RUDIMENTARY LANGUAGES
AND SECOND-ORDER LOGIC

M. MoORE, F. OLIVE

Abstract. The aim of this paper is to point out the equivalence between
three notions respectively issued from recursivity theory, computational
complexity and finite model theory. One the one hand, the rudimentary
languages are known to be characterized by the linear hierarchy. On
the other hand, this complexity class can be proved to correspond to
monadic second-order logic with addition. Our viewpoint sheds some
new light on the close connection between these domains : we bring
together the two extremal notions by providing a direct logical char-
acterization of rudimentary languages, and a representation result of
second-order logic into these languages. We use natural arithmetical
tools, and our proofs contain no ingredient from computational com-
plexity.
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1. Introduction

This paper contains two related parts. The first part gives an arithmetical proof
of a descriptive complexity result about rudimentary languages. The second
part is devoted to a representation result of second-order logic into rudimentary
sets.

Descriptive complerity is interested in providing logical characterizations
for various complexity classes of languages, in the following sense: a class B of
formulas is said to be a logical characterization of a class A of languages when
any element of A corresponds to the set of all finite models of a formula in B and



2 M. More & F. Olive

conversely. For instance, the class of languages in NP is logically characterized
by the class of existential second-order formulas (see Fa74). Similarly, the class
of regular languages corresponds to monadic existential second-order logic with
linear order (see Bii60), the class of non-deterministic linear-time languages is
captured by the existential monadic second-order logic with addition (see Ly82)
and the languages in Stockmeyer’s polynomial hierarchy correspond to second-
order logic (see St76 and Im87).

The Rudimentary relations are the relations over words (over some finite al-
phabet) obtained from concatenation using boolean operations, bounded quan-
tifications and explicit transformations (see Qu46 and Sm61). The class of all
rudimentary relations, seen as relations over IN (using the p-adic representation
of integers) is independant of the alphabet (see Be62). Also, it was proved (see
Sm61, Be62 and Ha73) that a relation over integers is rudimentary iff it is de-
fined by a bounded arithmetical formula, i.e. a formula of signature {+, x}, in
which all quantifications are bounded by some polynomial of the free variables.
For instance, the set of prime numbers is defined by the following bounded arith-
metical formula : z is prime if and only if x > 1A [Vy < 2 Vz < z —(x = y X 2)]

In this paper, we show that the class of rudimentary languages (i.e. unary
rudimentary relations) is logically characterized by monadic second-order logic
with addition. Our proof uses arithmetical tools, but the result could also
be obtained in an indirect way using complexity tools. Indeed, rudimentary
languages also have a complexity characterization (see Wr78), and in turn the
corresponding complexity class can be proved to correspond to monadic second-
order logic with addition, using results of Ly82 and Im8&7.

The spectrum of a first-order sentence is the set of cardinalities of all finite
models of this formula. It is known that rudimentary sets are spectra and
that equality would imply NP # co — NP and the collapsing of Stockmeyer’s
hierarchy (see Wo81). On the other hand, a converse representation result is
known: we say that a set A of sets of integers is represented in a set B of sets of
integers if there is a one-to-one function from IN to IN transforming any element
of A into an element of B. If A is the spectrum of a sentence of k-ary signature
then 24° is a rudimentary set and the replacement of any of the exponential
functions (for k£ > 2) by some polynomial function would imply that all spectra
are rudimentary sets (see M094).

In this paper, we generalize the representation theorem above to a larger
class of formulas and prove a converse result. The (generalized) spectrum of a
second order formula is the set of the cardinalities of all finite models of this
formula. We show that a set of integers A is the spectrum of a second-order
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formula involving quantified relation symbols of arity £ > 2 at most (with no
extra-predicate) if and only if 24" is a rudimentary set.

Finally, we list some consequences of the two previous results, concerning
complexity theory and bounded arithmetics.

2. Definitions and Theorems

The purpose of this paragraph is to set up the main definitions formalizing
the connexion between integers, words and finite structures. So doing, we give
a precise meaning to the notion of logical definability of a language and we
precisely settle our results.

Except in last section, we only consider languages over the dyadic alphabet.

DEFINITION 2.1. Let o be a signature, an let k be a non-zero integer. We
call SOg(o) the set of second-order formulas of arity k and of signature o.
Hence, the formulas in SOy(o) are of the form Q1 R; ... Q,R,¥, where Q); €
{V,3}, R; is a k-ary relation symbol, and V¥ is a first-order formula of signature
O'U{Rl,...,Rp}.

DEFINITION 2.2. Let n be a non-zero integer. We denote by ld(n) its dyadic
ld(n)—1 .
length, i.e. we have n = > n;.2" with n; € {1,2}. Note that ld(n) > 1
i=0
because n is non-zero. We denote by w, the dyadic notation for n, i.e. the
word non; . . . Md(n)—1-

DEFINITION 2.3. Let w be a finite word over {1,2} and n be a non-zero integer
such that w = w,. We denote by 2,, the unary relation over {0,...ld(n) — 1}
defined by: i € 2, iff the digit of weight 2° of w is 2. Let o be a finite set of
predefined relations. We denote by R, (o) the structure {ld(n), 2,,0).

DEFINITION 2.4. Let k be a non-zero integer and let o be a finite set of pre-
defined relations. We say that a language L C {1,2}* is definable in SOy(0)
when there exists a formula © in SOx(oc U X) (where X is a unary relation
symbol) such that: w € L iff R, (o) = ©.

DEFINITION 2.5. For each set of integers A C IN, we call dyadic language of
A the set of dyadic notations of elements of A (denoted by Ly(A)).
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DEFINITION 2.6. Let us denote by RUD the class of unary rudimentary rela-
tions over integers. The class of rudimentary languages, denoted by Lo(RUD),
is the class of the dyadic languages of the rudimentary sets.

REMARK 2.7. In the sequel, order (denoted by <) and addition (denoted by
+) are seen as predefined relations over the sets of the form {0,...,n — 1}.
Let us state our main theorem:

THEOREM 2.8. Let L be a language over {1,2}. L is definable in SOy (+) iff
L € Ly(RUD).

Then, theorem 2.8 is used to prove theorem 2.12. First, we need two more
definitions.

DEFINITION 2.9. If F' denotes a set of second-order formulas, let us denote by

Sp(F) the class of spectra of formulas in this class.

REMARK 2.10. First-order spectra correspond to Sp(3SO(0)).

DEFINITION 2.11. Let f : IN — IN and S C IN. We denote by f(S) =
{f(s);s € S} the set of images under f of elements of S.

THEOREM 2.12. For any set of integers S, the following equivalences hold:
1. for any integer k > 1, S € Sp(SO(+)) iff 25° € RUD;

2. for any integer k > 2, S € Sp(SO(0)) iff 25° € RUD.

3. Languages
In this section, theorem 2.8 is proved along lemmas 3.1 and 3.2.

LEMMA 3.1. Let A be a set of integers. If Lo(A) is definable in SO;(+), then
A € RUD.



Rudimentary Languages 5)

PROOF.  The hypothesis of the lemma asserts that there exists a SO;(+)-
formula ©(X,+) = QiU ... QuUpqi 21 - . . sz (T, U, X, +) such that w € Ly(A)
iff Ry(+) E ©. jFrom the very definition of w,, we can translate this hypoth-
esis by: n € Aiff (lg(n), 2,,+) = ©.

In using Bennett’s characterization of rudimentary sets, we have to con-
struct a bounded arithmetical formula ®(n) with one free variable such that
n € Aiff N  ®(n). The main idea to proceed is to encode each unary
relation U over Id(n) as an integer u smaller than n. Then we have to trans-
late assertions about U (actually U(z), for a given z < ld(n)) into equivalent
arithmetical assertions about u. At last, we can build the formula ®, taking a
specific care to the bounds of its quantifications. Let us describe briefly these
three steps:

e Encoding. Let n be an integer and | = [d(n). Each subset U of [ defines a
single word w of length [ such that 2, = U. Now, consider the integer u such
that w, = w. It is easy to check that the encoding thus obtained is a bijection
from the set of unary relations over [ onto the set of integers [2! — 1;2!1 — 2]
(note that these integers are smaller than 2n).

e Translation. Let U and u be defined as above. Let z < [. Refering to the
definition of u from U, observe that: U(z) holds in n iff (Ja,b,c < 271)(u =
a+b+chbAN2"—1<a< 2T —1Ab=2"T"Ac # 0) is true in IN. We
denote by digit(u, z) this last formula. Now we are ready to built the bounded
arithmetical formula ®(n).

o Construction of ®. The atomic formulas in © have the following four
possible forms: U;(z;), X(z;), z; = 2 and z; + x4 = 2, and ®(n) is obtained
from © by the following substitutions:

Q;U; becomes Q;u; € [2! — 1;21+1 — 2]
g;x; becomes g;z; <l
Ui(z;) becomes digit(u;,x;)
X(z;) becomes digit(n,z;)
x; = o} remains unchanged
Zj + xx = v, remains unchanged

It remains to deal with [, which appears up to now like a predefined variable,
and with exponential, which must not occur in a bounded arithmetical formula.
First, note that the relation [ = ld(n) is defined by the sentence: (3L < 2n)(L =
2! =1 AL <n <2L). Finally, we get rid of the exponential using the fact that
the graph of exponentiation is rudimentary (see Be62). O

LEMMA 3.2. If a set of integers A is in RUD, then Ly(A) is definable in
SO (+).
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PrRoOOF. This proof has the same pattern than the previous one but now we
use Smullyan’s definition of rudimentary sets instead of Bennett’s one. Indeed,
we interpret the hypothesis of lemma 3.2 as follows: there exists a bounded
{*}-formula ®(n), such that n € A iff N = ®(n).

e Encoding. Let n € IN and [ = ld(n). To each integer u of dyadic length
smaller than [, we associate the couple of unary relations (1, 2,) over [ defined
by: Vz <, 1,(z) (resp. 2,(x)) holds iff the letter of index = of w, is 1 (resp.
2). Remark that the map u — (1, 2,) is a bijection from [0, 2" — 2] onto the
set of couples (U,V) such that U,V C I, UNV =@, and U UV is an initial
segment, of /.

e Translation. Now we have to translate the atomic formulas which consti-
tute the formula ®(n). Actually, we have to interpret the subformulas u; < n
and u; * u; = uy (some of these u;'s may be n). To proceed, we fist translate
without proof some intermediate assertions.

- There exists a formula WECO_ 4, (U, V') such that for every couple (U, V)
of unary relations over a domain n we have: n = WECO 4, (U, V) iff there
exists an = < n such that (1, 2,) = (U, V).

- There exists a formula (U,U’) x (V,V') = (T,T') such that for every
[, n such that [ = lg(n), for every u,v,t < I, we have | = uxv = t iff
nE (L, 20) * (1, 2,) = (11, 2).

e Construction of ©. Now, let O(1,, 2,, <, +) be the second-order formula
obtained from ® by the following substitutions:

Vu; < n  becomes VI;V2; [WECO,,(1;,2;) —
Ju; <n  becomes 31,32, [WECO,,(1;, Z)A
u; % uj; = up becomes (1, 2;) x (1, 2) = (1, 2)

Note that, although it doesn’t appear explicitly in our notations, the linear
order < and the relations 1, and 2, are in the signature of ©: the relation < is
hidden in the formulas WECO.,, and 1, and 2, appear with the translations
of the subformulas u; * u; = u; in wich some of the variables are n. But < is
trivially expressed with addition, and 2, can be replaced by —1,,. Allin all, the
sought formula © is obtained from © in expliciting < with + and in replacing
2, by X and 1, by -X. O

4. Proof of the equivalence between exponentiations of
spectra and rudimentary sets
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In this section, we prove theorem 2.12. Precisely, we first prove the first item
and then deduce the second one. The proof consists in two lemmas respectively
corresponding to each implication.

LEMMA 4.1. If S € Sp(SO(+)), then 25" € RUD.

PrRoOOF. The main idea is to encode each R; into an integer c¢; smaller than
on’+1 —2, and to replace second-order quantification over R; by a bounded first-
order quantification over ¢;. We do not give a detailed proof of this lemma,
because it is easy and similar to the proof given in Mo94. O

LEMMA 4.2. If Ly(25%) is definable in SO, (+), then S € Sp(SOx(+)).

PROOF. Let S be a set of integers such that Ly(25") is definable in SO;(+).
Let U = Q1Vi...QpyVoq1y1 - - - ¢;yr® be a SO;(+)-formula (where @ is a first-
order open formula of signature {=,+, X,V3,...,V,} and variables y; ...y,)
such that wp, € Ly(25%) iff (Id(m),=,2,, ,+) = U.

Since m € 25, there exists n € S such that m = 2"*. Consequently, w,, is
1"*~12. Hence, we have to change a structure of size Id(m) = n* into a structure
of size n, to cancel the second-order unary free variable X and to replace the
addition over {0,...,n* — 1} by the addition over {0,...,n — 1}. Formally, we
have to construct a SOk (+)-formula A such that n € S iff (n,=,+) = A.

To change the cardinality of the domain, we encode each integer ¢t < n*
into a k-tuple of integers ¢; < n (notation in basis n), and thus naturally
translate every unary relation V; over n* into a k-ary relation R; over n. We
cancel the free variable X (interpreted by 2,,, = {n* — 1}) by introducing a
new second-order k-ary variable Ry satisfying the condition V AL R, expressing

k-1
the fact that n* —1 = Y (n — 1).n’. We replace u + v = w (addition over
i=0
{0,...,n* —1}) by ADD'(ug, ..., Ux_1, V0, ..., Vk_1,Wp, - - ., wx_1) (k additions
over {0,...,n—1}), i.e. we compute in basis n, and we deal by hand with the

carries.

Then we apply on the formula W the following transformations:

e we add the second-order quantification 4R, over a k-ary relation;

e each second-order quantification over a unary relation @);V; is replaced by
the same second-order quantification @; R; over a k-ary relation;

e each first-order quantification g;y; is replaced by the k first-order quan-
tifications qivi1 - .. QiVik;
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e the first-order open formula ® is changed into a first-order formula of sig-
nature {=,+, Ry, R1, ..., R,} denoted by I' and obtained by replacing y; = y;,

k
by A Wis = Yjs)s Yi + Y5 = Y by ADD'(Yirt, - Yies Yjsts - - - > Yiks Yists - - - 5 Yok

s=1

X(y;) by Ro(yj1,-- -5 Ysk), and Vi(y;) by Ri(yj1,-- -, Yjk)-
Finally, the formula A is 3Ry Q1 Ry ... QpRy 1y10--- @ Yri—1(VALRy AT). O

The proof of the first item of theorem 2.12 is now obtained via theorem 2.8.
In order to prove the second item, the remaining task is to eliminate the pre-
defined addition. Nothing changes in the proof of lemma 4.1 if one is inter-
ested into spectra in Sp(SO(0)) instead of Sp(SOk(+)). But, in the proof
of lemma 4.2, we actually use the addition over the structure (n,=,+). To
overcome this difficulty, we just have to invoke the following result:

THEOREM 4.3. (Ly82) The addition is first-order definable with binary rela-
tions.

5. Consequences

Let us state first a corollary in the field of complexity.

COROLLARY 5.1. L5(RUD) contains many natural NP-complete languages.

PROOF. Many natural N P-complete languages, in which the twenty-one
listed by Ka72, are known to belong to NLIN, a complexity class introduced
by E. Grandjean to formalize linear time complexity on RAM’s. But it is also
proved in GrOl195 that all languages in NLIN are definable in 350, (+), so that
the above mentioned languages are in Lo(RUD). O

Now, let us turn to descriptive complexity. The particular role played by the
dyadic representation of integers in theorem 2.8 can easily be avoided. First,
let us note that it is almost straightforward to adjust our definitions to the
p-adic case. We only precise the following one.

DEFINITION 5.2. For each word w over {1,2, ..., p}, we still denote by R,, the
finite structure (I, 1, ..., Dp,), where | is the length of w and 1,,...,p, are
the unary relations over the domain | = {0, ...,l — 1} defined by: for all s =1
to p, for all x < 1, 8,,(x) holds iff the letter of index x of w is s.
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Now, we say that a language L C {1,...,p}* is definable in SO;(+) if there
exists a formula © (with p free unary second-order variables Xj,...,X,) in
SO;(+) such that for all w € {1,...,p}* we have: w € Liff R,(+) =
O(Xy,...,X,) (where X is interpreted by S, in R,(+)). Let us note that
for all integers p > 2 and n > 1, there is a bijection between the integers of
p-adic length < n and the p-tuples of unary relations providing a partition of
an initial segment of {0,...,n — 1}. Then, the proof of the following result
strickingly follows the one of theorem 2.8.

COROLLARY 5.3. For any integers p > 2 and q > 2,
1. a language L C {1,...,p}* is definable in SO,(+) iff L € L,(RUD).

2. Let A C IN. Then L,(A) is definable in SO1(+) iff L,(A) isdefinable in
SO (+).

Theorem 2.12 leads to a similar result in the scope of spectra. The proof is
straightforward, since RUD is closed under inverse ranges by polynomials.

COROLLARY 5.4. For any integers p > 2 and k > 1, for any set of integers A,
the following equivalence holds: A € Sp(SOy(+)) iff p** € RUD.

Finally, let us note that, according to theorem 2.12, generalized Fagin’s question
(see Fa75): does Sp(SOx(0)) = Sp(SO2(0)) for all k > 2 ? is equivalent to the
following question : for all £ > 2, for all set S of integers, does 25" € RUD iff
25" € RUD ? Remark that we know no such equivalence for Fagin’s question :

does Sp(3S0k(0)) = Sp(3SO2(0)) for all k > 2 7
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