The A-calculus: from simple types to non-idempotent intersection types

Day 2: The simply typed A-calculus and the Curry-Howard correspondence

Giulio Guerrieri

Department of Informatics, University of Sussex (Brighton, UK)
X g.guerrieri@sussex.ac.uk @ https://pageperso.lis-lab.fr/ giulio.guerrieri/

37th Escuela de Ciencias Informaticas (ECI 2024)
Buenos Aires (Argentina), 30 July 2024

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 1/26

mailto:g.guerrieri@sussex.ac.uk
https://pageperso.lis-lab.fr/~giulio.guerrieri/

Outline

© The Curry-Howard correspondence and the simply typed A-calculus

© Strong normalization of the simply typed A-calculus

© Conclusion, exercises and bibliography

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types

Outline

© The Curry-Howard correspondence and the simply typed A-calculus

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types

A computational interpretation of ND

Idea. A derivation Dnp Ax, ..., Ay - B can be seen as a function t(x1, ..., x,)

N that associates with derivations
At "0 A Dibnp F Al ..., Dabnp F A,

a derivation (D1 /x1,....Dy/x,)bnp F B.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types

ECI 2024/07/30

4/26

A computational interpretation of ND

Idea. A derivation Dnp Ax, ..., Ay - B can be seen as a function t(x1, ..., x,)
that associates with derivations
N ;;—/ .@
A "0 A Dibnp b An L., Dybno F Ay, X oeev A

a derivation (D1 /x1,....Dy/x,)bnp F B.

B ~ Let us see how, by induction on D.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 4 /26

A computational interpretation of ND

Idea. A derivation D>np As, ..., An F B can be seen as a function t(x;

yeeyXn)
that associates with derivations AN :7 vv
A "N An o Disnp b Ai, ..., Dabnp F A, A, meN A
a derivation t(D1/x1,...,Dy/x,)>np F B.
B ~ Let us see how, by induction on D.
B

@ A derivation consisting of a single hypothesis A is represented by a variable x.
Different formulas are associated with different variables.

For several occurrences of A as hypotheses, we chose the same x or another variable.
~ A variable represents a (possibly empty) parcel of hypotheses of the same formula.

G. Guerrieri (Sussex)

A-calculus, simple & non-idempotent intersection types

ECI 2024/07/30 4/26

A computational interpretation of ND

Idea. A derivation D>np Ag, ..., A, - B can be seen as a function t(xi, ..., x,)
that associates with derivations AN :7 vv
A "N An o Disnp b Ai, ..., Dabnp F A, A, el A
v a derivation t(D1/x1,...,Dy/x,)>np F B.
B ~ Let us see how, by induction on D.
B

@ A derivation consisting of a single hypothesis A is represented by a variable x.
Different formulas are associated with different variables.
For several occurrences of A as hypotheses, we chose the same x or another variable.
~ A variable represents a (possibly empty) parcel of hypotheses of the same formula.
o If Dendsin = let s(y,xi,...,x,) be the function associated with the =;-premise.
Let x be the variable associated with the parcel of hypotheses C discharged by =;.
The function t(x, ..., x,) associated with D maps D'>np FC to s(D/y, xa1, ..., xp).

(abstraction) t(x1,...,xn) == Ay.s(y,x1, ..., x,) (i.e. y—=s(y,xi, ..., %))

G. Guerrieri (Sussex)

A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 4 /26

A computational interpretation of ND

Idea. A derivation D>np Ag, ..., A, - B can be seen as a function t(xi, ..., x,)
that associates with derivations AN :7 vv
Ar "N A Divnp F A, ..., Dadnp F A, A, N A
v a derivation (D1 /x1,....Dy/x,)bnp F B.
B ~ Let us see how, by induction on D.
B

@ A derivation consisting of a single hypothesis A is represented by a variable x.
Different formulas are associated with different variables.
For several occurrences of A as hypotheses, we chose the same x or another variable.
~ A variable represents a (possibly empty) parcel of hypotheses of the same formula.

o If Dendsin = let s(y,xi,...,x,) be the function associated with the =;-premise.

Let x be the variable associated with the parcel of hypotheses C discharged by =;.
The function t(x, ..., x,) associated with D maps D'>np FC to s(D/y, xa1, ..., xp).

(abstraction) t(x1,...,xn) == Ay.s(y,x1, ..., x,) (i.e. y—=s(y,xi, ..., %))

o If Dends in =, let s1(x1,...,x,) and s2(x1, ..., x,) be the functions associated

with the two premises of =-.. The function #(x1, ..., x,) associated with D is the
application (noted as juxtaposition) of s1(x1,...,xy) to sa(x1,. .., Xn).

. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 4 /26

Cut-elimination as a computational step
(AP

t(y.x): B Y —cut

N
A\y.t(y,X):A=B ' s(X): A
(\y-t(y,¥)s(x) : B

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types

Cut-elimination as a computational step

[Aar
t(y, >?) B , —eut s(X): A
Ay.t(y,%):A=B ' s(xX): A :
e t(s(x)/y, %) : B

(Ay.t(y.x))s(x): B

@ We can decorate each formula occurrence in a derivation with a term.
~~ For every derivation D, its term (D), is the decoration of its conclusion.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 5 /26

Cut-elimination as a computational step

[Aar
t(y, >?) B , —eut s(X): A
Ay.t(y,%):A=B ' s(X): A :
e t(s(x)/y,x): B

(Ay.t(y.x))s(x): B

@ We can decorate each formula occurrence in a derivation with a term.
~~ For every derivation D, its term (D), is the decoration of its conclusion.

@ This decoration commute with cut-elimination via the step:
(Ax.t)s —p t{s/x}

where t{s/x} stands for the substitution of s for the free occurrences of x in t.

D 24

decorationé ‘édecoration

Dy —————5—= (D) = (D'

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 5 /26

Examples of decorations of derivations in ND

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types

Examples of decorations of derivations in ND

[x: A*
x: A —_— =X
Mxx: A=A

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types

Examples of decorations of derivations in ND

[x: A
[x: A]* _— =
T A=A x Ayx:B=A
A= My x A= B=A

i

i

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types

Examples of decorations of derivations in ND

[x: A
[x: A]* _— =
x: A A=A x Ayx:B=A
A= My xASB=A
[x: A
Ayx A=A

=1
XAy x:A=A=A

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types

Examples of decorations of derivations in ND

[x: A
[x: A —_— =
x: A A=A x Ayx:B=A
. o
A= Sy x A= B=A
[x: A Ly - AY
—_— = —_— =
Ayx:A=A ; Ayy A=A

=7 =7
XAy x:A=A=A XAy y:A=A=A

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types

Examples of decorations of derivations in ND

[x: A
[x - Al —
x: A ﬁ:ﬁ Ayx:B=A
. =7
A= Sy x A= B=A
[x: A" N [v: AP
Ay xiA=A T Ayy A=A’

=7 =7
XAy x:A=A=A XAy y:A=A=A

[x: A= (B= Q)" [z:A]zé lv: A= B)Y [z:A]zé
xz:B=C ‘ yz: B
()a) € _
Az.(xz)(yz) : A= C
Ay Az (xz)(yz) : (A= B) = (A= C)
Ax Ay Az (xz)(yz): (A= (B=C))= (A= B)= (A= ()

e

=e

z
i

=7

i

=%

i

ECI 2024/07/30

A-calculus, simple & non-idempotent intersection types

G. Guerrieri (Sussex)

6 /26

Example of decorations of derivations in ND with cut-elimination

X [X = X[vy XY
=7 =7
xx i (X=X)= X=X Avy X=X
ie
(Axx)Ayy : X=X

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types

Example of decorations of derivations in ND with cut-elimination

x: [X = X]* v (XY
=7 =7 v X[
Mxx:(X=X)=X=X vy X=X —et —————————— =7
= Ayy: X=X
(Axx)Ayy : X=X

Rmk. (Ax.x)Ay.y =g x{A\y.y/x} = Ay.y ~~ cut-elimination commutes with decoration.

G. Guerrieri (Sussex)

A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 7/ 26

Example of decorations of derivations in ND with cut-elimination

[x: A= (B = A)]" [z: A]* [y:A= B [z: A

e =e
xz:B=A yz: B
e
(2)(2) : A
—_— =
Az.(xz)(yz): A= A a: [AP
=7 T ——
Ay Az (z)(yz) s (A= B) = (A= A) Mb.a:B= A

X

i

i

Ax Ay Az (xz)(yz) : (A= (B= A)) = (A= B) = (A= A)

Aadb.a: A= (B = A)

(Ax Ay Az.(xz)(yz)) a.Ab.a: (A= B) = (A= A)

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types

a
i

=e

Example of decorations of derivations in ND with cut-elimination

[x: A= (B = A)]" [z: A]* [y:A= B [z: A

e =e
xz:B=A yz: B
e
(x2)(yz) : A
I ——
Az.(xz)(yz): A= A a: [AP
=7 T
Ay Az (z)(yz) s (A= B) = (A= A) Mb.a:B= A

X a
i i

Ax Ay Az (xz)(yz) : (A= (B= A)) = (A= B) = (A= A) Aadb.a: A= (B = A)
(Ax Ay Az.(xz)(yz)) a.Ab.a: (A= B) = (A= A)

icut

e

[a: A7
P T
Nadba:A= (B=A) ' [z:AF ly: A= B) [z: AF
(Aa.\b.a)z: B = A e vz: B e
((Na.Ab.a)z)(yz) : A
Az.((Ma.Ab.a)z)(yz) : A= A:>

Ay Az.((Aa.xb.a)z)(yz) : (A= B) = (A= A)
Rmk. (Ax.Ay.Az.(xz)(yz))Aa.Ab.a =5 (Ay.Az.(xz)(yz)){ a.\b.a/x} =
Ay.Az.((Aa.\b.a)z)(yz) ~~ cut-elimination commutes with decoration.

i

e

i

y
=i

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 7/ 26

Inverse decoration: from terms to derivations

Question. Given the term Af.\x.fx, what is the derivation associated with it?

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types

Inverse decoration: from terms to derivations

Question. Given the term Af.\x.fx, what is the derivation associated with it?

Problem. Without knowing the formulas associated with variables, there is no answer.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 8 /26

Inverse decoration: from terms to derivations

Question. Given the term Af.Ax.fx, what is the derivation associated with it?
Problem. Without knowing the formulas associated with variables, there is no answer.

Question. Given the term AfX=X AxX.fx, what is the derivation associated with it?
Question. Given the term AfX. AxX.fx, what is the derivation associated with it?

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 8 /26

Inverse decoration: from terms to derivations

Question. Given the term Af.\x.fx, what is the derivation associated with it?

Problem. Without knowing the formulas associated with variables, there is no answer.

Question. Given the term AfX=X AxX.fx, what is the derivation associated with it?
Question. Given the term AfX. AxX.fx, what is the derivation associated with it?

Rmk. Fixing formulas for variables (and hence for the whole term) is crucial!

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30

8 /26

The simply typed A-calculus in Curry-style

Types: A,B =X | A= B (given a set of ground types ranged over by X, Y,Z...)

(A-)Terms: s, t := x| Ax.t | st (called variable, abstraction, application, respectively)

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types

The simply typed A-calculus in Curry-style

Types: A,B =X | A= B (given a set of ground types ranged over by X, Y,Z...)

(A-)Terms: s, t := x| Ax.t | st (called variable, abstraction, application, respectively)

Environment: function from finitely many variables to types (noted x1 : A1, ..., X : Ap).
The well-typed terms are the ones that can be constructed via the typing rules below.

ar F,X:Ai—t:BA lN-s:B=A I‘Pt:BQ

_—
Mx:Abx:A FFaxt:A= B FFst:A

G. Guerrieri (Sussex)

A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 9 /26

The simply typed A-calculus in Curry-style

Types: A,B =X | A= B (given a set of ground types ranged over by X, Y, Z...

(A-)Terms: s, t := x| Ax.t | st (called variable, abstraction, application, respectively)

Environment: function from finitely many variables to types (noted x1 : A1, ..., X : Ap).
The well-typed terms are the ones that can be constructed via the typing rules below.

v F,X:Ai—t:B)\ l-s:B=A I‘}—t:BQ
rN-Xxt:A=B st A

———————Va
Mx:AFx: A

The free variables of a term t are the variables that are not bound to a A. Formally,

fv(x) = {x} fv(st) = fv(s) U fv(t) fv(Ax.t) = fv(t) \ {x}

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 9 /26

)

The simply typed A-calculus in Curry-style

Types: A,B =X | A= B (given a set of ground types ranged over by X, Y, Z...

(A-)Terms: s, t := x| Ax.t | st (called variable, abstraction, application, respectively)

Environment: function from finitely many variables to types (noted x1 : A1,...,xn : An).
The well-typed terms are the ones that can be constructed via the typing rules below.

v F,X:AFt:BA lFs:B=A rFt:B(Q
rN-Xxt:A=B st A

———————Va
Mx:AFx: A

The free variables of a term t are the variables that are not bound to a A. Formally,

fv(x) = {x} fv(st) = fv(s) U fv(t) fv(Ax.t) = fv(t) \ {x}

Proposition (If I' -t : A is derivable , I is essentially a type assignment for fv(t))

©Q If T t: Ais derivable, then sois ', x : BF t: A, for any type B and x ¢ dom(I).
© If It : Ais derivable, then fv(t) C dom(l) and I [, - t : Ais derivable.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 9 /26

)

The simply typed A-calculus in Curry-style

Types: A,B =X | A= B (given a set of ground types ranged over by X, Y,Z...)

(A-)Terms: s, t := x| Ax.t | st (called variable, abstraction, application, respectively)

Environment: function from finitely many variables to types (noted x1 : A1,...,xn : An).

The well-typed terms are the ones that can be constructed via the typing rules below.

. F,X:A}—t:B)\ -s:B=A rFt:B@
N-XMx.t:A=B Ml-st: A

———————Va
Mx:AFx: A

The free variables of a term t are the variables that are not bound to a A. Formally,

fv(x) = {x} fv(st) = fv(s) U fv(t) fv(Ax.t) = fv(t) \ {x}

Proposition (If I' -t : A is derivable , I is essentially a type assignment for fv(t))

©Q If T t: Ais derivable, then sois ', x : BF t: A, for any type B and x ¢ dom(I).
© If It : Ais derivable, then fv(t) C dom(l) and I [, - t : Ais derivable.

[B-reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(Ax.t)s =5 t{s/x}

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 9 /26

The capture-avoiding substitution

Naive substitution t[s/x]: replacement of the free occurrences of the variable x in t by s.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types

The capture-avoiding substitution

Naive substitution t[s/x]: replacement of the free occurrences of the variable x in t by s.

Ex: Let t = Ay.yx and s = yy. Then, t[s/x] = Ay.y(yy).
Problem: The free variable y in s has been captured by the X in t. ~~ Undesirable.

G. Guerrieri (Sussex)

A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 10 / 26

The capture-avoiding substitution

Naive substitution t[s/x]: replacement of the free occurrences of the variable x in t by s.

Ex: Let t = Ay.yx and s = yy. Then, t[s/x] = Ay.y(yy).
Problem: The free variable y in s has been captured by the X in t. ~~ Undesirable.

Solution: Capture-avoiding substitution t{s/x}
@ rename the bound variables in t with variables that do not occur in t or s;
@ perform the substitution in of s for x in t.

~ So, the free variables of s are not captured by the A's in t.

Ex: Let t = Ay.yx and s = yy. Then, t{s/x} = Az.z(yy).

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 10 / 26

The capture-avoiding substitution

Naive substitution t[s/x]: replacement of the free occurrences of the variable x in t by s.

Ex: Let t = Ay.yx and s = yy. Then, t[s/x] = Ay.y(yy).
Problem: The free variable y in s has been captured by the X in t. ~~ Undesirable.

Solution: Capture-avoiding substitution t{s/x}
@ rename the bound variables in t with variables that do not occur in t or s;
@ perform the substitution in of s for x in t.

~ So, the free variables of s are not captured by the A's in t.
Ex: Let t = Ay.yx and s = yy. Then, t{s/x} = Az.z(yy).

Rmk: The operation of renaming the bound variables in a term is called a-equivalence.
~+ Capture-avoiding substitution makes sense, as we identify terms up to a-equivalence.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 10 / 26

Some remarks about the simply typed A-calculus in Curry-style

Rmk. The search for a derivation is uniquely determined by the term (syntax-directed).
~~ To build a derivation D of [-t : A, just look at t to know the last rule of D (if any).

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 11 / 26

Some remarks about the simply typed A-calculus in Curry-style

Rmk. The search for a derivation is uniquely determined by the term (syntax-directed).
~~ To build a derivation D of [-t : A, just look at t to know the last rule of D (if any).

The types used in the simply typed A-calculus are exactly the formulas of minimal logic.
The inference rules for the simply typed A-calculus are the ones of NDseq plus decoration.
~~ Every derivation in ND/NDseq corresponds to a unique A-term typed in Curry-style.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 11 / 26

Some remarks about the simply typed A-calculus in Curry-style

Rmk. The search for a derivation is uniquely determined by the term (syntax-directed).
~~ To build a derivation D of [-t : A, just look at t to know the last rule of D (if any).

The types used in the simply typed A-calculus are exactly the formulas of minimal logic.
The inference rules for the simply typed A-calculus are the ones of NDseq plus decoration.

~~ Every derivation in ND/NDseq corresponds to a unique A-term typed in Curry-style.

Question: With every typable term in Curry-style is it associated a unique derivation? Nol

r ar

X;XFX;X“‘A x:x:>xm:x:>ka
Faxx: X=X Fxx:(X=X)=X=X

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 11 / 26

Some remarks about the simply typed A-calculus in Curry-style

Rmk. The search for a derivation is uniquely determined by the term (syntax-directed).
~~ To build a derivation D of [-t : A, just look at t to know the last rule of D (if any).

The types used in the simply typed A-calculus are exactly the formulas of minimal logic.
The inference rules for the simply typed A-calculus are the ones of NDseq plus decoration.

~~ Every derivation in ND/NDseq corresponds to a unique A-term typed in Curry-style.

Question: With every typable term in Curry-style is it associated a unique derivation? Nol

r ar

X:Xl—X:XvaA x:X:>X}—x:X:>XV>\
Faxx: X=X Fxx:(X=X)=X=X

~» The map from typable terms in Curry-style to ND/NDseq derivations is not injective!

Idea: In Curry-style, types are extrinsic to terms (dynamic typing, a posteriori)
~~ Let us make them intrinsic to terms (static typing, a priori): Church-style.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 11 / 26

The simply typed A-calculus in Church-style

Idea: Let us make types intrinsic to terms (static typing, a priori): Church-style.
~ Every abstracted variable in a term is associated with some type.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 12 / 26

The simply typed A-calculus in Church-style

Idea: Let us make types intrinsic to terms (static typing, a priori): Church-style.
~ Every abstracted variable in a term is associated with some type.

(M\-)Terms: s, t:=x | Ax™.t | st (where Ais any type, as defined for Curry-style)

Environment: function from finitely many variables to types (noted x1 : A1, ..., X : Ap).
The well-typed terms are the ones that can be constructed via the typing rules below.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 12 / 26

The simply typed A-calculus in Church-style
Idea: Let us make types intrinsic to terms (static typing, a priori): Church-style.
~ Every abstracted variable in a term is associated with some type.
(M\-)Terms: s, t:=x | Ax™.t | st (where Ais any type, as defined for Curry-style)

Environment: function from finitely many variables to types (noted x1 : A1, ..., X : Ap).

The well-typed terms are the ones that can be constructed via the typing rules below.

v Mx:AFt:B =~ Tks:B=>A TFt:B,
r-xx*t:A=B MEst: A

——————Va
Mx:AFx:A

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 12 / 26

The simply typed A-calculus in Church-style

Idea: Let us make types intrinsic to terms (static typing, a priori): Church-style.
~ Every abstracted variable in a term is associated with some type.

(M\-)Terms: s, t:=x | Ax™.t | st (where Ais any type, as defined for Curry-style)

Environment: function from finitely many variables to types (noted x1 : A1, ..., X : Ap).

The well-typed terms are the ones that can be constructed via the typing rules below.

r x:AFt:B =~ Tks:B=A Tkt:B_
FrExx*t:A=B st A

—_——————————Va
Mx:AFx:A

[-reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(A t)s =5 t{s/x}

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 12 / 26

The simply typed A-calculus in Church-style
Idea: Let us make types intrinsic to terms (static typing, a priori): Church-style.
~ Every abstracted variable in a term is associated with some type.
(M\-)Terms: s, t:=x | Ax™.t | st (where Ais any type, as defined for Curry-style)

Environment: function from finitely many variables to types (noted x1 : A1, ..., X : Ap).

The well-typed terms are the ones that can be constructed via the typing rules below.

r x:AFt:B =~ Tks:B=A Tkt:B_
FrExx*t:A=B st A

—_——————————Va
Mx:AFx:A

[-reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(A t)s =5 t{s/x}

Rmk. Syntax-directedness and proposition on p. 11 hold true in Church-style as well.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 12 / 26

The simply typed A-calculus in Church-style
Idea: Let us make types intrinsic to terms (static typing, a priori): Church-style.
~ Every abstracted variable in a term is associated with some type.
(M\-)Terms: s, t:=x | Ax™.t | st (where Ais any type, as defined for Curry-style)

Environment: function from finitely many variables to types (noted x1 : A1, ..., X : Ap).

The well-typed terms are the ones that can be constructed via the typing rules below.

r x:AFt:B =~ Tks:B=A Tkt:B_
FrExx*t:A=B st A

—_——————————Va
Mx:AFx:A
[-reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(A t)s =5 t{s/x}

Rmk. Syntax-directedness and proposition on p. 11 hold true in Church-style as well.

Notation: I' Fcurry/church t @ A if there is a derivation of 't : A in Curry/Church-style.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 12 / 26

Curry-style versus Church-style

Church-style terms are related to Curry-style terms by the forgetful function [-]:
[x] = x [Ax* 6] = Ax.t [st] = [s][t]
Proposition

© If T t: Ais derivable in Church-style, then I' F [t] : A is derivable in Curry-style.
@ If I Fcury t: A then T Fchureh t : A for some t in Church-style such that [t'] = t.

Proof. By induction on the derivation in Church (Point 1) or Curry (Point 2) style. O

G. Guerrieri (Sussex)

A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 13 / 26

Curry-style versus Church-style
Church-style terms are related to Curry-style terms by the forgetful function [-]:
[x] = x [Ax* 6] = Ax.t [st] = [s][t]

Proposition
© If T t: Ais derivable in Church-style, then I' F [t] : A is derivable in Curry-style.
@ If I Fcury t: A then T Fchureh t : A for some t in Church-style such that [t'] = t.

Proof. By induction on the derivation in Church (Point 1) or Curry (Point 2) style. O

Rmk: Ax*.x and Ax*=% x are different terms in Church-style, because X # X = X.

Proposition (Uniqueness of type and derivation for typable terms in Church-style)
In Church-style, if D derives ' -t : A and D’ derives T -t : A’ then A= A" and D = D’.J
Proof. By structural induction on t (exercise!). O

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 13 / 26

Curry-style versus Church-style
Church-style terms are related to Curry-style terms by the forgetful function [-]:
[x] = x [Ax?.t] = Ax.t [st] = [s][t]

Proposition
© If T t: Ais derivable in Church-style, then I' F [t] : A is derivable in Curry-style.
@ If I Fcury t: A then T Fchureh t : A for some t in Church-style such that [t'] = t.

Proof. By induction on the derivation in Church (Point 1) or Curry (Point 2) style. O

Rmk: Ax*.x and Ax*=% x are different terms in Church-style, because X # X = X.

Proposition (Uniqueness of type and derivation for typable terms in Church-style)
In Church-style, if D derives ' -t : A and D’ derives T -t : A’ then A= A" and D = D’.J

Proof. By structural induction on t (exercise!). O

~ A bijection between typable terms in Church-style and derivations in ND/NDseq.
~+ As B-reduction and cut-elimination mimic each other, it is an isomorphism.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 13 / 26

Some properties of the simply typed A-calculus (Curry and Church style)

Lemma (Substitution)
IfT,x:BEt:Aand Tl Fs: B are derivable, then so is I - t{s/x} : A. J

Proof. By structural induction on t (exercisel!). O

G. Guerrieri (Sussex)

A-calculus, simple & non-idempotent intersection types

Some properties of the simply typed A-calculus (Curry and Church style)

Lemma (Substitution)

IfI,x:BEFt:Aand Tk s: B are derivable, then so is I - t{s/x} : A. J
Proof. By structural induction on t (exercisel!). O
Theorem (Subject reduction)

If ' t: Alis derivable and t —3 s, then I' s : A is derivable. J

Proof. By structural induction on t, using the substitution lemma in the key-case. O

Rmk. The converse (subject expansion) does not hold: let A=Y = (X = X), and
t = (Ax.Ay.Az.(xz)(yz))Ax.Ay.x and s = Ay.Az.z, then t = sand b s: A, but i/ t: A.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 14 / 26

Some properties of the simply typed A-calculus (Curry and Church style)

Lemma (Substitution)

IfT,x:BEt:Aand Tl Fs: B are derivable, then so is I - t{s/x} : A. J
Proof. By structural induction on t (exercise!). O
Theorem (Subject reduction)

If ' t: Alis derivable and t —3 s, then I' s : A is derivable. J

Proof. By structural induction on t, using the substitution lemma in the key-case. O
Rmk. The converse (subject expansion) does not hold: let A=Y = (X = X), and

t = (Ax.Ay.Az.(xz)(yz))Ax.Ay.x and s = Ay.Az.z, then t = sand b s: A, but i/ t: A.

Theorem (Normalization) J

If It : Alis derivable, then t —% s and for some derivation of I' - s : A without redexes.

Proof. Exactly the proof of cut-elimination in ND (uppermostinND ~~ innermostinA). [

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 14 / 26

The Curry-Howard correspondence

minimal logic ‘ simply typed A-calculus ‘ computer science
formula type specification
derivation term program
cut-elimination step B-reduction computation step
derivation without redexes normal form result
cut-elimination theorem normalization termination

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30

15 / 26

The Curry-Howard correspondence

minimal logic ‘ simply typed A-calculus ‘ computer science
formula type specification
derivation term program
cut-elimination step B-reduction computation step
derivation without redexes normal form result
cut-elimination theorem normalization termination

Concerning the correspondence between derivations and terms:

derivation in minimal logic \ term in simply typed A-calculus

hypotheses variable
=i abstraction A
e application @

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30

15 / 26

Outline

© Strong normalization of the simply typed A-calculus

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types

Abstract rewriting systems: normalization versus strong normalization

We have seen different sets (of derivations, A-terms) and reductions (cut elimination, £).
~- Let us consider them abstractly, to study their common properties uniformly.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 17 / 26

Abstract rewriting systems: normalization versus strong normalization

We have seen different sets (of derivations, A-terms) and reductions (cut elimination, £).
~- Let us consider them abstractly, to study their common properties uniformly.

Def: An abstract rewriting system (ARS) is a set A and a relation — C AX A (reduction).
The reflexive-transitive closure of — is —*, thatis, t —+*s means t — --- — s.

neN times —

G. Guerrieri (Sussex)

A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 17 / 26

Abstract rewriting systems: normalization versus strong normalization

We have seen different sets (of derivations, A-terms) and reductions (cut elimination, £).
~- Let us consider them abstractly, to study their common properties uniformly.

Def: An abstract rewriting system (ARS) is a set A and a relation — C AX A (reduction).
The reflexive-transitive closure of — is —*, thatis, t —+*s means t — --- — s.
———

o t € Ais normal if there is no s € A such that t — s. neN times —
@ t € Ais normalizing if there is u € A such that t =™ u.

o t € A s strongly normalizing if there is no infinite sequence (ti)ien with to = t and
ti — tiy1 for all i €N, i.e. every reduction sequence eventually reaches a normal form.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 17 / 26

Abstract rewriting systems: normalization versus strong normalization

We have seen different sets (of derivations, A-terms) and reductions (cut elimination, £).
~- Let us consider them abstractly, to study their common properties uniformly.

Def: An abstract rewriting system (ARS) is a set A and a relation — C AX A (reduction).
The reflexive-transitive closure of — is —*, thatis, t =" s meanst — --- — s.
———

o t € Ais normal if there is no s € A such that t — s. neN times —
@ t € Ais normalizing if there is u € A such that t =™ u.

o t € Ais strongly normalizing if there is no infinite sequence (t;)ien with to = t and
ti — tiy1 for all i €N, i.e. every reduction sequence eventually reaches a normal form.

@ — is normalizing/strongly normalizing if so is every t € A.

o — is confluent if for all t,r1, €A with n*<—t =" rn, n =" s r, for some s€ A.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 17 / 26

Abstract rewriting systems: normalization versus strong normalization

We have seen different sets (of derivations, A-terms) and reductions (cut elimination, £).
~- Let us consider them abstractly, to study their common properties uniformly.

Def: An abstract rewriting system (ARS) is a set A and a relation — C AX A (reduction).
The reflexive-transitive closure of — is —*, thatis, t =" s meanst — --- — s.
———

e t € Ais normal if there is no s € A such that t — s. neN times —
@ t € Ais normalizing if there is u € A such that t =™ u.

o t € Ais strongly normalizing if there is no infinite sequence (t;)ien with to = t and
ti — tiy1 for all i €N, i.e. every reduction sequence eventually reaches a normal form.

@ — is normalizing/strongly normalizing if so is every t € A.

o — is confluent if for all t,r1, €A with n*<—t =" rn, n =" s r, for some s€ A.

Rmk: Strong normalization implies normalization but the converse fails.

Proposition (Uniqueness of normal form) J

If — is confluent, then for all t € A there is at most one normal s € A with t = s.

Proof. If r'—t—"*s with r,s normal, by confluence Ju€cA: r—"u"s,so r=u=s. [

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 17 / 26

How to prove strong normalization: the combinatorial approach

Given a set A and a reduction — on A, we want to prove that — is strongly normalizing:
~ there is no (infinite) sequence (t;)ien such that t; — tj;1 for all i € N.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 18 / 26

How to prove strong normalization: the combinatorial approach

Given a set A and a reduction — on A, we want to prove that — is strongly normalizing:
~~ there is no (infinite) sequence (t;)ien such that t; — ti41 for all i € N,

Idea (combinatorial): For every t € A, we define a measure [t| € S for some well-founded
set (S, <) —for instance (N, <)—such that: for every s € A, if t — s then |t]| > |s]|.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 18 / 26

How to prove strong normalization: the combinatorial approach

Given a set A and a reduction — on A, we want to prove that — is strongly normalizing:
~~ there is no (infinite) sequence (t;)icw such that t; — ti41 for all i € N.

Idea (combinatorial): For every t € A, we define a measure |t| € S for some well-founded
set (S, <) —for instance (N, <)—such that: for every s € A, if t — s then |t]| > |s]|.

Problem: It is doable for the simply typed A-calculus, but it is very tricky.
~ After a single S-step the size (= number of characters) of a term may not decrease.

(APTXA(F(B)) (2(2(2(26)) =5 (2(2(2(20))) ((2(2(2(z0)) ((2(2(2(z0)))))

~» The measure should be defined independently of (or cannot rely on) the size of terms.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 18 / 26

How to prove strong normalization: the combinatorial approach

Given a set A and a reduction — on A, we want to prove that — is strongly normalizing:
~~ there is no (infinite) sequence (t;)icw such that t; — ti41 for all i € N.

Idea (combinatorial): For every t € A, we define a measure |t| € S for some well-founded
set (S, <) —for instance (N, <)—such that: for every s € A, if t — s then |t]| > |s]|.

Problem: It is doable for the simply typed A-calculus, but it is very tricky.
~ After a single S-step the size (= number of characters) of a term may not decrease.

(APTXA(F(B)) (2(2(2(26)) =5 (2(2(2(20))) ((2(2(2(z0)) ((2(2(2(z0)))))

~» The measure should be defined independently of (or cannot rely on) the size of terms.

Rmk: The normalization theorem above (p. 13) does not prove strong normalization.
~ The proof fires a specific redex (uppermost/innermost), otherwise the argument fails.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 18 / 26

Reducibility candidates: a non-combinatorial approach

Idea: We define a set Reda of terms (reducibility candidates) by induction on the type A:
@ for any ground type X, Redx is the set of strongly normalizing (SN) terms of type X;
@ Reda g is the set of the terms s of type A= B such that st € Redg for all t €Reda.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 19 / 26

Reducibility candidates: a non-combinatorial approach

Idea: We define a set Reda of terms (reducibility candidates) by induction on the type A:
@ for any ground type X, Redx is the set of strongly normalizing (SN) terms of type X;
@ Reda g is the set of the terms s of type A= B such that st € Redg for all t €Reda.

Rmk: For every type A, every term in Reda is SN (easy proof by induction on A).

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 19 / 26

Reducibility candidates: a non-combinatorial approach

Idea: We define a set Reda of terms (reducibility candidates) by induction on the type A:
@ for any ground type X, Redx is the set of strongly normalizing (SN) terms of type X;
@ Reda g is the set of the terms s of type A= B such that st € Redg for all t €Reda.

Rmk: For every type A, every term in Reda is SN (easy proof by induction on A).

Goal: For any type A, if u: A then u€Reda (so u is SN). Proof by induction on u. Cases:
Q If u=st:Athens:B=Aand t:B; by IH, s € Redg—4 and t € Redg, so u € Reda.

Q If u=x:X, then uis SN, so ueRedx. If u = x:B=C, to prove that x € Redg_.¢
we have to show that xt € Red¢ for all t € Redg ~~ A stronger hypothesis is needed.

Q If u=XxBs: B=C, to prove that u € Redg— ¢ we have to show that
(AxBs)t € Redc¢ for all t € Redg. ~» How to prove that?

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 19 / 26

Reducibility candidates: a non-combinatorial approach

Idea: We define a set Reda of terms (reducibility candidates) by induction on the type A:
@ for any ground type X, Redx is the set of strongly normalizing (SN) terms of type X;
@ Reda g is the set of the terms s of type A= B such that st € Redg for all t €Reda.

Rmk: For every type A, every term in Reda is SN (easy proof by induction on A).

Goal: For any type A, if u: A then u€Reda (so u is SN). Proof by induction on u. Cases:
Q If u=st:Athens:B=Aand t:B; by IH, s € Redg—4 and t € Redg, so u € Reda.
Q If u=x:X, then uis SN, so ueRedx. If u = x:B=C, to prove that x € Redg_.¢

we have to show that xt € Red¢ for all t € Redg ~~ A stronger hypothesis is needed.

Q If u=XxBs: B=C, to prove that u € Redg— ¢ we have to show that
(AxBs)t € Redc¢ for all t € Redg. ~» How to prove that?

Idea: Suppose AxZs: B = C and t € Redp. Let us prove that s{t/x} € Redc and that
if s{t/x} € Redc then (AxB.s)t € Redc. This way, Point 3 above is done.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 19 / 26

Reducibility candidates: a non-combinatorial approach

Idea: We define a set Reda of terms (reducibility candidates) by induction on the type A:
@ for any ground type X, Redx is the set of strongly normalizing (SN) terms of type X;
@ Reda g is the set of the terms s of type A= B such that st € Redg for all t €Reda.

Rmk: For every type A, every term in Reda is SN (easy proof by induction on A).

Goal: For any type A, if u: A then u€Reda (so u is SN). Proof by induction on u. Cases:
Q If u=st:Athens:B=Aand t:B; by IH, s € Redg—4 and t € Redg, so u € Reda.
Q If u=x:X, then uis SN, so ueRedx. If u = x:B=C, to prove that x € Redg_.¢

we have to show that xt € Red¢ for all t € Redg ~~ A stronger hypothesis is needed.

Q If u=XxBs: B=C, to prove that u € Redg— ¢ we have to show that
(AxBs)t € Redc¢ for all t € Redg. ~» How to prove that?

Idea: Suppose AxZs: B = C and t € Redp. Let us prove that s{t/x} € Redc and that
if s{t/x} € Redc then (AxB.s)t € Redc. This way, Point 3 above is done.

Problem. The environments for AxZ.s and t may be differ in some free variable.
~+ The application of AxZ.s to t may not be possible.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 19 / 26

Fixing the reducibility candidate method
Solution: Let us take the environment into account when defining Reda, for all types A.
Redx = {(I;t) | tis SN, T+t : X}
Redamsp = {([;s) [T Fs: A= B, (I,A; st) € Redg for all (I, A; t) € Reda}

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 20 / 26

Fixing the reducibility candidate method
Solution: Let us take the environment into account when defining Reda, for all types A.
Redx = {(I';t) | tis SN, I+ ¢ : X}
Redamsp = {([;s) [T Fs: A= B, (I,A; st) € Redg for all (I, A; t) € Reda}

Lemma
Q If (I'; t) € Redg then t is SN.
Q@ fFxti...ty: Band ti,...,t, are SN, then (T; xt1 ... t,) € Reds.
© If (I s{t/x}t1...t,) € Redg, - t:Aand tis SN, then (I'; (Ax?s)tt: ... t,) € Redg.

Proof. Points 1-3 are proved simultaneously by induction on the type B. If B = X then
Point 1 is by definition of Redx, for Points 2-3 see Exercise 14, p. 24. Let B= C = D.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 20 / 26

Fixing the reducibility candidate method
Solution: Let us take the environment into account when defining Reda, for all types A.
Redx = {(I';t) | tis SN, I+ ¢ : X}
Redamsp = {([;s) [T Fs: A= B, (I,A; st) € Redg for all (I, A; t) € Reda}

Lemma
Q If (I'; t) € Redg then t is SN.
Q@ fFxti...ty: Band ti,...,t, are SN, then (T; xt1 ... t,) € Reds.
© If (I s{t/x}t1...t,) € Redg, - t:Aand tis SN, then (I'; (Ax?s)tt: ... t,) € Redg.

Proof. Points 1-3 are proved simultaneously by induction on the type B. If B = X then
Point 1 is by definition of Redx, for Points 2-3 see Exercise 14, p. 24. Let B= C = D.
Q Let z ¢ dom(I), so ([, z: C; z) € Red¢ by the induction hypothesis of Point 2
applied to C. As (I'; t) € Redc=p, then (I',z: C; tz) € Redp and hence tz is SN by
the induction hypothesis of Point 1 applied to D; thus t is SN too.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 20 / 26

Fixing the reducibility candidate method
Solution: Let us take the environment into account when defining Reda, for all types A.

Redx = {([;t) | tis SN, T+ t: X}
Redamsp = {([;s) [T Fs: A= B, (I,A; st) € Redg for all (I, A; t) € Reda}

Lemma
Q If (I'; t) € Redg then t is SN.
Q@ fFxti...ty: Band ti,...,t, are SN, then (T; xt1 ... t,) € Reds.
© If (I s{t/x}t1...t,) € Redg, - t:Aand tis SN, then (I'; (Ax?s)tt: ... t,) € Redg.

Proof. Points 1-3 are proved simultaneously by induction on the type B. If B = X then
Point 1 is by definition of Redx, for Points 2-3 see Exercise 14, p. 24. Let B= C = D.
Q Let z ¢ dom(I), so ([, z: C; z) € Red¢ by the induction hypothesis of Point 2
applied to C. As (I'; t) € Redc=p, then (I',z: C; tz) € Redp and hence tz is SN by
the induction hypothesis of Point 1 applied to D; thus t is SN too.
@ Let (I',A; t) € Redc, so t is SN by induction hypothesis of Point 1 applied to C; as
MM AF xty...tst: D is derivable, (I', A; xty ... t,t) € Redp by induction hypothesis
of Point 2 applied to A; hence, (I'; xt ... t,) € Redg by definition of Redc=.p.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 20 / 26

Fixing the reducibility candidate method
Solution: Let us take the environment into account when defining Reda, for all types A.

Redx = {([;t) | tis SN, T+ t: X}
Redamsp = {([;s) [T Fs: A= B, (I,A; st) € Redg for all (I, A; t) € Reda}

Lemma
Q If (I'; t) € Redg then t is SN.
Q@ fFxti...ty: Band ti,...,t, are SN, then (T; xt1 ... t,) € Reds.
© If (I s{t/x}t1...t,) € Redg, - t:Aand tis SN, then (I'; (Ax?s)tt: ... t,) € Redg.

Proof. Points 1-3 are proved simultaneously by induction on the type B. If B = X then
Point 1 is by definition of Redx, for Points 2-3 see Exercise 14, p. 24. Let B= C = D.

Q Let z ¢ dom(I), so ([, z: C; z) € Red¢ by the induction hypothesis of Point 2
applied to C. As (I'; t) € Redc=p, then (I',z: C; tz) € Redp and hence tz is SN by
the induction hypothesis of Point 1 applied to D; thus t is SN too.

@ Let (I',A; t) € Redc, so t is SN by induction hypothesis of Point 1 applied to C; as
MM AF xty...tst: D is derivable, (I', A; xty ... t,t) € Redp by induction hypothesis
of Point 2 applied to A; hence, (I'; xt ... t,) € Redg by definition of Redc=.p.

O Let (I A; r) € Redc, so ([, A; s{t/x}t1...tar) € Redp and hence, by the induction
hypothesis, (I, A; (Ax*s)tt1 ... t.r) € Redp; thus, (I'; (Ax"s)tt1 ... t,) € Redg. [

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 20 / 26

Strong normalization proved via reducibility candidates

Rmk. In the previous lemma, Point 1 needs Point 2 in its proof, and vice versa.
Point 3 is independent of Points 1-2 and is used in the proof of the lemma below.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types

Strong normalization proved via reducibility candidates

Rmk. In the previous lemma, Point 1 needs Point 2 in its proof, and vice versa.
Point 3 is independent of Points 1-2 and is used in the proof of the lemma below.

Lemma (Substitution)
If x1:B1,...,xn:Ba b t:Aand ([;s;) € Redg,, then (I; t{s1/x1,...,5:/xn}) € Reda. J

Proof. By structural induction on the term t, using Point 3 above (exercise!). O

G. Guerrieri (Sussex)

A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 21 /26

Strong normalization proved via reducibility candidates

Rmk. In the previous lemma, Point 1 needs Point 2 in its proof, and vice versa.

Point 3 is independent of Points 1-2 and is used in the proof of the lemma below.

Lemma (Substitution)

If x1:B1,...,xn:Ba b t:Aand ([;s;) € Redg,, then (I; t{s1/x1,...,5:/xn}) € Reda.

Proof. By structural induction on the term t, using Point 3 above (exercise!).

Theorem (Strong normalization of the simply typed A-calculus)

Every typed term in the simply typed A-calculus is SN.

Proof. Let x1 : B1,...,xn: Bo -t : A be derivable. Let ' = x; : B1,...,x, : B, and
si = x; for all 1 < < n, hence (T'; s;) € Redg,; by Point 2 of the lemma on p. 19, for all
1 < i < n. By the substitution lemma above, (I';t) = (I'; t{s1/x1,...,5:/%n}) € Reda.
By Point 1 of the lemma on p. 19, t is SN.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30

O

21/ 26

Outline

© Conclusion, exercises and bibliography

A-calculus, simple & non-idempotent intersection types

What have we learned today?

© How to decorate derivations in natural deduction for minimal logic with A-terms.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types

What have we learned today?

© How to decorate derivations in natural deduction for minimal logic with A-terms.

© The procedure of B-reduction on A-terms.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 23 / 26

What have we learned today?

© How to decorate derivations in natural deduction for minimal logic with A-terms.

© The procedure of B-reduction on A-terms.

© Church and Curry styles for the simply typed A-calculus.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 23 / 26

What have we learned today?

© How to decorate derivations in natural deduction for minimal logic with A-terms.
© The procedure of B-reduction on A-terms.
© Church and Curry styles for the simply typed A-calculus.

@ The Curry—Howard correspondence between natural deduction for minimal logic and
the simply typed A-calculus.

Questions?

b 4
Tl
e /i

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 23 / 26

What have we learned today?

© How to decorate derivations in natural deduction for minimal logic with A-terms.
© The procedure of B-reduction on A-terms.
© Church and Curry styles for the simply typed A-calculus.

@ The Curry—Howard correspondence between natural deduction for minimal logic and
the simply typed A-calculus.

@ Some properties of the simply typed A-calculus (subject reduction, normalization).

Questions?

b 4
o

e I

"

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 23 / 26

What have we learned today?

© How to decorate derivations in natural deduction for minimal logic with A-terms.
© The procedure of B-reduction on A-terms.
© Church and Curry styles for the simply typed A-calculus.

@ The Curry—Howard correspondence between natural deduction for minimal logic and
the simply typed A-calculus.

@ Some properties of the simply typed A-calculus (subject reduction, normalization).

@ The proof of strong normalization via reducibility candidates.

Questions?

p 4
y

o Il

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 23 / 26

Exercises

@ Find the simply typed A-terms (in Curry-style and Church-style) associated with the
derivations in ND found for the facts below (see Exercise 1 from Day 1).

0 FX=((X=Y)=Y) 0 X=>(Y=2)FY=>X=Z.
0 X=Y)=X=22)FY=X=>2Z 0 X=>Y=ZX=YFHX="Z
0 (X=Y)=XFY=X 0 X=X)=YH(Y=2)=Z.

@ Perform all possible 8-reduction steps from the A-term decorating the derivation D
in ND on p. 24 of Day 1, until you get a 8-normal form. Is it always the same?
Compare it with the normal derivation obtained by cut-elimination steps from D.

n times f
. . ——
@ Prove rigorously the following facts (f"x = f(...(f x)...) for any n € N):

@ A\x.xx is untypable in Curry-style, Ax*.xx is untypable in Church-style for any type A;
© in Church-style, A\fY.AxX.f"x is not typable for any n > 0 but A\fY.AxX.x is typable;
© M. Ax.f"x is typable in Curry-style, for all n € N.

Prove that if t is typable in Church or Curry style, then so is every subterm of t.
Prove rigorously the propositions on pp. 9 and 12, the lemma and theorems on p. 13.

Prove rigorously the lemma and the theorems on p. 13.

© 00O

Let A{B/X} be the type obtained from the type A by substituting B for each
occurrence of the ground type X. Let [{A/X} be its generalization to environments.
Show that if [- t : A is derivable in Curry-style, then so is T{B/X} - t: A{B/X}.

Is the previous point valid in Church-style? What change is needed to make it true?

o

. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 24 / 26

More Exercises
Q

Prove that (Ax.(\y.y))Az.zz is not typable (in Curry-style). Deduce that subject
expansion (see p. 13) does not hold in the simply typed A-calculus.

Prove that if (I'; t) € Redg, then (', x: A; t) € Redg, by induction on the type B.
Prove rigorously the lemma on p. 20.

Define four ARSs (A, —): in the first — is normalizing but not strongly normalizing,
in the second — is not normalizing, in the third — is strongly normalizing, in the
fourth — is not confluent but every t € A has a unique normal form.

In a ARS (A, —), prove that t € A is SN iff for every t' € A, if t — t' then t' is SN.

Prove the following facts for untyped terms:

O forallneN, if t1,...,t, are SN, then so is xtj ... tp;

@ if t is SN, then so is A\x.s;

© forall n € N, if t and s{t/x}t1...t, are SN, then so is (Ax.s)tt1 ... tp;

0 forall n €N, if x € fv(s) and s{t/x}t1 ...ty is SN then so is (Ax.s)tty ... ts.

Prove that if t can be constructed by applying n € N times the rules below, then the
maximal length of the reduction sequences from t to its 8-normal form is < n.

neN (tis SN);.;c, tis SN ne€N tisSN s{t/x}ti...t,is SN
xt1 ... t, is SN Ax.t is SN (Ax.s)tty ...ty is SN

Deduce that the set of SN untyped terms is the least set closed under those 3 rules.

. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 25 / 26

Bibliography

@ For more about the simply typed A-calculus:

@ Ralph Loader. Notes on Simply Typed \-Calculus. Technical report ECS-LFCS-
98-381, University of Edinburgh, 1998. http://www.lfcs.inf.ed.ac.uk/
reports/98/ECS-LFCS-98-381/ECS-LFCS-98-381.pdf. [Chapters 1—3]

@ Henk Barendregt. Lambda Calculi with Types. In S. Abramsky et al. (eds),
Handbook of Logic in Computer Science; vol. 2, 117-309, 1992. https:
//repository.ubn.ru.nl/bitstream/handle/2066/17231/17231.pdf
[Chapter 3]

@ For more about the Curry-Howard correspondence:

@ Jean-Yves Girard, Yves Lafont, Paul Taylor. Proofs and Types. Cambridge
Tracts in Theoretical Computer Science, Vol. 7, Cambridge University Press,
1989. https://www.paultaylor.eu/stable/prot.pdf. [Chapters 2—4, 6]

o For a combinatorial proof of normalization for the simply typed A-calculus:

@ Pablo Barenbaum, Cristian Sottile. Two Decreasing Measures for Simply Typed
A-Terms. FSCD 2023, LIPIcs, vol. 260, 11:1-11:19, 2023.
https://doi.org/10.4230/LIPIcs.FSCD.2023.11.

G. Guerrieri (Sussex) A-calculus, simple & non-idempotent intersection types ECI 2024/07/30 26 / 26

http://www.lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-381/ECS-LFCS-98-381.pdf
http://www.lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-381/ECS-LFCS-98-381.pdf
https://repository.ubn.ru.nl/bitstream/handle/2066/17231/17231.pdf
https://repository.ubn.ru.nl/bitstream/handle/2066/17231/17231.pdf
https://www.paultaylor.eu/stable/prot.pdf
https://doi.org/10.4230/LIPIcs.FSCD.2023.11
https://doi.org/10.4230/LIPIcs.FSCD.2023.11

	The Curry-Howard correspondence and the simply typed lambda-calculus
	Strong normalization of the simply typed lambda-calculus
	Conclusion, exercises and bibliography

