing the formulas associated with variables, there is no answer.

Question. Given the term $\lambda f^{X \Rightarrow X} . \lambda x^X . f_X$, what is the derivation associated with it? Question. Given the term $\lambda f^X . \lambda x^X . f_X$, what is the derivation associated with it?

Inverse decoration: from terms to derivations

Question. Given the term $\lambda f \cdot \lambda x \cdot f x$, what is the derivation associated with it?

Problem. Without knowing the formulas associated with variables, there is no answer.

Question. Given the term $\lambda f^{X \Rightarrow X} \cdot \lambda x^X \cdot f_X$, what is the derivation associated with it? Question. Given the term $\lambda f^X \cdot \lambda x^X \cdot f_X$, what is the derivation associated with it?

Question. Given the term $\lambda f \cdot \lambda x \cdot f x$, what is the derivation associated with it?

Problem. Without knowing the formulas associated with variables, there is no answer.

Question. Given the term $\lambda f^{X \Rightarrow X} \cdot \lambda x^X \cdot f_X$, what is the derivation associated with it? Question. Given the term $\lambda f^X \cdot \lambda x^X \cdot f_X$, what is the derivation associated with it?

Types: $A, B ::= X | A \Rightarrow B$ (given a set of ground types ranged over by X, Y, Z ...) (λ -)Terms: $s, t ::= x | \lambda x.t | st$ (called variable, abstraction, application, respectively)

Environment: function from finitely many variables to types (noted $x_1 : A_1, \ldots, x_n : A_n$). The well-typed terms are the ones that can be constructed via the typing rules below.

$$\overline{\Gamma, x : A \vdash x : A}^{\text{var}} \qquad \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x. t : A \Rightarrow B} \lambda \qquad \frac{\Gamma \vdash s : B \Rightarrow A \quad \Gamma \vdash t : B}{\Gamma \vdash st : A} @$$

The free variables of a term t are the variables that are not bound to a λ . Formally, $fv(x) = \{x\}$ $fv(st) = fv(s) \cup fv(t)$ $fv(\lambda x.t) = fv(t) \setminus \{x\}$

9 If $\Gamma \vdash t : A$ is derivable, then so is $\Gamma, x : B \vdash t : A$, for any type B and $x \notin dom(\Gamma)$

ⓐ If $\Gamma \vdash t : A$ is derivable, then $fv(t) \subseteq dom(\Gamma)$ and $\Gamma \upharpoonright_{fv(t)} \vdash t : A$ is derivable.

Types: $A, B ::= X | A \Rightarrow B$ (given a set of ground types ranged over by X, Y, Z...) (λ -)Terms: $s, t ::= x | \lambda x.t | st$ (called variable, abstraction, application, respectively) Environment: function from finitely many variables to types (noted $x_1 : A_1, ..., x_n : A_n$). The well-typed terms are the ones that can be constructed via the typing rules below.

$$\frac{\Gamma, x: A \vdash x: A}{\Gamma \vdash \lambda x: t: A \Rightarrow B} \lambda \qquad \frac{\Gamma \vdash s: B \Rightarrow A \quad \Gamma \vdash t: B}{\Gamma \vdash \lambda x. t: A \Rightarrow B} \lambda$$

The free variables of a term t are the variables that are not bound to a λ . Formally, $fv(x) = \{x\}$ $fv(st) = fv(s) \cup fv(t)$ $fv(\lambda x.t) = fv(t) \setminus \{x\}$

Proposition (If $\Gamma \vdash t$: A is derivable, Γ is essentially a type assignment for fv(t))

● If $\Gamma \vdash t : A$ is derivable, then so is $\Gamma, x : B \vdash t : A$, for any type B and $x \notin \text{dom}(\Gamma)$.

ⓐ If $\Gamma \vdash t : A$ is derivable, then $fv(t) \subseteq dom(\Gamma)$ and $\Gamma \upharpoonright_{fv(t)} \vdash t : A$ is derivable.

Types: $A, B ::= X | A \Rightarrow B$ (given a set of ground types ranged over by X, Y, Z ...) (λ -)Terms: $s, t ::= x | \lambda x.t | st$ (called variable, abstraction, application, respectively) Environment: function from finitely many variables to types (noted $x_1 : A_1, ..., x_n : A_n$).

The well-typed terms are the ones that can be constructed via the typing rules below.

$$\frac{\Gamma, x: A \vdash x: A}{\Gamma \vdash \lambda x. t: A \Rightarrow B} \lambda \qquad \frac{\Gamma \vdash s: B \Rightarrow A \quad \Gamma \vdash t: B}{\Gamma \vdash \lambda x. t: A \Rightarrow B} \lambda$$

The free variables of a term t are the variables that are not bound to a λ . Formally, $fv(x) = \{x\}$ $fv(st) = fv(s) \cup fv(t)$ $fv(\lambda x.t) = fv(t) \setminus \{x\}$

Proposition (If $\Gamma \vdash t$: A is derivable, Γ is essentially a type assignment for fv(t))

① If $\Gamma \vdash t$: *A* is derivable, then so is $\Gamma, x : B \vdash t : A$, for any type *B* and $x \notin \text{dom}(\Gamma)$.

ⓐ If $\Gamma \vdash t$: A is derivable, then $fv(t) \subseteq dom(\Gamma)$ and $\Gamma \upharpoonright_{fv(t)} \vdash t$: A is derivable.

Types: $A, B ::= X | A \Rightarrow B$ (given a set of ground types ranged over by X, Y, Z...) (λ -)Terms: $s, t ::= x | \lambda x.t | st$ (called variable, abstraction, application, respectively) Environment: function from finitely many variables to types (noted $x_1 : A_1, ..., x_n : A_n$). The well-typed terms are the ones that can be constructed via the typing rules below.

$$\overline{\Gamma, x: A \vdash x: A}^{\text{var}} \qquad \frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x. t: A \Rightarrow B} \lambda \qquad \frac{\Gamma \vdash s: B \Rightarrow A \quad \Gamma \vdash t: B}{\Gamma \vdash st: A} @$$

The free variables of a term t are the variables that are not bound to a λ . Formally,

$$fv(x) = \{x\}$$
 $fv(st) = fv(s) \cup fv(t)$ $fv(\lambda x.t) = fv(t) \setminus \{x\}$

Proposition (If $\Gamma \vdash t$: A is derivable, Γ is essentially a type assignment for fv(t))

③ If $\Gamma \vdash t$: *A* is derivable, then so is $\Gamma, x : B \vdash t : A$, for any type *B* and $x \notin \text{dom}(\Gamma)$.

3 If $\Gamma \vdash t : A$ is derivable, then $fv(t) \subseteq dom(\Gamma)$ and $\Gamma \upharpoonright_{fv(t)} \vdash t : A$ is derivable.

Types: $A, B ::= X | A \Rightarrow B$ (given a set of ground types ranged over by X, Y, Z...) (λ -)Terms: $s, t ::= x | \lambda x.t | st$ (called variable, abstraction, application, respectively) Environment: function from finitely many variables to types (noted $x_1 : A_1, ..., x_n : A_n$). The well-typed terms are the ones that can be constructed via the typing rules below.

$$\overline{\Gamma, x: A \vdash x: A}^{\text{var}} \qquad \frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x. t: A \Rightarrow B} \lambda \qquad \frac{\Gamma \vdash s: B \Rightarrow A \quad \Gamma \vdash t: B}{\Gamma \vdash st: A} @$$

The free variables of a term t are the variables that are not bound to a λ . Formally,

$$fv(x) = \{x\}$$
 $fv(st) = fv(s) \cup fv(t)$ $fv(\lambda x.t) = fv(t) \setminus \{x\}$

Proposition (If $\Gamma \vdash t$: A is derivable, Γ is essentially a type assignment for fv(t))

9 If $\Gamma \vdash t : A$ is derivable, then so is $\Gamma, x : B \vdash t : A$, for any type B and $x \notin \text{dom}(\Gamma)$.

3 If $\Gamma \vdash t : A$ is derivable, then $fv(t) \subseteq dom(\Gamma)$ and $\Gamma \upharpoonright_{fv(t)} \vdash t : A$ is derivable.

Naive substitution t[s/x]: replacement of the free occurrences of the variable x in t by s.

Ex: Let $t = \lambda y.yx$ and s = yy. Then, $t[s/x] = \lambda y.y(yy)$. Problem: The free variable y in s has been captured by the λ in t. \rightsquigarrow Undesirable.

Solution: Capture-avoiding substitution $t\{s/x\}$

- I rename the bound variables in t with variables that do not occur in t or s;
- **(a)** perform the substitution in of s for x in t.
- \rightsquigarrow So, the free variables of s are not captured by the λ 's in t.

Ex: Let $t = \lambda y.yx$ and s = yy. Then, $t\{s/x\} = \lambda z.z(yy)$.

Rmk: The operation of renaming the bound variables in a term is called α -equivalence. \rightarrow Capture-avoiding substitution makes sense, as we identify terms up to α -equivalence.

Naive substitution t[s/x]: replacement of the free occurrences of the variable x in t by s.

Ex: Let $t = \lambda y.yx$ and s = yy. Then, $t[s/x] = \lambda y.y(yy)$. Problem: The free variable y in s has been captured by the λ in t. \rightsquigarrow Undesirable.

Solution: Capture-avoiding substitution $t\{s/x\}$

I rename the bound variables in t with variables that do not occur in t or s;

 \bigcirc perform the substitution in of *s* for *x* in *t*.

 \rightsquigarrow So, the free variables of s are not captured by the λ 's in t.

Ex: Let $t = \lambda y.yx$ and s = yy. Then, $t\{s/x\} = \lambda z.z(yy)$.

Rmk: The operation of renaming the bound variables in a term is called α -equivalence. \rightsquigarrow Capture-avoiding substitution makes sense, as we identify terms up to α -equivalence.

Naive substitution t[s/x]: replacement of the free occurrences of the variable x in t by s.

Ex: Let $t = \lambda y.yx$ and s = yy. Then, $t[s/x] = \lambda y.y(yy)$. Problem: The free variable y in s has been captured by the λ in t. \rightsquigarrow Undesirable.

Solution: Capture-avoiding substitution $t\{s/x\}$

- **(**) rename the bound variables in *t* with variables that do not occur in *t* or *s*;
- 2 perform the substitution in of s for x in t.
- \rightarrow So, the free variables of s are not captured by the λ 's in t.

Ex: Let
$$t = \lambda y.yx$$
 and $s = yy$. Then, $t\{s/x\} = \lambda z.z(yy)$.

Rmk: The operation of renaming the bound variables in a term is called α -equivalence. \rightsquigarrow Capture-avoiding substitution makes sense, as we identify terms up to α -equivalence.

Naive substitution t[s/x]: replacement of the free occurrences of the variable x in t by s.

Ex: Let $t = \lambda y.yx$ and s = yy. Then, $t[s/x] = \lambda y.y(yy)$. Problem: The free variable y in s has been captured by the λ in t. \rightsquigarrow Undesirable.

Solution: Capture-avoiding substitution $t\{s/x\}$

- **(**) rename the bound variables in *t* with variables that do not occur in *t* or *s*;
- 2 perform the substitution in of s for x in t.
- \rightsquigarrow So, the free variables of s are not captured by the λ 's in t.

Ex: Let $t = \lambda y.yx$ and s = yy. Then, $t\{s/x\} = \lambda z.z(yy)$.

Rmk: The operation of renaming the bound variables in a term is called α -equivalence. \rightarrow Capture-avoiding substitution makes sense, as we identify terms up to α -equivalence.

Some remarks about the simply typed λ -calculus in Curry-style

Rmk. The search for a derivation is uniquely determined by the term (syntax-directed). \rightarrow To build a derivation \mathcal{D} of $\Gamma \vdash t : A$, just look at t to know the last rule of \mathcal{D} (if any).

The types used in the simply typed λ -calculus are exactly the formulas of minimal logic. The inference rules for the simply typed λ -calculus are the ones of ND_{seq} plus decoration. \rightarrow Every derivation in ND/ND_{seq} corresponds to a unique λ -term typed in Curry-style.

Question: With every typable term in Curry-style is it associated a unique derivation? No!

$$\frac{\overline{x:X\vdash x:X}}{\vdash \lambda x.x:X \Rightarrow X}^{\text{var}} \lambda \qquad \qquad \frac{\overline{x:X \Rightarrow X\vdash x:X \Rightarrow X}}{\vdash \lambda x.x:(X \Rightarrow X) \Rightarrow X \Rightarrow X}^{\text{var}}$$

 \sim The map from typable terms in Curry-style to ND/ND_{seq} derivations is not injective!

Idea: In Curry-style, types are extrinsic to terms (dynamic typing, *a posteriori*) \rightarrow Let us make them intrinsic to terms (static typing, *a priori*): Church-style.

Some remarks about the simply typed λ -calculus in Curry-style

Rmk. The search for a derivation is uniquely determined by the term (syntax-directed). \rightarrow To build a derivation \mathcal{D} of $\Gamma \vdash t : A$, just look at t to know the last rule of \mathcal{D} (if any).

The types used in the simply typed λ -calculus are exactly the formulas of minimal logic. The inference rules for the simply typed λ -calculus are the ones of ND_{seq} plus decoration. \rightarrow Every derivation in ND/ND_{seq} corresponds to a unique λ -term typed in Curry-style.

Question: With every typable term in Curry-style is it associated a unique derivation? No!

$$\frac{\overline{x:X \vdash x:X}}{\vdash \lambda x.x:X \Rightarrow X}^{\text{var}} \lambda \qquad \qquad \frac{\overline{x:X \Rightarrow X \vdash x:X \Rightarrow X}}{\vdash \lambda x.x:(X \Rightarrow X) \Rightarrow X \Rightarrow X}^{\text{var}}$$

 \rightsquigarrow The map from typable terms in Curry-style to ND/ND_{seq} derivations is not injective!

Idea: In Curry-style, types are extrinsic to terms (dynamic typing, a posteriori) ~ Let us make them intrinsic to terms (static typing, a priori): Church-style.
Some remarks about the simply typed λ -calculus in Curry-style

Rmk. The search for a derivation is uniquely determined by the term (syntax-directed). \rightarrow To build a derivation \mathcal{D} of $\Gamma \vdash t : A$, just look at t to know the last rule of \mathcal{D} (if any).

The types used in the simply typed λ -calculus are exactly the formulas of minimal logic. The inference rules for the simply typed λ -calculus are the ones of ND_{seq} plus decoration. \rightarrow Every derivation in ND/ND_{seq} corresponds to a unique λ -term typed in Curry-style.

Question: With every typable term in Curry-style is it associated a unique derivation? No!

$$\frac{\overline{x: X \vdash x: X}^{\text{var}}}{\vdash \lambda x. x: X \Rightarrow X}^{\text{var}} \lambda \qquad \qquad \frac{\overline{x: X \Rightarrow X \vdash x: X \Rightarrow X}^{\text{var}}}{\vdash \lambda x. x: (X \Rightarrow X) \Rightarrow X \Rightarrow X}^{\text{var}} \lambda$$

 \sim The map from typable terms in Curry-style to ND/ND_{seq} derivations is not injective!

Idea: In Curry-style, types are extrinsic to terms (dynamic typing, a posteriori) ~ Let us make them intrinsic to terms (static typing, a priori): Church-style.

Some remarks about the simply typed λ -calculus in Curry-style

Rmk. The search for a derivation is uniquely determined by the term (syntax-directed). \rightarrow To build a derivation \mathcal{D} of $\Gamma \vdash t : A$, just look at t to know the last rule of \mathcal{D} (if any).

The types used in the simply typed λ -calculus are exactly the formulas of minimal logic. The inference rules for the simply typed λ -calculus are the ones of ND_{seq} plus decoration. \rightarrow Every derivation in ND/ND_{seq} corresponds to a unique λ -term typed in Curry-style.

Question: With every typable term in Curry-style is it associated a unique derivation? No!

$$\frac{\overline{x: X \vdash x: X}^{\text{var}}}{\vdash \lambda x. x: X \Rightarrow X}^{\text{var}} \lambda \qquad \qquad \frac{\overline{x: X \Rightarrow X \vdash x: X \Rightarrow X}^{\text{var}}}{\vdash \lambda x. x: (X \Rightarrow X) \Rightarrow X \Rightarrow X}^{\text{var}} \lambda$$

 \sim The map from typable terms in Curry-style to ND/ND_{seq} derivations is not injective!

Idea: In Curry-style, types are extrinsic to terms (dynamic typing, a posteriori) ~ Let us make them intrinsic to terms (static typing, a priori): Church-style.

Idea: Let us make types intrinsic to terms (static typing, *a priori*): Church-style. \rightsquigarrow Every abstracted variable in a term is associated with some type.

(λ -)**Terms**: $s, t := x \mid \lambda x^{A} \cdot t \mid st$ (where A is any type, as defined for Curry-style)

Environment: function from finitely many variables to types (noted $x_1 : A_1, \ldots, x_n : A_n$). The well-typed terms are the ones that can be constructed via the typing rules below.

$$\overline{\Gamma, x : A \vdash x : A}^{\text{var}} \qquad \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x^{A} \cdot t : A \Rightarrow B} \lambda \qquad \frac{\Gamma \vdash s : B \Rightarrow A \quad \Gamma \vdash t : B}{\Gamma \vdash st : A} @$$

 β -reduction ($t\{s/x\}$ is the capture-avoiding substitution of s for the free occurrences of x in t):

$$(\lambda x^{A} t) s \rightarrow_{\beta} t\{s/x\}$$

Rmk. Syntax-directedness and proposition on p. 11 hold true in Church-style as well.

Idea: Let us make types intrinsic to terms (static typing, *a priori*): Church-style. ~ Every abstracted variable in a term is associated with some type.

(λ -)Terms: $s, t := x \mid \lambda x^{A}.t \mid st$ (where A is any type, as defined for Curry-style)

Environment: function from finitely many variables to types (noted $x_1 : A_1, \ldots, x_n : A_n$). The well-typed terms are the ones that can be constructed via the typing rules below.

$$\frac{\Gamma, x: A \vdash x: A}{\Gamma \vdash \lambda x^{A} \cdot t: A \Rightarrow B} \lambda \qquad \frac{\Gamma \vdash s: B \Rightarrow A \quad \Gamma \vdash t: B}{\Gamma \vdash \lambda x^{A} \cdot t: A \Rightarrow B} \lambda \qquad \frac{\Gamma \vdash s: B \Rightarrow A \quad \Gamma \vdash t: B}{\Gamma \vdash st: A} @$$

 β -reduction ($t\{s/x\}$ is the capture-avoiding substitution of s for the free occurrences of x in t):

$$(\lambda x^{A} t) s
ightarrow_{eta} t\{s/x\}$$

Rmk. Syntax-directedness and proposition on p. 11 hold true in Church-style as well.

Idea: Let us make types intrinsic to terms (static typing, *a priori*): Church-style. ~ Every abstracted variable in a term is associated with some type.

(λ -)Terms: $s, t ::= x \mid \lambda x^{A}.t \mid st$ (where A is any type, as defined for Curry-style)

Environment: function from finitely many variables to types (noted $x_1 : A_1, ..., x_n : A_n$). The well-typed terms are the ones that can be constructed via the typing rules below.

$$\frac{\Gamma, x : A \vdash x : A}{\Gamma \vdash \lambda x^{A} \cdot t : A \Rightarrow B} \lambda \qquad \frac{\Gamma \vdash s : B \Rightarrow A \quad \Gamma \vdash t : B}{\Gamma \vdash \lambda x^{A} \cdot t : A \Rightarrow B} \lambda$$

 β -reduction ($t\{s/x\}$ is the capture-avoiding substitution of s for the free occurrences of x in t): $(\lambda x^A, t)s \rightarrow_\beta t\{s/x\}$

Rmk. Syntax-directedness and proposition on p. 11 hold true in Church-style as well.

Idea: Let us make types intrinsic to terms (static typing, *a priori*): Church-style. ~ Every abstracted variable in a term is associated with some type.

(λ -)Terms: $s, t ::= x \mid \lambda x^{A}.t \mid st$ (where A is any type, as defined for Curry-style)

Environment: function from finitely many variables to types (noted $x_1 : A_1, ..., x_n : A_n$). The well-typed terms are the ones that can be constructed via the typing rules below.

$$\frac{\Gamma, x : A \vdash x : A}{\Gamma \vdash \lambda x^{A} \cdot t : A \Rightarrow B} \lambda \qquad \frac{\Gamma \vdash s : B \Rightarrow A \quad \Gamma \vdash t : B}{\Gamma \vdash \lambda x^{A} \cdot t : A \Rightarrow B} \lambda$$

 β -reduction ($t\{s/x\}$ is the capture-avoiding substitution of s for the free occurrences of x in t):

$$(\lambda x^{A} t) s \rightarrow_{\beta} t\{s/x\}$$

Rmk. Syntax-directedness and proposition on p. 11 hold true in Church-style as well.

Idea: Let us make types intrinsic to terms (static typing, *a priori*): Church-style. ~ Every abstracted variable in a term is associated with some type.

(λ -)Terms: $s, t ::= x \mid \lambda x^{A}.t \mid st$ (where A is any type, as defined for Curry-style)

Environment: function from finitely many variables to types (noted $x_1 : A_1, ..., x_n : A_n$). The well-typed terms are the ones that can be constructed via the typing rules below.

$$\frac{\Gamma, x : A \vdash x : A}{\Gamma \vdash \lambda x^{A} \cdot t : A \Rightarrow B} \lambda \qquad \frac{\Gamma \vdash s : B \Rightarrow A \quad \Gamma \vdash t : B}{\Gamma \vdash \lambda x^{A} \cdot t : A \Rightarrow B} \lambda$$

 β -reduction ($t\{s/x\}$ is the capture-avoiding substitution of s for the free occurrences of x in t):

$$(\lambda x^{A} t)s \rightarrow_{\beta} t\{s/x\}$$

Rmk. Syntax-directedness and proposition on p. 11 hold true in Church-style as well.

Idea: Let us make types intrinsic to terms (static typing, *a priori*): Church-style. ~ Every abstracted variable in a term is associated with some type.

(λ -)Terms: $s, t := x \mid \lambda x^{A}.t \mid st$ (where A is any type, as defined for Curry-style)

Environment: function from finitely many variables to types (noted $x_1 : A_1, ..., x_n : A_n$). The well-typed terms are the ones that can be constructed via the typing rules below.

$$\frac{\Gamma, x : A \vdash x : A}{\Gamma \vdash \lambda x^{A} \cdot t : A \Rightarrow B} \lambda \qquad \frac{\Gamma \vdash s : B \Rightarrow A \quad \Gamma \vdash t : B}{\Gamma \vdash \lambda x^{A} \cdot t : A \Rightarrow B} \lambda$$

 β -reduction ($t\{s/x\}$ is the capture-avoiding substitution of s for the free occurrences of x in t):

$$(\lambda x^{A} t)s \rightarrow_{\beta} t\{s/x\}$$

Rmk. Syntax-directedness and proposition on p. 11 hold true in Church-style as well.

Curry-style versus Church-style

Church-style terms are related to Curry-style terms by the forgetful function $\lceil \cdot \rceil$:

$$\lceil x \rceil = x$$
 $\lceil \lambda x^{A} \cdot t \rceil = \lambda x \cdot t$ $\lceil st \rceil = \lceil s \rceil \lceil t \rceil$

Proposition

If Γ ⊢ t : A is derivable in Church-style, then Γ ⊢ [t] : A is derivable in Curry-style.
If Γ ⊢_{Curry} t : A then Γ ⊢_{Church} t' : A for some t' in Church-style such that [t'] = t.

Proof. By induction on the derivation in Church (Point 1) or Curry (Point 2) style.

Rmk: $\lambda x^{X,x}$ and $\lambda x^{X \Rightarrow X,x}$ are different terms in Church-style, because $X \neq X \Rightarrow X$.

Proposition (Uniqueness of type and derivation for typable terms in Church-style)

In Church-style, if \mathcal{D} derives $\Gamma \vdash t : A$ and \mathcal{D}' derives $\Gamma \vdash t : A'$, then A = A' and $\mathcal{D} = \mathcal{D}'$

Proof. By structural induction on *t* (exercise!).

 \rightsquigarrow A bijection between typable terms in Church-style and derivations in ND/ND_{seq} \rightsquigarrow As β -reduction and cut-elimination mimic each other, it is an isomorphism.

Curry-style versus Church-style

Church-style terms are related to Curry-style terms by the forgetful function $\lceil \cdot \rceil$:

$$\lceil x \rceil = x$$
 $\lceil \lambda x^{A} \cdot t \rceil = \lambda x \cdot t$ $\lceil st \rceil = \lceil s \rceil \lceil t \rceil$

Proposition

If Γ ⊢ t : A is derivable in Church-style, then Γ ⊢ [t] : A is derivable in Curry-style.
If Γ ⊢_{Curry} t : A then Γ ⊢_{Church} t' : A for some t' in Church-style such that [t'] = t.

Proof. By induction on the derivation in Church (Point 1) or Curry (Point 2) style.

Rmk: $\lambda x^{X} \cdot x$ and $\lambda x^{X \Rightarrow X} \cdot x$ are different terms in Church-style, because $X \neq X \Rightarrow X$.

Proposition (Uniqueness of type and derivation for typable terms in Church-style)

In Church-style, if \mathcal{D} derives $\Gamma \vdash t : A$ and \mathcal{D}' derives $\Gamma \vdash t : A'$, then A = A' and $\mathcal{D} = \mathcal{D}'$.

Proof. By structural induction on t (exercise!).

 \rightsquigarrow A bijection between typable terms in Church-style and derivations in ND/ND_{seq} \rightsquigarrow As β -reduction and cut-elimination mimic each other, it is an isomorphism.

Curry-style versus Church-style

Church-style terms are related to Curry-style terms by the forgetful function $\lceil \cdot \rceil$:

$$\lceil x \rceil = x$$
 $\lceil \lambda x^{A} \cdot t \rceil = \lambda x \cdot t$ $\lceil st \rceil = \lceil s \rceil \lceil t \rceil$

Proposition

If Γ ⊢ t : A is derivable in Church-style, then Γ ⊢ [t] : A is derivable in Curry-style.
If Γ ⊢_{Curry} t : A then Γ ⊢_{Church} t' : A for some t' in Church-style such that [t'] = t.

Proof. By induction on the derivation in Church (Point 1) or Curry (Point 2) style.

Rmk: $\lambda x^{X} \cdot x$ and $\lambda x^{X \Rightarrow X} \cdot x$ are different terms in Church-style, because $X \neq X \Rightarrow X$.

Proposition (Uniqueness of type and derivation for typable terms in Church-style)

In Church-style, if \mathcal{D} derives $\Gamma \vdash t : A$ and \mathcal{D}' derives $\Gamma \vdash t : A'$, then A = A' and $\mathcal{D} = \mathcal{D}'$.

Proof. By structural induction on *t* (exercise!).

 \rightarrow A bijection between typable terms in Church-style and derivations in ND/ND_{seq}. \rightarrow As β-reduction and cut-elimination mimic each other, it is an isomorphism.

Some properties of the simply typed λ -calculus (Curry and Church style)

Lemma (Substitution)

If $\Gamma, x : B \vdash t : A$ and $\Gamma \vdash s : B$ are derivable, then so is $\Gamma \vdash t\{s/x\} : A$.

Proof. By structural induction on t (exercise!).

Theorem (Subject reduction)

If $\Gamma \vdash t : A$ is derivable and $t \rightarrow_{\beta} s$, then $\Gamma \vdash s : A$ is derivable.

Proof. By structural induction on *t*, using the substitution lemma in the key-case.

Rmk. The converse (subject expansion) does not hold: let $A = Y \Rightarrow (X \Rightarrow X)$, and $t = (\lambda x.\lambda y.\lambda z.(xz)(yz))\lambda x.\lambda y.x$ and $s = \lambda y.\lambda z.z$, then $t \rightarrow_{\beta}^{*} s$ and $\vdash s : A$, but $\nvdash t : A$.

Theorem (Normalization)

If $\Gamma \vdash t$: A is derivable, then $t \rightarrow^*_{\beta} s$ and for some derivation of $\Gamma \vdash s$: A without redexes.

Proof. Exactly the proof of cut-elimination in ND (uppermost in ND \rightsquigarrow innermost in λ).

G. Guerrieri (Sussex)

Some properties of the simply typed λ -calculus (Curry and Church style)

Lemma (Substitution)

If $\Gamma, x : B \vdash t : A$ and $\Gamma \vdash s : B$ are derivable, then so is $\Gamma \vdash t\{s/x\} : A$.

Proof. By structural induction on t (exercise!).

Theorem (Subject reduction)

If $\Gamma \vdash t : A$ is derivable and $t \rightarrow_{\beta} s$, then $\Gamma \vdash s : A$ is derivable.

Proof. By structural induction on *t*, using the substitution lemma in the key-case.

Rmk. The converse (subject expansion) does not hold: let $A = Y \Rightarrow (X \Rightarrow X)$, and $t = (\lambda x.\lambda y.\lambda z.(xz)(yz))\lambda x.\lambda y.x$ and $s = \lambda y.\lambda z.z$, then $t \rightarrow_{\beta}^{*} s$ and $\vdash s : A$, but $\nvdash t : A$.

Theorem (Normalization)

If $\Gamma \vdash t : A$ is derivable, then $t \rightarrow^*_{\beta} s$ and for some derivation of $\Gamma \vdash s : A$ without redexes.

Proof. Exactly the proof of cut-elimination in ND (uppermost in ND \rightsquigarrow innermost in λ).

G. Guerrieri (Sussex) λ -calculus, simple & non-idempotent intersection types

Some properties of the simply typed λ -calculus (Curry and Church style)

Lemma (Substitution)

If $\Gamma, x : B \vdash t : A$ and $\Gamma \vdash s : B$ are derivable, then so is $\Gamma \vdash t\{s/x\} : A$.

Proof. By structural induction on t (exercise!).

Theorem (Subject reduction)

If $\Gamma \vdash t : A$ is derivable and $t \rightarrow_{\beta} s$, then $\Gamma \vdash s : A$ is derivable.

Proof. By structural induction on *t*, using the substitution lemma in the key-case.

Rmk. The converse (subject expansion) does not hold: let $A = Y \Rightarrow (X \Rightarrow X)$, and $t = (\lambda x.\lambda y.\lambda z.(xz)(yz))\lambda x.\lambda y.x$ and $s = \lambda y.\lambda z.z$, then $t \rightarrow_{\beta}^{*} s$ and $\vdash s : A$, but $\nvdash t : A$.

Theorem (Normalization)

If $\Gamma \vdash t : A$ is derivable, then $t \rightarrow^*_{\beta} s$ and for some derivation of $\Gamma \vdash s : A$ without redexes.

Proof. Exactly the proof of cut-elimination in ND (uppermost in ND \rightsquigarrow innermost in λ).

G. Guerrieri (Sussex) λ -calculus, simple & non-idempotent intersection types

The Curry-Howard correspondence

minimal logic	simply typed λ -calculus	computer science
formula	type	specification
derivation	term	program
cut-elimination step	β -reduction	computation step
derivation without redexes	normal form	result
cut-elimination theorem	normalization	termination

Concerning the correspondence between derivations and terms:

derivation in minimal logic	term in simply typed λ -calculus
hypotheses	variable
	abstraction λ
	application @

The Curry-Howard correspondence

minimal logic	simply typed λ -calculus	computer science
formula	type	specification
derivation	term	program
cut-elimination step	β -reduction	computation step
derivation without redexes	normal form	result
cut-elimination theorem	normalization	termination

Concerning the correspondence between derivations and terms:

derivation in minimal logic	term in simply typed λ -calculus
hypotheses	variable
\Rightarrow_i	abstraction λ
\Rightarrow_e	application @

Outline

) The Curry-Howard correspondence and the simply typed λ -calculus

2 Strong normalization of the simply typed λ -calculus

3 Conclusion, exercises and bibliography

We have seen different sets (of derivations, λ -terms) and reductions (cut elimination, β). \rightarrow Let us consider them abstractly, to study their common properties uniformly.

Def: An abstract rewriting system (ARS) is a set A and a relation $\rightarrow \subseteq A \times A$ (reduction). The reflexive-transitive closure of \rightarrow is \rightarrow^* , that is, $t \rightarrow^* s$ means $t \xrightarrow{\rightarrow} \cdots \xrightarrow{\rightarrow} s$.

- $t \in A$ is normal if there is no $s \in A$ such that $t \to s$.
- $t \in A$ is normalizing if there is $u \in A$ such that $t \rightarrow^* u$.
- $t \in A$ is strongly normalizing if there is no infinite sequence $(t_i)_{i \in \mathbb{N}}$ with $t_0 = t$ and $t_i \to t_{i+1}$ for all $i \in \mathbb{N}$, i.e. every reduction sequence eventually reaches a normal form.
- \rightarrow is normalizing/strongly normalizing if so is every $t \in A$.
- \rightarrow is confluent if for all $t, r_1, r_2 \in A$ with $r_1^* \leftarrow t \rightarrow^* r_2, r_1 \rightarrow^* s^* \leftarrow r_2$ for some $s \in A$.

Rmk: Strong normalization implies normalization but the converse fails.

Proposition (Uniqueness of normal form)

If ightarrow is confluent, then for all $t\in A$ there is at most one normal $s\in A$ with $t
ightarrow^*s$

Proof. If $r^* \leftarrow t \rightarrow^* s$ with r, s normal, by confluence $\exists u \in A: r \rightarrow^* u^* \leftarrow s$, so r = u = s.

We have seen different sets (of derivations, λ -terms) and reductions (cut elimination, β). \rightsquigarrow Let us consider them abstractly, to study their common properties uniformly.

Def: An abstract rewriting system (ARS) is a set A and a relation $\rightarrow \subseteq A \times A$ (reduction). The reflexive-transitive closure of \rightarrow is \rightarrow^* , that is, $t \rightarrow^* s$ means $t \xrightarrow{\rightarrow} \cdots \xrightarrow{\rightarrow} s$.

- $t \in A$ is normal if there is no $s \in A$ such that $t \to s$.
- $t \in A$ is normalizing if there is $u \in A$ such that $t \rightarrow^* u$.
- $t \in A$ is strongly normalizing if there is no infinite sequence $(t_i)_{i \in \mathbb{N}}$ with $t_0 = t$ and $t_i \to t_{i+1}$ for all $i \in \mathbb{N}$, i.e. every reduction sequence eventually reaches a normal form.
- \rightarrow is normalizing/strongly normalizing if so is every $t \in A$.
- \rightarrow is confluent if for all $t, r_1, r_2 \in A$ with $r_1^* \leftarrow t \rightarrow^* r_2, r_1 \rightarrow^* s^* \leftarrow r_2$ for some $s \in A$.

Rmk: Strong normalization implies normalization but the converse fails.

Proposition (Uniqueness of normal form)

If ightarrow is confluent, then for all $t\in A$ there is at most one normal $s\in A$ with $t
ightarrow^*s$

Proof. If $r^* \leftarrow t \rightarrow s$ with r, s normal, by confluence $\exists u \in A: r \rightarrow u^* \leftarrow s$, so r = u = s.

We have seen different sets (of derivations, λ -terms) and reductions (cut elimination, β). \rightsquigarrow Let us consider them abstractly, to study their common properties uniformly.

Def: An abstract rewriting system (ARS) is a set A and a relation $\rightarrow \subseteq A \times A$ (reduction). The reflexive-transitive closure of \rightarrow is \rightarrow^* , that is, $t \rightarrow^* s$ means $t \xrightarrow{\rightarrow} \cdots \xrightarrow{\rightarrow} s$.

- $t \in A$ is normal if there is no $s \in A$ such that $t \to s$.
- $t \in A$ is normalizing if there is $u \in A$ such that $t \rightarrow^* u$.
- $t \in A$ is strongly normalizing if there is no infinite sequence $(t_i)_{i \in \mathbb{N}}$ with $t_0 = t$ and $t_i \to t_{i+1}$ for all $i \in \mathbb{N}$, i.e. every reduction sequence eventually reaches a normal form.
- \rightarrow is normalizing/strongly normalizing if so is every $t \in A$.
- \rightarrow is confluent if for all $t, r_1, r_2 \in A$ with $r_1^* \leftarrow t \rightarrow^* r_2, r_1 \rightarrow^* s^* \leftarrow r_2$ for some $s \in A$.

Rmk: Strong normalization implies normalization but the converse fails.

Proposition (Uniqueness of normal form)

If ightarrow is confluent, then for all $t\in A$ there is at most one normal $s\in A$ with $t
ightarrow^*s$

Proof. If $r^* \leftarrow t \rightarrow s$ with r, s normal, by confluence $\exists u \in A: r \rightarrow u^* \leftarrow s$, so r = u = s.

We have seen different sets (of derivations, λ -terms) and reductions (cut elimination, β). \rightsquigarrow Let us consider them abstractly, to study their common properties uniformly.

Def: An abstract rewriting system (ARS) is a set A and a relation $\rightarrow \subseteq A \times A$ (reduction). The reflexive-transitive closure of \rightarrow is \rightarrow^* , that is, $t \rightarrow^* s$ means $t \xrightarrow{\rightarrow} \cdots \xrightarrow{\rightarrow} s$.

- $t \in A$ is normal if there is no $s \in A$ such that $t \to s$.
- $t \in A$ is normalizing if there is $u \in A$ such that $t \rightarrow^* u$.
- $t \in A$ is strongly normalizing if there is no infinite sequence $(t_i)_{i \in \mathbb{N}}$ with $t_0 = t$ and $t_i \to t_{i+1}$ for all $i \in \mathbb{N}$, i.e. every reduction sequence eventually reaches a normal form.
- \rightarrow is normalizing/strongly normalizing if so is every $t \in A$.
- \rightarrow is confluent if for all $t, r_1, r_2 \in A$ with $r_1^* \leftarrow t \rightarrow^* r_2, r_1 \rightarrow^* s^* \leftarrow r_2$ for some $s \in A$.

Rmk: Strong normalization implies normalization but the converse fails.

Proposition (Uniqueness of normal form)

If ightarrow is confluent, then for all $t\in A$ there is at most one normal $s\in A$ with $t
ightarrow^*$ s.

Proof. If $r^* \leftarrow t \rightarrow^* s$ with r, s normal, by confluence $\exists u \in A$: $r \rightarrow^* u^* \leftarrow s$, so r = u = s.

We have seen different sets (of derivations, λ -terms) and reductions (cut elimination, β). \rightsquigarrow Let us consider them abstractly, to study their common properties uniformly.

Def: An abstract rewriting system (ARS) is a set A and a relation $\rightarrow \subseteq A \times A$ (reduction). The reflexive-transitive closure of \rightarrow is \rightarrow^* , that is, $t \rightarrow^* s$ means $t \xrightarrow{\rightarrow} \cdots \xrightarrow{\rightarrow} s$.

- $t \in A$ is normal if there is no $s \in A$ such that $t \to s$.
- $t \in A$ is normalizing if there is $u \in A$ such that $t \rightarrow^* u$.
- $t \in A$ is strongly normalizing if there is no infinite sequence $(t_i)_{i \in \mathbb{N}}$ with $t_0 = t$ and $t_i \to t_{i+1}$ for all $i \in \mathbb{N}$, i.e. every reduction sequence eventually reaches a normal form.
- \rightarrow is normalizing/strongly normalizing if so is every $t \in A$.
- \rightarrow is confluent if for all $t, r_1, r_2 \in A$ with $r_1^* \leftarrow t \rightarrow^* r_2, r_1 \rightarrow^* s^* \leftarrow r_2$ for some $s \in A$.

Rmk: Strong normalization implies normalization but the converse fails.

Proposition (Uniqueness of normal form)

If \rightarrow is confluent, then for all $t \in A$ there is at most one normal $s \in A$ with $t \rightarrow^* s$.

Proof. If $r^* \leftarrow t \rightarrow s^*$ with r, s normal, by confluence $\exists u \in A: r \rightarrow u^* \leftarrow s$, so r = u = s.

Given a set A and a reduction \rightarrow on A, we want to prove that \rightarrow is strongly normalizing: \rightarrow there is no (infinite) sequence $(t_i)_{i \in \mathbb{N}}$ such that $t_i \rightarrow t_{i+1}$ for all $i \in \mathbb{N}$.

Idea (combinatorial): For every $t \in A$, we define a measure $|t| \in S$ for some well-founded set (S, <) — for instance $(\mathbb{N}, <)$ — such that: for every $s \in A$, if $t \to s$ then |t| > |s|.

Problem: It is doable for the simply typed λ -calculus, but it is very tricky. \rightarrow After a single β -step the size (\approx number of characters) of a term may not decrease.

$$\left(\lambda f^{X \Rightarrow X}.f(f(f_X))\right)\left(z(z(z(zf)))\right) \to_{\beta} \left(z(z(z(zf)))\right)\left(\left(z(z(z(zf)))\right)\left(\left(z(z(z(zf)))\right)x\right)\right)$$

 \rightsquigarrow The measure should be defined independently of (or cannot rely on) the size of terms.

Rmk: The normalization theorem above (p. 13) does not prove strong normalization. → The proof fires a specific redex (uppermost/innermost), otherwise the argument fails.

Given a set A and a reduction \rightarrow on A, we want to prove that \rightarrow is strongly normalizing: \rightarrow there is no (infinite) sequence $(t_i)_{i \in \mathbb{N}}$ such that $t_i \rightarrow t_{i+1}$ for all $i \in \mathbb{N}$.

Idea (combinatorial): For every $t \in A$, we define a measure $|t| \in S$ for some well-founded set (S, <)—for instance $(\mathbb{N}, <)$ —such that: for every $s \in A$, if $t \to s$ then |t| > |s|.

Problem: It is doable for the simply typed λ -calculus, but it is very tricky. \rightarrow After a single β -step the size (\approx number of characters) of a term may not decrease.

 $\left(\lambda f^{X \Rightarrow X}.f(f(f_X))\right)\left(z(z(z(zf)))\right) \to_{\beta} \left(z(z(z(zf)))\right)\left(\left(z(z(z(zf)))\right)\left(\left(z(z(z(zf)))\right)x\right)\right)$

 \rightsquigarrow The measure should be defined independently of (or cannot rely on) the size of terms.

Rmk: The normalization theorem above (p. 13) does not prove strong normalization. → The proof fires a specific redex (uppermost/innermost), otherwise the argument fails.

Given a set A and a reduction \rightarrow on A, we want to prove that \rightarrow is strongly normalizing: \rightarrow there is no (infinite) sequence $(t_i)_{i \in \mathbb{N}}$ such that $t_i \rightarrow t_{i+1}$ for all $i \in \mathbb{N}$.

Idea (combinatorial): For every $t \in A$, we define a measure $|t| \in S$ for some well-founded set (S, <)—for instance $(\mathbb{N}, <)$ —such that: for every $s \in A$, if $t \to s$ then |t| > |s|.

Problem: It is doable for the simply typed λ -calculus, but it is very tricky. \rightarrow After a single β -step the size (\approx number of characters) of a term may not decrease.

$$(\lambda f^{X \Rightarrow X} f(f(f_X))) (z(z(z(zf)))) \rightarrow_{\beta} (z(z(z(zf)))) ((z(z(z(zf))))) ((z(z(z(zf))))x)))$$

→ The measure should be defined independently of (or cannot rely on) the size of terms.

Rmk: The normalization theorem above (p. 13) does not prove strong normalization. ~> The proof fires a specific redex (uppermost/innermost), otherwise the argument fails.

Given a set A and a reduction \rightarrow on A, we want to prove that \rightarrow is strongly normalizing: \rightarrow there is no (infinite) sequence $(t_i)_{i \in \mathbb{N}}$ such that $t_i \rightarrow t_{i+1}$ for all $i \in \mathbb{N}$.

Idea (combinatorial): For every $t \in A$, we define a measure $|t| \in S$ for some well-founded set (S, <)—for instance $(\mathbb{N}, <)$ —such that: for every $s \in A$, if $t \to s$ then |t| > |s|.

Problem: It is doable for the simply typed λ -calculus, but it is very tricky. \rightarrow After a single β -step the size (\approx number of characters) of a term may not decrease.

$$(\lambda f^{X \Rightarrow X} f(f(f_X))) (z(z(z(zf)))) \rightarrow_{\beta} (z(z(z(zf)))) ((z(z(z(zf))))) ((z(z(z(zf))))x)))$$

→ The measure should be defined independently of (or cannot rely on) the size of terms.

Rmk: The normalization theorem above (p. 13) does not prove strong normalization. \rightarrow The proof fires a specific redex (uppermost/innermost), otherwise the argument fails.

Idea: We define a set Red_A of terms (reducibility candidates) by induction on the type A:

- for any ground type X, Red_X is the set of strongly normalizing (SN) terms of type X;
- $\operatorname{Red}_{A\Rightarrow B}$ is the set of the terms *s* of type $A\Rightarrow B$ such that $st\in\operatorname{Red}_B$ for all $t\in\operatorname{Red}_A$.

Rmk: For every type A, every term in Red_A is SN (easy proof by induction on A).

Goal: For any type A, if u:A then $u \in \text{Red}_A$ (so u is SN). Proof by induction on u. Cases:

If u = st: A then $s: B \Rightarrow A$ and t: B; by IH, $s \in \text{Red}_{B\Rightarrow A}$ and $t \in \text{Red}_B$, so $u \in \text{Red}_A$.

- ⓐ If u = x: X, then u is SN, so $u \in \text{Red}_X$. If $u = x: B \Rightarrow C$, to prove that $x \in \text{Red}_{B \Rightarrow C}$ we have to show that $xt \in \text{Red}_C$ for all $t \in \text{Red}_B \rightarrow A$ stronger hypothesis is needed.
- If $u = \lambda x^B : B \Rightarrow C$, to prove that $u \in \text{Red}_{B\Rightarrow C}$ we have to show that $(\lambda x^B : s)t \in \text{Red}_C$ for all $t \in \text{Red}_B$. \rightarrow How to prove that?

Idea: Suppose $\lambda x^{B} \cdot s : B \Rightarrow C$ and $t \in \operatorname{Red}_{B}$. Let us prove that $s\{t/x\} \in \operatorname{Red}_{C}$ and that if $s\{t/x\} \in \operatorname{Red}_{C}$ then $(\lambda x^{B} \cdot s)t \in \operatorname{Red}_{C}$. This way, Point 3 above is done.

Idea: We define a set Red_A of terms (reducibility candidates) by induction on the type A:

- for any ground type X, Red_X is the set of strongly normalizing (SN) terms of type X;
- $\operatorname{Red}_{A \Rightarrow B}$ is the set of the terms *s* of type $A \Rightarrow B$ such that $st \in \operatorname{Red}_B$ for all $t \in \operatorname{Red}_A$.

Rmk: For every type A, every term in Red_A is SN (easy proof by induction on A).

Goal: For any type A, if u:A then $u \in \text{Red}_A$ (so u is SN). Proof by induction on u. Cases:

If u = st: A then $s: B \Rightarrow A$ and t: B; by IH, $s \in \text{Red}_{B \Rightarrow A}$ and $t \in \text{Red}_B$, so $u \in \text{Red}_A$.

- ⓐ If u = x: X, then u is SN, so $u \in \text{Red}_X$. If $u = x: B \Rightarrow C$, to prove that $x \in \text{Red}_{B \Rightarrow C}$ we have to show that $xt \in \text{Red}_C$ for all $t \in \text{Red}_B \rightarrow A$ stronger hypothesis is needed.
- If $u = \lambda x^B : B \Rightarrow C$, to prove that $u \in \operatorname{Red}_{B \Rightarrow C}$ we have to show that $(\lambda x^B : s)t \in \operatorname{Red}_C$ for all $t \in \operatorname{Red}_B$. \rightsquigarrow How to prove that?

Idea: Suppose $\lambda x^{B} \cdot s : B \Rightarrow C$ and $t \in \operatorname{Red}_{B}$. Let us prove that $s\{t/x\} \in \operatorname{Red}_{C}$ and that if $s\{t/x\} \in \operatorname{Red}_{C}$ then $(\lambda x^{B} \cdot s)t \in \operatorname{Red}_{C}$. This way, Point 3 above is done.

Idea: We define a set Red_A of terms (reducibility candidates) by induction on the type A:

- for any ground type X, Red_X is the set of strongly normalizing (SN) terms of type X;
- $\operatorname{Red}_{A\Rightarrow B}$ is the set of the terms *s* of type $A\Rightarrow B$ such that $st\in\operatorname{Red}_B$ for all $t\in\operatorname{Red}_A$.

Rmk: For every type A, every term in Red_A is SN (easy proof by induction on A).

Goal: For any type A, if u: A then $u \in \text{Red}_A$ (so u is SN). Proof by induction on u. Cases:

- **(**) If u = st: A then $s: B \Rightarrow A$ and t: B; by IH, $s \in \text{Red}_{B \Rightarrow A}$ and $t \in \text{Red}_B$, so $u \in \text{Red}_A$.
- ② If u = x: X, then u is SN, so $u \in \text{Red}_X$. If $u = x: B \Rightarrow C$, to prove that $x \in \text{Red}_{B \Rightarrow C}$ we have to show that $xt \in \text{Red}_C$ for all $t \in \text{Red}_B \rightarrow A$ stronger hypothesis is needed.
- If $u = \lambda x^B \cdot s : B \Rightarrow C$, to prove that $u \in \text{Red}_{B \Rightarrow C}$ we have to show that $(\lambda x^B \cdot s)t \in \text{Red}_C$ for all $t \in \text{Red}_B$. \rightsquigarrow How to prove that?

Idea: Suppose $\lambda x^{B} \cdot s : B \Rightarrow C$ and $t \in \operatorname{Red}_{B}$. Let us prove that $s\{t/x\} \in \operatorname{Red}_{C}$ and that if $s\{t/x\} \in \operatorname{Red}_{C}$ then $(\lambda x^{B} \cdot s)t \in \operatorname{Red}_{C}$. This way, Point 3 above is done.

Idea: We define a set Red_A of terms (reducibility candidates) by induction on the type A:

- for any ground type X, Red_X is the set of strongly normalizing (SN) terms of type X;
- $\operatorname{Red}_{A\Rightarrow B}$ is the set of the terms *s* of type $A\Rightarrow B$ such that $st\in\operatorname{Red}_B$ for all $t\in\operatorname{Red}_A$.

Rmk: For every type A, every term in Red_A is SN (easy proof by induction on A).

Goal: For any type A, if u: A then $u \in \text{Red}_A$ (so u is SN). Proof by induction on u. Cases:

- **(**) If u = st: A then $s: B \Rightarrow A$ and t: B; by IH, $s \in \text{Red}_{B \Rightarrow A}$ and $t \in \text{Red}_B$, so $u \in \text{Red}_A$.
- ② If u = x: X, then u is SN, so $u \in \text{Red}_X$. If $u = x: B \Rightarrow C$, to prove that $x \in \text{Red}_{B \Rightarrow C}$ we have to show that $xt \in \text{Red}_C$ for all $t \in \text{Red}_B \rightsquigarrow A$ stronger hypothesis is needed.
- If $u = \lambda x^B \cdot s : B \Rightarrow C$, to prove that $u \in \text{Red}_{B \Rightarrow C}$ we have to show that $(\lambda x^B \cdot s)t \in \text{Red}_C$ for all $t \in \text{Red}_B$. \rightsquigarrow How to prove that?

Idea: Suppose $\lambda x^B \cdot s : B \Rightarrow C$ and $t \in \operatorname{Red}_B$. Let us prove that $s\{t/x\} \in \operatorname{Red}_C$ and that if $s\{t/x\} \in \operatorname{Red}_C$ then $(\lambda x^B \cdot s)t \in \operatorname{Red}_C$. This way, Point 3 above is done.

Idea: We define a set Red_A of terms (reducibility candidates) by induction on the type A:

- for any ground type X, Red_X is the set of strongly normalizing (SN) terms of type X;
- $\operatorname{Red}_{A\Rightarrow B}$ is the set of the terms *s* of type $A\Rightarrow B$ such that $st\in\operatorname{Red}_B$ for all $t\in\operatorname{Red}_A$.

Rmk: For every type A, every term in Red_A is SN (easy proof by induction on A).

Goal: For any type A, if u: A then $u \in \text{Red}_A$ (so u is SN). Proof by induction on u. Cases:

- **(**) If u = st: A then $s: B \Rightarrow A$ and t: B; by IH, $s \in \text{Red}_{B \Rightarrow A}$ and $t \in \text{Red}_B$, so $u \in \text{Red}_A$.
- If u = x: X, then u is SN, so $u \in \text{Red}_X$. If $u = x: B \Rightarrow C$, to prove that $x \in \text{Red}_{B \Rightarrow C}$ we have to show that $xt \in \text{Red}_C$ for all $t \in \text{Red}_B \rightsquigarrow A$ stronger hypothesis is needed.
- If $u = \lambda x^B \cdot s : B \Rightarrow C$, to prove that $u \in \text{Red}_{B \Rightarrow C}$ we have to show that $(\lambda x^B \cdot s)t \in \text{Red}_C$ for all $t \in \text{Red}_B$. \rightsquigarrow How to prove that?

Idea: Suppose $\lambda x^B \cdot s : B \Rightarrow C$ and $t \in \operatorname{Red}_B$. Let us prove that $s\{t/x\} \in \operatorname{Red}_C$ and that if $s\{t/x\} \in \operatorname{Red}_C$ then $(\lambda x^B \cdot s)t \in \operatorname{Red}_C$. This way, Point 3 above is done.

Solution: Let us take the environment into account when defining Red_A , for all types A.

 $\begin{aligned} & \mathsf{Red}_X = \{ \langle \mathsf{\Gamma}; t \rangle \mid t \text{ is SN}, \ \mathsf{\Gamma} \vdash t : X \} \\ & \mathsf{Red}_{A \Rightarrow B} = \{ \langle \mathsf{\Gamma}; s \rangle \mid \mathsf{\Gamma} \vdash s : A \Rightarrow B, \ \langle \mathsf{\Gamma}, \Delta; \ st \rangle \in \mathsf{Red}_B \text{ for all } \langle \mathsf{\Gamma}, \Delta; \ t \rangle \in \mathsf{Red}_A \} \end{aligned}$

Lemma

If $\langle \Gamma; t \rangle \in \operatorname{Red}_B$ then t is SN.

ⓐ If $\Gamma \vdash xt_1 \dots t_n$: *B* and t_1, \dots, t_n are SN, then $\langle \Gamma; xt_1 \dots t_n \rangle \in \text{Red}_B$.

 $If \langle \Gamma; s\{t/x\}t_1 \dots t_n \rangle \in \operatorname{Red}_B, \ \Gamma \vdash t : A \text{ and } t \text{ is SN, then } \langle \Gamma; (\lambda x^A s)tt_1 \dots t_n \rangle \in \operatorname{Red}_B.$

- Let $z \notin \text{dom}(\Gamma)$, so $\langle \Gamma, z : C; z \rangle \in \text{Red}_C$ by the induction hypothesis of Point 2 applied to C. As $\langle \Gamma; t \rangle \in \text{Red}_{C \Rightarrow D}$, then $\langle \Gamma, z : C; tz \rangle \in \text{Red}_D$ and hence tz is SN by the induction hypothesis of Point 1 applied to D; thus t is SN too.
- Let $\langle \Gamma, \Delta; t \rangle \in \operatorname{Red}_C$, so t is SN by induction hypothesis of Point 1 applied to C; as $\Gamma, \Delta \vdash xt_1 \dots t_n t : D$ is derivable, $\langle \Gamma, \Delta; xt_1 \dots t_n t \rangle \in \operatorname{Red}_D$ by induction hypothesis of Point 2 applied to A; hence, $\langle \Gamma; xt_1 \dots t_n \rangle \in \operatorname{Red}_B$ by definition of $\operatorname{Red}_{C \Rightarrow D}$.
- Let $(\Gamma, \Delta; r) \in \operatorname{Red}_C$, so $(\Gamma, \Delta; s\{t/x\}t_1 \dots t_n r) \in \operatorname{Red}_D$ and hence, by the induction hypothesis, $(\Gamma, \Delta; (\lambda x^A s)tt_1 \dots t_n r) \in \operatorname{Red}_D$; thus, $\langle \Gamma; (\lambda x^A s)tt_1 \dots t_n \rangle \in \operatorname{Red}_B$.

Solution: Let us take the environment into account when defining Red_A , for all types A.

 $\begin{aligned} & \mathsf{Red}_X = \{ \langle \mathsf{\Gamma}; t \rangle \mid t \text{ is SN}, \ \mathsf{\Gamma} \vdash t : X \} \\ & \mathsf{Red}_{A \Rightarrow B} = \{ \langle \mathsf{\Gamma}; s \rangle \mid \mathsf{\Gamma} \vdash s : A \Rightarrow B, \ \langle \mathsf{\Gamma}, \Delta; \ st \rangle \in \mathsf{Red}_B \text{ for all } \langle \mathsf{\Gamma}, \Delta; \ t \rangle \in \mathsf{Red}_A \} \end{aligned}$

Lemma

• If $\langle \Gamma; t \rangle \in \operatorname{Red}_B$ then t is SN.

2 If $\Gamma \vdash xt_1 \ldots t_n$: *B* and t_1, \ldots, t_n are SN, then $\langle \Gamma; xt_1 \ldots t_n \rangle \in \text{Red}_B$.

9 If $\langle \Gamma; s\{t/x\}t_1 \dots t_n \rangle \in \operatorname{Red}_B$, $\Gamma \vdash t : A$ and t is SN, then $\langle \Gamma; (\lambda x^A s)tt_1 \dots t_n \rangle \in \operatorname{Red}_B$.

- Let z ∉ dom(Γ), so (Γ, z: C; z) ∈ Red_C by the induction hypothesis of Point 2 applied to C. As (Γ; t) ∈ Red_{C⇒D}, then (Γ, z: C; tz) ∈ Red_D and hence tz is SN by the induction hypothesis of Point 1 applied to D; thus t is SN too.
- Output: Let (Γ, Δ; t) ∈ Red_C, so t is SN by induction hypothesis of Point 1 applied to C; as Γ, Δ ⊢ xt₁...t_nt : D is derivable, (Γ, Δ; xt₁...t_nt) ∈ Red_D by induction hypothesis of Point 2 applied to A; hence, (Γ; xt₁...t_n) ∈ Red_B by definition of Red_{C⇒D}.
- Let $\langle \Gamma, \Delta; r \rangle \in \operatorname{Red}_C$, so $\langle \Gamma, \Delta; s\{t/x\}t_1 \dots t_n r \rangle \in \operatorname{Red}_D$ and hence, by the induction hypothesis, $\langle \Gamma, \Delta; (\lambda x^A \cdot s)tt_1 \dots t_n r \rangle \in \operatorname{Red}_D$; thus, $\langle \Gamma; (\lambda x^A \cdot s)tt_1 \dots t_n \rangle \in \operatorname{Red}_B$. \Box

Solution: Let us take the environment into account when defining Red_A , for all types A.

 $\mathsf{Red}_X = \{ \langle \Gamma; t \rangle \mid t \text{ is SN}, \ \Gamma \vdash t : X \}$ $\mathsf{Red}_{A \Rightarrow B} = \{ \langle \Gamma; s \rangle \mid \Gamma \vdash s : A \Rightarrow B, \ \langle \Gamma, \Delta; \ st \rangle \in \mathsf{Red}_B \text{ for all } \langle \Gamma, \Delta; \ t \rangle \in \mathsf{Red}_A \}$

Lemma

• If $\langle \Gamma; t \rangle \in \operatorname{Red}_B$ then t is SN.

2 If $\Gamma \vdash xt_1 \ldots t_n : B$ and t_1, \ldots, t_n are SN, then $\langle \Gamma; xt_1 \ldots t_n \rangle \in \text{Red}_B$.

9 If $\langle \Gamma; s\{t/x\}t_1 \dots t_n \rangle \in \operatorname{Red}_B$, $\Gamma \vdash t : A$ and t is SN, then $\langle \Gamma; (\lambda x^A s)tt_1 \dots t_n \rangle \in \operatorname{Red}_B$.

- Let z ∉ dom(Γ), so (Γ, z: C; z) ∈ Red_C by the induction hypothesis of Point 2 applied to C. As (Γ; t) ∈ Red_{C⇒D}, then (Γ, z: C; tz) ∈ Red_D and hence tz is SN by the induction hypothesis of Point 1 applied to D; thus t is SN too.
- Output: Let (Γ, Δ; t) ∈ Red_C, so t is SN by induction hypothesis of Point 1 applied to C; as Γ, Δ ⊢ xt₁...t_nt : D is derivable, (Γ, Δ; xt₁...t_nt) ∈ Red_D by induction hypothesis of Point 2 applied to A; hence, (Γ; xt₁...t_n) ∈ Red_B by definition of Red_{C⇒D}.
- Let $\langle \Gamma, \Delta; r \rangle \in \operatorname{Red}_C$, so $\langle \Gamma, \Delta; s\{t/x\}t_1 \dots t_n r \rangle \in \operatorname{Red}_D$ and hence, by the induction hypothesis, $\langle \Gamma, \Delta; (\lambda x^A \cdot s)tt_1 \dots t_n r \rangle \in \operatorname{Red}_D$; thus, $\langle \Gamma; (\lambda x^A \cdot s)tt_1 \dots t_n \rangle \in \operatorname{Red}_B$. \Box

Solution: Let us take the environment into account when defining Red_A , for all types A.

 $\mathsf{Red}_X = \{ \langle \Gamma; t \rangle \mid t \text{ is SN}, \ \Gamma \vdash t : X \}$ $\mathsf{Red}_{A \Rightarrow B} = \{ \langle \Gamma; s \rangle \mid \Gamma \vdash s : A \Rightarrow B, \ \langle \Gamma, \Delta; \ st \rangle \in \mathsf{Red}_B \text{ for all } \langle \Gamma, \Delta; \ t \rangle \in \mathsf{Red}_A \}$

Lemma

• If $\langle \Gamma; t \rangle \in \operatorname{Red}_B$ then t is SN.

2 If $\Gamma \vdash xt_1 \ldots t_n$: *B* and t_1, \ldots, t_n are SN, then $\langle \Gamma; xt_1 \ldots t_n \rangle \in \text{Red}_B$.

9 If $\langle \Gamma; s\{t/x\}t_1 \dots t_n \rangle \in \operatorname{Red}_B$, $\Gamma \vdash t : A$ and t is SN, then $\langle \Gamma; (\lambda x^A s)tt_1 \dots t_n \rangle \in \operatorname{Red}_B$.

- Let z ∉ dom(Γ), so (Γ, z: C; z) ∈ Red_C by the induction hypothesis of Point 2 applied to C. As (Γ; t) ∈ Red_{C⇒D}, then (Γ, z: C; tz) ∈ Red_D and hence tz is SN by the induction hypothesis of Point 1 applied to D; thus t is SN too.
- Output: Let (Γ, Δ; t) ∈ Red_C, so t is SN by induction hypothesis of Point 1 applied to C; as Γ, Δ ⊢ xt₁...t_nt : D is derivable, (Γ, Δ; xt₁...t_nt) ∈ Red_D by induction hypothesis of Point 2 applied to A; hence, (Γ; xt₁...t_n) ∈ Red_B by definition of Red_{C⇒D}.
- Let $\langle \Gamma, \Delta; r \rangle \in \operatorname{Red}_{C}$, so $\langle \Gamma, \Delta; s\{t/x\}t_{1}...t_{n}r \rangle \in \operatorname{Red}_{D}$ and hence, by the induction hypothesis, $\langle \Gamma, \Delta; (\lambda x^{A}.s)tt_{1}...t_{n}r \rangle \in \operatorname{Red}_{D}$; thus, $\langle \Gamma; (\lambda x^{A}.s)tt_{1}...t_{n} \rangle \in \operatorname{Red}_{B}$. □

Solution: Let us take the environment into account when defining Red_A , for all types A.

 $\mathsf{Red}_X = \{ \langle \Gamma; t \rangle \mid t \text{ is SN}, \ \Gamma \vdash t : X \}$ $\mathsf{Red}_{A \Rightarrow B} = \{ \langle \Gamma; s \rangle \mid \Gamma \vdash s : A \Rightarrow B, \ \langle \Gamma, \Delta; \ st \rangle \in \mathsf{Red}_B \text{ for all } \langle \Gamma, \Delta; \ t \rangle \in \mathsf{Red}_A \}$

Lemma

• If $\langle \Gamma; t \rangle \in \operatorname{Red}_B$ then t is SN.

3 If $\Gamma \vdash xt_1 \ldots t_n$: *B* and t_1, \ldots, t_n are SN, then $\langle \Gamma; xt_1 \ldots t_n \rangle \in \text{Red}_B$.

9 If $\langle \Gamma; s\{t/x\}t_1 \dots t_n \rangle \in \operatorname{Red}_B$, $\Gamma \vdash t: A$ and t is SN, then $\langle \Gamma; (\lambda x^A \cdot s)tt_1 \dots t_n \rangle \in \operatorname{Red}_B$.

- Let z ∉ dom(Γ), so (Γ, z: C; z) ∈ Red_C by the induction hypothesis of Point 2 applied to C. As (Γ; t) ∈ Red_{C⇒D}, then (Γ, z: C; tz) ∈ Red_D and hence tz is SN by the induction hypothesis of Point 1 applied to D; thus t is SN too.
- Output: Let (Γ, Δ; t) ∈ Red_C, so t is SN by induction hypothesis of Point 1 applied to C; as Γ, Δ ⊢ xt₁...t_nt : D is derivable, (Γ, Δ; xt₁...t_nt) ∈ Red_D by induction hypothesis of Point 2 applied to A; hence, (Γ; xt₁...t_n) ∈ Red_B by definition of Red_{C⇒D}.
- Let $\langle \Gamma, \Delta; r \rangle \in \operatorname{Red}_C$, so $\langle \Gamma, \Delta; s\{t/x\}t_1 \dots t_n r \rangle \in \operatorname{Red}_D$ and hence, by the induction hypothesis, $\langle \Gamma, \Delta; (\lambda x^A \cdot s)tt_1 \dots t_n r \rangle \in \operatorname{Red}_D$; thus, $\langle \Gamma; (\lambda x^A \cdot s)tt_1 \dots t_n \rangle \in \operatorname{Red}_B$. \Box
Strong normalization proved via reducibility candidates

Rmk. In the previous lemma, Point 1 needs Point 2 in its proof, and vice versa. Point 3 is independent of Points 1–2 and is used in the proof of the lemma below.

Lemma (Substitution)

If $x_1: B_1, \ldots, x_n: B_n \vdash t : A$ and $\langle \Gamma; s_i \rangle \in \operatorname{Red}_{B_i}$, then $\langle \Gamma; t\{s_1/x_1, \ldots, s_n/x_n\} \rangle \in \operatorname{Red}_A$.

Proof. By structural induction on the term t, using Point 3 above (exercise!).

Theorem (Strong normalization of the simply typed λ -calculus)

Every typed term in the simply typed λ -calculus is SN.

Proof. Let $x_1 : B_1, \ldots, x_n : B_n \vdash t : A$ be derivable. Let $\Gamma = x_1 : B_1, \ldots, x_n : B_n$ and $s_i = x_i$ for all $1 \le i \le n$, hence $\langle \Gamma; s_i \rangle \in \operatorname{Red}_{B_i}$ by Point 2 of the lemma on p. 19, for all $1 \le i \le n$. By the substitution lemma above, $\langle \Gamma; t \rangle = \langle \Gamma; t\{s_1/x_1, \ldots, s_n/x_n\} \rangle \in \operatorname{Red}_A$. By Point 1 of the lemma on p. 19, t is SN.

Strong normalization proved via reducibility candidates

Rmk. In the previous lemma, Point 1 needs Point 2 in its proof, and vice versa. Point 3 is independent of Points 1–2 and is used in the proof of the lemma below.

Lemma (Substitution)

If $x_1: B_1, \ldots, x_n: B_n \vdash t : A$ and $\langle \Gamma; s_i \rangle \in \operatorname{Red}_{B_i}$, then $\langle \Gamma; t\{s_1/x_1, \ldots, s_n/x_n\} \rangle \in \operatorname{Red}_A$.

Proof. By structural induction on the term *t*, using Point 3 above (exercise!).

Theorem (Strong normalization of the simply typed λ -calculus)

Every typed term in the simply typed λ -calculus is SN.

Proof. Let $x_1 : B_1, \ldots, x_n : B_n \vdash t : A$ be derivable. Let $\Gamma = x_1 : B_1, \ldots, x_n : B_n$ and $s_i = x_i$ for all $1 \le i \le n$, hence $\langle \Gamma; s_i \rangle \in \operatorname{Red}_{B_i}$ by Point 2 of the lemma on p. 19, for all $1 \le i \le n$. By the substitution lemma above, $\langle \Gamma; t \rangle = \langle \Gamma; t\{s_1/x_1, \ldots, s_n/x_n\} \rangle \in \operatorname{Red}_A$. By Point 1 of the lemma on p. 19, t is SN.

Strong normalization proved via reducibility candidates

Rmk. In the previous lemma, Point 1 needs Point 2 in its proof, and vice versa. Point 3 is independent of Points 1–2 and is used in the proof of the lemma below.

Lemma (Substitution)

If $x_1: B_1, \ldots, x_n: B_n \vdash t : A$ and $\langle \Gamma; s_i \rangle \in \operatorname{Red}_{B_i}$, then $\langle \Gamma; t\{s_1/x_1, \ldots, s_n/x_n\} \rangle \in \operatorname{Red}_A$.

Proof. By structural induction on the term *t*, using Point 3 above (exercise!).

Theorem (Strong normalization of the simply typed λ -calculus)

Every typed term in the simply typed λ -calculus is SN.

Proof. Let $x_1 : B_1, \ldots, x_n : B_n \vdash t : A$ be derivable. Let $\Gamma = x_1 : B_1, \ldots, x_n : B_n$ and $s_i = x_i$ for all $1 \le i \le n$, hence $\langle \Gamma; s_i \rangle \in \operatorname{Red}_{B_i}$ by Point 2 of the lemma on p. 19, for all $1 \le i \le n$. By the substitution lemma above, $\langle \Gamma; t \rangle = \langle \Gamma; t\{s_1/x_1, \ldots, s_n/x_n\} \rangle \in \operatorname{Red}_A$. By Point 1 of the lemma on p. 19, t is SN.

Outline

] The Curry-Howard correspondence and the simply typed λ -calculus

2 Strong normalization of the simply typed λ -calculus

3 Conclusion, exercises and bibliography

() How to decorate derivations in natural deduction for minimal logic with λ -terms.

- 3 The procedure of β -reduction on λ -terms.
- Ohurch and Curry styles for the simply typed λ -calculus.
- The Curry–Howard correspondence between natural deduction for minimal logic and the simply typed λ-calculus.
- Some properties of the simply typed λ -calculus (subject reduction, normalization).
- O The proof of strong normalization via reducibility candidates.

- **(9)** How to decorate derivations in natural deduction for minimal logic with λ -terms.
- **2** The procedure of β -reduction on λ -terms.
- Ohurch and Curry styles for the simply typed λ -calculus.
- S The Curry–Howard correspondence between natural deduction for minimal logic and the simply typed λ-calculus.
- Some properties of the simply typed λ -calculus (subject reduction, normalization).
- O The proof of strong normalization via reducibility candidates.

- **9** How to decorate derivations in natural deduction for minimal logic with λ -terms.
- **2** The procedure of β -reduction on λ -terms.
- $\textbf{O} \ \ \textbf{Church and Curry styles for the simply typed } \lambda \textbf{-calculus}.$
- The Curry–Howard correspondence between natural deduction for minimal logic and the simply typed λ-calculus.
- **(a)** Some properties of the simply typed λ -calculus (subject reduction, normalization).
- The proof of strong normalization via reducibility candidates.

- **9** How to decorate derivations in natural deduction for minimal logic with λ -terms.
- **2** The procedure of β -reduction on λ -terms.
- **②** Church and Curry styles for the simply typed λ -calculus.
- The Curry-Howard correspondence between natural deduction for minimal logic and the simply typed λ-calculus.
- **(a)** Some properties of the simply typed λ -calculus (subject reduction, normalization).
- The proof of strong normalization via reducibility candidates.

- **9** How to decorate derivations in natural deduction for minimal logic with λ -terms.
- **2** The procedure of β -reduction on λ -terms.
- **②** Church and Curry styles for the simply typed λ -calculus.
- The Curry-Howard correspondence between natural deduction for minimal logic and the simply typed λ-calculus.
- **③** Some properties of the simply typed λ -calculus (subject reduction, normalization).
- Interproof of strong normalization via reducibility candidates.

- **9** How to decorate derivations in natural deduction for minimal logic with λ -terms.
- **2** The procedure of β -reduction on λ -terms.
- **②** Church and Curry styles for the simply typed λ -calculus.
- The Curry-Howard correspondence between natural deduction for minimal logic and the simply typed λ-calculus.
- **③** Some properties of the simply typed λ -calculus (subject reduction, normalization).
- O The proof of strong normalization via reducibility candidates.

Exercises

- Find the simply typed λ-terms (in Curry-style and Church-style) associated with the derivations in ND found for the facts below (see Exercise 1 from Day 1).
 - $\begin{array}{l} \bullet \vdash X \Rightarrow ((X \Rightarrow Y) \Rightarrow Y). \\ \bullet \quad (X \Rightarrow Y) \Rightarrow (X \Rightarrow Z) \vdash Y \Rightarrow X \Rightarrow Z. \\ \bullet \quad (X \Rightarrow Y) \Rightarrow X \vdash Y \Rightarrow X. \\ \end{array}$
- Perform all possible β-reduction steps from the λ-term decorating the derivation D in ND on p. 24 of Day 1, until you get a β-normal form. Is it always the same? Compare it with the normal derivation obtained by cut-elimination steps from D.
- **9** Prove rigorously the following facts $(f^n x = f(\ldots, f x) \ldots)$ for any $n \in \mathbb{N}$:
 - $\lambda x.xx$ is untypable in Curry-style, $\lambda x^A.xx$ is untypable in Church-style for any type A;

n times f

- **a** in Church-style, $\lambda f^{Y} \cdot \lambda x^{X} \cdot f^{n} x$ is not typable for any n > 0 but $\lambda f^{Y} \cdot \lambda x^{X} \cdot x$ is typable;
- **③** $\lambda f \cdot \lambda x \cdot f^n x$ is typable in Curry-style, for all *n* ∈ \mathbb{N} .
- Prove that if t is typable in Church or Curry style, then so is every subterm of t.
- Prove rigorously the propositions on pp. 9 and 12, the lemma and theorems on p. 13.
- Prove rigorously the lemma and the theorems on p. 13.
- Let A{B/X} be the type obtained from the type A by substituting B for each occurrence of the ground type X. Let Γ{A/X} be its generalization to environments. Show that if Γ ⊢ t : A is derivable in Curry-style, then so is Γ{B/X} ⊢ t : A{B/X}.
- Is the previous point valid in Church-style? What change is needed to make it true?

More Exercises

- Prove that (λx.(λy.y))λz.zz is not typable (in Curry-style). Deduce that subject expansion (see p. 13) does not hold in the simply typed λ-calculus.
- **2** Prove that if $\langle \Gamma; t \rangle \in \operatorname{Red}_B$, then $\langle \Gamma, x : A; t \rangle \in \operatorname{Red}_B$, by induction on the type *B*.
- Prove rigorously the lemma on p. 20.
- ② Define four ARSs (A, →): in the first → is normalizing but not strongly normalizing, in the second → is not normalizing, in the third → is strongly normalizing, in the fourth → is not confluent but every t ∈ A has a unique normal form.
- ${}^{\textcircled{3}}$ In a ARS (A, \rightarrow) , prove that $t \in A$ is SN iff for every $t' \in A$, if $t \rightarrow t'$ then t' is SN.

Prove the following facts for untyped terms:

- for all $n \in \mathbb{N}$, if t_1, \ldots, t_n are SN, then so is $xt_1 \ldots t_n$;
- **2** if t is SN, then so is $\lambda x.s$;
- for all $n \in \mathbb{N}$, if t and $s\{t/x\}t_1 \dots t_n$ are SN, then so is $(\lambda x.s)tt_1 \dots t_n$;
- **3** for all $n \in \mathbb{N}$, if $x \in fv(s)$ and $s\{t/x\}t_1 \dots t_n$ is SN then so is $(\lambda x.s)tt_1 \dots t_n$.
- **Prove that if** t can be constructed by applying $n \in \mathbb{N}$ times the rules below, then the maximal length of the reduction sequences from t to its β -normal form is $\leq n$.

 $\frac{n \in \mathbb{N} \quad (t_i \text{ is SN})_{1 \le i \le n}}{xt_1 \dots t_n \text{ is SN}} \quad \frac{t \text{ is SN}}{\lambda x.t \text{ is SN}} \quad \frac{n \in \mathbb{N} \quad t \text{ is SN} \quad s\{t/x\}t_1 \dots t_n \text{ is SN}}{(\lambda x.s)tt_1 \dots t_n \text{ is SN}}$

Deduce that the set of SN untyped terms is the least set closed under those 3 rules.

Bibliography

• For more about the simply typed $\lambda\text{-calculus:}$

Ralph Loader. Notes on Simply Typed λ-Calculus. Technical report ECS-LFCS-98-381, University of Edinburgh, 1998. http://www.lfcs.inf.ed.ac.uk/ reports/98/ECS-LFCS-98-381/ECS-LFCS-98-381.pdf. [Chapters 1-3]

Henk Barendregt. Lambda Calculi with Types. In S. Abramsky et al. (eds), Handbook of Logic in Computer Science; vol. 2, 117-309, 1992. https: //repository.ubn.ru.nl/bitstream/handle/2066/17231/17231.pdf [Chapter 3]

- For more about the Curry-Howard correspondence:
 - Jean-Yves Girard, Yves Lafont, Paul Taylor. Proofs and Types. Cambridge Tracts in Theoretical Computer Science, Vol. 7, Cambridge University Press, 1989. https://www.paultaylor.eu/stable/prot.pdf. [Chapters 2-4, 6]
- For a combinatorial proof of normalization for the simply typed λ -calculus:

Pablo Barenbaum, Cristian Sottile. Two Decreasing Measures for Simply Typed λ-Terms. FSCD 2023, LIPIcs, vol. 260, 11:1–11:19, 2023. https://doi.org/10.4230/LIPIcs.FSCD.2023.11.