Available at

. , JOURNAL oF
: www.ElsevierComputerScience.com COMPUTER
: K e POWERED BY SCIENCE dDIRECT' AND SYSTEM
" 2 = @ SCIENCES

LSEVIER Journal of Computer and System Sciences 68 (2004) 546597
http://www.el sevier.com/locate/jcss

Graph properties checkable in linear time in the
number of vertices

Etienne Grandjean® and Frédéric Olive®™*

YGREYC CNRS UMR-6072, Universite de Caen, Campus II, Bd Marechal Juin, BP 5186, 14032 Caen cedex, France
bLIF, Universite de Provence, CMI, 39 rue Joliot Curie, 13453 Marseille Cedex 13, France

Received 10 September 2001; revised 11 April 2003

Abstract

This paper originates from the observation that many classical NP graph problems, including some NP-
complete problems, are actually of very low nondeterministic time complexity. In order to formalize this
observation, we define the complexity class vertexNLIN, which collects the graph problems computable on
a nondeterministic RAM in time O(n), where n is the number of vertices of the input graph G = (V, E),
rather than its usual size |V| + |E|. It appears that this class is robust (it is defined by a natural restrictive
computational device; it is logically characterized by several simple fragments of existential second-order
logic; it is closed under various combinatorial operators, including some restrictions of transitive closure)
and meaningful (it contains many natural NP problems: connectivity, hamiltonicity, non-planarity, etc.).
Furthermore, the very restrictive definition of vertexNLIN seems to have beneficial effects on our ability to
answer difficult questions about complexity lower bounds or separation between determinism and
nondeterminism. For instance, we prove that vertexNLIN strictly contains its deterministic counterpart,
vertexDLIN, and even that it does not coincide with its complementary class, co-vertexNLIN. Also, we
prove that several famous graph problems (e.g. planarity, 2-colourability) do not belong to vertexNLIN,
although they are computable in deterministic time O(|V| + |E|).
© 2003 Elsevier Inc. All rights reserved.

Keywords: Linear time; Nondeterminism; Complexity lower bounds; Combinatorial problems; Finite model theory;
Existential second-order logic

0. Introduction

Except for some tradeoff space—time lower bounds results (see e.g. [2,6,14,27]) we do not know
of any proved complexity lower bounds for any natural NP problem on a general-purpose model

*Corresponding author. Fax: +33-4-91-11-36-02.
E-mail addresses: grandjean@info.unicaen.fr (E. Grandjean), olive@gyptis.univ-mrs.fr (F. Olive).

0022-0000/$ - see front matter © 2003 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2003.09.002

E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597 547

of computation such as the random access machine (RAM). We see at least two reasons. First, we
know little about the relationships between nondeterminism and determinism, with the exception
of some technical results such as the separation of deterministic and nondeterministic linear time
for Turing machines (see [40]), but we have no idea of how to generalize this result to linear time
on RAMs. Furthermore, most natural NP problems are of very low nondeterministic complexity.
Grandjean [22,23] gave evidence that most natural NP problems belong to the class NLIN, i.e.,
are recognizable in linear time on nondeterministic RAMs. Further, the famous SAT problem can
be recognized by a RAM that only uses a linear number O(n) of deterministic steps and a
sublinear O(n/log n) number of nondeterministic steps, where 7 is the size of the formula, i.e., its
number of variable occurrences (see [23]).

Most general-purpose lower bounds results follow from a careful analysis of the proof that the
problem in concern is hard for a complexity class.! With regard to time bounds, it is symptomatic
that, on the one hand we know some NLIN-complete problems via DTIME(O(n)) reductions (see
[41,10,20]), on the other hand we cannot imagine any candidate problem for completeness in the
nondeterministic quadratic time class or in any similar polynomial superlinear time class. Notice
that even in the PTIME class many classical problems are of very low deterministic complexity,
more precisely, quasi-linear time O(n x (log n)O(l)) (sorting, minimal spanning tree, single-source
shortest path problems, etc.) or in linear time (connectivity, planarity, Horn satisfiability, etc.).

One goal of this paper is to show that some classical combinatorial problems are even easier on
the nondeterministic model. It is folklore to notice that the natural certificates of many NP graph
problems have size linear in the number of vertices. More accurately, we prove in this paper that a
number of graph problems including connectivity, biconnectivity, Hamiltonicity and nonplanar-
ity, belong to a very restricted complexity class denoted vertexNLIN. It means that they are
recognizable on a nondeterministic RAM in time O(n), where n = | V| is the number of vertices of
the input graph G = (V, E) which may be much less than the size of the graph, usually defined as
n+ e, where e = |E|. Intuitively, any positive instance G = (V,E) of such a problem, e.g.,
connectivity (resp. nonplanarity), has a proof, e.g. a spanning tree (resp. a subgraph
homeomorphic to K5 or K33) S of size O(n), n = |V|, which is checked in (deterministic) time
O(n). If the graph is not sparse, i.e., n = o(e), this is a nondeterministic time bound which is
sublinear in the time of the graph. Notice that this can be obtained because in our computational
model, the input is assumed to be separated from the workspace. More precisely, our RAM has
specific read-only input registers, e.g., n> boolean registers E(i,j),i,j<n, that represent the
adjacency matrix of the input graph and O(n) read/write registers R;, i = O(n), each of which
contains a number whose magnitude is O(n). In this model, it makes sense to check
nondeterministically a property, e.g., connectedness, in time O(n), which is much less than the
input size, namely @ (n?); in particular, only a small part of the input, namely O(n) registers, can
be read in one computation.

A natural question arises—positively answered in this paper: is vertexNLIN a robust
complexity class ? Since it is, in some sense, a linear time complexity class (in fact a generalization
of this notion, since the reference parameter z is no longer the input size) it is useful to recall some

"For instance, from the fact that each NSPACE(n) problem is reducible to QBF (Quantified Boolean Formulas
validity) in space O(logn) and time O(n? logn) (see [49]), it follows that QBF¢ NSPACE(o(+/n/logn)).

548 E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597

points about such a delicate notion. In [16], Gridel argues that ‘it is not clear at all what should be
the right notion of linear time computability” and doubts that there could be an adequate—i.e.
intuitive and including linear time classical algorithms—and robust—i.e. machine-independent—
definition of linear time. In [16,26], the authors circumvent that problem by considering some
robust closures of linear time (see also [44,3] for other points of view). However, [45,25,23,24]
introduce and study a notion of linear time, namely the deterministic (resp. nondeterministic) class
DLIN (resp. NLIN) and argue that both classes are adequate and robust. In particular, DLIN
(resp. NLIN) has algebraic (resp. logical) characterizations from which complete problems can be
derived as shown in [45,25] (resp. [24,37]).

A second goal of this paper is to study a general notion of nondeterministic time complexity on
RAMs and to establish its equivalent logical characterizations. More precisely, let ¢ be any first-
order vocabulary which may include relation, function and constant symbols. We are interested in
g-problems, that means decision problems for sets of finite g-structures. For instance, a graph
problem is a g-problem for ¢ = {E}, where E is a binary relation symbol. For any function
T:N->N, T'(n)=n, let NTIME?(T(n)) denote the class of o-problems that are recognized by
nondeterministic RAMs? in time O(T'(n)), where 7 is the domain size of the input. Several logics
appear in the paper. They are all fragments of existential second-order logic. We denote by ESO’
this last logic. That is, ESO? is the class of formula of the form: & = 3t¢, where 7 is a tuple of
relation and function symbols of various arities, and ¢ is a first-order formula of signature ¢ U 7.
Notice that in this definition, the second order variables all stand in front of the formula (but we
could give up this constraint), whereas the first-order part ¢ is not necessarily prenex. If ¢ is in
prenex form and if furthermore, its variables xi, ..., x; are all universally quantified, we denote
@ e ESO’(Vd). In other terms, ESO?(Vd) is the subset of ESO” whose formulas have the form:
& = FtVxyy, where 7 is a tuple of relation and function symbols of various arities, x is a d-tuple of
first-order variables, and is a quantifier-free formula of signature cut. We denote by
ESO’(arity k,Vd) the set of formulas in ESO?(Vd) whose ESO relation and function symbols are
all of arity <k. Finally, we also denote by ESO? (resp. ESO’ (Vd), ESO’ (arity k,Vd)) the class of
o-problems definable in these logics. In this paper we refine Fagin’s characterization of NP:

| NTIME?(n?) = ESO® (see([12])
d

by proving the equalities
NTIME’ (n) = ESO’ (arity d,Vd) = ESO’ (Vd) (1)

for any vocabulary ¢ and any integer ¢ >0. A similar result was proved in [18,19,24] but the new
result is more general: the parameter d is now independent of the arities of the ¢ symbols. Note
also that no built-in symbol is required in the ESO° formulas. Another aside contribution of this
paper is a purely logical (machine-independent) proof of the second equality above.

Most important is the case d = 1 of the previous equalities: on the one hand, it shows the
robustness of the class vertexXNLIN? =4 NTIME?(n); on the other hand, it gives a logical
method and complementary tools to prove that a specific problem belongs to this class. For
example, [19] proves that the ESO “quantifier” (Jjin order <) can be defined in ESO’(V1). In this

2In this paper, the notation “NTIME” is used differently compared to the previous papers: it refers to time
complexity on nondeterministic RAMs, rather than nondeterministic Turing Machines.

E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597 549

paper, we prove that other useful constructs are also definable in this restricted logic: the ancestor
relation in trees and forests, any depth-first order in a graph, the transitive closure of any unary
function, etc. Those logical tools are exactly what we need to prove that many combinatorial
problems such as connectivity or non planarity belong to vertexNLIN.

Starting from the observation that most of our graph problems in vertexNLIN are monotone—
a graph problem £ is monotone if Ge 2 implies G’ € Z for any extension G’ = Gu {a} where o is
any new edge—we study the monotone restriction of the class vertexNLIN. Monotone NP
problems were studied by lain Stewart [46—48] who, in particular, proved some equalities that can
be reformulated as follows: for any relational vocabulary o,

monotone-NP’ = | | NTIME"* (n/) = ESO"*. (2)
d

Here monotone-NP? denotes the class of monotone o-problems in NP, ESO’* denotes the class of
g-problems definable by ESO formulas where any relation g-symbol only occurs positively and
NTIME’"(T'(n)) denotes the class of g-problems computable in time O(T'(n)) on an NRAM
which rejects whenever it reads an input 0 (i.e. consults a tuple of an input o-relation » which does
not belong to r). In this paper, we prove the following equalities which are similar to (1) and refine
(2): for any relational vocabulary ¢ and any integer d >0,

monotone-NTIME? (n?) = NTIME"" (n¢)
= ESO”" (arity d,Vd) = ESO""(Vd). (3)

In particular, this shows the robustness of the class monotone-vertexNLIN which includes many
combinatorial problems: Hamiltonicity, connectivity, nonplanarity, etc.

Last, we study some structural properties of the class vertexNLIN. By giving a simple
combinatorial method to prove that a number of graph properties are not in vertexNLIN, we
demonstrate that this class is not closed under complementation and also that DLIN\vertexNLIN
is not empty, which yields the strict inclusion vertexNLIN < NLIN. The method to prove that a
specific graph property £ does not belong to vertexNLIN consists in exhibiting, for each neN, a
graph G, of n vertices and a set 4, of Q(n?) edges that “flip-flop”” property 2: this obliges every
non deterministic algorithm for 2 on input G, to read all the Q(n?) edges of 4,,.

Let us now present a detailed plan of the paper:

e Section 1 gives some preliminaries about the computational model and the logics involved in
the paper.

e In Section 2, we prove (Theorem 2.1) the logical characterization of NTIME(n?) above
mentioned: NTIME(n?) = ESO(arity d,Vd).

e In Section 3 we show the robustness of NTIME(n): we give alternative logical characteriza-
tions of this class (Theorem 3.1).

e Section 4 deals with monotone classes: Theorem 4.2 states the characterizations of
monotone-NTIME(n) quoted above in (3).

In the rest of the paper, we restrict our attention to the class vertexXNLIN = NTIME(n) and to the
logic that characterizes it, ESO(V1).

550 E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597

e Section 5 provides a kind of toolbox of the ‘“‘semantical constructions” that can be freely
handled in this logic.

e Section 6 uses the previous results to prove, by purely logical means, that several well-known
graph problems belong to vertexNLIN.

® In Section 7, we demonstrate that many other combinatorial problems do not belong to
vertexXNLIN. Then, we prove and discuss the structural properties of vertexNLIN.

e Finally, Section 8 states some conclusive remarks and open problems.

Three groups of sections can be read independently one from the others: the first one consists of
Sections 2, 3 and 4, in which various logical characterizations of NTIME(nd) are proved; the
second one consists of Sections 5 and 6, which provide logical tools used to prove that various
combinatorial problems belong to vertexNLIN; the third one is Section 7, which is devoted to
structural complexity.

1. Preliminaries

We will often deal with tuples of objects. We denote them by bold letters. A d-tuple is said to be
of arity d. When we want to insist on the arity of a tuple x, we sometimes denote it by x;, where
d = arity (x).

1.1. Structures and problems

For all notations related to finite model theory, we refer to the usual conventions (see [11],
for instance). Our inputs are finite first-order structures. A signature (or vocabulary) o is a finite
set of relation and function symbols each of which has a fixed arity which can be zero (a 0-ary
function symbol is a constant symbol). The arity of o, denoted by arity (o), is the maximal
arity of its symbols. A vocabulary is relational if it does not contain any function symbol.
When ¢ and 7 are two disjoint signatures, we often denote by ot their union e Uzt. A structure S
of vocabulary o, or ag-structure, consists of a finite domain D of cardinality n>1, and, for
any symbol seo, an interpretation of s over D, often denoted by s for simplicity. The set of
interpretations of the o-symbols over D is called the interpretation of ¢ over D and, when
no confusion results, it is also denoted o. The cardinality of a structure is the cardinality
of its domain. For instance, a graph or digraph (V,E) can be encoded in two natural
ways:

® As a g-structure G = {D, o) where the domain is D = V' and where ¢ is reduced to a binary
relation symbol interpreted on D as the edge relation E;

® Asa ¢/-structure G' = (D, ¢’) where the domain is D = V' UE and where ¢’ is a pair of unary
function symbol {head,tail} interpreted as follows on VUE: for each xeV, head(x) =
tail(x) = x and for each a€ E, head(«) = x and tail(«x) = y if the edge o links the vertex x to the
vertex y.

The first of those structures is called the relational representation of the graph (V, E) while the
second is its functional representation.

E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597 551

For any signature g, we denote by STRUC(0) the class of (finite) o-structures. We are interested
in decision problems. A g-problem is a set # =sTRUC(0) that is closed under isomorphism. A
typical example is a set MODEL(¢) of the o-structures which satisfy some fixed formula ¢. Let o be
a relational vocabulary and S, S’ esTrRuc(g). We say that S’ is an extension of S, and we write
S<§',if S, S’ have the same domain and if s°=s% for each relation symbol se . A g-problem 2
is monotone if it is closed under extension. The set of monotone g-problems is denoted by
Monotone’. Thus, a set 2 =STRUC(0) is in Monotone? if 2 is a g-problem and if furthermore, for
all §,S estruc(s) we have: (SeZ? and S<S') = S’e?. For example, the set of connected
graphs, for the above relational representation of graphs, is monotone.

1.2. Computational model and complexity classes

Our computational model is the Nondeterministic Random Access Machine with read-only
input registers. A 6-NRAM (or NRAM, for short) M is designed to store an input g-structure
S = <{D,o), where D = [n] =q¢r {0, ...,n — 1} (recall that ¢ might contain function symbols). It
consists of:

® input registers:
o a register N supposed to contain the cardinality z of the input, and
o for each g-symbol s of arity ¢, and for each tuple i € [n]?, one register s[i] supposed to store the
value s(i);
o r+ 1 special registers (also called accumulators), A, By, ..., B,, where r = arity (o);
® the main memory which consists of registers Ry, Ry,

Such a ¢-NRAM for a graph problem (¢ = {E}) is represented in Fig. 1. Input registers are read-
only. The other registers are read/write. The program of M is a sequence of labeled instructions of
the following forms (1-11):

1.A=N
2. A= s[By, ..., B,] where sec and ¢ = arity (s)

ofrjtjo Input registers
Moo g 0<ig<a
111(0(0
0jf1]10/(0
D D D accumulators
A B B,

D D main memory

Fig. 1. An NRAM for a graph problem.

552 E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597

3.4=0

4.4 =4+1

5.4 = RA

6. B =A4, 1<i<r

7. Ry = B;, 1<i<r

8. If A = B; then instr iy else instr i, 1 <i<r
9. guess(A)

10. accept

11. reject

Semantics of the model:

e At the beginning of the computation, each read/write register contains 0.

® R, denotes the register R; whose address, i, is the content of accumulator A4.

e Instruction (9), guess(4), is our nondeterministic instruction: it stores any integer
in A.

M accepts a o-structure S if some computation of M on input S reaches the state-
ment (10): accept. A g-problem 2 belongs to NTIME?(T'(n)) if there is a o-NRAM M such
that:

(1) 2 is the set of g-structures accepted by M;
(if) each computation of M on every input g-structure S, only uses integers in O(7'(n)) and stops
within time O(T'(n)), where n is the cardinality of S.

We will focus on the class NTIME’(n). When ¢ is unary and contains at least one
unary function symbol, the size and the cardinality (i.e. size of the domain) of o-structures
are linearly related, since a unary function f :[n]—([n] can be described by its list of
values, f(0),...,f(n—1). Therefore, in this case, NTIME’(n) coincides with the class
NLIN defined in [24] (see also [45,25]). Otherwise (i.e. if arity (¢)>2), the class NTIME?’ (n)
gathers problems recognizable nondeterministically in time linear in the cardinality of the
input structure, but sublinear in its size. Notably, if E is a binary relation symbol, NTIMEZ® (n)
is the class of graph and digraph problems recognizable nondeterministically in time linear
in the number of vertices of an input graph given by its relational representation, that is,
represented by its adjacency matrix. For this reason, we call vertexNLIN this class of graph
problems. By analogy, we will often denote by vertexNLIN? the class NTIME’(n) when
arity (o) =2.

Let o be a relational vocabulary. A positive --NRAM M is a 6-NRAM for which any access to
the input o-structure should be positive. More precisely, instruction (2) is replaced by

(2+)
If r(Bi, ..., B,) then instr i else reject;

where reo. Of course, any o-problem accepted by a positive 0-NRAM is monotone.
Such a machine is very similar to the so-called Conjunctive Random Access Turing Machine of
lain Stewart [46]. Complexity classes NTIME’"(T'(n)) and vertexNLIN’" are defined
accordingly.

E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597 553

Remark.

e One may imagine that our instruction “guess(4)” which puts any integer into A4 is too
powerful. It is not the case since, as it can be easily shown, such an O(T(n))-time bounded
d-NRAM can be simulated within the same time by another s-NRAM which guesses integers
in O(T(n)) and, more generally, only uses integers of magnitude O(7(n)) (as addresses and
register contents).

e Our complexity classes NTIME?(T'(n)) (resp. NTIME®" (T (n))) are computationally robust.
More precisely, they are invariant under many changes of the allowed set of instructions. E.g.,
they do not change if we allow not only incrementation by 1 (instruction (4)) but also addition,
subtraction and/or multiplication of register contents, provided all the integers manipulated by
an O(T'(n))-time bounded NRAM are required to be of magnitude O(7T'(n)) (for details, see,
e.g., [21,25]).

In this paper, we also occasionally use the deterministic RAM model and deterministic
time complexity (see Section 7). A ¢-RAM is similar to a 6-NRAM up to the following two
changes:

e it is deterministic. That is, it does not use the nondeterministic instruction (9);
e it may perform additions. That is, the instruction 4 .= A + B;, 1 <i<r, is allowed.

A g-problem belongs to DTIME?(T'(n)) if it is recognized by a 0-RAM that uses only integers
in O(T(n)) and stops within time O(T(n)).

1.3. Logic and definability classes

We use the usual definitions and notations in logic and finite model theory (see [11]). We are
interested by definability in existential second order logic (ESO). Given two disjoint signatures

o ={s1,...,5p}and t = {11, ..., t,} (where the s5;’s and the #;’s are relation and function symbols of
various arities), we write @ =3Jt¢(o,7) to mean that ¢ has the form
Aty -3ty p(s1, ..., 8p, 1, ..., ty). For a vocabulary ¢, we denote by ESO? the class of o-formulas
@ of the form

¢ = (o, 1),

where 7 is a signature disjoint from ¢ and ¢ is a first-order sentence of vocabulary gt. For
simplicity, we confuse in our notation a class of o-formulas, e.g. ESO?, and the class of o-
problems 2 they define. Namely, e ESO’ means that there exists ®e€ ESO? such that # =
MODELS(®), i.e., SeZ iff S=®. As in [18,20,24], we are interested in syntactic restrictions of
ESO’:

e ¢cESO’(var d) means that the first-order part ¢ of @ (which is not necessarily in prenex form)
contains at most d (first-order) variables which may be quantified several times;

e ¢cESO’(Vd) means that @ is in the Skolemized prenex form JtVx¢(g,t,x) where ¢ is
quantifier-free, x is a tuple of first-order variables, and arity (x) = d;

e ¢cESO(arity k,Vd) if it fulfils the same conditions as above and if furthermore,
arity (1)<k.

554 E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597

Remark. Clearly, the class of problems defined in ESO’(Vd) is not modified if formulas of the
more liberal form

@ : IVx, Ay (0,1, %4, 9)

are allowed, since, via Skolemization of the existential variables y, one obtains a formula of the
required form. So, for convenience, we shall write formulas in the more liberal form above.

For a relational vocabulary o, we denote by ESO’", ESO’*(vard), ESO’"(vd) and
ESO’" (arity k,Vd) the similar classes of o-formulas where each (relation) symbol of ¢ only
occurs positively, i.e., in the scope of an even number of negations (assuming that the only
connectives are -, A and V).

2. A logical characterization of NTIME (n¢)
The following equality refines Fagin’s Theorem [12] and generalizes results of [18,19,24]:

Theorem 2.1. For any signature o and any integer d >0:
NTIME? (n?) = ESO (arity d,¥d).

Proof. The two corresponding inclusions are proved in Lemma 2.1 and Proposition 2.1. [

Lemma 2.1. ESO’(arity d,¥d) =NTIME (n).

Proof. Let p be a signature of arity d and ¢ = JpVxs)(x,) be a formula of ESO’(arity d,Vd).
The following nondeterministic algorithm .o/ clearly recognizes % = MODELS(¢).

Algorithm 7. On any input ([n], o) eSTRUC(0),

(a) guess an interpretation over [n] of each relation or function symbol in p;
(b) if the expanded structure ([n], o, p) satisfies Vx /(x,) then accept, else reject.

Clearly, an NRAM® M can implement (a) using O(n?) guess instructions (9) that guess the
O(n) values of the d-ary functions in p. Those values are easily stored in O(n) registers R; of the
main memory. Then, M executes (b) within O(n?) deterministic steps: more precisely, for each
acn)’, ([n],0,p)=y(a) is checked in constant time since length(y) is fixed and since M can
evaluate each subterm or atomic subformula s(b) (segup, b<a) in one step with exactly one
access to the input (if seo) or to the main memory (if sep). 0O

We now prove the converse inclusion: NTIME? (n?) c ESOY(arity d,Vd). As usual, in order
to describe a computation, it is crucial to have a linear order <, which intuitively encodes the
time order. It is easy to express the existence of such a linear order in ESO’(arity d,Vd),
for d>2:

E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597 555

e for d>=3, we simply have to write that there exists a binary relation which is antisymmetric,
transitive and linear: this can be done using at most three universally quantified first-order
variables.

e For d = 2, the above-mentioned defining properties of linear orders are not directly expressible.
However, we can quite easily overcome this difficulty by expressing that there exists, in addition
to the binary relation <, a unary function succ that is forced to be a successor function while <
is compelled to coincide with the transitive closure of succ. It is possible to express the second
constraint using only two variables, by hand of an inductive argument (related to succ). The
unary arity of succ and the possibility to define < from succ by an inductive argument allow to
write these constraints with only two first-order variables.

However, the case d = 1 is much more difficult. It was solved in [19] as follows: with only one
first-order variable, there is no more hope to force explicitly a binary relation to be a linear order.
On the other hand, there exists a first-order formula built(v) over a unary signature v whose
models can be easily equipped with a linear order implicitly defined via an existential first-order
formula order(x, y) of arity 2. Consequently, an assertion of the form: “there exists a linear order
< on the domain D such that DE®(<)”, where ®(<) is a formula involving <, can be
rephrazed: ‘“‘there exists an interpretation of v over the domain D such that
{D,v) =built(v) A®'(v)”, where @' is obtained from & by replacing each atomic formula
t1 <t by order(t,,1).

In order to allow a better understanding of the way these two formulas help to express in
ESO(arity 1, V1) the existence of a linear order, we recall the original result (in a slightly different
formulation):

Lemma 2.2 (Grandjean [19]). There exist two first-order formulas built(v) and order(x,y,v) over a
unary vocabulary v such that:

1. “built” is a sentence of the form Nx¢(x,v), where ¢ is quantifier-free;
2. “order” is a formula with two free variables x, y, of the form zy(x,y,z,v), where \ is quantifier-

free;
3. “built” has exactly one model (up to isomorphism) in each cardinality and
4. on each model {D,v) of built(v), order(x,y) defines a linear order. That is:

if {D,v)Ebuilt(v), then

{(a,h)eD? s.t. {D,v)=order(a,b)} is a linear order of D.

Proof. See [19], Proposition 4 for 3 and Lemma 5 for 4. [

Corollary 2.1 (Grandjean [19]). The definability class ESO’(arity 1,¥1) is not enlarged by the
addition of the second-order quantifier (iin order <) (f0 be read: “‘there exists a linear order < of the
domain such that...”’). More precisely, any formula ¥ of the form

(Ellin order <)QS(U? <)7

where ® e ESO” = (arity 1,V1) is equivalent to a formula W' e ESO’ (arity 1,V1).

556 E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597

Proof. Without loss of generality, assume that symbol < only occurs positively in @. Define
formula V' = Jv : built(v) A @' (o,v), where @' is obtained from @ by replacing each inequality
t1(x)<t2(x) by the existential formula order(t;(x), t2(x),v). Clearly, by Conditions 3 and 4 of
Lemma 2.2, ¥ is logically equivalent to ¥. Finally, the form of formulas built and order (see
Conditions 1 and 2 of Lemma 2.2) guarantees that ¥’ can be written in ESO’(arity 1,V1), by
Skolemization. [J

Using the quantifier (Jjinorder<), We shall express an NTIME’(n¢) computation in
ESO(arity d,Vd) even for d = I:

Proposition 2.1. NTIME? (n?) = ESO(arity d,Vd).

Proof. In order to avoid heavy notations, let us give the proof for d = 1, the general case being
similar. It is reminiscent of a similar proof in [17,24] (see also [45]). Let £ be a g-problem (i.e., a
set of o-structures which is closed under isomorphism) recognized by a 6-NRAM M in time O(n).
Without loss of generality, assume that M only uses integers (addresses and registers) smaller than
cn and always stops in time at most cn, for a fixed integer ¢> 1; in particular, the instants (resp.
steps) of a computation are exactly numbered 0,1, ...,cn — 1 and a final instruction (accept or
reject) is performed at step cn — 1 or before (if it is performed before, it is repeated till the step
cn —1). So, it is natural to encode such a computation over a linearly ordered structure with
domain [cn] as described below. At the end of the proof, we describe how to adapt the encoding
for the smaller domain [n].

Let instry, instry, ..., instry denote the sequence of the instructions of the program of M.
Without loss of generality, assume that instry is the only accept instruction. In the encoding, we
will use the successor function Succ, associated to the linear order < and also denoted Succ(x) =
x + 1, and the associated constants 0, 1,2, ...,k and max = ¢n — 1 (assume k<cn), and also the
constant n. Additionally to the input relation and function symbols seo defined in [r] and
arbitrarily extended to [cn], e.g. with zero values, we encode a computation of M on input

structure ([cn], (s),.,) by the following new unary functions

I,A4,(Bi)i<c,s Ra, R : [cn] - [cn]

which, with the exception of R/;, are intended to describe the situation of M at instant ¢, that is the
instant before step t is performed. More precisely:

e /() holds the current instruction number (e.g. 7(0) = 0 and I(max) = k);

e A(z) and B;(¢), i=1,2,...,r, hold the current values of registers A and B;, respectively (e.g.
A(0) = B;(0) = 0);

® R,(t) holds the current value of the register whose address is currently contained in register A4
(e.g. R4(0) =0) and

e R/,(¢) holds the value of the same register after step t.

By case distinction according to the value of I(#), most of the logical description of the
computation of M is straightforward. E.g., if M performs a statement A .= 4 + 1 at step ¢, then
the formula will force A(¢r+ 1) = A(¢) + 1. The main complication arises for the instruction

E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597 557

A = R, which loads into the accumulator 4 the content of the register whose address was
contained in 4 before the execution of the instruction. Note that the functions defined in that way
do not explicitly encode the values of all the memory registers of M at each instant but only the
content of the register to which 4 points. So, how can we get the right value of R4(#)? If the
register pointed to by A at instant ¢ has never been visited before ¢, then it contains its initial value
0. Otherwise, let u be the last instant before when 4 contained the value A4(¢). Then the last
modification of the register pointed to by A4 at instant ¢ has been performed during step u, and
R4(t) = R,(u). In other terms, either there is no i <7 such that 4(i) = A(¢), and R4(¢) = 0 (case 1)
or u=max{i<t: A(i) = A(t)} exists, and Ry(t) = R;(u) (case 2). Now, it is essential to notice
that the alternative between these two cases can be rephrazed as follows: assume we have
lexicographically ordered the pairs (A(¢),?), t€[cn|. Then, either # = 0, and therefore, (A(t),?) =
(0,0) and R4(t) = 0, or there exists u<t such that (A(u),u) is the predecessor of (A(?),?) for the
lexicographic order over the pairs (A(i),). In this case, case 1 occurs if A(t)# A(u); case 2 occurs
otherwise.

Let us number the cn ordered pairs (A(¢),?), t€[cn] according to their lexicographical order,
in other words, Lex(y) = (A4(t),t), y€[cn], means the yth ordered pair is (A(¢),?). It is now
obvious that if y=x+1, and Lex(= (A(u),u), then u is the instant concerned in the
above cases (1,2). The essential point is that 7 is the only universally quantified first-order
variable in that description. The other variables involved x, y and u are existentially quantified,

and, hence, can be Skolemized. Formally, the function Lex : [cn]—[cn]® is represented by two
unary functions Lex, Lex; : [cn] — [cn]. Now we present the first-order formulas (with only one
universally quantified variable) whose conjunction will form the first-order part of the
ESO?(arity 1,V1)-formula. In order to simplify notation and obtain a natural encoding of an
accepting computation of M, we introduce the formulas in an informal way that uses case
distinction as in [45,25] (but these formulas are essentially equivalent to those of [18,24]). Recall
that the function I only takes a fixed number of values 0, 1, ..., k. For convenience, we freely use
abbreviations for instruction case distinction, e.g., “/(x) is 4 := 0" is an abbreviation for the
formula

I(x) =i VvI(x)=bhv- - VvI(Xx) =iy,

where the j; are all the numbers of the instructions 4 = 0 in the program. In all the following
“formulas” that define I, A, B;, i<r, the quantification (V¢ <max) is implicit and we use informal
expressions that are easily encoded in logic such as “if”, “and” and “otherwise”. G denotes a new
unary function symbol existentially quantified (for the guess instruction). Recall that instructions
of the form (8) in an NRAM are as follows: “If A = B; then instr iy else instr i;” (see Section 1.2).
Then 71(0) =0, A(0) =0, B;(0) = 0 (for each i) and for all ¢:

io if I(¢) is of the form (8) and A4 = B,
I+ 1) i if 1(z) is of the form (8) and A#B;,
1(1) if 1(¢) is of the form (10) or (11) (accept or reject),

I(t) + 1 otherwise,

558 E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597

(n if I(t)is A= N,

S(Bi(t), ..., By(t)) if I(t) is A = s(Bu, ..., By),

0 if I(z)is 4 =0,
A(t+1) =14 A(t)+1 if I(r) is A =A+1,

Ry(1) if 1(z) is A = Ry,

G(1) if 1(¢) is guess(A),

A1) otherwise,
Bt +1) = {A(z) if 1(1) }s B; = A4,

B;(t) otherwise.

The following formula, now quantified by V¢, defines the value R/, (#) contained in the register of
address A(¢) after step t:

B,‘l if I(t) is R Z:Bi,
Ry {BO 10 R,
R4(t) otherwise.
There remains to define the functions Lex (in fact, Lex; and Lex;) and Ry. Lex is obviously
defined by the two formulas V¢3x : Lex(x) = (A(¢),) and (Vx<max) : Lex(x)<Lex(x+ 1) and
R, is defined by

R4(0)=0 A (Vr>0)Tudx

Finally, the formula 7 (max) = k expresses that the last instruction performed is instr; = accept.
So, we have proved that our g-problem 2 is defined on domain [cn] by a formula ¢ of the
form

(Ellin order<)afvi ‘p(i)

Here y is a quantifier-free formula that uses, in addition to 7, the symbols <, Succ, 0, max and n,
while 7 is a unary vocabulary including 7, 4, (B;),,, R4, R, G and Lex. Of course, Succ, 0 and
max are easily definable with < and hence can be eliminated.

It remains to explain how to modify the relations, functions, constants, and the formula if the
domain is [n] instead of [cn]. For convenience, assume that each atomic subformula involving any
unary function symbol F is of the form F(u) = v where u, v are individual variables, and that the
first-order part of our formula is of the form

Vedxy (1, x),

where Y is quantifier-free and x is a tuple of variables. Each element be[cn| is naturally
represented by the ordered pair (i, a) such that b =i x n + a, i€|c], a€ [n]. The rest of the encoding

E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597 559
is a consequence of that representation:

® The universally quantified variable V¢ is replaced by /\ie[c] Vvt (which intuitively means
V(i,t)ec] x [n]), and the existential part of the prefix, 3x, is modified similarly;

e The constant n, thatis 1 x n + 0, is replaced by the ordered pair (1,0) and the linear order < is
encoded similarly;

e Each atomic subformula involving an input relation or function symbol s€¢ is not modified
(recall that in such a formula, the arguments are forced to belong to [n]);

e Fach atomic subformula of the form F(u) = v where F is an ESO unary function symbol
(F=1,A4,...) and u, v are any variables, is replaced by the conjunction

Rf;(u) AF(u)=v

which intuitively means F(i,u) = (j,v) and in which Rf; and F; are new unary relation and
function symbols, respectively, with i, j€[c|. To enforce the functional nature of R}Fj, we finally
make the conjunction of the first-order sentence so modified and of some sentences which mean

that for every ie|c] and ue|n], Rf](u) holds for exactly one j€|[c].

The details of the encoding are left to the reader. By Corollary 2.1, this finishes the proof that 2
belongs to ESO’(arity 1,v1). O

3. Other logical characterizations

It is natural to ask how robust is the computational/logical class NTIME’(n?) =
ESO?(arity d,Vd) from a logical point of view, i.e. to look for other logical characteriza-
tions of this class. E.g., is it equal to ESO? (arity d), the similar class when the number of first-order
(universal) variables is no longer bounded? We cannot answer this question, which is related to a
conjecture by Fagin about the arity hierarchy [13]. However, we can prove the following result:

Theorem 3.1. For every vocabulary o and every integer d > 0:
ESO’(arity d,Vd) = ESO’(Vd) = ESO° (var d).

The inclusions ESO’(arity d,Vd) = ESO’(Vd) = ESO’(vard) are trivial. The converse inclu-
sions are proved in the following Lemma 3.1 and Proposition 3.1. Before proving Lemma 3.1, it
seems useful to examine an example. Let us consider the formula

¢ =38, T :VxS(x)vVxT(x),

where S, 7' are unary relation symbols. Clearly, @ belongs to ESO’(var 1). And putting @ under
prenex form in a natural way would provide the formula 35, 7Vx,y : S(x)v T(y), which belongs
to ESO?(V2). Nevertheless, we can build an ESO?(V1)-formula equivalent to @. First, let us quote

560 E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597

all the subformulas of the first-order part of &:
a(x) = S(x); p=VxS(x);
p(x)=T(x); 0=VxT(x);
¢ =VxS(x)vVxT(x).

Now, we associate to these formulas some new relation symbols R,, ..., Ry and we define the
formulas 4,, ..., 44 as follows:

Ay =Vx 1 Ry(x) > S(x); A4 =Vx: Rg— R,(x);
A, =Vx: R, (x)>T(x); A5 =Vx:R;—R,(x);
A¢ ER¢—>R[;\/R5.

It is easy to see that the formula @' = 3S,T3R,, ..., Ry : RyAd,AAg A Ay A A5~ Ay is equivalent
to @ and has a prenex form in ESO’?(V1). (Notice furthermore that we could get rid of 0-ary
predicates by replacing each such predicate Py by the atom P;(c), where P; is a new unary
predicate and ¢ any existentially quantified constant.) The next lemma generalizes this
construction.

Lemma 3.1. ESO(var d) = ESO’(Vd).

Proof. The proof looks like the proof of a similar but less general result of [17] (Proposition 2.4).
Let 2 be a g-problem in ESO’(vard), i.e. we have 2 = MODELS(¥) for a formula of the form
¥ = 3ty(o,1), where 7 is any signature and is a first-order guU7t-sentence with exactly d
individual variables x = x, X2, ..., x; which may be quantified several times. Without loss of
generality, let us assume that y contains only the connectives A, v and — such that no quantifier
is in the scope of a negation. We also assume that iy contains no existential quantifier (existential
variables can be Skolemized). We have to transform y into prenex form with also ¢ (universal)
variables. The key observation is that any subformula 0(u) of contains at most d free variables
usx, u=u,...u k<d.Let us associate to each subformula 6(«) a new relation symbol Ry of
same arity. Intuitively, Ry(u) represents O(u). Then, let us associate an implication 4y to each
subformula 0(u) as follows:

e if O(u) is quantifier-free, take 49 = Vu: Ry(u)— 0(u);

e otherwise:
o if 0(u) = Vvl (u,v), take 49 = VuVv: Ry(u) — Ry (u,v);
o if O(u) = 0'(v) AQ"(w) where u = vuw, take 49 = Vu: Ry(u)— (Ry (v) A Ry (w));
o if O(u) = 0'(v) v 0" (w) where u = vuw, take A9 = Vu: Ry(u) —> (Ry (v) v Ry (w)).

It can be shown by an easy induction that i is logically equivalent to the formula:
lﬁl = HR()], ...,R()p . R,[,/\A()l ZANRRN /\A()p,
where 01, ..., 0, enumerate the set of subformulas of , including itself. More precisely, the

implication — /' is straightforward if each Ry is given its intuitive meaning. For the converse
implication, notice that, by an easy induction on the structure of 0, 4y, A --- A 4y, implies that for

each subformula 0(u) of we have Vu(Ry(u) — 0(u)). Hence, by taking 0 =, follows from v/’

E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597 561

by Modus Ponens applied to Ry, and Ry, —. Since each conjunct 4y is of the form Vat' (u), uc x,
for a quantifier-free formula ', the formula ¥’ can be put into the form 3IRy,, ..., Ry, Vxy"(x),
where /" is quantifier-free, as required. This concludes the proof of Lemma 3.1. [

Proposition 3.1. ESO’(Vd) = ESO’(arity d,vd).

Proof. As before, for simplicity, we give the proof only for d = 1 (the proof of the general case is
similar). First of all, we need to establish a normalization of the logic ESO’(V1). Recall that the
formulas of this class are of the form (after Skolemization) : 3fVx¢p, where f is a sequence of
second-order symbols of various arities, x is a first-order variable, and ¢ is a quantifier-free
formula of signature ¢ Uf (see Section 1.3). We can assume without loss of generality that each
fef is a function symbol: if it not the case, transform each relation symbol R into a function
symbol R of the same arity and replace each atomic formula R(t;, ..., Tq) by R(1y, e Tg) =€,
where ¢ is any constant symbol, belonging to ¢ or existentially quantified (if ¢ does not exist,
create it by adding ¢ to the ESO symbols of the formula). The point is, as we will prove it in the
next lemma, that we can furthermore assume that all the terms and subterms occurring in ¢ are of
the form: t(x) = f(71(x), ..., 7k(x)), where f is a k-ary function symbol of ¢uUf which doesn’t
occur in any of the subterms 7;(x) (i =1, ..., k). Before giving a formal proof of this fact, let us
illustrate it by an example: consider the formula ¢ = Vx : u(u(x,0),v(x)) = v(v(x)), where u, v are,
respectively, binary and unary function symbols and 0 is a constant symbol. The terms and
subterms occurring in ¢ are the following:

‘L'](X) =X, ’Ez(X) =0, ’E3(X) = M(X, 0)7
4(x) = v(x), T5(x) = u(u(x,0),v(x)), 7T6(x) = v(v(x)).
Some of these terms (namely, 75 and 1¢) do not fulfil the above requirement. Let us now introduce,

for each of these terms 7;(x), a unary function symbol %;, and consider the following formulas,
that relate these functions to the terms:

#1(x) = x, #(x) =0, #(x) = u
Ta(x) = o(T1(x)), Ts5(x) = u(f3(x), Ta(x)), 7 v
Now, let us denote by A the conjunction of these six formulas. Clearly, the formula ¢’ =

3%;--- 3TV 1 A(u, 0,0, 71, ..., T6,X) ATs(x) = T6(x) is equivalent to ¢ and has the required form.
The following lemma generalizes this result.

Lemma 3.2. Each formula ¢ in ESO?(V1) is equivalent to a formula ¢' in ESO’(V1), where each
(sub)term of the form f(ti(x), ..., t4(x)) is such that no subterm t;(x) contains the function symbol f .

Proof. As before, we assume without loss of generality that our formula ¢ = 3f Vxy(x) (where
is quantifier-free) contains no ESO relation symbol. Let term(y) denote the set of terms and
subterms of . To each Teterm(y/), we associate a new unary function symbol 7, which intends to
represent 7, and a formula 6.(f, 7, x) which inductively defines the function 7 as follows:

e if 7 is x or a constant symbol, then J.(f, 7, x) is the formula 7(x) = t;

562 E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597

e otherwise, i.e. if 7 is of the form f(7i(x),...,74(x)), 6-(f,7,x) is the formula 7(x)=

S@(x), - T (%))

Now, set ¢ = I (3 cterm@) X [Acctermy) 6 (f T, X) AY7(x)], where ¥ (x) is the formula y(x) in
which each teterm(})) that is not a proper subterm is replaced by #(x). Clearly, ¢’ is equivalent to
¢ and has the required form. This concludes the proof of Lemma 3.2. [

Let us now prove Proposition 3.1 (for d = 1). Let ¢ = 3fVry(¢) e ESO’(V1). Assume (without
loss of generality) that it satisfies the condition of Lemma 3.2. We want to eliminate every
function symbol f* of arity ¢>1 in the ESO prefix f. Let f(to(¢)), ...,f(tx—1(¢)) be the list of
all the occurrences of f in (each t;(¢) is a g-tuple of terms (t!(¢),...,7!(¢))). In order to
eliminate f', we search to interpret each term f(t;(¢)) as the image of 7 by a new unary function. So
let us consider k new unary function symbol Fy, ..., Fr_, and denote by i/ and 6 the following
formulas:

e | is the formula i where every term f (t;(¢)) is replaced by F;(z) and
© 0=Vi,0 Ny [1(0) = () > Fi(1) = Eu(1)]

(Here, 7;(t) = (') is the natural abbreviation for A, ., 7/(¢) = 7,(¢).) Now consider the

following formula ¢ where f no longer occurs:

$=13F,, ..., Fr_1 : OAYN).

We claim that the formula ¢ is equivalent to ¢. The argument of our claim is the well-known easy
fact that follows.

Fact 3.2. Let G: X—>Y and F : X > Z be two functions on the same domain X. Then, the two
following assertions are equivalent:

1. for all x,ye X, G(x) = G(y) implies F(x) = F(y);
2. there exists f . Y — Z such that F = f-G.

To prove our claim, apply Fact 3.2 with the sets X = [k] x D, Y = D, Z = D and the functions
F(i,t) = Fi(t), G(i,t) = 1,(t). Unfortunately, there are two (universally quantified) first-order
variables 7, 7 in the subformula 0 of ¢. In order to obtain an equivalent one-variable formula as
required, we use the same idea and techniques as in the proof of Proposition 2.1. Once again, an
ESO linear order < is introduced: it is used to lexicographically order the set of (¢ + 2)-tuples:
S ={(%i(¢),i,1),i<k,te D}. The crucial point is that, for each value veD? the set I, =
{(ti(2),i,1) : t;(t) = v} forms an interval of S for the lexicographical linear order. In other words,
tuples with the same value t;(z) are contiguous for this order. Since |S| = k|D|, there is a
lexicographically increasing bijection, denoted Lex, of [k] x D onto S, which is defined via the
following formulas ;; and ;..

Y = V(i 0)3(), x) : Lex(j, x) = (n(1), i, 1),

E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597 563

l/1inc EV(]? X)<(k - 17max)3(j/7xl) :
(j/,x") = Succ(j, x) ALex(j,x)<Lex(j,x').

Remark. For readability, we use the suggestive and concise notations V(i,), 3(/, x), etc., that are
easy to translate; Succ(j, x) denotes the successor of the ordered pair (/, x) in the lexicographical
order of [k] x D and similarly for relations = and < between ordered pairs. Notice that our
formal syntax represents the function Lex : [k] x D— D72 by k(g + 2) functions Lex} :D—D,

where i<g + 2 and j<k.

It is now easy to check that the subformula 6 of ¢ is equivalent to the following formula 6':
0" = (tin order <)(ILex) [‘//bij AWine AW tunctl-

Here, the conjunct ¥, expresses the fact that on each interval I, (see above), two successive
elements Lex(j,x) = (t;(¢),i,¢) and LexSucc(j,x) = (t:(¢),7,¢) fulfil F;(¢) = Fy(¢'). That is,
Vtunet 18 the formula:
V(j.x) < (k — 1,max) 3(7,%') 3(i, 1) 30, ¢) :
(j,x") = Succ(j,x) A Lex(j,x) = (t:(¢),i,¢) A Lex(j,x") = (ts(¢),7,1)
A (ni(t) = (1) > Fi(2) = Fy (7).

One easily transforms 0’ and, finally, ¢ into the (Skolemized) ESO’(arity 1,V1) required form.
This concludes the proof of Proposition 3.1 and completes the proof of Theorem 3.1. [

4. Similar results for monotone classes

In this section, each input vocabulary o is required to be relational. Tain Stewart has studied
several logical descriptions of monotone o-problems in NP. In [47] and [48], he showed that
several monotone problems, including HAMILTON and CUBIC-SUBGRAPH, are complete for
monotone-NP via monotone projection translations. In [46], he proved the following theorem,
whose proof is used in the proof of Lemma 4.2:

Theorem 4.1 (Stewart [46-48]). monotone-NP’ = | J, NTIME"" (n?) = ESO”".

Proof. Clearly, we have the inclusions:
ESO”* < U NTIME" (n?) = monotone-NP’ = monotone-ESO?,
d

because of Fagin’s characterization of NP (namely, |J, NTIME?(n¢) = ESO?). The theorem will
be an immediate consequence of the inclusion:

monotone-ESO’ = ESO’™. (4)

Let us prove this inclusion: given a problem Zemonotone-ESO° over a relational signature
o ={Ry, ..., R}, there exists an ESO’-formula ¢ such that 2 = MODELS(¢). The reader can easily

564 E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597

check that, by monotonicity, ¢(R) is equivalent to the following ESO’-formula:

¢ =R : p(R)AR =R,
where R' = (Rj, ..., R}) is a list of new relation symbols such that arity (R}) = arity (R;) = a;,
where ¢(R’) is obtained from ¢(R) by replacing each R; by R. and where R'= R stands for the

conjunction A; Vx,(Ri(x,)— Ri(x,)). Then 2 = MoDELS(¢'), and since the input relation
symbols R; occur only positively in ¢, we conclude that Ze ESO’". [

For any degree d of nondeterministic polynomial time, we can prove the following analogue of
Theorems 2.1 and 3.1, thus refining Theorem 4.1:

Theorem 4.2. For any integer d >0 and any relational vocabulary o, we have:

monotone-NTIME? (n?) = NTIME“* (%)
= BSO”* (arity d,vd) = ESO’" (Vd) = ESO* (var d).

Proof. This theorem is the consequence of a series of class inclusions with, in particular, the two
following lemmas:

Lemma 4.1. ESO°" (arity d,¥d) SNTIME"" (n).

Proof. The proof is a variant of that of Lemma 2.1 to which the reader is invited to refer. Let
2 e ESO°" (arity d,Vd) for a relational signature ¢ = {Ry, ..., R;}. Then 2 = MODELS(¢) for a
formula ¢ = JpVxy(x), where arity (p) = arity (x) =d and ¢ is a disjunctive normal form
Po(X)V vy, 4(x) in which the R/’s occur only positively. Then # is recognized by a
nondeterministic algorithm similar to .o/ (cf. proof of Lemma 2.1) where Part (b) is replaced by
the following new part:

for each ae [n]d, guess a number 7. If i<q check that ([n], g, p)=y;(a).

If not, reject. If no rejection occurs, accept.

It is essential to notice that since 7; is a conjunction of literals where each R;jec occurs
positively, then in each accepting computation, each access to the input can be realized by a
positive 6-NRAM instruction of the form (2+), as required. O

Lemma 4.2. monotone-ESOY(arity d,¥d) = ESO’" (arity d,vd).

Proof. For the sake of simplicity, let us prove this result for d = 1 and ¢ = {R}, where R is a k-
ary relation symbol. The general case is similar. As justified in the proof of Theorem 4.1, any
sentence ¢(R)eESO’? expressing a monotone property of g-structures is equivalent to the
following sentence ¢'(R) e ESO”":

AR : p(R') AVx(R (x) > R(x)),
where R’ is a new k-ary relation symbol and ¢(R’) is obtained from ¢(R) by replacing R by R'.

E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597 565

Now, let us assume ¢(R)e ESO’(arity 1,V1). The equivalent formula ¢'(R) above belongs to

ESO’" but does not belong to ESO(arity 1,V1) in case k> 1, as it is required. More precisely, we
show: if ¢(R) is of the form IWyy(R, v, y) with arity (v) = 1, and if is quantifier-free, then ¢(R)
is equivalent to the following sentence ¢'(R) e ESO’", where arity (R') = k:

WAR VY (R, v,y) AVx(R (x) > R(x)).

We now transform the formula ¢'(R) into an equivalent formula of ESO°" (arity 1,V1) in two
steps:

(1) first, we transform ¢'(R) into ¢, (R) e ESO’" (arity 1);
(2) then, we transform ¢, (R) into ¢,(R)e ESO’ (arity 1,V1).

Let R'(t;(y));.,; denote the set of distinct atomic subformulas of y/(R', v, y) that involve R'. (Note:
each t;(y) is a tuple of terms of the same arity as R’ and R.) Step (1) essentially consists in
replacing each atom R'(t;(y)) by R;(y), where R; is a new relation symbol. More precisely, we
show the following:

Claim. ¢'(R) is equivalent to the following formula ¢,(R) e ESO”" (arity 1):

Nier (Ri(¥)=>R(t:(0) A Y ((Ri)jeps) A
Nier V2 Nier ti(0) = 4(2) = (Ri(y) « Ri(2)) |

where ' denotes the quantifier-free formula \y where each atom R'(t;(y)) has been replaced by R;(y).

WER));, Vy(

Indeed, ¢'(R) clearly implies ¢,(R): interpret R;(y) as R'(t;(y)) for each y. The converse
implication is obtained by defining the Boolean values of R’ as follows, on the universe of the
input structure {[n],R):

(@) R'(t;(y)) == Ri(y) for each iel and ye|n];
(b) R'(x) = R(x) if the tuple xe[n]* is distinct from each tuple #;(y), iel, ye[n].

The coherence of the first item of this definition follows from the third conjunct of ¢,(R).
Conditions (a) and (b), in addition to the first conjunct of ¢,, imply together R’ < R. Finally, from
the formula Yyy/'((R;);.;,v,»), one easily deduces Vyy(R',v,y) by Condition (a). This proves the
claim.

The three conjuncts of ¢,(R) have the required form: they involve only unary ESO symbols
(v, (Ri);c;) and only one first-order variable y, except for the third conjunct in which the new
variable z appears. But this third conjunct can be written in ESO(arity 1,V1):

Claim. The formula y, =Vy N\;.;Vz Niop ti(v) = t;(2) > (Ri(y) © R;(2)) is equivalent to some
Sformula in ESO(arity 1,V1).

A similar assertion has yet been proved in the proof of Proposition 3.1. The only difference is
that we are now interested in unary relation symbols instead of unary function symbols. But the

566 E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597

monotone-NTIME (n?) |[+—"— | NTIME"* (n?)

] }1
monotone-ESQ? (arity d,Vd) —— | ESO” (arity d, Vd) ‘ LN ’ ESO”* (Vd)

} e

monotone-ESO? (var d) —* ESO’* (var d)

Fig. 2. Inclusions between the complexity classes.

proof is nearly the same and the reader is invited to refer to it. This concludes the proof of
Lemma 4.2. [0

Now, we can prove Theorem 4.2 in considering Fig. 2. In this scheme, 4 — B stands for A< B
and 4 < B, for A = B. Besides, the labels of the arrows refer to the following arguments:

(0) follows immediately from the definitions of the involved classes;

(1) follows from the equality NTIME’(n?) = ESO’ (arity d,Vd) proved in Section 2 (Theorem
2.1) and from the definition monotone-¢ = Monotone’ N % for any class of g-problems %

(2) follows from the equality ESO?(arity d,Vd) = ESO?(vard) proved in Section 3 (Theorem
3.1) and from the definition of monotone-%;

(3) is Lemma 4.2;

(4) is Lemma 4.1.

Clearly, this scheme implies the equality between all the involved classes and, in particular, the
equality between the framed classes. This completes the proof of Theorem 4.2. [J

5. Semantical invariance properties of ESO(V1)

In Section 6, we shall prove that some well-known graph problems belong to the class
vertexNLIN. In order to establish these memberships by purely logical means (i.e. by proving the
definability of these problems in ESO(V1)), we first examine, in the present section, some
syntactical extensions of ESO(V1), which will simplify the formulation of graph properties under
consideration. We prove that these syntactical extensions do not enlarge the semantical scope of
ESO(V1), so that the above mentioned properties appear to be in vertexNLIN. Such a result has
already been proved in Section 2: Corollary 2.1 precisely states that existential quantifications
over linear orders (i order <) do not enlarge ESO(V1) from a semantical point of view. This result
is a key argument of many definability results in ESO(V1) and it will be widely used in the present
section. However, this extension will not be sufficient to give a correct and useful ESO(V1)-
formulation of some rather sophisticated graph properties. In particular, the logical descriptions
of many such properties seem to require the use of two first-order variables, in order to fully
describe the behaviour of the edge relation of the graphs. To perform these logical
characterizations in the more restrictive logic ESO(V1), we shall first have to “translate” the

E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597 567

property under consideration into an equivalent property dealing with a spanning forest (resp.
tree) of the graph which, in turn, can be logically characterized with a single first-order variable
(because of the unary arity of the forest). For instance, we shall prove the ESO(V1)-definability of
connectivity using the fact that a graph is connected iff it is spanned by some tree, the latter being
easily expressed in our logic.

For these reasons, the core of this section consists of the proof that ESO(V1) is not enlarged by
existential quantification over forests and over several functions and relations (including transitive
closure) related to forests (Section 5.2). Then we shall concentrate on functional graphs, that is,
graphs of unary functions. We shall state that in those graphs, both transitive closure (Section 5.3)
and a certain notion of distance (Section 5.4) can be defined in ESO(V1). These results notably
attest the robustness of the logic ESO(V1) and, in turn, the robustness of the complexity class
vertexNLIN.

First of all, let us give a precise meaning to the assertion: “‘existential quantification over such
and such a class of structures (linear orders, forests, etc.) does not enlarge ESO(V1)”.

5.1. Existential quantification over sets of structures

In the rest of the paper, we deal with the logic ESO(V1). From now on, we denote it by ESO,
(or ESO{ when we want to restrict it to a particular signature).

Let ¢, T be two disjoint signatures and 7 be a set of finite t-structures. The logic ESO{[7] is the
set of formulas of the form: (3t .7)@ with @€ ESOf*. The semantic of such a formula is naturally
defined: a o-structure (D,) satisfies (31€.7)® iff there exists an interpretation of T on D such
that {D,t) €7 and {(D,o,7) =®. The condition {D,7) €7 will often be denoted by: 1€ .7 (D).
Therefore,

{D,oyE(Ite 7)® iff there exists t€.7 (D) such that{D,g,7) =P

Let o,7,7 be three pairwise disjoint signatures, 7 =sTrRUC(7), 7 =sTRUC(7'). We write
ESO{[7 | =ESOJ[7"] when each formula of the first logic is equivalent (on o-structures) to a
formula of the second logic. In other terms:

ESOJ[7]<ESOJ[7
iff
(V¢ e ESOJ[7]) (3¢’ € ESOJ[F]) s.t. MODELS(¢)') = MODELS(¢b).
When the converse inclusion also holds, we note ESO{[7'] = ESO{[7”']. When this equality holds

for any signature o, we write ESO[7] = ESO[7"]. In the particular case where 7' =0 (i.e.
ESO,[7] = ESO,), we say that existential quantification over J does not enlarge ESO;.

Definition and example. Let us denote by LINORD the set of finite structures { D, < >, where <
is a linear order on the domain D. Corollary 2.1 precisely says that existential quantification over
LINORD does not enlarge ESO;. In our new formalism, we can write:

ESO, [LINORD] = ESOy, (5)

and this equality must be understood as follows: for any signature ¢ and any formula ¢ of
the form (3< eLINORD)Y, with yeESO{'~, there exists a formula ¢ €ESOJ such that

568 E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597

MODELS(¢p) = MODELS(¢’), and conversely. (Notice that the existential quantification over a linear
order <, previously denoted by (Jjin order <) 1S NoWw written: (3< €LINORD).)

The goal of the following subsections is to state such ‘““invariance results” for several sets of
structures 7. Let us mention some easy remarks about relative inclusions between logics
ESO,[7]. Until the end of this subsection, 7,7, 7" denote any three signatures and 7,7, .7"
three sets of structures such that 7 =struUC(t), 7' =sTtRUC(7') and 7" =strRuc(7”). First, observe
that our semantical inclusion is transitive. That is

ESO,[7]SESO,[77] SESO, [7"] = ESO4[7|<ESO; (7. (6)

Of course, this trdnsitivity result can be extended to semantical equalities. That is, (6) still holds
when replacing “<” by “="

Now, suppose 7 is deﬁnable in ESOJ[7”]. In other words, there exists a formula @ =
(37 e 7")¢(7,7') in ESOJ[F] such that 7 = MODELS(®). Then, any formula ¥ = (3re 7)Y(o, 1)
in ESO{[.77] is clearly equivalent to 3t(3¢' € 7') : ¢(1,7') AY(o, 7). This last formula can be written
as (37 e 7")3t¢(1,7') Ay (o, 1), which can be proved to be in ESO{[7”] by easy closure properties
of this logic. Since these remarks hold for any signature o, they can be summarized by:

7 is definable in ESOJ[77] = ESO,[7]<ESO;[77]. (7)

We shall often make use of the following result: we say that .7 is a complete restriction of 7' if
t<= 7, if each structure {D,t)» of 7 can be expanded into a structure {D,7’) belonging to 7'
and if furthermore each structure {D,7')» €7 is an expansion of a structure {D,t) €.7. With
this definition, each formula ¥ = (3t€.7)®(0, 1) of ESO{[7] is obviously equivalent to a formula
¥’ of ESOJ[7"]. Namely, if we denote 7' = tup, then V' = (I1pe 7 ")d(0, 7). Thus we have

7 is a complete restriction of 7' = ESO,[7|<=ESO,[7]. (8)

Definition and example. Let us consider the signature { <, pred, succ, min,max} in which < is a
binary relation symbol, pred and succ are unary function symbols, and min and max are constant
symbols. Let wus furthermore denote by FULL-LINORD the set of finite structures
{D, <,pred,succ, min,max >, where < is a linear order, pred and succ are its associated
predecessor and successor functions, min and max are its associated minimal and maximal
elements. Hence, trivially, LINORD is a complete restriction of FULL-LINORD (consequently,
ESO, [LINORD] € ESO [FULL-LINORD]).

We now mention two easy but useful remarks. Let 7y,...,7x be k signatures such that
0,11, ..., T; are pairwise disjoint. Let 7 | =STRUC(1}), ..., T f SSTRUC(T%) be k sets of structures.
We denote by ESO{[7 1, ..., 7] the set of formulas of the form: (31, €77)--- (Itx € T)P, where
@ e ESO7" ™. The semantic associated to this logic is as expected. Recalling that an equality such
as ESO,[77] = ESO; stands for Vo : ESO{[.7 | = ESOY, one can easily prove:

(Vi=1,....,k: ESOi[7] = ESO,) = ESO,[7, ..., Ti] = ESO,. (9)

E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597 569

As the above implication holds for any signatures t;, we obtain, when 1y, ..., 7; are pairwise
disjoints copies of t: for any .7 =STRUC(7),
ESOl[ﬁ‘] :Esol :>E801[9‘,...,7] :E801 (10)

and we shall keep in mind the meaning of this implication in the following form:

if ESO,[7]=ESO,, then for every signature o, any formula of the form
(3r1€7)---(Frxe T)P, with e ESOT" "™ is equivalent to a formula of ESOJ.

We conclude this subsection with two invariance results of ESO;:

Lemma 5.1. ESO,[FuLL-LINORD] = ESO;.

Proof. Let ¥ = (3(<, pred, succ, min, max) € FULL-LINORD) @ be a formula in ESO{ [FULL-LINORD],
where ¢ is any signature. Then ¥ has the same models {(D,s) as

¥’ = (I< eLINORD) (Ipred, succ, min, max) (&' A P),
where @' is the formula
Vx : (min<x<max) A (x #min— (pred(x) <x Asucc pred(x) = x)).

Indeed, @' forces pred, succ, min, max, respectively, to be the predecessor, successor, minimum
and maximum related to the existentially quantified linear order <: just consider a strictly
increasing enumeration of D according to <, say a;<a<---<a,, and prove, from &', that
a; = min, a, = max and for each 1 <i<n, a; = pred(a;;1) = succ(a;_1) (by recurrence on i). As ¥’
clearly has a prenex form in ESO{[LINORD], it yields ESO, [FULL-LINORD] = ESO; [LINORD]. But the
converse inclusion also holds (see the previous example). Therefore ESO;[FULL-LINORD] =
ESO,[LmvorD] and the conclusion follows from the Egs. (5) and (6) stated above. [

The last result has a different flavour, since it deals with ordered structures, that is, with
structures over a signature that contains a built-in linear order. More precisely: let ¢ be any
signature and < be a binary relation symbol. We call ordered o-structure any structure S =
{D,a, <) over the signature 6 u{ <} in which < is interpreted as a linear order. This allows to
identify D to the initial segment of N of size |D| and to view some functions over this initial
segment as functions over D.

In particular, let us temporarily use the following notations: if |D| = n, and if k is an integer
strictly smaller than n, we denote by k the kth successor of the minimal element of (D, <). E.g., if
min (resp. max) denotes the minimal (resp. maximal) element of (D, <), then 0 = minandn — 1 =
max. Then, we denote by ARITH. (D) the set of functions +, —, x,div,mod : D x D— D defined as
follows: for all k,/ <n,

k+7= Min(k+¢,n—1)
kx? = Min(kt,n—1)

k—¢ = Max(k —¢,0)

570 E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597

where, assuming 7 #0, ¢ and r are the unique integers such that k = ¢/ + r, g<n, r </, and where
Min (resp. Max) maps each (i,j) e N? to i (resp. j) if i<, and to j (resp. i) otherwise. (We write k 7
instead of k x 7.)

For any signature o, we denote by STRUC. (o) the set of ou{< }-structures in which < is
interpreted by a linear order. A subset of STRUC (¢) will be called a set of ordered o-structures and
we will denote it by 7 - to recall that the interpretation of ¢ over a structure S€.7 - depends on a
built-in linear order on S. Given a set of ordered t-structures 7 -, we denote by ESO{[7] the set
of formulas of the form:

(FreT)P(<,0,1)

with @€ ESO;”". The semantic of this logic is as follows: the models of such a formula are
ordered structures. An ordered g-structure { D, <,c) satisfies (Ite7)@ iff there exists an
interpretation of T on D such that: {D, <,t>eZ . and (D, <,0,7)=®. Finally, we write
ESOf{[7 -] = ESOf[<] when for each formula ¢ e ESO{[7 _] there exists a formula &' € ESO{[<]
such that @ and @' have the same ordered o-models. The last result of this subsection is given
without proof. It attests the invariance of ESO; under arithmetical extensions.

Lemma 5.2 (Olive). For any signature o, ESO{[ARITH. | = ESO{[<].

Proof. We just sketch very roughly the proof. It can be found in [36, Theorem 2.31, p. 104]. First,
one can prove the definability in ESO{[<] of the unary functions my, 7;, 7> and of the constant b
defined as follows over a domain D: b = | 1/|D| | and VxeD: my(x),m(x), m2(x)<b and x =
mo(x) + 71 (x)b + mp(x)b?. This is done recursively by forcing mg(succ(x)), mj(succ(x)) and
ma(succ(x)) to fit their right values, with respect to the values of 7y(x), 7;(x) and 7, (x). Then, one
can define the restrictions of 4+ and x to [b]. More precisely, the unary functions 4 and M such
that VxeD, A(x) = mo(x) + m;1(x) and M(x) = no(x)7m;(x) can be defined in ESOf{[<]. Once
again, this is done recursively, by stating the value of A(x) (resp. M(x)) when 7;(x) = 0 and by
relating A(x + b) (resp. M(x + b)) to A(x) (resp. M (x)) (notice that the function x> x + b is itself
trivially definable from succ). Last, the definability of the functions + and x is easily deduced
from those of 4 and M. The definability of —, div and mod is proved similarly. [

5.2. Prefix order in a forest

The results of this subsection and of the next one (“Transitive closure of a function’) are
essentially due to a collaboration with Lautemann [32] and Ranaivoson [42].

Let D be a finite domain. We say that a function F : D— D is a forest over D if F has no cycle
except the loops F(x) = x. We denote it by F eFOReST(D). If F : D— D is a forest, we denote by
descr(x) the set of the descendants of the node xe D in the forest, including x. In other words,
descr(x) = {yeD: JieN s.t. Fi(y) = x}.

A prefix order of the forest {D,F) is a linear order < of D satisfying: Vxe D, F(x)<x and
descp(x) is an interval with respect to <. We write (F, <)€PREFORD-FOREST(D) when
FeForesT(D) and < is a prefix order on this forest.

E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597 571

Fig. 3. A forest F (bold lines) and its left function (dotted lines).

One can easily prove that a linear order < is a prefix order of a given forest < D, F' if, and only
if, for each xe D there exists /€D such that descp(x) = [x,/]. The node /, is thus the last
descendant of x in F according to < and the function x+ [is called the last function associated to
(F, <).

Given a prefix ordered forest (D, F, <), each node xe D which is not a root may have siblings
smaller than it (according to <). If this is the case, we call left sibling of x the largest of those
siblings; if it is not, we assume that the left sibling of x is x itself. We extend this notion to the
roots in the following way: the left sibling of the smallest root r; is ry itself; the left sibling of a root
r>ry is the biggest root smaller than r. Finally, we call left function associated to (D, F, <) the
unary function over D which maps every node onto its left sibling. Fig. 3 shows a forest F together
with a left function (in dotted lines) associated to the prefix order underlying the chosen planar
representation of F.

The root function associated to F maps each xe D onto the root r of its component in the forest
(i.e. F(r) =r and xedescp(r)).

We say that a tuple (F,root, last, left) is a full forest over D if:

® FeFOREST(D);

e root is the root function associated to F;

e |ast and left are, respectively, the last function and the left function associated to F, relatively to
the same prefix order over F.

We denote by FULL-FOREST(D) the set of such tuples.

Proposition 5.1 (Lautemann [32] and Ranaivoson [42]). Let D be a finite domain and F, root, last,
left be four unary functions over D. Then (F,root,last, left) e FULL-FOREST(D) if, and only if, there
exists (<, pred, succ, min, max) e FULL-LINORD(D) such that, for every x€ D:

(a) F(x)<x<last(x)<lastF(x);
(b) one of these three assertions is true:
(i) pred(x) = F(x) aleft(x) = x;
(i) x = F(x) aleft(x) = Fleft(x) Alast left(x) = pred(x);
(i) x#F(x)Aleft(x) # Fleft(x) A Fleft(x) = F(x) alast left(x) = pred(x);
(c) (F(x) = x—root(x) = x) ArootF(x) = root(x).

Proof. A full forest trivially fulfils conditions (a) through (c), if we take for < the prefix order
over F according to which last and left are the last and left functions associated to F. So, we only
have to prove the sufficiency of (a)-(c). That is, let us assume that there exists

572 E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597

(<, pred, succ, min, max) e FULL-LINORD(D) such that (F,root, last, left) satisfies conditions (a) to
(c) for every xe D and let us prove that

e F'is a forest and root is its root function;
® |ast and left are the last and left functions associated to F relatively to the same prefix order.

In the following, we shall often use the characteristic property of FULL-LINORD given in the proof
of Lemma 5.1. We recall it there: let < be a linear order over D, pred,succ: D— D and
min, maxe D. Then (<, pred, succ, min, max) e FULL-LINORD(D) iff for every xe D,
(d) (min<x<max) A (x#min— (pred(x)<xAsuccpred(x) = x)).
F is a forest and root is its root function.
F

According to (a), any F-circuit xj 5.8 Xp LN x1 must satisfy x;>--->x,>x; and thus
x| = --- = x,. Consequently, all F-circuits are loops and F is a forest. Furthermore, Condition (c)
allows to prove inductively that root is constant on each connected component of F and maps
each root to itself. That is, root is the root function associated to F.

last and left are the last and left functions associated to F relatively to the same prefix order.

Actually, we shall prove that the above existentially quantified < is necessarily a prefix order
over D and that last and left are the last and left functions associated to F according to this prefix
order. That is, we will prove the statement: for each x€ D, descp(x) = [x, last(x)] and left(x) is the
left sibling of x according to <. Notice that Condition (a) affirms the inclusion
[x,last(x)] < [F(x),last F(x)] which in turn, allows to prove inductively the inclusion
descr(x) < [x, last(x)]. This will help us to prove the above statement by recurrence on the level
¢ of x in the forest F. That is, we prove by induction that the following assertion holds for any
/<|Dl:

for each node x of level ¢ in F :

descr(x) = [x,last(x)] and left(x) is the left sibling of x.

We denote by (H,) this recurrence hypothesis. In order to prove that Hy and (H, = H;.)
hold, let us notice the following: if xe D is a root of F, it must satisfy (bi) or (bii) (since condition
(biii) demands F(x)#x). In the first case, left(x) = x ; in the second case, left(x) is a root (since
Fleft(x) = left(x)) such that last left(x) = pred(x). But this last equality implies, by Conditions (d)
and (a), that left(x) is smaller than x. Consequently, in both cases left(x) is a root smaller than x.
Analogously, any “non root” node x must satisfy (bi) or (biii). And we can prove as above that
these conditions force left(x) to be a “non root” smaller than x. So, we will remind the following
consequences of Condition (b):

if x is a root (resp. a nonroot node), then x satisfies (bi) or (bii) (resp. (bi) or (biii)) and left(x) is
a root (resp. a nonroot node) smaller or equal to x.

We will call this assertion Condition (5’).

The case of roots (Hp).

E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597 573

Let ri <r, < --- <r be the strictly increasing list of the roots of F. We first prove the two following
facts:

e pred(r;) = r; = left(r;). Indeed, since r; is a root, left(r}) is a root smaller or equal to r; (by (b))
and thus left(r;) = r; (since r| is the smallest root). Furthermore, r; satisfies (bi) or (bii). In the
first case, pred(r;) = F(r;) = ry; in the second, the equality last left(r;) = pred(r;) leads to
last(r;) = pred(r;) and then, to r; <pred(r;) (see Condition (a)). Therefore, we still have r; =
pred(r;). Note that, by Condition (d), this equality means r; = min.

e For every i<k, pred(r;.1) = last(r;) and left(r;.;) = r;. Let us prove this by recursion on i.

This assertion is fulfilled by i = 1: r, being a root, it must satisfy (bi) or (bii) (by (§')). If it
satisfies (bi), then pred(r,) = F(r,) = r, and thus r, = min (by (d)). But this contradicts the fact
that r, >r;. Therefore, (bii) must hold for r,. It implies pred(r,) = last left(r,) and consequently
left(ry) <last left(r,) = pred(r;) <r; (by (a) and (d)). Then left(r,) is a root (by (¥')) strictly smaller
than r,. That is: left(r,) = r; and the equality pred(r,) = last left(r,) becomes pred(r,) = last(r;).

Now, consider je{2, ...,k — 1} and assume that the recurrence hypothesis is satisfied for each
i<j. The node r;; is a non minimal root. For the same reasons than r», it fulfils (bii) and left(r;,)
is a root strictly smaller than rj;. Let i<j be such that left(rj;;) =r;.. By the recurrence
hypothesis, last(r;) = pred(r;11). In the same time, last left(r;y;) = pred(rjy1) (by (bii)).
Consequently, pred(rj,i) = pred(riy1) and, since rj11 #min and ri1 #min: rjy1 = riy1. Therefore,
i = j and left(rj;1) = r;, last(r;) = pred(rjs1).

So, we have proved the following sequence of inequalities:

[r1,last(r))] <[ra2,last(ry)] < -+ <[rg, last(ry)], (11)

with r; = min = left(r1), pred(r;11) = last(r;) and left(r,.;) = r;. This shows that left fulfils its
expected interpretation, as far as roots are concerned. Also, schema (11) obviously shows that the
intervals [r;,last(r;)] are disjoint. However we have seen before that for each i, descp(r;)<
[ri,last(r;)]. As the subsets descp(r;), i=1,...,k, clearly form a partition of D, these last
inclusions lead to the demanded equalities: descg(r;) = [r;, last(r;)].

Inductive step (H; = Hy,1).

Let us now assume that H, holds for a given />0. In order to prove that H,,; holds, we only
have to prove that for each node x of level /7 and for each child y of x in the forest: descp(y) =
[v,last(y)] and left(y) is the left sibling of y. So, suppose that xe D is a node of level / and denote
by x; <x; < --- <X, the strictly increasing list of its children. We prove in “one move” that all the
x;’s fulfil the expected conditions. The proof is almost the same as in the base case:

First, x;, which is not a root, must fulfil (bi): otherwise, by (#'), it would fulfil (biii), that is:
left(x;) is not a root, Fleft(x;) = F(x;) and last left(x;) = pred(x;)<x;. Thus, left(x;) would
be a sibling of x; strictly smaller than x;: a contradiction. Thus, pred(x;) = F(x;) = x and
|eft(X1) = X1.

Now, we can inductively prove that for each i<p, pred(x;;;) = last(x;) and left(x;;;) = x;: by
their definition, all the x;’s, i> 1, have to satisfy Condition (biii) (if such an x; satisfies (bi), then
pred(x;) = F(x;) = x = pred(x;): a contradiction). For each i>1, this implies that left(x;) is a
sibling of x; strictly smaller than x; and such that last left(x;) = pred(x;). For i = 2, this imposes

574 E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597

left(x,) = x; and last(x;) = pred(x;). Then, one shows recursively, similarly to the base case, that
pred(x;+;) = last(x;) and left(x;y;) = x; for each i=1,...,p— 1. Thus we have proved the
decomposition scheme:

x<[xi,last(x)] <[x2,last(xy)] < -+ <[x,, last(x,)], (12)

with pred(x;) = x, pred(x;;1) = last(x;) and left(x;;;) = x;. The scheme (12) obviously implies
that the sets {x}, [xi,last(x1)], ..., [xp,last(x,)] are mutually disjoint. Moreover, by the induction
hypothesis, we have descr(x) = [x,last(x)]. Since for each i, descr(x;) = [x;,last(x;)] and since,
trivially, the sets {x}, descp(x1), ...,descr(x,) form a partition of descr(x), the same argument
as above allows to conclude that descr(x;) = [x;,last(x;)] for each i. This finally assures that <,
last and left fit their expected interpretations and concludes the proof of Proposition 5.1. [

Corollary 5.1. ESO,[FULL-FOREST] = ESO;.

Proof. Proposition 5.1 precisely states that the set of structures FULL-FOREST is definable in
ESO, [FULL-LINORD], via the formula:

3(<, pred, succ, min, max) € FULL-LINORD VX :
{ F(x)<x<last(x)<lastF(x) } A
pred(x) = F(x) aleft(x) = x

v

x = F(x) aleft(x) = Fleft(x) alast left(x) = pred(x)
\2

| x# F(x) Aleft(x) # Fleft(x) A Fleft(x) = F(x) Alast left(x) = pred(x)
A { (F(x) = x—>root(x) = x) ArootF(x) = root(x) }.

As ESO,[FULL-LINORD| = ESOy, by Lemma 5.1, FULL-FOREST is also definable in ESO;, and the
conclusion follows from Implication (7). U

We shall now state a generalization of this result, using the formalism described in the previous
subsection. First, let us introduce some new notations:

® FULL-FOREST +TC is the set of structures (D, F,root,last left, F7*> such that:
(F,root, last, left) e FULL-FOREST(D) and F* is the transitive closure of F (that is: F*(x,y) iff
JieN : F'(x) = y) and

® FULL-TREE + TC is the set of structures { D, T, root, last, left, 7% > which are in FULL-FOREST + TC
and such that 7 is a tree (i.e. 7 is connected).

Corollary 5.2 (in collaboration with C. Lautemann and S. Ranaivoson). The following equalities
hold:

(a) ESO,[FULL-FOREST + 1] = ESO,; and
(b) ESO;[FULL-TREE + TC] = ESO;.

E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597 575

Proof. (a) Suppose F is a forest of domain D, < is a prefix order over F and last is the last
function of F with respect to <. Then for any x,yeD, F*(x,y) holds iff xedescp(y). But
descr(y) = [v,last(y)]. Therefore we have: F*(x,y) iff y<x<last(y).

Now, let us denote by @ the quantifier-free matrix of the formula described in the proof of
Corollary 5.1, so that FULL-FOREST is defined by the formula:

3(<, pred, succ, min, max) € FULL-LINORD Vx :
O(x, <, pred, succ, min, max, F, root, last, left).

Since this formula forces (F, <) to be a prefix ordered forest and last to be the associated last
function, it is clear that each formula 3(F,root,last,left, F*)® of ESO;[FULL-FOREST + TC| is
equivalent to the formula:

3(<, pred, succ, min, max) € FULL-LINORD 3F, root, last, left, F* : (Vx @(x)) A

where @' is obtained from @ by replacing each atomic formula F*(#;(x), t2(x)) (where #1(x), t(x)
are terms over the only first-order variable x occurring in @) by the formula
t(x) <t (x)<last(#2(x)). As this formula clearly belongs to ESO;[FULL-LINORD], it can be written
in ESO;, by Lemma 5.1. Finally, each formula of ESO; [FULL-FOREST + TC] is thus proved logically
equivalent to a formula of ESO; and the result follows.

(b) A tree is a forest with only one root. Therefore, each formula

(T, root, last, left, T*) e FULL-TREE + TC : @

in ESO; [FULL-TREE + TC] is equivalent to the formula:

3(T,root, last, left, T*) e FULL-FOREST + TC 3r : (Vx :root(x) =r)A D,

which can be written in ESOy, by (a).
This concludes the proof of Corollary 5.2. [

We conclude this subsection by a remark which relates the statements of Corollary 5.2 to the
way we will use them in the following. First, let us introduce the following definitions:

® ROOTED-FOREST is the set of structures { D, F,root) such that F e FOREST(D) and root is its root
function;

® FOREST + TC is the set of structures { D, F, F*) such that F eFOREST(D) and F* is its transitive
closure.

® ROOTED-FOREST + TC is the set of structures <D, F,root, F*) such that (F,root) is in
ROOTED-FOREST(D) and (F, F*) is in FOREST + TC.

® TREE is the set of structures < D, T) such that T is a tree.

® TREE + TC is the set of structures (D, T, T* > such that T'e TREE and T is its transitive closure.

Remark. The above sets of structures are all complete restrictions of either the set FULL-FOREST +
TC or the set FULL-TREE + TC. Therefore, by Corollary 5.2 and Implication (8), existential
quantifications over these sets does not enlarge ESO;.

576 E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597

5.3. Transitive closure of a function

Let D be a finite domain of cardinality n>2 and f a unary function over D. We also call f the
directed graph of £, that is the binary structure (D, E), where E(x, y) holds if f(x) = y. The shape
of functional graphs are well-known: they look as forests, except that the root of any connected
component can be replaced by a cycle. Such a graph is represented in Fig. 4.

Let us now consider a forest F of domain D. We say that F is obtained from f if each root of F'is
on a circuit of / and if furthermore F and f coincide on every xe.D which is not a root of F. A
forest Fy obtained from the function fj is given in Fig. 5.

Lemma 5.3. Let D be a finite domain and f:D—D. Let F be a forest of domain D, rootp its
associated root function and F* its transitive closure.

(a) F is obtained from f if and only if, for every xeD:
rootr f(x) = rootg(x) and F(x)#x—-F(x)=f(x).
(b) If F is obtained from f | then for every x,ye€D:

Srey) i Fr(x,p) v (F(x,rootp(x)) A F"(frootr(x), y)),
where f* is the transitive closure of f (that is: f*(x,y) iff JieIN : fi(x) = y).

Fig. 4. A unary function f; over D = {0, ..., 19}.

Fig. 5. A forest Fy obtained from fj.

E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597 577

Proof. Let us first notice that if /e FOREST(D) fulfils (a) and if xy, ..., x, is a tuple of nodes distinct
from any root of F, then we clearly have:

(a)

(b)

X1X3...X, 1s a path in f iff xyx,...x, is a path in F. (%)

The “only if” condition is trivial. Let us check the “if”” one: the equality rooty f(x) = rootg(x)
guarantees, by induction on f, that the function rootz is constant on each connected
component of f. Therefore, each connected component C of f contains exactly one root of F,
and we only have to verify that this root lies on the circuit of C. Assume, for the sake of a
contradiction, that the f-circuit x;x; - x,x; of C does not contain any root of F. Then, by (x),
X1X2---X,X1 1s also a circuit of F. This implies x; = x, = --- = x,, (since F is a forest) and thus,
x1 = F(x;): a contradiction.

“Only if’. Let x = x; EN X EEA Xp EN y be a simple path from x to y in f. If none of the

x;’s is a root for F, then this path is also a path in F and we have F*(x,y). Otherwise, let i be
such that F(x;) = x;. This i is unique, since there is only one root in each connected
component of /" and since the path xx;---x,y is simple. Consequently, xx>...x; and x;ji...y
are paths in f that do not contain any F-root. Hence they are paths in F and we have F*(x, x;)
and F*(x;11,x). The equalities x; = rootp(x) and x;;; = f(x;) yield the conclusion.
“If”. If F*(x,y), then either x = y, and the conclusion is clear, or there exists a simple path
F F F

X=X — -+ — X, — yin F such that F(x;)#x; for every i (since the path is simple). By (x),
this F-path is therefore also a path in f and we have f*(x,y). If F*(x,rootg(x))A
F*(frootr(x),y), the previous remark leads to f*(x,rootg(x)) Af*(frootg(x),y) and there-
fore, to f*(x,y). O

The proof of Assertion (b) leads to the following remark, that will be used in the
next section:

Remark. Suppose that /*(x,y) holds and call P the simple path from x to y in f. Then:

either P is also the path from x to y in F,
or P has the form xx;---rootg(x)frootr(x)---x,y,
where x...rootr(x) and frootg(x)...y are also paths in F.

The previous lemma has an immediate consequence, in terms of “‘robustness’ of the class ESO;.
Let us first define the following class of structures:

FUNCTION + TC is the set of structures <D, f,f* > where f is a unary function over D and f™ is
the transitive closure of f.

Corollary 5.3. ESO,[FuNcTION + TC] = ESO;.

Proof. It immediately follows from Lemma 5.3 that each formula

Y = 3(f,f*) EFUNCTION + TC: @(f, f)

578 E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597

of ESO; [FUNCTION + TC] is equivalent to the formula ¥
3(F, rooty, F*) € ROOTED-FOREST + TC :
(Vx: rootgf(x) = rootp(x) AF(x)#x— F(x) =f(x))
AD'(f,F,rootg),

where @' is obtained from @ by replacing each atomic formula f*(z;(x), 7>(x)) by the formula:
F*(t1(x), t2(x)) v (F*(t1(x), rootg (21 (x))) A F*(frootp(t1(x)), t2(x))).

The formula ¥’ so obtained is in ESO;[ROOTED-FOREST + TC| and thus, by Corollary 5.2, it can be
written in ESO;. Hence the result. O

5.4. Distance in an ordered functional graph

The goal of this subsection is to refine the main result of the previous one: we have stated in
Corollary 5.3 that the transitive closure of a unary function can be expressed in ESO;. That is, we
can express, in this logic, that there exists a path between two nodes of a given functional graph.
But what about the length of this path? Can we also define it in ESO;? In other words, can we
define in ESO; the function dist;, with respect to a given unary function f, that maps each pair
(x,y)ef* onto the length of the shortest f-path between x and y? A problem arises in this
formulation: such a function dist, has to take its values in N. Thus it cannot be described, a priori,
as the interpretation of a function symbol over a domain D. But we have seen, in Section 5.1, how
to overcome this difficulty: when a domain D is given with a built-in linear order, its elements can
be identified to the nonnegative integers 0,1, ...,|D| — 1. As the distance function maps each
ordered pair (x,y) of D x D onto an integer strictly smaller than |D|, it can be represented by a
binary function over D, provided D is equipped with a linear order. And this will be also the case
for some other functions (height, length) considered in this subsection. Once our above question
will be well reformulated, we shall answer it positively (Corollary 5.4). For this purpose, let us
briefly introduce some new definitions:

Let (D, <) be a linearly ordered domain, whose elements are denoted by 0, 1, ..., |D| — 1. Let f
be a unary function over D.

When f*(x, y) holds, there exists a unique simple path from x to y in . We call the distance from
x to y in f the length of this path (i.e. the number of edges occurring in the path). It follows that, if
f*(x,») holds, the distance from x to y in f is the least i<|D| such that y = f(x). We call the
distance function associated to f according to < the binary function over D that maps each pair
(x,y)ef™* to the (representative of the) distance from x to y in f. For the sake of completeness, we
assume that this function maps each (x,y)é¢f™ to 0.

The length of x in f is the length of the circuit of the f-connected component on which x lies. We
call length function associated to f with respect to < the unary function over D that maps each
xe D onto the (representative of the) length of x in f.

For the function represented in Fig. 4 for instance, the distance from 11 to 2 is 6 and the length
of 11 is 4.

Besides, if F is in FOREST(D), the height of x in F is the distance from x to its F-root, that is,
the smallest i <|D| such that F(F'(x)) = F'(x). We call height function associated to F with respect

E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597 579

to < the unary function over D that maps each xe D onto the (representative of the) height of x
in F.

Let f and dist be two function symbols of respective arities 1 and 2. We denote by FUN + DIST -
the set of ordered structures (D, <,f,dist) of signature (f,dist) in which dist is the distance
function associated to the unary function f* with respect to the linear order <.

Lemma 5.4. Let {D,f,f") eFUNCTION + TC and < be a linear order over D. Let dist; : D x D— D.
Then dist; is the distance function associated to f with respect to < iff:

there exists (F,rootp, F*) € ROOTED-FOREST + TC(D),
there exists (+, x, —,div,mod) € ARITH (D),
there exist heighty, length, : D— D,

such that the following conditions (a—d) hold.

(@) Vx: rootgf(x) =rootr(x) A (F(x)#x—>F(x)=f(x));
b) Vo - F(x) = x—heightz(x) =0 A
(0) VX p(4) % x - height,-(x) = 1 + height, F(x);
(c) Vx: length,(x) = 1 + heighty f rootr(x);
(d) for every x,y,ze D, the assertion z = dist/(x, y) is equivalent to:
{/"(x,y) AF*(x,y) nz = height(x) — heightz(y) }
v {f*(x,y) A=F*(x,y) Az = heightz(x) + length,(x) — height.(y)}
v {f*(x,y)Az=0}.

Proof. The forward implication is easy (see Fig. 5). We prove the converse implication by looking
at the following consequences of statements (a—d):

(a) This is the condition for F to be obtained from f (see Lemma 5.3).

(b) By this condition, height takes the value 0 on each root, and each further step outside the
loop increases its value by one. This inductively forces height, to be the height function associated
to F according to <.

(c) Let xe D. Recall that the length of x in f is the length of the cycle of the f-connected
component of x. As this cycle contains rootg(x), it can be written:

rootg(x) i>frootF(x) L4 rootg(x).

Thus, the length of x in f is 1 plus the length of the f-path frootz(x) EAE rootr(x). But this

path is also a path in F and its length can be viewed as the distance from frootz(x) to rootr(x) in
F, that is, as the height of frootr(x) in F. Therefore, the length of x in f is 1 4 height f rootz(x)
and Condition (¢) implies that length, is the length function associated to /" according to <.

(d) Let us temporarily denote by Distr (resp. Disty) the distance function associated to F (resp.
f) according to <. Since F is a forest, we clearly have, for any xeD:

Distr(x, rootr(x)) = heightz(x)

580 E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597

and consequently, for any (x,y)e F*:
Distr(x, y) = Distg(x, rootg(x)) — Distp(y, rootg(y))
= heightz(x) — heightz(»).
Now, let us “compute” Dists(x, y) according to the situation of the ordered pair (x, y): if /*(x,)
does not hold, then Dists(x,y) = 0; if /*(x, ») holds, let P be the simple f-path from x to y. Then

Dist(x,) is the length of this path and we have, by the remark of Section 5.3: either P is also an
F-path, or P has the form

p=xL ... L rooty(x) ER f(rootp(x)) LN Ly,

where x...rootp(x) and frootg(x)...y are also paths in F. The first case yields
Dists(x,y) = Distg(x, y) = heightz(x) — heightz ()
and the second one:
Dist(x, y) = Distg(x, rootr(x)) 4+ 1 + Distg(frootz(x), y)
=heightz(x) + 1 + height;(frootr(x)) — heightz(»).
That is, by Condition (c):
Disty(x, y) = heightz(x) + length,(x) — heightg ().

It is now easily seen that Condition (d) implies the equality dist; = Distr.
This concludes the proof of Lemma 5.4. [

Corollary 5.4. ESO;[FUN + DIsT.| = ESO,[<].

Proof. By Lemma 5.4, every formula
¥ = 3(f,distr) eFUN + DIST. : (<, 0,f,disty)

of ESO{[FUN + DIST .| has the same ordered models as the formula:

3(f,f*) EFUNCTION + TC
3(F,rootr, F*) € ROOTED-FOREST + TC
3(+, x, —, div,mod) € ARITH -
Jheight dlength,
rootgf (x) = rootg(x) A (F(x)#x—>F(x)=f(x)) A
(F(x) = x—>heightz(x) =0) A
Vx . . A D,

(F(x)#x—heightz(x) = 1 4 height; F(x)) A
length,(x) = 1 + height f rootr(x)

where @' is obtained from @ by replacing each atomic subformula

ty = disty(uy, vy)

E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597 581

(where u,, vy, t, are terms built over the only first-order variable x occurring in @) by the formula
{f*(ux,vx) AF*(uy, v) Aty = heighty(uy) — heightz(vy) }
Vo (s vx) AF (uy, v) Aty = heightg(uy) — heightz(vy) + length, (u,) }
v o (uy, o) Aty =0}
The formula ¥’ so obtained can be written in ESO{[<] by Corollary 5.3, Corollary 5.2, Lemma
5.2 and Implication (9) of Section 5.1. [

Remark. We have said that this last result holds in case the involved structures are equipped with
a built-in linear order. Otherwise, the statement of Corollary 5.4 has no precise meaning since the
notion of “distance function” must refer to a linear order. But what happens if we consider an
existentially quantified linear order < ? We are still able, in this case, to build the functions height
and length and the set ARITH. related to <, as in Lemma 5.4. And we can in turn define a notion
of distance associated to a given unary function f according to this linear order. Of course, an
assertion of the form ¢, = dist/(u,,v,) for such a function dist; is of no intrinsic interest since it
has different meanings according to the choice of <. On the other hand, an equality such as
disty(uy, vy) = dist(u/,, v.) is order invariant. That is, if it holds for (the distance function related
to) a given linear order, then it holds for any linear order. Thus, our ability to express the distance
function of f according to a (existentially quantified) linear order < allows to say, in ESOy, that
two ordered pairs of nodes (uy, v) and (i, v',) are linked by paths with the same number of edges
in a given functional graph. In other words, the logic ESO; is not enlarged if we allow
subformulas of the form disty (i, v.) = dists (1, v/.), where dist is a distance function associated

to a unary function f involved in the formula. The details are left to the reader.

The last result of this section does not refer explicitly to graph properties, although it is a
straightforward consequence of the ESO;-definability of the distance function of a functional
graph. By the definability of transitive closure, we can easily assert in ESO; that a unary function
g 1s obtained by iterated compositions of a given unary function f (i.e. for each x, there exists ie N
such that g(x) = f7(x)). Indeed, this assertion is equivalent to g =/*, where f* denotes the transitive
closure of /" and g is viewed as an edge relation, thus it can be translated in ESO; by: Vxf™(x, g(x)).
Now, if we restrict our attention to ordered structures, the definability of distance functions allows us
to refine the previous assertion by specifying, for each x, the number i of compositions of f needed to
pass from x to g(x) = f?(x). This is the meaning of the next lemma. Let us formalize it:

Let (D, <) be a linearly ordered domain and f', g, & be three unary functions over D. We denote
by g = f" the fact that g=f* and that for each x, h(x) is the (representative of the) number of
applications of f over x needed to pass from x to g(x). In other words, g = " means:

vxeD: g(x) = /") = [/f (x)
h(x) times

Now, we denote by ITER-COMPO. (for iterated composition) the set of ordered structures
(D, <,f,g,h)> such that g = f”. Then:

Lemma 5.5. ESO,[ITER-cOMPO | = ESO;[<].

582 E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597

Proof. Let /" be a unary function over a linearly ordered domain (D, <). Let length, and dist; be
its corresponding length and distance functions according to <. Consider x, ye D and suppose
that there exists ie N such that y = f7(x) (i.e., suppose f*(x, y)). Then, by definition of the distance
function, dist/(x, y) is the least such i. Furthermore, if y is not on a circuit of f then there is a
unique path in f from x to y and therefore dist/(x,y) is the unique i such that y = f'(x).
Otherwise, there may exist some j>dists(x,y) such that y = f/(x). More precisely, if y lies on a
circuit of f, then:

e cither y is a loop, and Vj>dist/(x,»): y = f/(x),
e or y lies on a f-circuit of length >1 (or equivalently: dist(f(y),»)>0) , and therefore
flendth () () = y, which yields, for any j > dist;(x, y):

y = f/(x) iff j — disty(x,y) = Oflength(x)].

Finally, under the assumption f*(x, y), the assertion y = f7(x) is equivalent to:
{i=dist/(x,) }
or
{/(y) =y and i>dist;(x, y) }
or
dist/(f(v),»)>0 and i>dist/(x,y) and
{ (i —dist/(x,y)) mod length/(x) = 0 }

Consequently, for any functions g,4: D— D and any xe D such that f*(x, g(x)), the assertion
g(x) = f"™)(x) is equivalent to:
{ h(x) = dist;(x,9(x)) }
or
{f9(x) = g(x) and h(x)>dist;(x,g(x)) }
or
dist/(fg(x),g(x)) >0 and h(x)>dist/(x,g(x)) and
(h(x) — dist/(x, g(x))) mod length,(x) =0 '
Before concluding, it remains to notice that
o g=f"iff (g=f* and VxeD: g(x) = ") (x));
o g f*iff (VxeD: x = g(x) or dists(x, g(x))>0);
e the function length, is completely characterized by the following facts: it is invariant on each

connected component of f; it maps each loop onto 0; for each x lying on a f-circuit of length

>1, i.e. for each x such that x Lf(x) L4 x is a f-path of length > 1, length, take the

value 1 + dist/(f(x), x).
It is now easy to see that for every signature ¢, any formula
3(f,g,h) EITER-COMPO. : P(0)

E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597 583

of ESOf{[ITER-COMPO | is equivalent to the formula:
3(+, x, —,div,mod) € ARITH
A(f, dist;) eFUN + DIST . Jlength, Jg 3h :
Y A D,

where ¥ is the conjunction of the following first-order formulas over the signature
{+, x, —,div,mod, f, dist, length,, g, h}:

Yy =Vx @ length,(f(x)) = length,(x) A
f(x) =x—length,(x) =0 A
dist(f(x),x)>0—length,(x) = 1 + dist,(f(x), x),
Yo =Vx o fg(x) = g(x) vdistr(f9(x),g(x)) >0,
Y3 =Vx o h(x) =distr(x,g(x)) v
{f9(x) = g(x) A h(x)>dist(x,9(x)) } v

dist/(fg(x),g(x)) >0 A h(x)>dist/(x,g(x)) A
(h(x) — dist/(x, g(x)))mod length,(x) =0 ’

Thus the above formula belongs to ESOJ[ARITH. , FUN + DIST . |. Implication (9) of Section 5.1,
Lemma 5.2 and Corollary 5.4 yield the conclusion. [

6. Some problems in vertexNLIN

Using the logical toolbox of the previous section, we are now in a position to prove in an
elegant and concise way that a number of combinatorial problems are in vertexNLIN.

We denote by DIGRAPH the set of finite structures of signature { E}, where E is a binary relation
symbol. We denote by GRAPH the set of finite structures <D, E) eDIGRAPH for which E is
symmetric. Here follow some digraph (resp. graph) problems:

HAMILTON = { GeGRAPH such that G admits a Hamiltonian cycle};
CONNEX = {G €GRAPH such that G issp = 0.33 > connected};
STRONG-CONNEX = { G €DIGRAPH such that G is strongly connected};
BICONNEX = { GE€GRAPH such that G is biconnected};

CUBIC-SUBGRAPH = {GeGRAPH such that G admits a nonempty cubic partial subgraph}.

(i.e. G = (V, E) e CUBIC-SUBGRAPH iff there exist V' <V and E'< V>N E such that V' #0 and each
vertex of the graph (17, E’) is of degree 3.)

NON-PLANAR = {GeGRAPH such that G is not planar};

584 E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597

Finally, we denote by f-CENTER the class of connected graphs G = (V, E) that contain an f-
center, that is a vertex ¢ such that for any vertex xe V, there is a path of length smaller than
f(n—1) (where n = |V]) that links ¢ to x.

Proposition 6.1. HAMILTON, CONNEX, STRONG-CONNEX, CUBIC-SUBGRAPH, f-CENTER (for any unary
function f definable in ESO;) and BICONNEX all belong to vertexNLIN.

Proof. A graph G = (V, E) is Hamiltonian iff we can linearly order its vertices in such a way that
two successive vertices are linked by an edge and the maximal vertex is linked to the minimal one.
Therefore, HAMILTON is characterized by the following formula:

3(<, pred, succ, min, max) € FULL-LINORD
E(max, min) A (Vx##max)E(x, succ(x))

which can be written in ESO; by Lemma 5.1.
A graph G = (V, E) is connected iff it can be spanned by a tree. This yields a characterization of
CONNEX by the following formula:

AT eTREEVx : T'(x) #x— E(T(x), x)

according to which T is a tree whose all edges that are not loop are in E. This formula can be
written in ESO; by Corollary 5.2 and by the remark following it.

A directed graph G = (V, E) is strongly connected iff there exists a spanning tree 7 for G and a
spanning tree 7" for G” (the reverse graph (V, E") of G, defined by: E"(x,y) iff E(y,x)) with the
same root. Thus STRONG-CONNEX is characterized by the formula:

(3T e TREE)(3T" € TREE) VX :
{Tx=xoT'x=x}A{Tx#x—>(E(Tx,x)ANE(x,T"x))}

which can be written in ESO; by Corollary 5.2, by the remark of Section 5.2 and by Implication
(9) of Section 5.1.
The following sentence characterizes the problem CUBIC-SUBGRAPH:

3f1. /2, /3 dc :
[f1(x) = f2(x) = fa(x) = x] v
file)#c A Vx| S1(x),/2(x),f3(x) and x are pairwise distinct
AN EGSi)) A AV i) = x

which is obviously in ESO,. (Observe that the existence of ¢ such that fi(c) # ¢ guarantees that the
cubic subgraph is nonempty.)

Let f be a unary function definable in ESO; (e.g., x'/?, log(x), etc.). We know that dist; can be
defined in ESO[<] if T is a unary function, then, a fortiori, if 7 is a tree. Furthermore, we have
seen (see the remark following the proof of Corollary 5.4) that equalities such as disty(uy, vy) =

disty (i, V') (Where uy, vy, i, v/, are first-order terms) are order invariant and therefore, can be

expressed in ESO; (i.e. without help of a built-in linear order). We let the reader verify that it is
also the case for inequalities such that disty(u,, vy) <f(#.), when f is definable in ESO;. Now, a

graph G has an f-center c iff it is spanned by a tree 7 of root ¢ such that, for all xeV,

E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597 585

distr(c, x) <f(max). Therefore, f-CENTER is characterized by the following formula (where 4(f) is
the ESO,-formula that defines f):

3(<, pred, succ, min, max) € FULL-LINORD 37 € TREE 3f Jc¢ Vx :
(x#T(x)>E(T(x),x))AT(c) =c A distr(c,x)<f(max) AA(f)

which can be written in ESO, by the above remarks.
The definability of BICONNEX in ESQ; is justified by the following well known result (see [1], for
example):

Lemma 6.1. A graph G = {V,E) is biconnected iff there exists a spanning tree T for G (e.g. its
depth-first search spanning tree) such that the following conditions hold: (i) the root of T has at most
one child, (1) for any vertex xe V which is neither the root of T nor a child of the root, there is some
vertex y in the subtree descr(x) which is adjacent in G to a proper T-ancestor z of T (x) (that is, to a
T-ancestor z of TT(x)).

Hence we get a characterization of our problem by the following formula:

(T, T*) ETREE + TC
Vx:T(x)#x—>E(x, T(x)) A
VX (TT(x) = T(X)AT(X)#X)>x=u A
VxIyAz : TT(x)#T(x) > (T*(y,x) AT*(TT(x),z) NE(y,2))

whose prenex form is in ESO; by Corollary 5.2 and by the remark that follows it. This concludes
the proof of Proposition 6.1. [

We are now going to prove that NON-PLANAR belongs to the class vertexNLIN. In order to build
a logical ESO;-characterization of NON-PLANAR we could use Kuratowski’s characterization: a
graph is not planar iff it contains a subgraph homeomorphic to Ks or K3 3. It could be done by
expressing that there exist several mutually disjoint paths between some specified pairs of vertices.
Because of the technicality of such an assertion, we prefer to use another characterization of
nonplanar graphs given by Harary (see [7, Theorem 4.11, p. 100], for instance). Let us first recall
that a graph # is said contractible to some graph #' if # can be transformed into #” by
successive identifications of pairs of adjacent vertices. Then we have

Proposition 6.2 (Harary [7]). A graph G is nonplanar iff G contains a subgraph A which is
contractible to Ks or K3 3.

But we trivially get the following characterization of such contractions, due to Ranaivoson [43]:

Lemma 6.2. Let # = (V,E)eGRAPH. Then:

1. o is contractible to Ks iff V' contains five mutually disjoint sets Vy, ..., Vs such that both
following conditions hold.
(a) A restricted to Vi, i=1,...,5, is connected,

586 E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597

(b) for each pair (Vi, V), 1<i<j<5, there is an edge {x,y} of H such that xeV; and ye V.
2. A is contractible to K33 iff V' contains six mutually disjoint sets Uy, U, Uz, Vi, Vo, V3 such that

both following conditions hold:

(a) each Ay, (resp. H'y,), i =1,2,3, is connected,

(b) for each pair (U;, V;), 1<i,j<3, there is an edge {x,y} of A such that xe U; and ye V.

Hence we get

Corollary 6.1. NON-PLANAR belongs to vertexNLIN.

Proof. As the sets U;, V; involved in Lemma 6.2 are connected, they can be viewed as connected
components of a spanning forest F of G. Now, assume that two of these sets, say U and V, are
respectively rooted in u and v, according to F. Then, U and V are related by an edge of G iff there
exist two vertices @ and b in the graph such that: F*(a,u) and F*(b,v) and E(a,b). This remark
allows to interpret Proposition 6.2 and Lemma 6.2 by the following formula, which therefore
characterizes NON-PLANAR:
3(F, F*) EFOREST + TC
{Vx:F(x)#x—>E(x,F(x))}
A
vy, ..., vs: N Flo)=vi A N vi#vy A
1<i<5 1<i<j<5
A 3a,b (F*(a,v;))AE(a,b) AF*(b,v;))
1<i<j<5
v
Juy, up,uz,v1, 00,030 N (F(w) =uiaF(v;) =v) A
1<i<3
uy,up, u3, vy, vy, v3 are pairwise distinct A
A 3Ja,b (F*(a,u;) NE(a,b) nF*(b,v;))

1<ij<3

and this formula can be written in ESO; by Corollary 5.2 and by the remark following it. This
yields the expected conclusion. [

7. Structural complexity of vertexNLIN

In this section, we study for vertexNLIN the main questions that are of interest for any
complexity class such as P, NP, NLOGSPACE, DLIN, NLIN, etc.

® upperllower bounds: to prove that some natural problems do or do not belong to the concerned
class;

o structural complexity: has the class some structural property? For instance, is it closed under
complementation? is it strictly included in some other class?

E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597 587

Surprisingly, although most of those questions are open and seem very hard for most
classical complexity classes, we are going to solve many of them for vertexNLIN. For
instance, we shall prove for quite some combinatorial problems that they do not belong to
vertexNLIN.

Notation. For a decision problem £, let non-# denote the complement (i.e. negation)
problem of #. For a complexity class %, let co-¢ denote the class of problems whose
complements belong to %.

Here follow some new graph decision problems:
IS-TREE = { GEGRAPH s.t. G is connex and acyclic};

IS-FOREST = { GEGRAPH s.t. G is acyclic};

EULER = { GEGRAPH s.t. G has some Eulerian cycle};

(Recall that a cycle in G is Eulerian if it uses each edge exactly once.)
PERF-MATCH = { GEGRAPH s.t. G has some perfect matching};

for any ke N* define the k-colourability problem:
k-COLOUR = {G€e€GRAPH s.t. G can be coloured with k colours};

COLOUR = {(G, k)eGrAPH x N* s.t. G can be coloured with k& colours};
CLIQUE = {(G, k)eGRAPH x N* s.t. G contains a clique of size k};

PATH = {(G,s,t) s.t. G is a graph and s, ¢ are two vertices related by a path}.

First, we are going to prove that many of those problems and/or their complements do not
belong to vertexNLIN. The proofs are quite easy and uniform: to prove that a property 2 does
not belong to vertexNLIN, we essentially construct a family (G,) of graphs in £ with arbitrary
large cardinality n and a set 4, of @(n?) edges such that, for every aeA,: G,u{a} ¢ (resp.
G,\{«} ¢ 2). As a consequence, any 6-NRAM M that recognizes # has to read all the @ (n?) bits
corresponding to A4, in the input adjacency matrix of G,; this is because if some bit « € A, was not
read, then the same accepting computation of M would also accept G,u{a}¢Z? (resp.
G,\{o} ¢), a contradiction.

Proposition 7.1. The following problems do not belong to vertexNLIN:

IS-FOREST IS-TREE NON-IS-TREE EULER
CLIQUE NON-COLOUR NON-CLIQUE NON-PATH
NON-CONNEX ~NON-HAMILTON (k-COLOUR),., COLOUR
PLANAR NON-PERF-MATCH ~NON-EULER

588 E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597

Proof. For each problem 2 among those above quoted, we shall prove that there exists a constant
¢>0 such that any 6-NRAM that recognizes # should read more than cn? bits of the input
matrix. This will imply the result. This will be done by the construction of sets G, and A, as above
mentioned. These constructions will be generally obtained by bringing together some of the
following sets and graphs:

oV, = {ao, ...,am_l}, V}; = {bo, ...,bm_l}, VinO Vlgq = 0;

e the path graph P, = (V,,, EY) where E? = {{a;_1,a;} : 0<i<m} and its copy P/, = (V! ,EF)
where EF = {{b;_1,b;} : 0<i<m};

e the clique graph K, = (V,,, EX) where EX = {{a;,a;} : i<j<m} and its copy K/, = (V,, EX")
where EX' = {{b;,b;} : i<j<m};

e the cycle graph C,, = (Vy, ES) where ES = EF U{ay-1,a0};

e the stable graph S, = (V,,,0).

Now, let us describe the construction of families (G,) and (4,) for each problem involved in the
statement:

Problem 1S-TREE (resp. 1S-FOREST).

Let G, be the path graph P, which is a tree (resp. a forest). Let 4, = {{a;,a;} : i+ 1<j<n}.
Then, |4,| = ©(n?) and for every o€ 4,, G, U {a} has a cycle and thus is not a tree (resp. a forest),
as required.

Since the proofs for the other problems are very similar, we essentially give, for each problem
2, the graphs G, €2 and the sets of edges 4,,. We leave the details to the reader.

Problem NON-1S-TREE.

Let n =2m and G, be the disjoint union of the path graphs P, and P,,. Clearly, G, is not
connected and therefore, is not a tree. Let 4, = {{a;, b;} : i,j<m}. Clearly, G,u{«} is a tree for
every o€ A,.

Problem EULER.

Let G, be the cycle graph C, = (V,,ES) and 4, = {{a;,a;}: i<j<n and {a;,a;}¢ E*}.
Clearly, G, €EULER and G, U {o} ¢ EULER for every a€ A,.

Problem CLIQUE (resp. NON-COLOUR).

Let G, be the n-clique graph K, (notice that G, is not (n — 1)-colourable). Let 4, = {{a;,a;} :

i<j<n}. Obviously, G,\{«} contains no n-clique (resp. is (n — 1)-colourable) for every o€ 4,.

Problem NON-CLIQUE.

Let G, be the n-stable S, which contains no 2-clique. Let 4, = {{a;,q;} : i<j<n}. Then
G, {a} contains a 2-clique for every o€ 4,.

Problem NON-PATH (resp. NON-CONNEX).

Let n = 2m + 2 and G, be the disjoint union of the clique graphs K,,, K, and two new vertices s,
¢ with the additional edges {s, a;};_,, and {b;, ¢ Let A, = {{a;,b;} : i<j<m}. Clearly, there
is no (s,?)-path in G, (resp. G, is not connected), but there is one in G, u{a} (resp. G,u{a} is
connected) for every ae€ A4,,.

Problem NON-HAMILTON.

Same proof as for NON-PATH, with the same graph G,, but with the additional edge {s, ¢}.

Problem k-COLOUR, k=2.

j<m:®

E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597 589

Let n=m+ k — 1 and G, be the disjoint union of the stable graph S, and the clique graph
K; ., with the additional edges {a;, b;}, for i<m and j<k —1. Let 4, = {{a;,a;} : i<j<m}.
Clearly, G, can be coloured with k colours, but G, U {a} cannot, for every o€ 4,.

Problem COLOUR.

This problem generalizes k-COLOUR.

Problem PLANAR.

Let G, = (Vy, E,) be any triangulated planar graph of cardinality n. By Euler’s formula (see [7]
for example), we have |E,| = 3n — 6, which is the maximal number of edges of planar graph of
cardinality n. Let 4, = {{a;,a;} : i<j<n and {a;,a;} ¢ E,}. Then, for every a€e4,, G,u{a} has
too many edges to be planar.

Problem NON-PERF-MATCH.

Let n = 4m + 2 and G, be the disjoint union of the clique graphs K3, and K, ,,. Let 4, =
{{a;,b;} : i,j<m}. Then, G, has no perfect-matching but for every a€ 4,, G, U {a} has one that
includes «. Note that an easy variant of the above construction (left to the reader) can also prove
that the restriction of the problem NON-PERF-MATCH to bipartite graphs does not belong to
vertexNLIN.

Problem NON-EULER.

This proof is slightly more complicate than the previous ones. First, recall that a graph is
Eulerian if and only if it is connected and each of its vertices is of even degree. Let n = 4m + 2 and
G, be the disjoint union of Ky,;; and K;, ,, so that the degree of each vertex is even.
Nevertheless, G, is not connected and thus, is not Eulerian. The new idea consists in adding to G,
a fixed number of edges (not only one) so that the graph becomes connected and each vertex
remains of even degree. For each ordered pair (i,/) € [m] x [m], let

Ay = {{a2i, by}, {azi, byjs1 }, {azis1, boj}, {aniv1, baji1 }}.

Notice that the @ (n?) sets of edges Aj; are pairwise disjoint. Let M be a ¢-NRAM that recognizes
the problem NON-EULER and, consequently, accepts G, by a computation %,. Now, assume there
exist i,j<m such that %, reads none of the four bits corresponding to A4;. Then, the same
computation %, accepts the modified graph G) = G,u ;. This is a contradiction since G, is
Eulerian. So, we have proved that each computation of M that accepts G, must read at least one
input bit of 4, for each ordered pair (i, /) € [m]*. Hence, it should read at least m> = @ (n?) distinct
input bits, as claimed. This concludes the proof of Proposition 7.1. [

By using those counterexamples, we are now in a position to answer several natural questions
about the structural complexity of vertexNLIN. For example, we have proved in Section 5.3 that
ESO,; = vertexNLIN is not enlarged by existential quantification over transitive closure of unary
functions. It easily implies that this logic is not enlarged if one allows ESO;-formulas to refer to
transitive closure of any unary function, whether it is existentially quantified or is a part of the
input. In contrast, we have:

Corollary 7.1. If one allows transitive closure of binary relations in ESO;-formulas, then some
properties that are not in vertexNLIN become definable.

590 E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597

Proof. Problem NON-PATH, which does not belong to vertexNLIN (contrarily to PATH), is clearly
defined by the formula —E*(s,), where E* denotes the transitive closure of the input binary
relation £. [

Corollary 7.2.

(a) vertexNLIN #co-vertexNLIN.

(b) DLIN\(vertexNLIN U co-vertexNLIN) 0. Furthermore, there are problems 2 in DLIN such
that every nondeterministic algorithm for & and every nondeterministic algorithm for NON-Z
both require Q(n*) steps.

(c) vertexNLIN < NLIN.

Proof

(a) For example, CONNEX and HAMILTON belong to vertexNLIN while their complements do not.
(b) Problems 1s-TREE and EULER are such separating problems.
(c) Immediate consequence of (b) since DLINSNLIN. [

Notice that Proposition 7.1 and Corollary 7.2 provide some precise informations about the
comparative role of determinism and nondeterminism, in particular, for the resolution of specific
problems such as the following:

Problem EULER (resp. IS-TREE) belongs to DTIME?(n?). This should be compared to the fact
that if EULER (resp. IS-TREE) belongs to NTIME’(T'(n)) or to co-NTIME’(7'(n)), then T'(n) =
Q(n*) should hold. That means that neither nondeterminism nor co-nondeterminism can
significantly help in solving problems EULER and IS-TREE.

Problems HAMILTON, CONNEX and PERF-MATCH are very different from their complements: all
three belong to NTIME’(n) but we have proved that if any of them belong to co-NTIME’(T (n)),
then T'(n) = Q(n?) should hold.

The role of nondeterminism is essential in the fact that the graph problems we have studied belong to
vertexNLIN. In the deterministic model, they all require at least Q(n?) steps. Natural questions arise
about the deterministic restriction of vertexNLIN, that is, about vertexDLIN? =4, DTIME’(n):

e [s vertexDLIN a robust complexity class that contains significant problems?
® Does the strict inclusion vertexDLIN & vertexNLIN nco-vertexNLIN hold?

Part of the answers will be provided by the analysis of two new digraph properties:

In a digraph, a leader is a vertex s “liked” by everybody, i.e. such that the edge (x,s) exists for
every vertex x #s. A sink is a leader s for which no edge (s, x) starting from s exists. (Note that a
digraph may have several leaders whereas it cannot have more than one sink.) We denote:

LEADER = { GEDIGRAPH s.t. G has a leader};

SINK = { GEDIGRAPH s.t. G has a sink}.

The next result can be found without proof in [9]:

E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597 591
Proposition 7.2. SINK belongs to vertexDLIN.

Proof (Communicated by [5]). Let us consider the following algorithm whose input is a digraph
given by its 0/1 adjacency matrix E[i,]; J<n
Algorithm 1 (SINK).
integer sink-candidate, j;
begin
sink-candidate .= 0; j .= 1;
while j <n do/* no vertex i<j is a sink, except possibly sink-candidate *|
if E[j,sink-candidate] = 1 then /*j is not a sink */

j=j+1

else [* sink-candidate is not a sink */
begin sink-candidate :=; ; j =/ + 1 end

end while

[j =n:no vertex i<n is a sink, except possibly sink-candidate *|
Check whether sink-candidate is really a sink by consulting both the line and
the column numbered sink-candidate ;
if it is not then reject /* the digraph has no sink ~/
else accept;
end.

Our inserted comments indicate how to prove the correctness of the algorithm, which obviously
runs in time O(n). O

So, vertexDLIN contains a significant combinatorial problem. On the other hand, one can
show that this complexity class, which generalizes the class DLIN in some way, is similarly robust
(see [25]). Let us now look for candidate problems to separate vertexDLIN from vertexNLIN.
First, notice that graph problems expressed by first-order sentences of the form IxVyy(E, x,),
where is a quantifier-free formula with only two first-order variables x, y, trivially belong to
vertexXNLIN nco-vertexNLIN. E.g., problems LEADER and SINK do, since they are expressed by the
following respective sentences:

Grpaper = IXVY 1 y# X — Eyx;

D = IXVy 1 y#x— (Eyx A—Exy).

Proposition 7.3. LEADER belongs to (vertexNLIN nco-vertexNLIN)\vertexDLIN. More precisely,
for every deterministic algorithm o/ that decides LEADER and for each integer n, there exists a graph
G, (f) of cardinality n such that the computation of </ on input G,(.</) reads at least n> — n input
bits.

Proof (Essentially due to Lautemann [33]). There only remains to prove the complexity lower
bound. First, note that the result of a deterministic algorithm ./ only depends on the sequence of

592 E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597

input bits it reads during the computation. Let us fix the cardinality n. Without loss of generality,
assume that the only queried bits are E[i, j], for i#j, since all the diagonal bits E[i,] are zero. We
can imagine those nondiagonal bits supplied by an adversary, who uses the following strategy:
when queried “E[i,j]|”?

e if question “E[i,j]?” has been previously asked, she gives the same answer;

e otherwise, i.e. if the question “E[i,j]?” is asked for the first time, she answers:
o 1, if there is some 7’ #i such that question “E[/,j]?”” has not yet been asked;
o 0 otherwise, i.e. when all the bits of column j have been queried.

Let %, (/) denote the computation so defined. Assume that ,(.<7) stops after having queried less
than the n> — n nondiagonal bits. Also, assume that %,(.«/) accepts. Then, set the (nondiagonal)
non queried bits to 0. This gives an accepted input which is not in LEADER: a contradiction. So,
@, (/) rejects. Now, set the (nondiagonal) non queried bits to 1. This gives at least one column
where the n — 1 nondiagonal bits are all 1’s. Hence, the rejected input belongs to LEADER: a
contradiction. This proves that %,(.Z) reads all the n*> — n nondiagonal bits of the input G,(.«7) so
obtained. This concludes the proof of Proposition 7.3. [

Fig. 6 summarizes the main results of this section. The problems quoted without brackets have
been proved as belonging to the precise intersection on which they lie on the figure. Those between
brackets are just candidates to belong to a given subset. Subsets that contain only candidate
problems (e.g. co-vertexNLIN\NLIN) or no problem at all (e.g. (co-vertexNLIN nvertexNLIN)\
DLIN) are possibly empty. They are marked with a “?”.

Remark.

® NON-2-COLOUR belongs to vertexNLIN since a graph is not colourable with 2 colours iff it
contains an odd length cycle.

e NON-PERF-MATCH belongs to NLIN because for a given matching M in a given graph G, one
can check in deterministic linear time whether M is a maximum matching of G. For bipartite
graphs, this is proved for example in [39]; for general graphs, this is proved by sophisticated
technics in [35,50] or in [4]. That yields the following NLIN algorithm:

o guess a nonperfect matching M of G;
o check that M is a maximum matching of G.

8. Conclusions and open problems

The main aim of computational complexity theory is to determine the intrinsic time (resp.
space) complexity of “natural” problems. We think that logic, or more precisely, descriptive
complexity, gives us tools and results to study and to better understand that complexity. This
paper was initially motivated by the following two items:

An observation: most “‘natural”” NP-complete problems belong to NLIN, i.e., are recognized by
NRAMs in nondeterministic linear time; e.g. Grandjean [22] mentions that the 21 NP-complete
problems exhibited by Karp [31] are in NLIN; for a graph problem 2, that means £ is recognized

E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597 593

NLIN

DLIN vertexNLIN

(cLIQUE)

(cOLOUR)
”

LEADER

(NON-PERF-MATCH)

HAMILTON)
PERF-MATCH)

2-COLOUR
IS-FOREST
PLANAR

vertex DLIN
(NON-HAMILTON)

? T co-vertexNLIN

Fig. 6. Mutual inclusions between the complexity classes mentioned in this section.

in time O(|V| + |E|), where G = (V/, E) is the input graph, or, equivalently (by our results [24]), 2
is defined by an ESO(arity 1,V1) formula on the domain VUE.

A question (asked by Grandjean and Lynch in FMT open problems [Oberwolfach 94, problem §]
and [Luminy 95, problem 23]): investigate the class of graph properties that can be defined
in ESO“(arity 1), where ¢ = {E} and E is a binary relation symbol, i.e., by existential
second-order formulas with unary function and constant symbols only, interpreted in the domain
of vertices.

In the present paper, we have studied in detail vertexNLIN, that is the class of g-problems (i.e.,
decision problems every input of which is a first-order structure of any fixed signature o) that are
recognized in nondeterministic time O(n) where n is the cardinality of the domain of the input
structure. So, the time O(n) can be much less than the input size. For instance, the size of a graph
presented by its adjacency matrix is exactly its number of bits, n>. The conclusions of our study are
the following:

e vertexNLIN is a robust complexity class, as shown by its closure properties (e.g., for some
restricted transitive closure operators) and its various logical characterizations such as
ESO’(V1) = ESO“(arity 1,V1). (Note that this last characterization states that this class is
(strictly?) included in ESO’(arity 1).)

e vertexXNLIN (and hence also ESO?(arity 1)) contains many classical combinatorial problems,
including CONNEX, NON-PLANAR and HAMILTON.

e Although vertexNLIN appears to be a genuine complexity class, as attested by the two previous
items, we have succeeded in proving, by simple arguments, several structural properties of this
class; the key point is that for any specific graph problem we have studied till now, we have
been able to prove that it belongs or does not belong to vertexNLIN; in particular, it is the case
for all the graph problems known to belong to DLIN (deterministic linear time) we have

594 E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597

studied; actually, we have exhibited inside DLIN (see Fig. 6) a kind of microcosm of our
complexity questions with a strict partition of DLIN in five nonempty subclasses:

. the vertexDLIN problems (e.g. SINK);

. some problems in (vertexNLIN nco-vertexNLIN)\vertexDLIN (e.g. LEADER);

. some other ones in vertexNLIN\co-vertexNLIN (e.g. CONNEX and PATH);

. some other ones in co-vertexNLIN\vertexNLIN (e.g. 2-COLOUR and PLANAR) and finally,
. the other ones out of vertexNLIN uco-vertexNLIN (e.g. EULER and IS-TREE).

[S S

vertexNLIN appears to be the minimal nondeterministic time complexity class for graph
problems, or, more generally, for decision problems of first-order structures. (Note that its
deterministic counterpart, vertexDLIN, although less significant, is also of some interest.) We
cannot imagine a nondeterministic process that recognizes any significant graph problem in
time o(n) where n is the number of vertices of the graph.

Our thesis, which may explain the difficulty to establish complexity lower bounds, is that
“natural” combinatorial problems are generally of very low complexity in the following sense.
While some of them, e.g. the contraction problem of acyclic digraphs (see [41]) are NLIN-
complete, most of them either belong to vertexXNLIN or to co-vertexNLIN, or, as EULER and
COLOUR, can be solved in time O(n) by “alternating” RAMSs, namely RAMs which can perform
nondeterministic (i.e. existential) “guess” instructions and (dual) co-nondeterministic (i.e.
universal) “guess” instructions, with a fixed number k of alternations between existential and
universal instructions.®> Let ATIME-ALT’ (n, k) denote this complexity class for g-problems and
let us define the vertex-linear hierarchy* as the union:

vertexLinH? = |_] ATIME-ALT" (n, k).
k

Notice that this class can be easily characterized by second-order formulas (SO) with second-order
relation or function symbols of arity <1 (resp. of arity <1 and only 1 first-order variable), namely:

vertexLinH? = SO (arity 1) = SO’ (arity 1,var 1).

(Compare those equalities with the similar characterization of LinH by Lynch [34] and Immerman
[29,30].)

Of course, the main significant (realistic!) time complexity is neither the nondeterministic time,
nor the alternating time (here, with a fixed number of alternations), but is deterministic time.
Unfortunately, we are still unable to prove any significant deterministic time lower bound on a
general-purpose model of computation, for any natural problem in NP. However, we hope to
have explained convincingly “‘where” the difficulty lies. Most of (or all ?) the “natural” problems
are of nondeterministic ‘““‘minimal complexity”’, that means they can be solved in time linear with
respect to their size (or, better, with respect to their domain cardinality), provided
nondeterminism (or its generalization: alternation, with a fixed number of alternations between
nondeterministic phases and co-nondeterministic phases) is allowed.

3For a detailed presentation of alternating machines, see for instance Papadimitriou’s book [38].
“Similar to the linear time hierarchy for words problems, denoted LinH or rudimentary languages. See Hajek and
Pudlak’s book [28].

E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597 595

Thus, the paradigm determinism/nondeterminism is still and ever the crucial and central point of
computational complexity, but it merits to be studied in the linear context for at least as good

reasons as in the traditional polynomial context. In other words, the DLIN Z NLIN question is

quite significant and more precise than the P Z NP question. We hope that this paper can

contribute to convince the readers of the interest of that new problematic. Specifically, our study
of the class vertexNLIN, because it allows simple proofs, may help or give some indications of

methods to manage the more significant DLIN ~ NLIN question.

Let us conclude this paper by giving a list of open problems:

1. Characterize the graph (resp. digraph) problems, such as SINK and LEADER, that belong to
vertexXNLIN nco-vertexNLIN (a seemingly very strong condition). Are they all in PTIME? in
DLIN?

2. Does ESO?(V1) = ESO’(arity 1) holds for arity (¢) = 1?7 Notice that the equality fails for
arity (o) = 2 since, e.g., the set of complete graphs does not belong to ESO?(V1). A positive
answer would imply the equality, for each integer d, ESO’(Vd) = ESO’(arity d) when
arity (0)<d, and would yield (by the hierarchy theorem proved by Cook [8] for
nondeterministic time complexity) the strictness of the arity hierarchy (an old and difficult
open problem of [13]).

. Exhibit a (nondirected) graph problem in vertexDLIN as natural as the digraph problem SINK.

4. Prove for all the classical NP-complete graph (digraph) problems, e.g., KERNEL, 3-COLOUR,
CUBIC-SUBGRAPH (see Garey and Johnson’s book [15]) that they belong or do not belong to
vertexNLIN and that each of them does not belong to co-vertexNLIN (such a systematic proof
of nonbelonging would be a weakened form of the conjecture that each of them does not belong
to co-NLIN).

5. Prove a conjunctive logical characterization of vertexNLIN, similar to the conjunctive
characterization of NLIN given by [37]. This would provide some ‘“‘natural” vertexNLIN-
complete problems (via very strict reductions such as the “affine” reductions of [25]).

6. The classical graph properties we have studied, either belong to vertexNLIN, i.e., can be
recognized within nondeterministic time O(n), or require Q(n?) nondeterministic time. Can we
fill this gap, i.e., exhibit “natural” graph problems that are recognized nondeterministically in
time o(n?) and that are not in vertexNLIN? (Of course, the ‘“nonnatural” set of graphs that
have at least 7%/? edges fulfils those conditions.)

98]

Acknowledgments

We warmly thank C. Lautemann and S. Ranaivoson who have obtained in collaboration with
us (Refs. [32,33,42,43]) some of the results of this paper, in particular the results mentioned in
Sections 5.2 and 5.3, in addition to Lemma 6.2, Corollary 6.1 and Proposition 7.3. This
collaboration and those results were essential in the genesis of this paper. Thanks to G. Bonfante
for his proof of Proposition 7.2. Thanks to Arnaud Durand, who suggested to us that a purely
logical proof of Proposition 3.1 was possible. We also gratefully acknowledge the help of F.
Madelaine in the correction of many English mistakes of the manuscript. Finally, we are pleased

596 E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597

to thank the referees for their many remarks and suggestions that help us to notably improve the
readability of the paper.

References

[1] A.V. Aho, J. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley,
Reading, MA, 1974.
[2] P. Beame, A general sequential time—space tradeoff for finding unique elements, SIAM J. Comput. 20 (2) (1991)
270-277.
[3] A. Ben-Amram, N. Jones, Computational complexity via programming languages: constant factors do matter,
Acta Inform. 37 (2000) 83—120.
[4] N. Blum, A new approach to maximum matching in general graphs, in: W.R. Cleaveland (Ed.), ICALP, Lecture
Notes in Computer Sciences, Vol. 443, Springer-Verlag, Warwick, England, 1990, pp. 586-597.
[5] G. Bonfante, Personal communication, 2001.
[6] A. Borodin, S. Cook, A time-space tradeoff for sorting on a general sequential model of computation, SIAM J.
Comput. 11 (2) (1982) 287-297.
[71 G. Chartrand, L. Lesniak, Graphs and Digraphs, Wadsworth and Brooks, California, 1986.
[8] S.A. Cook, A hierarchy of nondeterministic time complexity, J. Comput. System Sci. 7 (1973) 343-353.
[9] T. Cormen, C. Leiserson, R. Rivest, Introduction to Algorithms, McGraw-Hill, New York, 1991.
[10] N. Creignou, Temps Linéaire et Problémes NP-Complets, Ph.D. Thesis, Universit¢ de Caen, France, 1993.
[11] H.-D. Ebbinghaus, J. Flum, Finite Model Theory, Springer, Berlin, 1995.
[12] R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets, in: R.M. Karp (Ed.), Complexity
of Computation, STAM-AMS Proceedings, 1974, pp. 43-73.
[13] R. Fagin, A spectrum hierarchy, Z. Math. Logik Grundlagen Math. 21 (1975) 123-134.
[14] L. Fortnow, Time-space tradeoffs for satisfiability, J. Comput. System Sci. 60 (2) (2000) 337-353.
[15] M.R. Garey, D.S. Johnson, Computers and Intractability—A Guide to the Theory of NP-Completeness, Freeman,
New York, 1979.
[16] E. Gridel, On the notion of linear time computability, Internat. J. Foundations Comput. Sci. 1 (1990) 295-307.
[17] E. Grandjean, The spectra of first-order sentences and computational complexity, SIAM J. Comput. 13 (2) (May
1984) 356-373.
[18] E. Grandjean, Universal quantifiers and time complexity of random access machines, Math. System Theory 13
(1985) 171-187.
[19] E. Grandjean, First-order spectra with one variable, J. Comput. System Sci. 40 (1990) 136-153.
[20] E. Grandjean, A nontrivial lower bound for an NP problem on automata, SIAM J. Comput. 19 (1990) 438-451.
[21] E. Grandjean, Invariance properties of RAMs and linear time, Comput. Complexity 4 (1994) 62-106.
[22] E. Grandjean, Linear time algorithms and NP-complete problems, SIAM J. Comput. 23 (1994) 573-597.
[23] E. Grandjean, Sorting, linear time and the satisfiability problem, Ann. Math. Artificial Intelligence 16 (1996) 183-236.
[24] E. Grandjean, F. Olive, Monadic logical definability of nondeterministic linear time, Comput. Complexity 7 (1998)
54-97.
[25] E. Grandjean, T. Schwentick, Machine-independent characterizations and complete problems for deterministic
linear time, SIAM J. Comput. 32 (1) (2002) 196-230.
[26] Y. Gurevich, S. Shelah, Nearly linear time, Lecture Notes in Computer Science, Vol. 363, 1989, pp. 108-118.
[27] Y. Gurevich, S. Shelah, Nondeterministic linear-time tasks may require substantially nonlinear deterministic time
in the case of sublinear work space, J. ACM 37 (3) (1990) 674-687.
[28] P. Hajek, P. Pudlak, Metamathematics of First-Order Arithmetic, Springer, Berlin, 1993.
[29] N. Immerman, Languages that capture complexity classes, SIAM J. Comput. 16 (August 1987) 760-778.
[30] N. Immerman, Descriptive Complexity, Graduate Texts in Computer Science, Springer, Berlin, 1999.
[31] R.M. Karp, Reducibility among combinatorial problems, in: Complexity of Computers Computations, IBM
Symposium 1972, Plenum Press, New York, 1972.
[32] C. Lautemann, Personal communication, 1999.
[33] C. Lautemann, Personal communication, 2001.

E. Grandjean, F. Olive | Journal of Computer and System Sciences 68 (2004) 546-597 597

[34] J.F. Lynch, Complexity classes and theory of finite models, Math. System Theory 15 (1982) 127-144.

[35] S. Micali, V. Vazirani, An 0(\/m|E|) algorithm for finding maximum matching in general graphs, in: FOCS,
1980, pp. 17-27.

[36] F. Olive, Caractérisations logiques des problémes NP: robustesse et normalisation, Ph.D. Thesis, Université de
Caen, France, 1996.

[37] F. Olive, A conjunctive logical characterization of non-deterministic linear time, in: Proceedings of the 11th
Annual Conference of the EACSL (CSL’97), Lecture Notes in Computer Science, Vol. 1414, 1998, pp. 360-372.

[38] C.H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA, 1994.

[39] C.H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Prentice-Hall,
Englewood CIliff, NJ, 1982.

[40] W.J. Paul, N. Pippenger, E. Szemeredi, W.T. Trotter, On determinism versus non determinism and related
problems (preliminary version), In 24th Annual Symposium on Foundations of Computer Science, IEEE, New
York, 1983, pp. 429-438.

[41] S. Ranaivoson, Nontrivial lower bounds for some NP-complete problems on directed graphs, in: Lecture Notes on
Computer Science, Vol. 533, CSL’90, 1991, pp. 318-339.

[42] S. Ranaivoson, Personal communication, 1999.

[43] S. Ranaivoson, Personal communication, 2000.

[44] K. Regan, Machine models and linear time complexity, in: SIGACT News, Vol. 24, Fall 1993.

[45] T. Schwentick, Algebraic and logical characterizations of deterministic linear time classes, in: Proceedings of the
12th Symposium on Theoretical Aspects of Computer Science (STACS’97), 1997, pp. 463-474.

[46] I.A. Stewart, Logical descriptions of monotone NP problems, J. Logic Comput. 4 (1994) 337-357.

[47] I.A. Stewart, On completeness for NP via projection translations, Math. System Theory 27 (1994) 125-157.

[48] I.A. Stewart, Complete problems for monotone NP, Theoret. Comput. Sci. 145 (1995) 147-157.

[49] L.J. Stockmeyer, The polynomial-time hierarchy, Theoret. Comput. Sci. 3 (1977) 1-22.

[50] V. Vazirani, A theory of alternating paths and blossoms for proving correctness of the O(W |E|) general graph
maximum matching algorithm, Combinatorica 14 (1) (1994) 71-109.

	Graph properties checkable in linear time in the number of vertices
	Introduction
	Preliminaries
	Structures and problems
	Computational model and complexity classes
	Logic and definability classes

	A logical characterization of NTIME(nd)
	Other logical characterizations
	Similar results for monotone classes
	Semantical invariance properties of ESO(forall1)
	Existential quantification over sets of structures
	Prefix order in a forest
	Transitive closure of a function
	Distance in an ordered functional graph

	Some problems in vertexNLIN
	Structural complexity of vertexNLIN
	Conclusions and open problems
	Acknowledgements
	References

