
http://www.elsevier.com/locate/jcss

Journal of Computer and System Sciences 68 (2004) 546–597

Graph properties checkable in linear time in the
number of vertices

Etienne Grandjeana and Frédéric Oliveb,�

aGREYC CNRS UMR-6072, Universite de Caen, Campus II, Bd Marechal Juin, BP 5186, 14032 Caen cedex, France
bLIF, Universite de Provence, CMI, 39 rue Joliot Curie, 13453 Marseille Cedex 13, France

Received 10 September 2001; revised 11 April 2003

Abstract

This paper originates from the observation that many classical NP graph problems, including some NP-
complete problems, are actually of very low nondeterministic time complexity. In order to formalize this
observation, we define the complexity class vertexNLIN, which collects the graph problems computable on
a nondeterministic RAM in time OðnÞ; where n is the number of vertices of the input graph G ¼ ðV ;EÞ;
rather than its usual size jV j þ jEj: It appears that this class is robust (it is defined by a natural restrictive
computational device; it is logically characterized by several simple fragments of existential second-order
logic; it is closed under various combinatorial operators, including some restrictions of transitive closure)
and meaningful (it contains many natural NP problems: connectivity, hamiltonicity, non-planarity, etc.).
Furthermore, the very restrictive definition of vertexNLIN seems to have beneficial effects on our ability to
answer difficult questions about complexity lower bounds or separation between determinism and
nondeterminism. For instance, we prove that vertexNLIN strictly contains its deterministic counterpart,
vertexDLIN, and even that it does not coincide with its complementary class, co-vertexNLIN. Also, we
prove that several famous graph problems (e.g. planarity, 2-colourability) do not belong to vertexNLIN,
although they are computable in deterministic time OðjV j þ jEjÞ:
r 2003 Elsevier Inc. All rights reserved.

Keywords: Linear time; Nondeterminism; Complexity lower bounds; Combinatorial problems; Finite model theory;

Existential second-order logic

0. Introduction

Except for some tradeoff space–time lower bounds results (see e.g. [2,6,14,27]) we do not know
of any proved complexity lower bounds for any natural NP problem on a general-purpose model

ARTICLE IN PRESS

�Corresponding author. Fax: +33-4-91-11-36-02.

E-mail addresses: grandjean@info.unicaen.fr (E. Grandjean), olive@gyptis.univ-mrs.fr (F. Olive).

0022-0000/$ - see front matter r 2003 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcss.2003.09.002

of computation such as the random access machine (RAM). We see at least two reasons. First, we
know little about the relationships between nondeterminism and determinism, with the exception
of some technical results such as the separation of deterministic and nondeterministic linear time
for Turing machines (see [40]), but we have no idea of how to generalize this result to linear time
on RAMs. Furthermore, most natural NP problems are of very low nondeterministic complexity.
Grandjean [22,23] gave evidence that most natural NP problems belong to the class NLIN, i.e.,
are recognizable in linear time on nondeterministic RAMs. Further, the famous sat problem can
be recognized by a RAM that only uses a linear number OðnÞ of deterministic steps and a
sublinear Oðn=log nÞ number of nondeterministic steps, where n is the size of the formula, i.e., its
number of variable occurrences (see [23]).
Most general-purpose lower bounds results follow from a careful analysis of the proof that the

problem in concern is hard for a complexity class.1 With regard to time bounds, it is symptomatic
that, on the one hand we know some NLIN-complete problems via DTIMEðOðnÞÞ reductions (see
[41,10,20]), on the other hand we cannot imagine any candidate problem for completeness in the
nondeterministic quadratic time class or in any similar polynomial superlinear time class. Notice
that even in the PTIME class many classical problems are of very low deterministic complexity,

more precisely, quasi-linear time Oðn � ðlog nÞOð1ÞÞ (sorting, minimal spanning tree, single-source
shortest path problems, etc.) or in linear time (connectivity, planarity, Horn satisfiability, etc.).
One goal of this paper is to show that some classical combinatorial problems are even easier on

the nondeterministic model. It is folklore to notice that the natural certificates of many NP graph
problems have size linear in the number of vertices. More accurately, we prove in this paper that a
number of graph problems including connectivity, biconnectivity, Hamiltonicity and nonplanar-
ity, belong to a very restricted complexity class denoted vertexNLIN. It means that they are
recognizable on a nondeterministic RAM in time OðnÞ; where n ¼ jV j is the number of vertices of
the input graph G ¼ ðV ;EÞ which may be much less than the size of the graph, usually defined as
n þ e; where e ¼ jEj: Intuitively, any positive instance G ¼ ðV ;EÞ of such a problem, e.g.,
connectivity (resp. nonplanarity), has a proof, e.g. a spanning tree (resp. a subgraph
homeomorphic to K5 or K3;3) S of size OðnÞ; n ¼ jV j; which is checked in (deterministic) time

OðnÞ: If the graph is not sparse, i.e., n ¼ oðeÞ; this is a nondeterministic time bound which is
sublinear in the time of the graph. Notice that this can be obtained because in our computational
model, the input is assumed to be separated from the workspace. More precisely, our RAM has

specific read-only input registers, e.g., n2 boolean registers Eði; jÞ; i; jon; that represent the
adjacency matrix of the input graph and OðnÞ read/write registers Ri; i ¼ OðnÞ; each of which
contains a number whose magnitude is OðnÞ: In this model, it makes sense to check
nondeterministically a property, e.g., connectedness, in time OðnÞ; which is much less than the

input size, namely Yðn2Þ; in particular, only a small part of the input, namely OðnÞ registers, can
be read in one computation.
A natural question arises—positively answered in this paper: is vertexNLIN a robust

complexity class ? Since it is, in some sense, a linear time complexity class (in fact a generalization
of this notion, since the reference parameter n is no longer the input size) it is useful to recall some

ARTICLE IN PRESS

1For instance, from the fact that each NSPACEðnÞ problem is reducible to qbf (Quantified Boolean Formulas

validity) in space Oðlog nÞ and time Oðn2 log nÞ (see [49]), it follows that qbfeNSPACEðoð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=log n

p
ÞÞ:

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597 547

points about such a delicate notion. In [16], Grädel argues that ‘‘it is not clear at all what should be

the right notion of linear time computability’’ and doubts that there could be an adequate—i.e.
intuitive and including linear time classical algorithms—and robust—i.e. machine-independent—
definition of linear time. In [16,26], the authors circumvent that problem by considering some
robust closures of linear time (see also [44,3] for other points of view). However, [45,25,23,24]
introduce and study a notion of linear time, namely the deterministic (resp. nondeterministic) class
DLIN (resp. NLIN) and argue that both classes are adequate and robust. In particular, DLIN
(resp. NLIN) has algebraic (resp. logical) characterizations from which complete problems can be
derived as shown in [45,25] (resp. [24,37]).
A second goal of this paper is to study a general notion of nondeterministic time complexity on

RAMs and to establish its equivalent logical characterizations. More precisely, let s be any first-
order vocabulary which may include relation, function and constant symbols. We are interested in
s-problems, that means decision problems for sets of finite s-structures. For instance, a graph
problem is a s-problem for s ¼ fEg; where E is a binary relation symbol. For any function
T : N-N; TðnÞXn; let NTIMEsðTðnÞÞ denote the class of s-problems that are recognized by
nondeterministic RAMs2 in time OðTðnÞÞ; where n is the domain size of the input. Several logics
appear in the paper. They are all fragments of existential second-order logic. We denote by ESOs

this last logic. That is, ESOs is the class of formula of the form: F
 (tf; where t is a tuple of
relation and function symbols of various arities, and f is a first-order formula of signature s,t:
Notice that in this definition, the second order variables all stand in front of the formula (but we
could give up this constraint), whereas the first-order part f is not necessarily prenex. If f is in
prenex form and if furthermore, its variables x1;y;xd are all universally quantified, we denote
FAESOsð8dÞ: In other terms, ESOsð8dÞ is the subset of ESOs whose formulas have the form:
F
 (t8xc; where t is a tuple of relation and function symbols of various arities, x is a d-tuple of
first-order variables, and c is a quantifier-free formula of signature s,t: We denote by
ESOsðarity k;8dÞ the set of formulas in ESOsð8dÞ whose ESO relation and function symbols are
all of arity pk: Finally, we also denote by ESOs (resp. ESOsð8dÞ; ESOsðarity k; 8dÞ) the class of
s-problems definable in these logics. In this paper we refine Fagin’s characterization of NP:[

d

NTIMEsðndÞ ¼ ESOs ðsee½12
Þ

by proving the equalities

NTIMEsðndÞ ¼ ESOsðarity d; 8dÞ ¼ ESOsð8dÞ ð1Þ
for any vocabulary s and any integer d40: A similar result was proved in [18,19,24] but the new
result is more general: the parameter d is now independent of the arities of the s symbols. Note
also that no built-in symbol is required in the ESOs formulas. Another aside contribution of this
paper is a purely logical (machine-independent) proof of the second equality above.
Most important is the case d ¼ 1 of the previous equalities: on the one hand, it shows the

robustness of the class vertexNLINs ¼def NTIMEsðnÞ; on the other hand, it gives a logical
method and complementary tools to prove that a specific problem belongs to this class. For
example, [19] proves that the ESO ‘‘quantifier’’ ð(lin orderoÞ can be defined in ESOsð81Þ: In this

ARTICLE IN PRESS

2 In this paper, the notation ‘‘NTIME’’ is used differently compared to the previous papers: it refers to time

complexity on nondeterministic RAMs, rather than nondeterministic Turing Machines.

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597548

paper, we prove that other useful constructs are also definable in this restricted logic: the ancestor
relation in trees and forests, any depth-first order in a graph, the transitive closure of any unary
function, etc. Those logical tools are exactly what we need to prove that many combinatorial
problems such as connectivity or non planarity belong to vertexNLIN.
Starting from the observation that most of our graph problems in vertexNLIN are monotone—

a graph problem P is monotone if GAP implies G0AP for any extension G0 ¼ G,fag where a is
any new edge—we study the monotone restriction of the class vertexNLIN. Monotone NP
problems were studied by Iain Stewart [46–48] who, in particular, proved some equalities that can
be reformulated as follows: for any relational vocabulary s;

monotone-NPs ¼
[

d

NTIMEsþðndÞ ¼ ESOsþ: ð2Þ

Here monotone-NPs denotes the class of monotone s-problems in NP, ESOsþ denotes the class of
s-problems definable by ESO formulas where any relation s-symbol only occurs positively and

NTIMEsþðTðnÞÞ denotes the class of s-problems computable in time OðTðnÞÞ on an NRAM
which rejects whenever it reads an input 0 (i.e. consults a tuple of an input s-relation r which does
not belong to r). In this paper, we prove the following equalities which are similar to (1) and refine
(2): for any relational vocabulary s and any integer d40;

monotone-NTIMEsðndÞ ¼ NTIMEsþðndÞ
¼ ESOsþðarity d;8dÞ ¼ ESOsþð8dÞ: ð3Þ

In particular, this shows the robustness of the class monotone-vertexNLIN which includes many
combinatorial problems: Hamiltonicity, connectivity, nonplanarity, etc.
Last, we study some structural properties of the class vertexNLIN. By giving a simple

combinatorial method to prove that a number of graph properties are not in vertexNLIN, we
demonstrate that this class is not closed under complementation and also that DLIN\vertexNLIN
is not empty, which yields the strict inclusion vertexNLINkNLIN: The method to prove that a
specific graph property P does not belong to vertexNLIN consists in exhibiting, for each nAN; a

graph Gn of n vertices and a set An of Oðn2Þ edges that ‘‘flip-flop’’ property P: this obliges every

non deterministic algorithm for P on input Gn to read all the Oðn2Þ edges of An:
Let us now present a detailed plan of the paper:

* Section 1 gives some preliminaries about the computational model and the logics involved in
the paper.

* In Section 2, we prove (Theorem 2.1) the logical characterization of NTIMEðndÞ above

mentioned: NTIMEðndÞ ¼ ESOðarity d;8dÞ:
* In Section 3 we show the robustness of NTIMEðndÞ: we give alternative logical characteriza-
tions of this class (Theorem 3.1).

* Section 4 deals with monotone classes: Theorem 4.2 states the characterizations of

monotone-NTIMEðndÞ quoted above in (3).

In the rest of the paper, we restrict our attention to the class vertexNLIN ¼ NTIMEðnÞ and to the
logic that characterizes it, ESOð81Þ:

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597 549

* Section 5 provides a kind of toolbox of the ‘‘semantical constructions’’ that can be freely
handled in this logic.

* Section 6 uses the previous results to prove, by purely logical means, that several well-known
graph problems belong to vertexNLIN.

* In Section 7, we demonstrate that many other combinatorial problems do not belong to
vertexNLIN. Then, we prove and discuss the structural properties of vertexNLIN.

* Finally, Section 8 states some conclusive remarks and open problems.

Three groups of sections can be read independently one from the others: the first one consists of

Sections 2, 3 and 4, in which various logical characterizations of NTIMEðndÞ are proved; the
second one consists of Sections 5 and 6, which provide logical tools used to prove that various
combinatorial problems belong to vertexNLIN; the third one is Section 7, which is devoted to
structural complexity.

1. Preliminaries

We will often deal with tuples of objects. We denote them by bold letters. A d-tuple is said to be
of arity d: When we want to insist on the arity of a tuple x; we sometimes denote it by xd ; where
d ¼ arity ðxÞ:

1.1. Structures and problems

For all notations related to finite model theory, we refer to the usual conventions (see [11],
for instance). Our inputs are finite first-order structures. A signature (or vocabulary) s is a finite
set of relation and function symbols each of which has a fixed arity which can be zero (a 0-ary
function symbol is a constant symbol). The arity of s; denoted by arity ðsÞ; is the maximal
arity of its symbols. A vocabulary is relational if it does not contain any function symbol.
When s and t are two disjoint signatures, we often denote by st their union s,t: A structure S

of vocabulary s; or s-structure, consists of a finite domain D of cardinality n41; and, for
any symbol sAs; an interpretation of s over D; often denoted by s for simplicity. The set of
interpretations of the s-symbols over D is called the interpretation of s over D and, when
no confusion results, it is also denoted s: The cardinality of a structure is the cardinality
of its domain. For instance, a graph or digraph ðV ;EÞ can be encoded in two natural
ways:

* As a s-structure G ¼ /D; sS where the domain is D ¼ V and where s is reduced to a binary
relation symbol interpreted on D as the edge relation E;

* As a s0-structure G0 ¼ /D; s0S where the domain is D ¼ V,E and where s0 is a pair of unary
function symbol fhead; tailg interpreted as follows on V,E: for each xAV ; headðxÞ ¼
tailðxÞ ¼ x and for each aAE; headðaÞ ¼ x and tailðaÞ ¼ y if the edge a links the vertex x to the
vertex y:

The first of those structures is called the relational representation of the graph ðV ;EÞ while the
second is its functional representation.

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597550

For any signature s; we denote by strucðsÞ the class of (finite) s-structures. We are interested
in decision problems. A s-problem is a set PDstrucðsÞ that is closed under isomorphism. A
typical example is a set modelðfÞ of the s-structures which satisfy some fixed formula f: Let s be
a relational vocabulary and S;S0AstrucðsÞ: We say that S0 is an extension of S; and we write

SDS0; if S; S0 have the same domain and if sSDsS0
for each relation symbol sAs: A s-problem P

is monotone if it is closed under extension. The set of monotone s-problems is denoted by
Monotones: Thus, a set PDstrucðsÞ is in Monotones if P is a s-problem and if furthermore, for
all S;S0AstrucðsÞ we have: ðSAP and SDS0Þ) S0AP: For example, the set of connected
graphs, for the above relational representation of graphs, is monotone.

1.2. Computational model and complexity classes

Our computational model is the Nondeterministic Random Access Machine with read-only
input registers. A s-NRAM (or NRAM, for short) M is designed to store an input s-structure
S ¼ /D; sS; where D ¼ ½n
 ¼def f0;y; n � 1g (recall that s might contain function symbols). It
consists of:

* input registers:
* a register N supposed to contain the cardinality n of the input, and
* for each s-symbol s of arity q; and for each tuple iA½n
q; one register s½i
 supposed to store the
value sðiÞ;

* r þ 1 special registers (also called accumulators), A;B1;y;Br; where r ¼ arity ðsÞ;
* the main memory which consists of registers R0;R1;y .

Such a s-NRAM for a graph problem (s ¼ fEg) is represented in Fig. 1. Input registers are read-
only. The other registers are read/write. The program of M is a sequence of labeled instructions of
the following forms (1–11):

1. A :¼ N
2. A :¼ s½B1;y;Bq
 where sAs and q ¼ arity ðsÞ

ARTICLE IN PRESS

Fig. 1. An NRAM for a graph problem.

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597 551

3. A :¼ 0
4. A :¼ A þ 1
5. A :¼ RA

6. Bi :¼ A; 1pipr

7. RA :¼ Bi; 1pipr
8. If A ¼ Bi then instr i0 else instr i1; 1pipr

9. guessðAÞ
10. accept

11. reject

Semantics of the model:

* At the beginning of the computation, each read/write register contains 0:
* RA denotes the register Ri whose address, i; is the content of accumulator A:
* Instruction (9), guessðAÞ; is our nondeterministic instruction: it stores any integer
in A:

M accepts a s-structure S if some computation of M on input S reaches the state-
ment (10): accept: A s-problem P belongs to NTIMEsðTðnÞÞ if there is a s-NRAM M such
that:

(i) P is the set of s-structures accepted by M;
(ii) each computation of M on every input s-structure S; only uses integers in OðTðnÞÞ and stops

within time OðTðnÞÞ; where n is the cardinality of S:

We will focus on the class NTIMEsðnÞ: When s is unary and contains at least one
unary function symbol, the size and the cardinality (i.e. size of the domain) of s-structures
are linearly related, since a unary function f : ½n
-½n
 can be described by its list of
values, f ð0Þ;y; f ðn � 1Þ: Therefore, in this case, NTIMEsðnÞ coincides with the class
NLIN defined in [24] (see also [45,25]). Otherwise (i.e. if arity ðsÞX2), the class NTIMEsðnÞ
gathers problems recognizable nondeterministically in time linear in the cardinality of the

input structure, but sublinear in its size. Notably, if E is a binary relation symbol, NTIMEEðnÞ
is the class of graph and digraph problems recognizable nondeterministically in time linear
in the number of vertices of an input graph given by its relational representation, that is,
represented by its adjacency matrix. For this reason, we call vertexNLIN this class of graph
problems. By analogy, we will often denote by vertexNLINs the class NTIMEsðnÞ when
arity ðsÞX2:
Let s be a relational vocabulary. A positive s-NRAM M is a s-NRAM for which any access to

the input s-structure should be positive. More precisely, instruction (2) is replaced by

ð2þÞ
If rðB1;y;BqÞ then instr i else reject;

where rAs: Of course, any s-problem accepted by a positive s-NRAM is monotone.
Such a machine is very similar to the so-called Conjunctive Random Access Turing Machine of

Iain Stewart [46]. Complexity classes NTIMEsþðTðnÞÞ and vertexNLINsþ are defined
accordingly.

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597552

Remark.

* One may imagine that our instruction ‘‘guessðAÞ’’ which puts any integer into A is too
powerful. It is not the case since, as it can be easily shown, such an OðTðnÞÞ-time bounded
s-NRAM can be simulated within the same time by another s-NRAM which guesses integers
in OðTðnÞÞ and, more generally, only uses integers of magnitude OðTðnÞÞ (as addresses and
register contents).

* Our complexity classes NTIMEsðTðnÞÞ (resp. NTIMEsþðTðnÞÞ) are computationally robust.
More precisely, they are invariant under many changes of the allowed set of instructions. E.g.,
they do not change if we allow not only incrementation by 1 (instruction (4)) but also addition,
subtraction and/or multiplication of register contents, provided all the integers manipulated by
an OðTðnÞÞ-time bounded NRAM are required to be of magnitude OðTðnÞÞ (for details, see,
e.g., [21,25]).

In this paper, we also occasionally use the deterministic RAM model and deterministic
time complexity (see Section 7). A s-RAM is similar to a s-NRAM up to the following two
changes:

* it is deterministic. That is, it does not use the nondeterministic instruction (9);
* it may perform additions. That is, the instruction A :¼ A þ Bi; 1pipr; is allowed.

A s-problem belongs to DTIMEsðTðnÞÞ if it is recognized by a s-RAM that uses only integers
in OðTðnÞÞ and stops within time OðTðnÞÞ:

1.3. Logic and definability classes

We use the usual definitions and notations in logic and finite model theory (see [11]). We are
interested by definability in existential second order logic (ESO). Given two disjoint signatures
s ¼ fs1;y; spg and t ¼ ft1;y; tqg (where the si’s and the ti’s are relation and function symbols of

various arities), we write F
 (tfðs; tÞ to mean that F has the form
(t1?(tqfðs1;y; sp; t1;y; tqÞ: For a vocabulary s; we denote by ESOs the class of s-formulas
F of the form

F
 (tfðs; tÞ;
where t is a signature disjoint from s and f is a first-order sentence of vocabulary st: For
simplicity, we confuse in our notation a class of s-formulas, e.g. ESOs; and the class of s-
problems P they define. Namely, PAESOs means that there exists FAESOs such that P ¼
modelsðFÞ; i.e., SAP iff SFF: As in [18,20,24], we are interested in syntactic restrictions of
ESOs:

* FAESOsðvar dÞ means that the first-order part f of F (which is not necessarily in prenex form)
contains at most d (first-order) variables which may be quantified several times;

* FAESOsð8dÞ means that F is in the Skolemized prenex form (t8xfðs; t; xÞ where f is
quantifier-free, x is a tuple of first-order variables, and arity ðxÞ ¼ d;

* FAESOsðarity k; 8dÞ if it fulfils the same conditions as above and if furthermore,
arity ðtÞpk:

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597 553

Remark. Clearly, the class of problems defined in ESOsð8dÞ is not modified if formulas of the
more liberal form

F : (t8xd(yfðs; t;xd ; yÞ
are allowed, since, via Skolemization of the existential variables y; one obtains a formula of the
required form. So, for convenience, we shall write formulas in the more liberal form above.

For a relational vocabulary s; we denote by ESOsþ; ESOsþðvar dÞ; ESOsþð8dÞ and

ESOsþðarity k;8dÞ the similar classes of s-formulas where each (relation) symbol of s only
occurs positively, i.e., in the scope of an even number of negations (assuming that the only
connectives are :; 4 and 3).

2. A logical characterization of NTIMEðndÞ

The following equality refines Fagin’s Theorem [12] and generalizes results of [18,19,24]:

Theorem 2.1. For any signature s and any integer d40:

NTIMEsðndÞ ¼ ESOsðarity d; 8dÞ:

Proof. The two corresponding inclusions are proved in Lemma 2.1 and Proposition 2.1. &

Lemma 2.1. ESOsðarity d;8dÞDNTIMEsðndÞ:

Proof. Let r be a signature of arity d and f
 (r8xdcðxdÞ be a formula of ESOsðarity d;8dÞ:
The following nondeterministic algorithm A clearly recognizes P ¼ modelsðfÞ:

Algorithm A: On any input ð½n
;sÞAstrucðsÞ;

(a) guess an interpretation over ½n
 of each relation or function symbol in r;
(b) if the expanded structure ð½n
; s; rÞ satisfies 8xdcðxdÞ then accept; else reject:

Clearly, an NRAMs M can implement (a) using OðndÞ guess instructions (9) that guess the

OðndÞ values of the d-ary functions in r: Those values are easily stored in OðndÞ registers Ri of the

main memory. Then, M executes (b) within OðndÞ deterministic steps: more precisely, for each
aA½n
d ; ð½n
; s; rÞFcðaÞ is checked in constant time since lengthðcÞ is fixed and since M can
evaluate each subterm or atomic subformula sðbÞ (sAs,r; bDa) in one step with exactly one
access to the input (if sAs) or to the main memory (if sAr). &

We now prove the converse inclusion: NTIMEsðndÞDESOsðarity d; 8dÞ: As usual, in order
to describe a computation, it is crucial to have a linear order o; which intuitively encodes the
time order. It is easy to express the existence of such a linear order in ESOsðarity d;8dÞ;
for dX2:

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597554

* for dX3; we simply have to write that there exists a binary relation which is antisymmetric,
transitive and linear: this can be done using at most three universally quantified first-order
variables.

* For d ¼ 2; the above-mentioned defining properties of linear orders are not directly expressible.
However, we can quite easily overcome this difficulty by expressing that there exists, in addition
to the binary relationo; a unary function succ that is forced to be a successor function whileo
is compelled to coincide with the transitive closure of succ: It is possible to express the second
constraint using only two variables, by hand of an inductive argument (related to succ). The
unary arity of succ and the possibility to defineo from succ by an inductive argument allow to
write these constraints with only two first-order variables.

However, the case d ¼ 1 is much more difficult. It was solved in [19] as follows: with only one
first-order variable, there is no more hope to force explicitly a binary relation to be a linear order.
On the other hand, there exists a first-order formula builtðnÞ over a unary signature n whose
models can be easily equipped with a linear order implicitly defined via an existential first-order
formula orderðx; yÞ of arity 2. Consequently, an assertion of the form: ‘‘there exists a linear order
o on the domain D such that DFFðoÞ’’, where FðoÞ is a formula involving o; can be
rephrazed: ‘‘there exists an interpretation of n over the domain D such that

/D; nSFbuiltðnÞ4F0ðnÞ’’, where F0 is obtained from F by replacing each atomic formula
t1ot2 by orderðt1; t2Þ:
In order to allow a better understanding of the way these two formulas help to express in

ESOðarity 1; 81Þ the existence of a linear order, we recall the original result (in a slightly different
formulation):

Lemma 2.2 (Grandjean [19]). There exist two first-order formulas builtðnÞ and orderðx; y; nÞ over a

unary vocabulary n such that:

1. ‘‘built’’ is a sentence of the form 8xfðx; nÞ; where f is quantifier-free;
2. ‘‘order’’ is a formula with two free variables x; y; of the form (zcðx; y; z; nÞ; where c is quantifier-

free;
3. ‘‘built’’ has exactly one model (up to isomorphism) in each cardinality and

4. on each model /D; nS of builtðnÞ; orderðx; yÞ defines a linear order. That is:

if/D; nSFbuiltðnÞ; then

fða; bÞAD2 s:t: /D; nSForderða; bÞg is a linear order of D:

Proof. See [19], Proposition 4 for 3 and Lemma 5 for 4. &

Corollary 2.1 (Grandjean [19]). The definability class ESOsðarity 1;81Þ is not enlarged by the
addition of the second-order quantifier ð(lin orderoÞ (to be read: ‘‘there exists a linear order o of the
domain such that...’’). More precisely, any formula C of the form

ð(lin orderoÞFðs;oÞ;

where FAESOs;oðarity 1; 81Þ is equivalent to a formula C0AESOsðarity 1; 81Þ:

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597 555

Proof. Without loss of generality, assume that symbol o only occurs positively in F: Define
formula C0
 (n : builtðnÞ4F0ðs; nÞ; where F0 is obtained from F by replacing each inequality
t1ðxÞot2ðxÞ by the existential formula orderðt1ðxÞ; t2ðxÞ; nÞ: Clearly, by Conditions 3 and 4 of

Lemma 2.2, C0 is logically equivalent to C: Finally, the form of formulas built and order (see

Conditions 1 and 2 of Lemma 2.2) guarantees that C0 can be written in ESOsðarity 1; 81Þ; by
Skolemization. &

Using the quantifier ð(lin orderoÞ; we shall express an NTIMEsðndÞ computation in
ESOsðarity d;8dÞ even for d ¼ 1:

Proposition 2.1. NTIMEsðndÞDESOsðarity d;8dÞ:

Proof. In order to avoid heavy notations, let us give the proof for d ¼ 1; the general case being
similar. It is reminiscent of a similar proof in [17,24] (see also [45]). Let P be a s-problem (i.e., a
set of s-structures which is closed under isomorphism) recognized by a s-NRAM M in time OðnÞ:
Without loss of generality, assume that M only uses integers (addresses and registers) smaller than
cn and always stops in time at most cn; for a fixed integer c41; in particular, the instants (resp.
steps) of a computation are exactly numbered 0; 1;y; cn � 1 and a final instruction (accept or
reject) is performed at step cn � 1 or before (if it is performed before, it is repeated till the step
cn � 1). So, it is natural to encode such a computation over a linearly ordered structure with
domain ½cn
 as described below. At the end of the proof, we describe how to adapt the encoding
for the smaller domain ½n
:
Let instr0; instr1;y; instrk denote the sequence of the instructions of the program of M:

Without loss of generality, assume that instrk is the only accept instruction. In the encoding, we
will use the successor function Succ; associated to the linear order o and also denoted SuccðxÞ ¼
x þ 1; and the associated constants 0; 1; 2;y; k and max ¼ cn � 1 (assume kocn), and also the
constant n: Additionally to the input relation and function symbols sAs defined in ½n
 and
arbitrarily extended to ½cn
; e.g. with zero values, we encode a computation of M on input
structure ð½cn
; ðsÞsAsÞ by the following new unary functions

I ;A; ðBiÞipr;RA;R
0
A : ½cn
-½cn

which, with the exception of R0
A; are intended to describe the situation of M at instant t; that is the

instant before step t is performed. More precisely:

* IðtÞ holds the current instruction number (e.g. Ið0Þ ¼ 0 and IðmaxÞ ¼ k);
* AðtÞ and BiðtÞ; i ¼ 1; 2;y; r; hold the current values of registers A and Bi; respectively (e.g.

Að0Þ ¼ Bið0Þ ¼ 0);
* RAðtÞ holds the current value of the register whose address is currently contained in register A
(e.g. RAð0Þ ¼ 0) and

* R0
AðtÞ holds the value of the same register after step t:

By case distinction according to the value of IðtÞ; most of the logical description of the
computation of M is straightforward. E.g., if M performs a statement A :¼ A þ 1 at step t; then
the formula will force Aðt þ 1Þ ¼ AðtÞ þ 1: The main complication arises for the instruction

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597556

A :¼ RA which loads into the accumulator A the content of the register whose address was
contained in A before the execution of the instruction. Note that the functions defined in that way
do not explicitly encode the values of all the memory registers of M at each instant but only the
content of the register to which A points. So, how can we get the right value of RAðtÞ? If the
register pointed to by A at instant t has never been visited before t; then it contains its initial value
0: Otherwise, let u be the last instant before t when A contained the value AðtÞ: Then the last
modification of the register pointed to by A at instant t has been performed during step u; and
RAðtÞ ¼ R0

AðuÞ: In other terms, either there is no iot such that AðiÞ ¼ AðtÞ; and RAðtÞ ¼ 0 (case 1)

or u ¼ maxfiot : AðiÞ ¼ AðtÞg exists, and RAðtÞ ¼ R0
AðuÞ (case 2). Now, it is essential to notice

that the alternative between these two cases can be rephrazed as follows: assume we have
lexicographically ordered the pairs ðAðtÞ; tÞ; tA½cn
: Then, either t ¼ 0; and therefore, ðAðtÞ; tÞ ¼
ð0; 0Þ and RAðtÞ ¼ 0; or there exists uot such that ðAðuÞ; uÞ is the predecessor of ðAðtÞ; tÞ for the
lexicographic order over the pairs ðAðiÞ; iÞ: In this case, case 1 occurs if AðtÞaAðuÞ; case 2 occurs

otherwise.
Let us number the cn ordered pairs ðAðtÞ; tÞ; tA½cn
 according to their lexicographical order,

in other words, LexðyÞ ¼ ðAðtÞ; tÞ; yA½cn
; means the yth ordered pair is ðAðtÞ; tÞ: It is now
obvious that if y ¼ x þ 1; and LexðxÞ ¼ ðAðuÞ; uÞ; then u is the instant concerned in the
above cases (1,2). The essential point is that t is the only universally quantified first-order
variable in that description. The other variables involved x; y and u are existentially quantified,

and, hence, can be Skolemized. Formally, the function Lex : ½cn
-½cn
2 is represented by two
unary functions Lex1;Lex2 : ½cn
-½cn
: Now we present the first-order formulas (with only one
universally quantified variable) whose conjunction will form the first-order part of the
ESOsðarity 1;81Þ-formula. In order to simplify notation and obtain a natural encoding of an
accepting computation of M; we introduce the formulas in an informal way that uses case
distinction as in [45,25] (but these formulas are essentially equivalent to those of [18,24]). Recall
that the function I only takes a fixed number of values 0; 1;y; k: For convenience, we freely use
abbreviations for instruction case distinction, e.g., ‘‘IðxÞ is A :¼ 0’’ is an abbreviation for the
formula

IðxÞ ¼ i13IðxÞ ¼ i23?3IðxÞ ¼ ip;

where the ij are all the numbers of the instructions A :¼ 0 in the program. In all the following

‘‘formulas’’ that define I ; A; Bi; ipr; the quantification ð8tomaxÞ is implicit and we use informal
expressions that are easily encoded in logic such as ‘‘if’’, ‘‘and’’ and ‘‘otherwise’’. G denotes a new
unary function symbol existentially quantified (for the guess instruction). Recall that instructions
of the form (8) in an NRAM are as follows: ‘‘If A ¼ Bi then instr i0 else instr i1’’ (see Section 1.2).
Then Ið0Þ ¼ 0; Að0Þ ¼ 0; Bið0Þ ¼ 0 (for each i) and for all t:

Iðt þ 1Þ ¼

i0 if IðtÞ is of the form ð8Þ and A ¼ Bi;

i1 if IðtÞ is of the form ð8Þ and AaBi;

IðtÞ if IðtÞ is of the form ð10Þ or ð11Þ ðaccept or rejectÞ;
IðtÞ þ 1 otherwise;

8>>><
>>>:

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597 557

Aðt þ 1Þ ¼

n if IðtÞ is A :¼ N;

sðB1ðtÞ;y;BqðtÞÞ if IðtÞ is A :¼ sðB1;y;BqÞ;
0 if IðtÞ is A :¼ 0;

AðtÞ þ 1 if IðtÞ is A :¼ A þ 1;

RAðtÞ if IðtÞ is A :¼ RA;

GðtÞ if IðtÞ is guessðAÞ;
AðtÞ otherwise;

8>>>>>>>>>>><
>>>>>>>>>>>:

Biðt þ 1Þ ¼
AðtÞ if IðtÞ is Bi :¼ A;

BiðtÞ otherwise:

�
The following formula, now quantified by 8t; defines the value R0

AðtÞ contained in the register of
address AðtÞ after step t:

R0
AðtÞ ¼

BiðtÞ if IðtÞ is RA :¼ Bi;

RAðtÞ otherwise:

�
There remains to define the functions Lex (in fact, Lex1 and Lex2) and RA: Lex is obviously

defined by the two formulas 8t(x : LexðxÞ ¼ ðAðtÞ; tÞ and ð8xomaxÞ : LexðxÞoLexðx þ 1Þ and
RA is defined by

RAð0Þ ¼ 0 4 ð8t40Þ(u(x

LexðxÞ ¼ ðAðuÞ; uÞ 4
Lexðx þ 1Þ ¼ ðAðtÞ; tÞ 4
ðAðtÞ ¼ AðuÞ-RAðtÞ ¼ R0

AðuÞÞ 4
ðAðtÞ4AðuÞ-RAðtÞ ¼ 0Þ

0
BBB@

1
CCCA:

Finally, the formula IðmaxÞ ¼ k expresses that the last instruction performed is instrk ¼ accept:
So, we have proved that our s-problem P is defined on domain ½cn
 by a formula f of the
form

ð(lin orderoÞ(t87 : cð7Þ:

Here c is a quantifier-free formula that uses, in addition to t; the symbols o; Succ; 0; max and n;
while t is a unary vocabulary including I ; A; ðBiÞipr; RA; R0

A; G and Lex: Of course, Succ; 0 and

max are easily definable with o and hence can be eliminated.
It remains to explain how to modify the relations, functions, constants, and the formula if the

domain is ½n
 instead of ½cn
: For convenience, assume that each atomic subformula involving any
unary function symbol F is of the form FðuÞ ¼ v where u; v are individual variables, and that the
first-order part of our formula is of the form

8t(xcðt;xÞ;

where c is quantifier-free and x is a tuple of variables. Each element bA½cn
 is naturally
represented by the ordered pair ði; aÞ such that b ¼ i � n þ a; iA½c
; aA½n
: The rest of the encoding

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597558

is a consequence of that representation:

* The universally quantified variable 8t is replaced by
V

iA½c
 8t (which intuitively means

8ði; tÞA½c
 � ½n
), and the existential part of the prefix, (x; is modified similarly;
* The constant n; that is 1� n þ 0; is replaced by the ordered pair ð1; 0Þ and the linear ordero is
encoded similarly;

* Each atomic subformula involving an input relation or function symbol sAs is not modified
(recall that in such a formula, the arguments are forced to belong to ½n
);

* Each atomic subformula of the form FðuÞ ¼ v where F is an ESO unary function symbol
(F ¼ I ;A;y) and u; v are any variables, is replaced by the conjunction

RF
i;jðuÞ4FiðuÞ ¼ v

which intuitively means Fði; uÞ ¼ ð j; vÞ and in which RF
i;j and Fi are new unary relation and

function symbols, respectively, with i; jA½c
: To enforce the functional nature of RF
i;j; we finally

make the conjunction of the first-order sentence so modified and of some sentences which mean

that for every iA½c
 and uA½n
; RF
i;jðuÞ holds for exactly one jA½c
:

The details of the encoding are left to the reader. By Corollary 2.1, this finishes the proof thatP
belongs to ESOsðarity 1;81Þ: &

3. Other logical characterizations

It is natural to ask how robust is the computational/logical class NTIMEsðndÞ ¼
ESOsðarity d;8dÞ from a logical point of view, i.e. to look for other logical characteriza-
tions of this class. E.g., is it equal to ESOsðarity dÞ; the similar class when the number of first-order
(universal) variables is no longer bounded? We cannot answer this question, which is related to a
conjecture by Fagin about the arity hierarchy [13]. However, we can prove the following result:

Theorem 3.1. For every vocabulary s and every integer d40:

ESOsðarity d;8dÞ ¼ ESOsð8dÞ ¼ ESOsðvar dÞ:

The inclusions ESOsðarity d; 8dÞDESOsð8dÞDESOsðvar dÞ are trivial. The converse inclu-
sions are proved in the following Lemma 3.1 and Proposition 3.1. Before proving Lemma 3.1, it
seems useful to examine an example. Let us consider the formula

F
 (S;T : 8xSðxÞ38xTðxÞ;

where S;T are unary relation symbols. Clearly, F belongs to ESOsðvar 1Þ: And putting F under
prenex form in a natural way would provide the formula (S;T8x; y : SðxÞ3TðyÞ; which belongs
to ESOsð82Þ: Nevertheless, we can build an ESOsð81Þ-formula equivalent to F: First, let us quote

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597 559

all the subformulas of the first-order part of F:

aðxÞ
 SðxÞ; b
 8xSðxÞ;
gðxÞ
 TðxÞ; d
 8xTðxÞ;

f
 8xSðxÞ38xTðxÞ:
Now, we associate to these formulas some new relation symbols Ra;y;Rf and we define the

formulas Da;y;Df as follows:

Da
 8x : RaðxÞ-SðxÞ; Db
 8x : Rb-RaðxÞ;
Dg
 8x : RgðxÞ-TðxÞ; Dd
 8x : Rd-RgðxÞ;

Df
 Rf-Rb3Rd:

It is easy to see that the formula F0
 (S;T(Ra;y;Rf : Rf4Da4Db4Dg4Dd4Df is equivalent

to F and has a prenex form in ESOsð81Þ: (Notice furthermore that we could get rid of 0-ary
predicates by replacing each such predicate P0 by the atom P1ðcÞ; where P1 is a new unary
predicate and c any existentially quantified constant.) The next lemma generalizes this
construction.

Lemma 3.1. ESOsðvar dÞDESOsð8dÞ:

Proof. The proof looks like the proof of a similar but less general result of [17] (Proposition 2.4).
Let P be a s-problem in ESOsðvar dÞ; i.e. we have P ¼ modelsðCÞ for a formula of the form
C
 (tcðs; tÞ; where t is any signature and c is a first-order s,t-sentence with exactly d

individual variables x ¼ x1; x2;y; xd which may be quantified several times. Without loss of
generality, let us assume that c contains only the connectives 4; 3 and : such that no quantifier
is in the scope of a negation. We also assume that c contains no existential quantifier (existential
variables can be Skolemized). We have to transform c into prenex form with also d (universal)
variables. The key observation is that any subformula yðuÞ of c contains at most d free variables
uDx; u ¼ u1;y; uk; kpd: Let us associate to each subformula yðuÞ a new relation symbol Ry of
same arity. Intuitively, RyðuÞ represents yðuÞ: Then, let us associate an implication Dy to each
subformula yðuÞ as follows:
* if yðuÞ is quantifier-free, take Dy
 8u : RyðuÞ-yðuÞ;
* otherwise:

* if yðuÞ
 8vy0ðu; vÞ; take Dy
 8u8v : RyðuÞ-Ry0 ðu; vÞ;
* if yðuÞ
 y0ðvÞ4y00ðwÞ where u ¼ v,w; take Dy
 8u : RyðuÞ-ðRy0 ðvÞ4Ry00 ðwÞÞ;
* if yðuÞ
 y0ðvÞ3y00ðwÞ where u ¼ v,w; take Dy
 8u : RyðuÞ-ðRy0 ðvÞ3Ry00 ðwÞÞ:

It can be shown by an easy induction that c is logically equivalent to the formula:

c0
 (Ry1 ;y;Ryp
: Rc4Dy14?4Dyp

;

where y1;y; yp enumerate the set of subformulas of c; including c itself. More precisely, the

implication c-c0 is straightforward if each Ry is given its intuitive meaning. For the converse
implication, notice that, by an easy induction on the structure of y; Dy14?4Dyp

implies that for

each subformula yðuÞ of c we have 8uðRyðuÞ-yðuÞÞ: Hence, by taking y ¼ c; c follows from c0

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597560

by Modus Ponens applied to Rc and Rc-c: Since each conjunct Dy is of the form 8uy0ðuÞ; uDx;

for a quantifier-free formula y0; the formula c0 can be put into the form (Ry1 ;y;Ryp
8xc00ðxÞ;

where c00 is quantifier-free, as required. This concludes the proof of Lemma 3.1. &

Proposition 3.1. ESOsð8dÞDESOsðarity d;8dÞ:

Proof. As before, for simplicity, we give the proof only for d ¼ 1 (the proof of the general case is
similar). First of all, we need to establish a normalization of the logic ESOsð81Þ: Recall that the
formulas of this class are of the form (after Skolemization) : (f 8xf; where f is a sequence of
second-order symbols of various arities, x is a first-order variable, and f is a quantifier-free
formula of signature s,f (see Section 1.3). We can assume without loss of generality that each
fAf is a function symbol: if it not the case, transform each relation symbol R into a function

symbol R̂ of the same arity and replace each atomic formula Rðt1;y; tqÞ by R̂ðt1;y; tqÞ ¼ c;
where c is any constant symbol, belonging to s or existentially quantified (if c does not exist,
create it by adding c to the ESO symbols of the formula). The point is, as we will prove it in the
next lemma, that we can furthermore assume that all the terms and subterms occurring in f are of
the form: tðxÞ ¼ f ðt1ðxÞ;y; tkðxÞÞ; where f is a k-ary function symbol of s,f which doesn’t
occur in any of the subterms tiðxÞ (i ¼ 1;y; k). Before giving a formal proof of this fact, let us
illustrate it by an example: consider the formula f
 8x : uðuðx; 0Þ; vðxÞÞ ¼ vðvðxÞÞ; where u; v are,
respectively, binary and unary function symbols and 0 is a constant symbol. The terms and
subterms occurring in f are the following:

t1ðxÞ ¼ x; t2ðxÞ ¼ 0; t3ðxÞ ¼ uðx; 0Þ;
t4ðxÞ ¼ vðxÞ; t5ðxÞ ¼ uðuðx; 0Þ; vðxÞÞ; t6ðxÞ ¼ vðvðxÞÞ:

Some of these terms (namely, t5 and t6) do not fulfil the above requirement. Let us now introduce,
for each of these terms tiðxÞ; a unary function symbol *ti; and consider the following formulas,
that relate these functions to the terms:

*t1ðxÞ ¼ x; *t2ðxÞ ¼ 0; *t3ðxÞ ¼ uð*t1ðxÞ; *t2ðxÞÞ;
*t4ðxÞ ¼ vð*t1ðxÞÞ; *t5ðxÞ ¼ uð*t3ðxÞ; *t4ðxÞÞ; *t6ðxÞ ¼ vð*t4ðxÞÞ:

Now, let us denote by D the conjunction of these six formulas. Clearly, the formula f0

(*t1?(*t68x : Dðu; v; 0; *t1;y; *t6; xÞ4*t5ðxÞ ¼ *t6ðxÞ is equivalent to f and has the required form.
The following lemma generalizes this result.

Lemma 3.2. Each formula f in ESOsð81Þ is equivalent to a formula f0 in ESOsð81Þ; where each

(sub)term of the form f ðt1ðxÞ;y; tqðxÞÞ is such that no subterm tiðxÞ contains the function symbol f :

Proof. As before, we assume without loss of generality that our formula f
 (f 8xcðxÞ (where c
is quantifier-free) contains no ESO relation symbol. Let termðcÞ denote the set of terms and
subterms of c: To each tAtermðcÞ; we associate a new unary function symbol *t; which intends to
represent t; and a formula dtð f ; *t;xÞ which inductively defines the function *t as follows:

* if t is x or a constant symbol, then dtð f ; *t;xÞ is the formula *tðxÞ ¼ t;

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597 561

* otherwise, i.e. if t is of the form f ðt1ðxÞ;y; tqðxÞÞ; dtð f ; *t; xÞ is the formula *tðxÞ ¼
f ð*t1ðxÞ;y; *tqðxÞÞ:

Now, set f0
 (f ð(*tÞtAtermðcÞ8x½
V

tAtermðcÞ dtð f ; *t;xÞ4c�ðxÞ
; where c�ðxÞ is the formula cðxÞ in
which each tAtermðcÞ that is not a proper subterm is replaced by *tðxÞ: Clearly, f0 is equivalent to
f and has the required form. This concludes the proof of Lemma 3.2. &

Let us now prove Proposition 3.1 (for d ¼ 1). Let f
 (f 8tcðtÞAESOsð81Þ: Assume (without
loss of generality) that it satisfies the condition of Lemma 3.2. We want to eliminate every
function symbol f of arity q41 in the ESO prefix f : Let f ðs0ðtÞÞ;y; f ðsk�1ðtÞÞ be the list of

all the occurrences of f in c (each siðtÞ is a q-tuple of terms ðt1i ðtÞ;y; tq
i ðtÞÞ). In order to

eliminate f ; we search to interpret each term f ðsiðtÞÞ as the image of t by a new unary function. So

let us consider k new unary function symbol F0;y;Fk�1 and denote by *c and y the following
formulas:

* *c is the formula c where every term f ðsiðtÞÞ is replaced by FiðtÞ and
* y
 8t; t0

V
i;i0ok ½siðtÞ ¼ si0 ðt0Þ-FiðtÞ ¼ Fi0 ðt0Þ
:

(Here, siðtÞ ¼ si0 ðt0Þ is the natural abbreviation for
V

1pcpq tci ðtÞ ¼ tci0 ðt0Þ:) Now consider the

following formula *f where f no longer occurs:

*f
 (F0;y;Fk�1 : y48t *c:

We claim that the formula f is equivalent to *f: The argument of our claim is the well-known easy
fact that follows.

Fact 3.2. Let G : X-Y and F : X-Z be two functions on the same domain X : Then, the two
following assertions are equivalent:

1. for all x; yAX ; GðxÞ ¼ GðyÞ implies FðxÞ ¼ FðyÞ;
2. there exists f : Y-Z such that F ¼ f 3G:

To prove our claim, apply Fact 3.2 with the sets X ¼ ½k
 � D; Y ¼ Dq; Z ¼ D and the functions
Fði; tÞ ¼ FiðtÞ; Gði; tÞ ¼ siðtÞ: Unfortunately, there are two (universally quantified) first-order

variables t; t0 in the subformula y of *f: In order to obtain an equivalent one-variable formula as
required, we use the same idea and techniques as in the proof of Proposition 2.1. Once again, an
ESO linear order o is introduced: it is used to lexicographically order the set of ðq þ 2Þ-tuples:
S ¼ fðsiðtÞ; i; tÞ; iok; tADg: The crucial point is that, for each value vADq; the set Iv ¼
fðsiðtÞ; i; tÞ : siðtÞ ¼ vg forms an interval of S for the lexicographical linear order. In other words,
tuples with the same value siðtÞ are contiguous for this order. Since jSj ¼ kjDj; there is a
lexicographically increasing bijection, denoted Lex, of ½k
 � D onto S; which is defined via the
following formulas cbij and cinc:

cbij
 8ði; tÞ(ð j;xÞ : Lexð j; xÞ ¼ ðsiðtÞ; i; tÞ;

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597562

cinc
8ð j;xÞoðk � 1;maxÞ(ð j0; x0Þ :
ð j0; x0Þ ¼ Succð j;xÞ4Lexð j; xÞoLexð j0; x0Þ:

Remark. For readability, we use the suggestive and concise notations 8ði; tÞ; (ð j; xÞ; etc., that are
easy to translate; Succð j;xÞ denotes the successor of the ordered pair ð j; xÞ in the lexicographical
order of ½k
 � D and similarly for relations ¼ and o between ordered pairs. Notice that our

formal syntax represents the function Lex : ½k
 � D-Dqþ2 by kðq þ 2Þ functions Lexi
j : D-D;

where ioq þ 2 and jok:

It is now easy to check that the subformula y of *f is equivalent to the following formula y0:

y0
 ð(lin orderoÞð(LexÞ½cbij4cinc4cfunct
:
Here, the conjunct cfunct expresses the fact that on each interval Iv (see above), two successive
elements Lexð j; xÞ ¼ ðsiðtÞ; i; tÞ and LexSuccð j; xÞ ¼ ðsi0 ðt0Þ; i0; t0Þ fulfil FiðtÞ ¼ Fi0 ðt0Þ: That is,
cfunct is the formula:

8ð j; xÞoðk � 1;maxÞ (ð j0; x0Þ (ði; tÞ (ði0; t0Þ :

ð j0; x0Þ ¼ Succð j;xÞ 4 Lexð j;xÞ ¼ ðsiðtÞ; i; tÞ 4 Lexð j0;x0Þ ¼ ðsi0 ðt0Þ; i0; t0Þ
4 ðsiðtÞ ¼ si0 ðt0Þ-FiðtÞ ¼ Fi0 ðt0ÞÞ:

One easily transforms y0 and, finally, *f into the (Skolemized) ESOsðarity 1; 81Þ required form.
This concludes the proof of Proposition 3.1 and completes the proof of Theorem 3.1. &

4. Similar results for monotone classes

In this section, each input vocabulary s is required to be relational. Iain Stewart has studied
several logical descriptions of monotone s-problems in NP. In [47] and [48], he showed that
several monotone problems, including hamilton and cubic-subgraph; are complete for
monotone-NP via monotone projection translations. In [46], he proved the following theorem,
whose proof is used in the proof of Lemma 4.2:

Theorem 4.1 (Stewart [46–48]). monotone-NPs ¼
S

d NTIMEsþðndÞ ¼ ESOsþ:

Proof. Clearly, we have the inclusions:

ESOsþD
[

d

NTIMEsþðndÞDmonotone-NPsDmonotone-ESOs;

because of Fagin’s characterization of NP (namely,
S

d NTIMEsðndÞ ¼ ESOs). The theorem will

be an immediate consequence of the inclusion:

monotone-ESOsDESOsþ: ð4Þ
Let us prove this inclusion: given a problem PAmonotone-ESOs over a relational signature
s ¼ fR1;y;Rkg; there exists an ESOs-formula f such thatP ¼ modelsðfÞ: The reader can easily

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597 563

check that, by monotonicity, fðRÞ is equivalent to the following ESOs-formula:

f0
 (R0 : fðR0Þ4R0DR;

where R0 ¼ ðR0
1;y;R0

kÞ is a list of new relation symbols such that arity ðR0
iÞ ¼ arity ðRiÞ ¼ ai;

where fðR0Þ is obtained from fðRÞ by replacing each Ri by R0
i and where R0DR stands for the

conjunction
V

i 8xai
ðR0

iðxai
Þ-Riðxai

ÞÞ: Then P ¼ modelsðf0Þ; and since the input relation

symbols Ri occur only positively in f0; we conclude that PAESOsþ: &

For any degree d of nondeterministic polynomial time, we can prove the following analogue of
Theorems 2.1 and 3.1, thus refining Theorem 4.1:

Theorem 4.2. For any integer d40 and any relational vocabulary s; we have:

monotone-NTIMEsðndÞ ¼ NTIMEsþðndÞ
¼ ESOsþðarity d;8dÞ ¼ ESOsþð8dÞ ¼ ESOsþðvar dÞ:

Proof. This theorem is the consequence of a series of class inclusions with, in particular, the two
following lemmas:

Lemma 4.1. ESOsþðarity d;8dÞDNTIMEsþðndÞ:

Proof. The proof is a variant of that of Lemma 2.1 to which the reader is invited to refer. Let

PAESOsþðarity d;8dÞ for a relational signature s ¼ fR1;y;Rkg: Then P ¼ modelsðfÞ for a
formula f
 (r8xcðxÞ; where arity ðrÞ ¼ arity ðxÞ ¼ d and c is a disjunctive normal form
g0ðxÞ3?3gq�1ðxÞ in which the Ri’s occur only positively. Then P is recognized by a

nondeterministic algorithm similar to A (cf. proof of Lemma 2.1) where Part (b) is replaced by
the following new part:

for each aA½n
d ; guess a number i: If ioq check that ð½n
; s; rÞFgiðaÞ:
If not, reject. If no rejection occurs, accept.
It is essential to notice that since gi is a conjunction of literals where each RjAs occurs

positively, then in each accepting computation, each access to the input can be realized by a
positive s-NRAM instruction of the form ð2þÞ; as required. &

Lemma 4.2. monotone-ESOsðarity d; 8dÞDESOsþðarity d;8dÞ:

Proof. For the sake of simplicity, let us prove this result for d ¼ 1 and s ¼ fRg; where R is a k-
ary relation symbol. The general case is similar. As justified in the proof of Theorem 4.1, any
sentence fðRÞAESOs expressing a monotone property of s-structures is equivalent to the

following sentence f0ðRÞAESOsþ:

(R0 : fðR0Þ48xðR0ðxÞ-RðxÞÞ;

where R0 is a new k-ary relation symbol and fðR0Þ is obtained from fðRÞ by replacing R by R0:

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597564

Now, let us assume fðRÞAESOsðarity 1; 81Þ: The equivalent formula f0ðRÞ above belongs to
ESOsþ but does not belong to ESOsðarity 1; 81Þ in case k41; as it is required. More precisely, we
show: if fðRÞ is of the form (n8ycðR; n; yÞ with arity ðnÞ ¼ 1; and if c is quantifier-free, then fðRÞ
is equivalent to the following sentence f0ðRÞAESOsþ; where arity ðR0Þ ¼ k:

(n(R0 : 8ycðR0; n; yÞ48xðR0ðxÞ-RðxÞÞ:

We now transform the formula f0ðRÞ into an equivalent formula of ESOsþðarity 1;81Þ in two
steps:

(1) first, we transform f0ðRÞ into f1ðRÞAESOsþðarity 1Þ;
(2) then, we transform f1ðRÞ into f2ðRÞAESOsþðarity 1;81Þ:

Let R0ðtiðyÞÞiAI denote the set of distinct atomic subformulas of cðR0; n; yÞ that involve R0: (Note:
each tiðyÞ is a tuple of terms of the same arity as R0 and R:) Step (1) essentially consists in
replacing each atom R0ðtiðyÞÞ by RiðyÞ; where Ri is a new relation symbol. More precisely, we
show the following:

Claim. f0ðRÞ is equivalent to the following formula f1ðRÞAESOsþðarity 1Þ:

(nð(RiÞiAI 8y

V
iAI ðRiðyÞ-RðtiðyÞÞ 4 c0ððRiÞiAI ; n; yÞ 4V
iAI 8z

V
jAI tiðyÞ ¼ tjðzÞ-ðRiðyÞ2RjðzÞÞ

 !
:

where c0 denotes the quantifier-free formula c where each atom R0ðtiðyÞÞ has been replaced by RiðyÞ:

Indeed, f0ðRÞ clearly implies f1ðRÞ: interpret RiðyÞ as R0ðtiðyÞÞ for each y: The converse
implication is obtained by defining the Boolean values of R0 as follows, on the universe of the
input structure /½n
;RS:

(a) R0ðtiðyÞÞ :¼ RiðyÞ for each iAI and yA½n
;
(b) R0ðxÞ :¼ RðxÞ if the tuple xA½n
k is distinct from each tuple tiðyÞ; iAI ; yA½n
:

The coherence of the first item of this definition follows from the third conjunct of f1ðRÞ:
Conditions (a) and (b), in addition to the first conjunct of f1; imply together R0DR: Finally, from

the formula 8yc0ððRiÞiAI ; n; yÞ; one easily deduces 8ycðR0; n; yÞ by Condition (a). This proves the

claim.
The three conjuncts of f1ðRÞ have the required form: they involve only unary ESO symbols

(n; ðRiÞiAI) and only one first-order variable y; except for the third conjunct in which the new

variable z appears. But this third conjunct can be written in ESOðarity 1;81Þ:

Claim. The formula c1
 8y
V

iAI 8z
V

jAI tiðyÞ ¼ tjðzÞ-ðRiðyÞ2RjðzÞÞ is equivalent to some

formula in ESOðarity 1; 81Þ:

A similar assertion has yet been proved in the proof of Proposition 3.1. The only difference is
that we are now interested in unary relation symbols instead of unary function symbols. But the

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597 565

proof is nearly the same and the reader is invited to refer to it. This concludes the proof of
Lemma 4.2. &

Now, we can prove Theorem 4.2 in considering Fig. 2. In this scheme, A-B stands for ADB
and A2B; for A ¼ B: Besides, the labels of the arrows refer to the following arguments:

(0) follows immediately from the definitions of the involved classes;
(1) follows from the equality NTIMEsðndÞ ¼ ESOsðarity d; 8dÞ proved in Section 2 (Theorem

2.1) and from the definition monotone-C :¼ Monotones-C for any class of s-problems C;
(2) follows from the equality ESOsðarity d;8dÞ ¼ ESOsðvar dÞ proved in Section 3 (Theorem

3.1) and from the definition of monotone-C;
(3) is Lemma 4.2;
(4) is Lemma 4.1.

Clearly, this scheme implies the equality between all the involved classes and, in particular, the
equality between the framed classes. This completes the proof of Theorem 4.2. &

5. Semantical invariance properties of ESOð81Þ

In Section 6, we shall prove that some well-known graph problems belong to the class
vertexNLIN. In order to establish these memberships by purely logical means (i.e. by proving the
definability of these problems in ESOð81Þ), we first examine, in the present section, some
syntactical extensions of ESOð81Þ; which will simplify the formulation of graph properties under
consideration. We prove that these syntactical extensions do not enlarge the semantical scope of
ESOð81Þ; so that the above mentioned properties appear to be in vertexNLIN. Such a result has
already been proved in Section 2: Corollary 2.1 precisely states that existential quantifications
over linear orders ð(lin orderoÞ do not enlarge ESOð81Þ from a semantical point of view. This result
is a key argument of many definability results in ESOð81Þ and it will be widely used in the present
section. However, this extension will not be sufficient to give a correct and useful ESOð81Þ-
formulation of some rather sophisticated graph properties. In particular, the logical descriptions
of many such properties seem to require the use of two first-order variables, in order to fully
describe the behaviour of the edge relation of the graphs. To perform these logical
characterizations in the more restrictive logic ESOð81Þ; we shall first have to ‘‘translate’’ the

ARTICLE IN PRESS

Fig. 2. Inclusions between the complexity classes.

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597566

property under consideration into an equivalent property dealing with a spanning forest (resp.
tree) of the graph which, in turn, can be logically characterized with a single first-order variable
(because of the unary arity of the forest). For instance, we shall prove the ESOð81Þ-definability of
connectivity using the fact that a graph is connected iff it is spanned by some tree, the latter being
easily expressed in our logic.
For these reasons, the core of this section consists of the proof that ESOð81Þ is not enlarged by

existential quantification over forests and over several functions and relations (including transitive
closure) related to forests (Section 5.2). Then we shall concentrate on functional graphs, that is,
graphs of unary functions. We shall state that in those graphs, both transitive closure (Section 5.3)
and a certain notion of distance (Section 5.4) can be defined in ESOð81Þ: These results notably
attest the robustness of the logic ESOð81Þ and, in turn, the robustness of the complexity class
vertexNLIN.
First of all, let us give a precise meaning to the assertion: ‘‘existential quantification over such

and such a class of structures (linear orders, forests, etc.) does not enlarge ESOð81Þ’’.

5.1. Existential quantification over sets of structures

In the rest of the paper, we deal with the logic ESOð81Þ: From now on, we denote it by ESO1

(or ESOs
1 when we want to restrict it to a particular signature).

Let s; t be two disjoint signatures andT be a set of finite t-structures. The logic ESOs
1½T
 is the

set of formulas of the form: ð(tATÞF with FAESOst
1 : The semantic of such a formula is naturally

defined: a s-structure /D; sS satisfies ð(tATÞF iff there exists an interpretation of t on D such
that /D; tSAT and /D; s; tSFF: The condition/D; tSAT will often be denoted by: tATðDÞ:
Therefore,

/D;sSFð(tATÞF iff there exists tATðDÞ such that/D; s; tSFF

Let s; t; t0 be three pairwise disjoint signatures, TDstrucðtÞ; T0Dstrucðt0Þ: We write

ESOs
1½T
DESOs

1½T0
 when each formula of the first logic is equivalent (on s-structures) to a
formula of the second logic. In other terms:

ESOs
1½T
DESOs

1½T0

iff

ð8fAESOs
1½T
Þ ð(f0AESOs

1½T0
Þ s:t: modelsðf0Þ ¼ modelsðfÞ:
When the converse inclusion also holds, we note ESOs

1 ½T
 ¼ ESOs
1½T0
: When this equality holds

for any signature s; we write ESO1½T
 ¼ ESO1½T0
: In the particular case where T0 ¼ | (i.e.
ESO1½T
 ¼ ESO1), we say that existential quantification over T does not enlarge ESO1:

Definition and example. Let us denote by linord the set of finite structures /D;oS; where o
is a linear order on the domain D: Corollary 2.1 precisely says that existential quantification over
linord does not enlarge ESO1: In our new formalism, we can write:

ESO1½linord
 ¼ ESO1; ð5Þ
and this equality must be understood as follows: for any signature s and any formula f of

the form ð(oAlinordÞc; with cAESOs;o
1 ; there exists a formula f0AESOs

1 such that

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597 567

modelsðfÞ ¼ modelsðf0Þ; and conversely. (Notice that the existential quantification over a linear
order o; previously denoted by ð(lin orderoÞ is now written: ð(oAlinordÞ:)
The goal of the following subsections is to state such ‘‘invariance results’’ for several sets of

structures T: Let us mention some easy remarks about relative inclusions between logics

ESO1½T
: Until the end of this subsection, t; t0; t00 denote any three signatures and T;T0;T00

three sets of structures such thatTDstrucðtÞ; T0Dstrucðt0Þ andT00Dstrucðt00Þ: First, observe
that our semantical inclusion is transitive. That is

ESO1½T
DESO1½T0
DESO1½T00
) ESO1½T
DESO1½T00
: ð6Þ

Of course, this transitivity result can be extended to semantical equalities. That is, (6) still holds
when replacing ‘‘D’’ by ‘‘¼’’.
Now, suppose T is definable in ESOs

1 ½T0
: In other words, there exists a formula F

ð(t0AT0Þfðt; t0Þ in ESOs

1 ½T0
 such that T ¼ modelsðFÞ: Then, any formula C
 ð(tATÞcðs; tÞ
in ESOs

1½T
 is clearly equivalent to (tð(t0AT0Þ : fðt; t0Þ4cðs; tÞ: This last formula can be written
as ð(t0AT0Þ(tfðt; t0Þ4cðs; tÞ; which can be proved to be in ESOs

1½T0
 by easy closure properties
of this logic. Since these remarks hold for any signature s; they can be summarized by:

T is definable in ESOs
1 ½T0
) ESO1½T
DESO1½T0
: ð7Þ

We shall often make use of the following result: we say that T is a complete restriction of T0 if
tDt0; if each structure /D; tS of T can be expanded into a structure /D; t0S belonging to T0

and if furthermore each structure /D; t0SAT0 is an expansion of a structure /D; tSAT: With
this definition, each formulaC
 ð(tATÞFðs; tÞ of ESOs

1½T
 is obviously equivalent to a formula
C0 of ESOs

1½T0
: Namely, if we denote t0 ¼ t,r; then C0
 ð(trAT0ÞFðs; tÞ: Thus we have

T is a complete restriction of T0) ESO1½T
DESO1½T0
: ð8Þ

Definition and example. Let us consider the signature fo; pred; succ;min;maxg in which o is a
binary relation symbol, pred and succ are unary function symbols, and min and max are constant
symbols. Let us furthermore denote by full-linord the set of finite structures
/D;o; pred; succ;min;maxS; where o is a linear order, pred and succ are its associated
predecessor and successor functions, min and max are its associated minimal and maximal
elements. Hence, trivially, linord is a complete restriction of full-linord (consequently,
ESO1½linord
DESO1½full-linord
).

We now mention two easy but useful remarks. Let t1;y; tk be k signatures such that
s; t1;y; tk are pairwise disjoint. Let T1Dstrucðt1Þ;y;TkDstrucðtkÞ be k sets of structures.
We denote by ESOs

1½T1;y;Tk
 the set of formulas of the form: ð(t1AT1Þ?ð(tkATkÞF; where
FAESOst1?tk

1 : The semantic associated to this logic is as expected. Recalling that an equality such
as ESO1½T
 ¼ ESO1 stands for 8s : ESOs

1 ½T
 ¼ ESOs
1; one can easily prove:

ð8i ¼ 1;y; k : ESO1½Ti
 ¼ ESO1Þ) ESO1½T1;y;Tk
 ¼ ESO1: ð9Þ

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597568

As the above implication holds for any signatures ti; we obtain, when t1;y; tk are pairwise
disjoints copies of t: for any TDstrucðtÞ;

ESO1½T
 ¼ ESO1) ESO1½T;y;T
 ¼ ESO1 ð10Þ

and we shall keep in mind the meaning of this implication in the following form:
if ESO1½T
 ¼ ESO1; then for every signature s; any formula of the form

ð(t1ATÞ?ð(tkATÞF; with FAESOst1?tk

1 ; is equivalent to a formula of ESOs
1:

We conclude this subsection with two invariance results of ESO1:

Lemma 5.1. ESO1½full-linord
 ¼ ESO1:

Proof. Let C
 ð(ðo; pred; succ;min;maxÞAfull-linordÞF be a formula in ESOs
1 ½full-linord
;

where s is any signature. Then C has the same models /D;sS as

C0
 ð(oAlinordÞð(pred; succ;min;maxÞ ðF04FÞ;

where F0 is the formula

8x : ðminpxpmaxÞ4ðxamin-ðpredðxÞox4succ predðxÞ ¼ xÞÞ:

Indeed, F0 forces pred; succ;min;max; respectively, to be the predecessor, successor, minimum
and maximum related to the existentially quantified linear order o: just consider a strictly

increasing enumeration of D according to o; say a1oa2o?oan; and prove, from F0; that
a1 ¼ min; an ¼ max and for each 1oion; ai ¼ predðaiþ1Þ ¼ succðai�1Þ (by recurrence on i). As C0

clearly has a prenex form in ESOs
1½linord
; it yields ESO1½full-linord
DESO1½linord
: But the

converse inclusion also holds (see the previous example). Therefore ESO1½full-linord
 ¼
ESO1½linord
 and the conclusion follows from the Eqs. (5) and (6) stated above. &

The last result has a different flavour, since it deals with ordered structures, that is, with
structures over a signature that contains a built-in linear order. More precisely: let s be any
signature and o be a binary relation symbol. We call ordered s-structure any structure S ¼
/D; s;oS over the signature s,fog in which o is interpreted as a linear order. This allows to
identify D to the initial segment of N of size jDj and to view some functions over this initial
segment as functions over D:
In particular, let us temporarily use the following notations: if jDj ¼ n; and if k is an integer

strictly smaller than n; we denote by %k the kth successor of the minimal element of ðD;oÞ: E.g., if
min (resp. max) denotes the minimal (resp. maximal) element of ðD;oÞ; then %0 ¼ min and n � 1 ¼
max: Then, we denote by arithoðDÞ the set of functions þ;�;�; div;mod : D � D-D defined as
follows: for all k; con;

%k þ %c ¼ Minðk þ c; n � 1Þ
%k � %c ¼ Minðkc; n � 1Þ
%k � %c ¼ Maxðk � c; 0Þ
%k div %c ¼ %q

%k mod %c ¼ %r;

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597 569

where, assuming ca0; q and r are the unique integers such that k ¼ qcþ r; qon; roc; and where
Min (resp. Max) maps each ði; jÞAN2 to i (resp. j) if ipj; and to j (resp. i) otherwise. (We write %k %c
instead of %k � %c:)
For any signature s; we denote by strucoðsÞ the set of s,fog-structures in which o is

interpreted by a linear order. A subset of strucoðsÞ will be called a set of ordered s-structures and
we will denote it byTo to recall that the interpretation of s over a structure SATo depends on a
built-in linear order on S:Given a set of ordered t-structuresTo; we denote by ESOs

1½To
 the set
of formulas of the form:

ð(tAToÞFðo; s; tÞ

with FAESOo;s;t
1 : The semantic of this logic is as follows: the models of such a formula are

ordered structures. An ordered s-structure /D;o; sS satisfies ð(tAToÞF iff there exists an
interpretation of t on D such that: /D;o; tSATo and /D;o; s; tSFF: Finally, we write

ESOs
1½To
 ¼ ESOs

1 ½o
 when for each formula FAESOs
1 ½To
 there exists a formula F0AESOs

1½o

such that F and F0 have the same ordered s-models. The last result of this subsection is given
without proof. It attests the invariance of ESO1 under arithmetical extensions.

Lemma 5.2 (Olive). For any signature s; ESOs
1½aritho
 ¼ ESOs

1½o
:

Proof. We just sketch very roughly the proof. It can be found in [36, Theorem 2.31, p. 104]. First,
one can prove the definability in ESOs

1 ½o
 of the unary functions p0;p1; p2 and of the constant b

defined as follows over a domain D: b ¼ I
ffiffiffiffiffiffiffi
jDj

p
m and 8xAD: p0ðxÞ;p1ðxÞ;p2ðxÞob and x ¼

p0ðxÞ þ p1ðxÞb þ p2ðxÞb2: This is done recursively by forcing p0ðsuccðxÞÞ; p1ðsuccðxÞÞ and
p2ðsuccðxÞÞ to fit their right values, with respect to the values of p0ðxÞ; p1ðxÞ and p2ðxÞ: Then, one
can define the restrictions of þ and � to ½b
: More precisely, the unary functions A and M such
that 8xAD; AðxÞ ¼ p0ðxÞ þ p1ðxÞ and MðxÞ ¼ p0ðxÞp1ðxÞ can be defined in ESOs

1½o
: Once
again, this is done recursively, by stating the value of AðxÞ (resp. MðxÞ) when p1ðxÞ ¼ 0 and by
relating Aðx þ bÞ (resp. Mðx þ bÞ) to AðxÞ (resp. MðxÞ) (notice that the function x/x þ b is itself
trivially definable from succ). Last, the definability of the functions þ and � is easily deduced
from those of A and M: The definability of �; div and mod is proved similarly. &

5.2. Prefix order in a forest

The results of this subsection and of the next one (‘‘Transitive closure of a function’’) are
essentially due to a collaboration with Lautemann [32] and Ranaivoson [42].
Let D be a finite domain. We say that a function F : D-D is a forest over D if F has no cycle

except the loops FðxÞ ¼ x: We denote it by FAforestðDÞ: If F : D-D is a forest, we denote by
descFðxÞ the set of the descendants of the node xAD in the forest, including x: In other words,

descFðxÞ ¼ fyAD : (iAN s.t. FiðyÞ ¼ xg:
A prefix order of the forest /D;FS is a linear order o of D satisfying: 8xAD; FðxÞpx and

descFðxÞ is an interval with respect to o: We write ðF ;oÞApreford-forestðDÞ when
FAforestðDÞ and o is a prefix order on this forest.

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597570

One can easily prove that a linear ordero is a prefix order of a given forest /D;FS if, and only
if, for each xAD there exists lxAD such that descFðxÞ ¼ ½x; lx
: The node lx is thus the last
descendant of x in F according too and the function x/lx is called the last function associated to
ðF ;oÞ:
Given a prefix ordered forest ðD;F ;oÞ; each node xAD which is not a root may have siblings

smaller than it (according to o). If this is the case, we call left sibling of x the largest of those
siblings; if it is not, we assume that the left sibling of x is x itself. We extend this notion to the
roots in the following way: the left sibling of the smallest root r1 is r1 itself; the left sibling of a root
r4r1 is the biggest root smaller than r: Finally, we call left function associated to ðD;F ;oÞ the
unary function over D which maps every node onto its left sibling. Fig. 3 shows a forest F together
with a left function (in dotted lines) associated to the prefix order underlying the chosen planar
representation of F :
The root function associated to F maps each xAD onto the root r of its component in the forest

(i.e. FðrÞ ¼ r and xAdescF ðrÞ).
We say that a tuple ðF ; root; last; leftÞ is a full forest over D if:

* FAforestðDÞ;
* root is the root function associated to F ;
* last and left are, respectively, the last function and the left function associated to F ; relatively to
the same prefix order over F :

We denote by full-forestðDÞ the set of such tuples.

Proposition 5.1 (Lautemann [32] and Ranaivoson [42]). Let D be a finite domain and F ; root; last;
left be four unary functions over D: Then ðF ; root; last; leftÞAfull-forestðDÞ if, and only if, there
exists ðo; pred; succ;min;maxÞAfull-linordðDÞ such that, for every xAD:

(a) FðxÞpxplastðxÞplastFðxÞ;
(b) one of these three assertions is true:

(i) predðxÞ ¼ FðxÞ4leftðxÞ ¼ x;
(ii) x ¼ FðxÞ4leftðxÞ ¼ F leftðxÞ4last leftðxÞ ¼ predðxÞ;
(iii) xaFðxÞ4leftðxÞaF leftðxÞ4F leftðxÞ ¼ FðxÞ4last leftðxÞ ¼ predðxÞ;

(c) ðFðxÞ ¼ x-rootðxÞ ¼ xÞ4rootFðxÞ ¼ rootðxÞ:

Proof. A full forest trivially fulfils conditions (a) through (c), if we take for o the prefix order
over F according to which last and left are the last and left functions associated to F : So, we only
have to prove the sufficiency of (a)–(c). That is, let us assume that there exists

ARTICLE IN PRESS

Fig. 3. A forest F (bold lines) and its left function (dotted lines).

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597 571

ðo; pred; succ;min;maxÞAfull-linordðDÞ such that ðF ; root; last; leftÞ satisfies conditions (a) to
(c) for every xAD and let us prove that

* F is a forest and root is its root function;
* last and left are the last and left functions associated to F relatively to the same prefix order.

In the following, we shall often use the characteristic property of full-linord given in the proof
of Lemma 5.1. We recall it there: let o be a linear order over D; pred; succ : D-D and
min;maxAD: Then ðo; pred; succ;min;maxÞAfull-linordðDÞ iff for every xAD;
(d) ðminpxpmaxÞ 4 ðxamin-ðpredðxÞox4succ predðxÞ ¼ xÞÞ:
F is a forest and root is its root function.

According to (a), any F -circuit x1 !F ? !F xp !F x1 must satisfy x1X?XxpXx1 and thus

x1 ¼ ? ¼ xp: Consequently, all F-circuits are loops and F is a forest. Furthermore, Condition (c)

allows to prove inductively that root is constant on each connected component of F and maps
each root to itself. That is, root is the root function associated to F :

last and left are the last and left functions associated to F relatively to the same prefix order.
Actually, we shall prove that the above existentially quantified o is necessarily a prefix order

over D and that last and left are the last and left functions associated to F according to this prefix
order. That is, we will prove the statement: for each xAD; descF ðxÞ ¼ ½x; lastðxÞ
 and leftðxÞ is the

left sibling of x according to o: Notice that Condition (a) affirms the inclusion
½x; lastðxÞ
D½FðxÞ; last FðxÞ
 which in turn, allows to prove inductively the inclusion
descFðxÞD½x; lastðxÞ
: This will help us to prove the above statement by recurrence on the level
c of x in the forest F : That is, we prove by induction that the following assertion holds for any
cojDj:

for each node x of level c in F :

descFðxÞ ¼ ½x; lastðxÞ
 and leftðxÞ is the left sibling of x:

We denote by ðHcÞ this recurrence hypothesis. In order to prove that H0 and ðHc) Hcþ1Þ
hold, let us notice the following: if xAD is a root of F ; it must satisfy ðbiÞ or ðbiiÞ (since condition
ðbiiiÞ demands FðxÞax). In the first case, leftðxÞ ¼ x ; in the second case, leftðxÞ is a root (since
F leftðxÞ ¼ leftðxÞ) such that last leftðxÞ ¼ predðxÞ: But this last equality implies, by Conditions (d)
and (a), that leftðxÞ is smaller than x: Consequently, in both cases leftðxÞ is a root smaller than x:
Analogously, any ‘‘non root’’ node x must satisfy ðbiÞ or ðbiiiÞ: And we can prove as above that
these conditions force leftðxÞ to be a ‘‘non root’’ smaller than x: So, we will remind the following
consequences of Condition (b):

if x is a root (resp. a nonroot node), then x satisfies ðbiÞ or ðbiiÞ (resp. ðbiÞ or ðbiiiÞ) and leftðxÞ is
a root (resp. a nonroot node) smaller or equal to x:

We will call this assertion Condition ðb0Þ:

The case of roots ðH0Þ:

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597572

Let r1or2o?ork be the strictly increasing list of the roots of F :We first prove the two following
facts:

* predðr1Þ ¼ r1 ¼ leftðr1Þ: Indeed, since r1 is a root, leftðr1Þ is a root smaller or equal to r1 (by ðb0Þ)
and thus leftðr1Þ ¼ r1 (since r1 is the smallest root). Furthermore, r1 satisfies ðbiÞ or ðbiiÞ: In the
first case, predðr1Þ ¼ Fðr1Þ ¼ r1; in the second, the equality last leftðr1Þ ¼ predðr1Þ leads to
lastðr1Þ ¼ predðr1Þ and then, to r1ppredðr1Þ (see Condition (a)). Therefore, we still have r1 ¼
predðr1Þ: Note that, by Condition (d), this equality means r1 ¼ min:

* For every iok; predðriþ1Þ ¼ lastðriÞ and leftðriþ1Þ ¼ ri: Let us prove this by recursion on i:

This assertion is fulfilled by i ¼ 1: r2 being a root, it must satisfy ðbiÞ or ðbiiÞ (by ðb0Þ). If it
satisfies ðbiÞ; then predðr2Þ ¼ Fðr2Þ ¼ r2 and thus r2 ¼ min (by (d)). But this contradicts the fact
that r24r1: Therefore, ðbiiÞ must hold for r2: It implies predðr2Þ ¼ last leftðr2Þ and consequently
leftðr2Þplast leftðr2Þ ¼ predðr2Þor2 (by (a) and (d)). Then leftðr2Þ is a root (by ðb0Þ) strictly smaller
than r2: That is: leftðr2Þ ¼ r1 and the equality predðr2Þ ¼ last leftðr2Þ becomes predðr2Þ ¼ lastðr1Þ:
Now, consider jAf2;y; k � 1g and assume that the recurrence hypothesis is satisfied for each

ioj: The node rjþ1 is a non minimal root. For the same reasons than r2; it fulfils ðbiiÞ and leftðrjþ1Þ
is a root strictly smaller than rjþ1: Let ipj be such that leftðrjþ1Þ ¼ ri: By the recurrence

hypothesis, lastðriÞ ¼ predðriþ1Þ: In the same time, last leftðrjþ1Þ ¼ predðrjþ1Þ (by ðbiiÞ).
Consequently, predðrjþ1Þ ¼ predðriþ1Þ and, since rjþ1amin and riþ1amin: rjþ1 ¼ riþ1: Therefore,
i ¼ j and leftðrjþ1Þ ¼ rj; lastðrjÞ ¼ predðrjþ1Þ:
So, we have proved the following sequence of inequalities:

½r1; lastðr1Þ
o½r2; lastðr2Þ
o?o½rk; lastðrkÞ
; ð11Þ

with r1 ¼ min ¼ leftðr1Þ; predðriþ1Þ ¼ lastðriÞ and leftðriþ1Þ ¼ ri: This shows that left fulfils its
expected interpretation, as far as roots are concerned. Also, schema (11) obviously shows that the
intervals ½ri; lastðriÞ
 are disjoint. However we have seen before that for each i; descF ðriÞD
½ri; lastðriÞ
: As the subsets descF ðriÞ; i ¼ 1;y; k; clearly form a partition of D; these last
inclusions lead to the demanded equalities: descFðriÞ ¼ ½ri; lastðriÞ
:

Inductive step ðHc) Hcþ1Þ:

Let us now assume that Hc holds for a given cX0: In order to prove that Hcþ1 holds, we only
have to prove that for each node x of level c and for each child y of x in the forest: descFðyÞ ¼
½y; lastðyÞ
 and leftðyÞ is the left sibling of y: So, suppose that xAD is a node of level c and denote
by x1ox2o?oxp the strictly increasing list of its children. We prove in ‘‘one move’’ that all the

xi’s fulfil the expected conditions. The proof is almost the same as in the base case:
First, x1; which is not a root, must fulfil ðbiÞ: otherwise, by ðb0Þ; it would fulfil ðbiiiÞ; that is:

leftðx1Þ is not a root, F leftðx1Þ ¼ Fðx1Þ and last leftðx1Þ ¼ predðx1Þox1: Thus, leftðx1Þ would
be a sibling of x1 strictly smaller than x1: a contradiction. Thus, predðx1Þ ¼ Fðx1Þ ¼ x and
leftðx1Þ ¼ x1:
Now, we can inductively prove that for each iop; predðxiþ1Þ ¼ lastðxiÞ and leftðxiþ1Þ ¼ xi: by

their definition, all the xi’s, i41; have to satisfy Condition ðbiiiÞ (if such an xi satisfies ðbiÞ; then
predðxiÞ ¼ FðxiÞ ¼ x ¼ predðx1Þ: a contradiction). For each i41; this implies that leftðxiÞ is a
sibling of xi strictly smaller than xi and such that last leftðxiÞ ¼ predðxiÞ: For i ¼ 2; this imposes

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597 573

leftðx2Þ ¼ x1 and lastðx1Þ ¼ predðx2Þ: Then, one shows recursively, similarly to the base case, that
predðxiþ1Þ ¼ lastðxiÞ and leftðxiþ1Þ ¼ xi for each i ¼ 1;y; p � 1: Thus we have proved the
decomposition scheme:

xo½x1; lastðx1Þ
o½x2; lastðx2Þ
o?o½xp; lastðxpÞ
; ð12Þ

with predðx1Þ ¼ x; predðxiþ1Þ ¼ lastðxiÞ and leftðxiþ1Þ ¼ xi: The scheme (12) obviously implies
that the sets fxg; ½x1; lastðx1Þ
;y; ½xp; lastðxpÞ
 are mutually disjoint. Moreover, by the induction

hypothesis, we have descF ðxÞ ¼ ½x; lastðxÞ
: Since for each i; descF ðxiÞD½xi; lastðxiÞ
 and since,
trivially, the sets fxg; descF ðx1Þ;y; descF ðxpÞ form a partition of descF ðxÞ; the same argument
as above allows to conclude that descF ðxiÞ ¼ ½xi; lastðxiÞ
 for each i: This finally assures that o;
last and left fit their expected interpretations and concludes the proof of Proposition 5.1. &

Corollary 5.1. ESO1½full-forest
 ¼ ESO1:

Proof. Proposition 5.1 precisely states that the set of structures full-forest is definable in
ESO1½full-linord
; via the formula:

(ðo; pred; succ;min;maxÞAfull-linord 8x :

f FðxÞpxplastðxÞplastFðxÞ g 4
predðxÞ ¼ FðxÞ4leftðxÞ ¼ x

3
x ¼ FðxÞ4leftðxÞ ¼ F leftðxÞ4last leftðxÞ ¼ predðxÞ

3
xaFðxÞ4leftðxÞaF leftðxÞ4F leftðxÞ ¼ FðxÞ4last leftðxÞ ¼ predðxÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

4 f ðFðxÞ ¼ x-rootðxÞ ¼ xÞ4rootFðxÞ ¼ rootðxÞ g:

As ESO1½full-linord
 ¼ ESO1; by Lemma 5.1, full-forest is also definable in ESO1; and the
conclusion follows from Implication (7). &

We shall now state a generalization of this result, using the formalism described in the previous
subsection. First, let us introduce some new notations:

* full-forestþ tc is the set of structures /D;F ; root; last; left;F�S such that:
ðF ; root; last; leftÞAfull-forestðDÞ and F� is the transitive closure of F (that is: F�ðx; yÞ iff
(iAN : FiðxÞ ¼ y) and

* full-treeþ tc is the set of structures /D;T ; root; last; left;T�S which are in full-forestþ tc

and such that T is a tree (i.e. T is connected).

Corollary 5.2 (in collaboration with C. Lautemann and S. Ranaivoson). The following equalities
hold:

(a) ESO1½full-forestþ tc
 ¼ ESO1 and

(b) ESO1½full-treeþ tc
 ¼ ESO1:

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597574

Proof. (a) Suppose F is a forest of domain D; o is a prefix order over F and last is the last
function of F with respect to o: Then for any x; yAD; F�ðx; yÞ holds iff xAdescFðyÞ: But
descFðyÞ ¼ ½y; lastðyÞ
: Therefore we have: F�ðx; yÞ iff ypxplastðyÞ:
Now, let us denote by Y the quantifier-free matrix of the formula described in the proof of

Corollary 5.1, so that full-forest is defined by the formula:

(ðo; pred; succ;min;maxÞAfull-linord 8x :

Yðx;o; pred; succ;min;max;F ; root; last; leftÞ:

Since this formula forces ðF ;oÞ to be a prefix ordered forest and last to be the associated last
function, it is clear that each formula (ðF ; root; last; left;F�ÞF of ESO1½full-forestþ tc
 is
equivalent to the formula:

(ðo; pred; succ;min;maxÞAfull-linord (F ; root; last; left;F� : ð8x YðxÞÞ4F0

where F0 is obtained from F by replacing each atomic formula F�ðt1ðxÞ; t2ðxÞÞ (where t1ðxÞ; t2ðxÞ
are terms over the only first-order variable x occurring in F) by the formula
t2ðxÞpt1ðxÞplastðt2ðxÞÞ: As this formula clearly belongs to ESO1½full-linord
; it can be written
in ESO1; by Lemma 5.1. Finally, each formula of ESO1½full-forestþ tc
 is thus proved logically
equivalent to a formula of ESO1 and the result follows.
(b) A tree is a forest with only one root. Therefore, each formula

(ðT ; root; last; left;T�ÞAfull-treeþ tc :F

in ESO1½full-treeþ tc
 is equivalent to the formula:

(ðT ; root; last; left;T�ÞAfull-forestþ tc (r : ð8x : rootðxÞ ¼ rÞ4F;

which can be written in ESO1; by (a).
This concludes the proof of Corollary 5.2. &

We conclude this subsection by a remark which relates the statements of Corollary 5.2 to the
way we will use them in the following. First, let us introduce the following definitions:

* rooted-forest is the set of structures /D;F ; rootS such that FAforestðDÞ and root is its root
function;

* forestþ tc is the set of structures /D;F ;F�S such that FAforestðDÞ and F� is its transitive
closure.

* rooted-forestþ tc is the set of structures /D;F ; root;F�S such that ðF ; rootÞ is in
rooted-forestðDÞ and ðF ;F�Þ is in forestþ tc:

* tree is the set of structures /D;TS such that T is a tree.
* treeþ tc is the set of structures /D;T ;T�S such that TAtree and T� is its transitive closure.

Remark. The above sets of structures are all complete restrictions of either the set full-forestþ
tc or the set full-treeþ tc: Therefore, by Corollary 5.2 and Implication (8), existential
quantifications over these sets does not enlarge ESO1:

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597 575

5.3. Transitive closure of a function

Let D be a finite domain of cardinality nX2 and f a unary function over D: We also call f the
directed graph of f ; that is the binary structure ðD;EÞ; where Eðx; yÞ holds if f ðxÞ ¼ y: The shape
of functional graphs are well-known: they look as forests, except that the root of any connected
component can be replaced by a cycle. Such a graph is represented in Fig. 4.
Let us now consider a forest F of domain D:We say that F is obtained from f if each root of F is

on a circuit of f and if furthermore F and f coincide on every xAD which is not a root of F : A
forest F0 obtained from the function f0 is given in Fig. 5.

Lemma 5.3. Let D be a finite domain and f : D-D: Let F be a forest of domain D; rootF its
associated root function and F� its transitive closure.

(a) F is obtained from f if and only if, for every xAD:

rootF f ðxÞ ¼ rootFðxÞ and FðxÞax-FðxÞ ¼ f ðxÞ:

(b) If F is obtained from f ; then for every x; yAD:

f �ðx; yÞ iff F�ðx; yÞ3ðF�ðx; rootF ðxÞÞ4F�ð f rootFðxÞ; yÞÞ;
where f � is the transitive closure of f (that is: f �ðx; yÞ iff (iAIN : f iðxÞ ¼ yÞ:

ARTICLE IN PRESS

Fig. 4. A unary function f0 over D ¼ f0;y; 19g:

Fig. 5. A forest F0 obtained from f0:

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597576

Proof. Let us first notice that if FAforestðDÞ fulfils (a) and if x1;y; xp is a tuple of nodes distinct

from any root of F ; then we clearly have:

x1x2yxp is a path in f iff x1x2yxp is a path in F : ð�Þ

(a) The ‘‘only if’’ condition is trivial. Let us check the ‘‘if’’ one: the equality rootF f ðxÞ ¼ rootF ðxÞ
guarantees, by induction on f ; that the function rootF is constant on each connected
component of f : Therefore, each connected component C of f contains exactly one root of F ;
and we only have to verify that this root lies on the circuit of C: Assume, for the sake of a
contradiction, that the f -circuit x1x2?xpx1 of C does not contain any root of F : Then, by ð�Þ;
x1x2?xpx1 is also a circuit of F : This implies x1 ¼ x2 ¼ ? ¼ xp (since F is a forest) and thus,

x1 ¼ Fðx1Þ: a contradiction.
(b)

‘‘Only if’’. Let x ¼ x1 !f x2 !f ? !f xp !f y be a simple path from x to y in f : If none of the

xi’s is a root for F ; then this path is also a path in F and we have F�ðx; yÞ: Otherwise, let i be
such that FðxiÞ ¼ xi: This i is unique, since there is only one root in each connected
component of f and since the path xx2?xpy is simple. Consequently, xx2yxi and xiþ1yy

are paths in f that do not contain any F-root. Hence they are paths in F and we have F�ðx; xiÞ
and F�ðxiþ1;xÞ: The equalities xi ¼ rootFðxÞ and xiþ1 ¼ f ðxiÞ yield the conclusion.
‘‘If’’. If F�ðx; yÞ; then either x ¼ y; and the conclusion is clear, or there exists a simple path

x ¼ x1 !F ? !F xp !F y in F such that FðxiÞaxi for every i (since the path is simple). By ð�Þ;
this F-path is therefore also a path in f and we have f �ðx; yÞ: If F�ðx; rootFðxÞÞ4
F�ð f rootF ðxÞ; yÞ; the previous remark leads to f �ðx; rootFðxÞÞ4f �ð f rootFðxÞ; yÞ and there-
fore, to f �ðx; yÞ: &

The proof of Assertion (b) leads to the following remark, that will be used in the
next section:

Remark. Suppose that f �ðx; yÞ holds and call P the simple path from x to y in f : Then:

either P is also the path from x to y in F ;

or P has the form xx2?rootFðxÞf rootFðxÞ?xpy;

where xyrootF ðxÞ and f rootF ðxÞyy are also paths in F :

The previous lemma has an immediate consequence, in terms of ‘‘robustness’’ of the class ESO1:
Let us first define the following class of structures:
functionþ tc is the set of structures /D; f ; f �S where f is a unary function over D and f � is

the transitive closure of f :

Corollary 5.3. ESO1½functionþ tc
 ¼ ESO1:

Proof. It immediately follows from Lemma 5.3 that each formula

C
 (ð f ; f �ÞAfunctionþ tc :Fð f ; f �Þ

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597 577

of ESO1½functionþ tc
 is equivalent to the formula C0:

(ðF ; rootF ;F�ÞArooted-forestþ tc :

ð8x : rootF f ðxÞ ¼ rootF ðxÞ4FðxÞax-FðxÞ ¼ f ðxÞÞ
4F0ð f ;F ; rootFÞ;

where F0 is obtained from F by replacing each atomic formula f �ðt1ðxÞ; t2ðxÞÞ by the formula:

F�ðt1ðxÞ; t2ðxÞÞ3ðF�ðt1ðxÞ; rootF ðt1ðxÞÞÞ4F�ð f rootFðt1ðxÞÞ; t2ðxÞÞÞ:
The formula C0 so obtained is in ESO1½rooted-forestþ tc
 and thus, by Corollary 5.2, it can be
written in ESO1: Hence the result. &

5.4. Distance in an ordered functional graph

The goal of this subsection is to refine the main result of the previous one: we have stated in
Corollary 5.3 that the transitive closure of a unary function can be expressed in ESO1: That is, we
can express, in this logic, that there exists a path between two nodes of a given functional graph.
But what about the length of this path? Can we also define it in ESO1? In other words, can we
define in ESO1 the function distf ; with respect to a given unary function f ; that maps each pair

ðx; yÞAf � onto the length of the shortest f -path between x and y? A problem arises in this
formulation: such a function distf has to take its values inN: Thus it cannot be described, a priori,
as the interpretation of a function symbol over a domain D: But we have seen, in Section 5.1, how
to overcome this difficulty: when a domain D is given with a built-in linear order, its elements can
be identified to the nonnegative integers 0; 1;y; jDj � 1: As the distance function maps each
ordered pair ðx; yÞ of D � D onto an integer strictly smaller than jDj; it can be represented by a
binary function over D; provided D is equipped with a linear order. And this will be also the case
for some other functions (height; length) considered in this subsection. Once our above question
will be well reformulated, we shall answer it positively (Corollary 5.4). For this purpose, let us
briefly introduce some new definitions:
Let ðD;oÞ be a linearly ordered domain, whose elements are denoted by 0; 1;y; jDj � 1: Let f

be a unary function over D:
When f �ðx; yÞ holds, there exists a unique simple path from x to y in f :We call the distance from

x to y in f the length of this path (i.e. the number of edges occurring in the path). It follows that, if

f �ðx; yÞ holds, the distance from x to y in f is the least iojDj such that y ¼ f iðxÞ: We call the
distance function associated to f according to o the binary function over D that maps each pair
ðx; yÞAf � to the (representative of the) distance from x to y in f : For the sake of completeness, we
assume that this function maps each ðx; yÞef � to 0:
The length of x in f is the length of the circuit of the f -connected component on which x lies. We

call length function associated to f with respect to o the unary function over D that maps each
xAD onto the (representative of the) length of x in f :
For the function represented in Fig. 4 for instance, the distance from 11 to 2 is 6 and the length

of 11 is 4:
Besides, if F is in forestðDÞ; the height of x in F is the distance from x to its F -root, that is,

the smallest iojDj such that FðFiðxÞÞ ¼ FiðxÞ:We call height function associated to F with respect

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597578

to o the unary function over D that maps each xAD onto the (representative of the) height of x

in F :
Let f and dist be two function symbols of respective arities 1 and 2: We denote by funþ disto

the set of ordered structures /D;o; f ; distS of signature ð f ; distÞ in which dist is the distance
function associated to the unary function f with respect to the linear order o:

Lemma 5.4. Let /D; f ; f �SAfunctionþ tc and o be a linear order over D: Let distf : D � D-D:
Then distf is the distance function associated to f with respect to o iff:

there exists ðF ; rootF ;F�ÞArooted-forestþ tcðDÞ;
there exists ðþ;�;�; div;modÞAarithoðDÞ;
there exist heightF ; lengthf : D-D;

such that the following conditions (a–d) hold:

(a) 8x : rootF f ðxÞ ¼ rootF ðxÞ 4 ðFðxÞax-FðxÞ ¼ f ðxÞÞ;

(b) 8x :
FðxÞ ¼ x-heightF ðxÞ ¼ 0 4
FðxÞax-heightF ðxÞ ¼ 1þ heightF FðxÞ;

(c) 8x : lengthf ðxÞ ¼ 1þ heightF f rootFðxÞ;
(d) for every x; y; zAD; the assertion z ¼ distf ðx; yÞ is equivalent to:

f f �ðx; yÞ4F�ðx; yÞ4z ¼ heightFðxÞ � heightFðyÞ g
3 f f �ðx; yÞ4:F�ðx; yÞ4z ¼ heightF ðxÞ þ lengthf ðxÞ � heightF ðyÞg
3 f :f �ðx; yÞ4z ¼ 0g:

Proof. The forward implication is easy (see Fig. 5). We prove the converse implication by looking
at the following consequences of statements (a–d):
(a) This is the condition for F to be obtained from f (see Lemma 5.3).
(b) By this condition, heightF takes the value 0 on each root, and each further step outside the

loop increases its value by one. This inductively forces heightF to be the height function associated
to F according to o:
(c) Let xAD: Recall that the length of x in f is the length of the cycle of the f -connected

component of x: As this cycle contains rootFðxÞ; it can be written:

rootF ðxÞ !f f rootFðxÞ !f ? !f rootF ðxÞ:

Thus, the length of x in f is 1 plus the length of the f -path f rootFðxÞ !f ? !f rootF ðxÞ: But this
path is also a path in F and its length can be viewed as the distance from f rootFðxÞ to rootF ðxÞ in
F ; that is, as the height of f rootFðxÞ in F : Therefore, the length of x in f is 1þ heightF f rootF ðxÞ
and Condition (c) implies that lengthf is the length function associated to f according to o:

(d) Let us temporarily denote by DistF (resp. Distf) the distance function associated to F (resp.

f) according to o: Since F is a forest, we clearly have, for any xAD:

DistF ðx; rootF ðxÞÞ ¼ heightFðxÞ

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597 579

and consequently, for any ðx; yÞAF�:

DistF ðx; yÞ ¼DistF ðx; rootF ðxÞÞ � DistF ðy; rootFðyÞÞ
¼ heightFðxÞ � heightFðyÞ:

Now, let us ‘‘compute’’ Distf ðx; yÞ according to the situation of the ordered pair ðx; yÞ: if f �ðx; yÞ
does not hold, then Distf ðx; yÞ ¼ 0; if f �ðx; yÞ holds, let P be the simple f -path from x to y: Then
Distf ðx; yÞ is the length of this path and we have, by the remark of Section 5.3: either P is also an

F-path, or P has the form

P ¼ x !f ? !f rootF ðxÞ !f f ðrootFðxÞÞ !f ? !f y;

where xyrootFðxÞ and f rootFðxÞyy are also paths in F : The first case yields

Distf ðx; yÞ ¼ DistFðx; yÞ ¼ heightFðxÞ � heightFðyÞ
and the second one:

Distf ðx; yÞ ¼DistF ðx; rootFðxÞÞ þ 1þ DistFð f rootF ðxÞ; yÞ
¼ heightFðxÞ þ 1þ heightF ð f rootFðxÞÞ � heightF ðyÞ:

That is, by Condition (c):

Distf ðx; yÞ ¼ heightF ðxÞ þ lengthf ðxÞ � heightF ðyÞ:
It is now easily seen that Condition (d) implies the equality distf ¼ DistF :
This concludes the proof of Lemma 5.4. &

Corollary 5.4. ESO1½funþ disto
 ¼ ESO1½o
:

Proof. By Lemma 5.4, every formula

C
 (ð f ; distf ÞAfunþ disto :Fðo;s; f ; distf Þ
of ESOs

1 ½funþ disto
 has the same ordered models as the formula:

(ð f ; f �ÞAfunctionþ tc

(ðF ; rootF ;F
�ÞArooted-forestþ tc

(ðþ;�;�; div;modÞAaritho

(heightF (lengthf

8x

rootF f ðxÞ ¼ rootFðxÞ 4 ðFðxÞax-FðxÞ ¼ f ðxÞÞ 4
ðFðxÞ ¼ x-heightFðxÞ ¼ 0Þ 4
ðFðxÞax-heightF ðxÞ ¼ 1þ heightF FðxÞÞ 4
lengthf ðxÞ ¼ 1þ heightF f rootF ðxÞ

8>>><
>>>:

9>>>=
>>>;4 F0;

where F0 is obtained from F by replacing each atomic subformula

tx ¼ distf ðux; vxÞ

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597580

(where ux; vx; tx are terms built over the only first-order variable x occurring in F) by the formula
f f �ðux; vxÞ4F�ðux; vxÞ4tx ¼ heightF ðuxÞ � heightFðvxÞ g

3 f f �ðux; vxÞ4:F�ðux; vxÞ4tx ¼ heightFðuxÞ � heightFðvxÞ þ lengthf ðuxÞ g
3 f :f �ðux; vxÞ4tx ¼ 0 g:

The formula C0 so obtained can be written in ESOs
1 ½o
 by Corollary 5.3, Corollary 5.2, Lemma

5.2 and Implication (9) of Section 5.1. &

Remark. We have said that this last result holds in case the involved structures are equipped with
a built-in linear order. Otherwise, the statement of Corollary 5.4 has no precise meaning since the
notion of ‘‘distance function’’ must refer to a linear order. But what happens if we consider an
existentially quantified linear order o ? We are still able, in this case, to build the functions height
and length and the set aritho related to o; as in Lemma 5.4. And we can in turn define a notion
of distance associated to a given unary function f according to this linear order. Of course, an
assertion of the form tx ¼ distf ðux; vxÞ for such a function distf is of no intrinsic interest since it

has different meanings according to the choice of o: On the other hand, an equality such as
distf ðux; vxÞ ¼ distf ðu0

x; v0xÞ is order invariant. That is, if it holds for (the distance function related

to) a given linear order, then it holds for any linear order. Thus, our ability to express the distance
function of f according to a (existentially quantified) linear order o allows to say, in ESO1; that
two ordered pairs of nodes ðux; vxÞ and ðu0

x; v
0
xÞ are linked by paths with the same number of edges

in a given functional graph. In other words, the logic ESO1 is not enlarged if we allow
subformulas of the form distf ðux; vxÞ ¼ distf ðu0

x; v
0
xÞ; where distf is a distance function associated

to a unary function f involved in the formula. The details are left to the reader.

The last result of this section does not refer explicitly to graph properties, although it is a
straightforward consequence of the ESO1-definability of the distance function of a functional
graph. By the definability of transitive closure, we can easily assert in ESO1 that a unary function
g is obtained by iterated compositions of a given unary function f (i.e. for each x; there exists iAN

such that gðxÞ ¼ f iðxÞ). Indeed, this assertion is equivalent to gDf �; where f � denotes the transitive
closure of f and g is viewed as an edge relation, thus it can be translated in ESO1 by: 8xf �ðx; gðxÞÞ:
Now, if we restrict our attention to ordered structures, the definability of distance functions allows us
to refine the previous assertion by specifying, for each x; the number i of compositions of f needed to

pass from x to gðxÞ ¼ f iðxÞ: This is the meaning of the next lemma. Let us formalize it:
Let ðD;oÞ be a linearly ordered domain and f ; g; h be three unary functions over D:We denote

by g ¼ f h the fact that gDf � and that for each x; hðxÞ is the (representative of the) number of
applications of f over x needed to pass from x to gðxÞ: In other words, g ¼ f h means:

8xAD : gðxÞ ¼ f hðxÞðxÞ ¼ f f?f|fflfflffl{zfflfflffl}
hðxÞ times

ðxÞ

Now, we denote by iter-compoo (for iterated composition) the set of ordered structures

/D;o; f ; g; hS such that g ¼ f h: Then:

Lemma 5.5. ESO1½iter-compoo
 ¼ ESO1½o
:

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597 581

Proof. Let f be a unary function over a linearly ordered domain ðD;oÞ: Let lengthf and distf be

its corresponding length and distance functions according to o: Consider x; yAD and suppose

that there exists iAN such that y ¼ f iðxÞ (i.e., suppose f �ðx; yÞ). Then, by definition of the distance
function, distf ðx; yÞ is the least such i: Furthermore, if y is not on a circuit of f then there is a

unique path in f from x to y and therefore distf ðx; yÞ is the unique i such that y ¼ f iðxÞ:
Otherwise, there may exist some j4distf ðx; yÞ such that y ¼ f jðxÞ: More precisely, if y lies on a

circuit of f ; then:

* either y is a loop, and 8j4distf ðx; yÞ: y ¼ f jðxÞ;
* or y lies on a f -circuit of length 41 (or equivalently: distf ð f ðyÞ; yÞ40) , and therefore

f lengthf ðxÞðyÞ ¼ y; which yields, for any j4distf ðx; yÞ:
y ¼ f jðxÞ iff j � distf ðx; yÞ
 0½lengthf ðxÞ
:

Finally, under the assumption f �ðx; yÞ; the assertion y ¼ f iðxÞ is equivalent to:
f i ¼ distf ðx; yÞ g

or

f f ðyÞ ¼ y and i4distf ðx; yÞ g
or

distf ð f ðyÞ; yÞ40 and i4distf ðx; yÞ and
ði � distf ðx; yÞÞmod lengthf ðxÞ ¼ 0

()
:

Consequently, for any functions g; h : D-D and any xAD such that f �ðx; gðxÞÞ; the assertion

gðxÞ ¼ f hðxÞðxÞ is equivalent to:
f hðxÞ ¼ distf ðx; gðxÞÞ g

or

f fgðxÞ ¼ gðxÞ and hðxÞ4distf ðx; gðxÞÞ g
or

distf ð fgðxÞ; gðxÞÞ40 and hðxÞ4distf ðx; gðxÞÞ and
ðhðxÞ � distf ðx; gðxÞÞÞmod lengthf ðxÞ ¼ 0

()
:

Before concluding, it remains to notice that

* g ¼ f h iff (gDf � and 8xAD : gðxÞ ¼ f hðxÞðxÞ);
* gDf � iff (8xAD: x ¼ gðxÞ or distf ðx; gðxÞÞ40);
* the function lengthf is completely characterized by the following facts: it is invariant on each

connected component of f ; it maps each loop onto 0; for each x lying on a f -circuit of length

41; i.e. for each x such that x !f f ðxÞ !f ? !f x is a f -path of length 41; lengthf take the

value 1þ distf ð f ðxÞ; xÞ:
It is now easy to see that for every signature s; any formula

(ð f ; g; hÞAiter-compoo :FðsÞ

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597582

of ESOs
1 ½iter-compoo
 is equivalent to the formula:

(ðþ;�;�; div;modÞAaritho

(ð f ; distf ÞAfunþ disto (lengthf (g (h :

C 4 F;

where C is the conjunction of the following first-order formulas over the signature
fþ;�;�; div;mod; f ; distf ; lengthf ; g; hg:

c1
 8x : lengthf ð f ðxÞÞ ¼ lengthf ðxÞ 4
f ðxÞ ¼ x-lengthf ðxÞ ¼ 0 4
distf ð f ðxÞ; xÞ40-lengthf ðxÞ ¼ 1þ distf ð f ðxÞ;xÞ;

c2
 8x : fgðxÞ ¼ gðxÞ3distf ð fgðxÞ; gðxÞÞ40;

c3
 8x : hðxÞ ¼ distf ðx; gðxÞÞ 3
f fgðxÞ ¼ gðxÞ 4 hðxÞ4distf ðx; gðxÞÞ g 3

distf ð fgðxÞ; gðxÞÞ40 4 hðxÞ4distf ðx; gðxÞÞ 4
ðhðxÞ � distf ðx; gðxÞÞÞmod lengthf ðxÞ ¼ 0

()
:

Thus the above formula belongs to ESOs
1 ½aritho; funþ disto
: Implication (9) of Section 5.1,

Lemma 5.2 and Corollary 5.4 yield the conclusion. &

6. Some problems in vertexNLIN

Using the logical toolbox of the previous section, we are now in a position to prove in an
elegant and concise way that a number of combinatorial problems are in vertexNLIN.
We denote by digraph the set of finite structures of signature fEg; where E is a binary relation

symbol. We denote by graph the set of finite structures /D;ESAdigraph for which E is
symmetric. Here follow some digraph (resp. graph) problems:

hamilton ¼ fGAgraph such that G admits a Hamiltonian cycleg;

connex ¼ fGAgraph such that G issp ¼ 0:33 > connectedg;

strong-connex ¼ fGAdigraph such that G is strongly connectedg;

biconnex ¼ fGAgraph such that G is biconnectedg;

cubic-subgraph ¼ fGAgraph such that G admits a nonempty cubic partial subgraphg:

(i.e. G ¼ ðV ;EÞAcubic-subgraph iff there exist V 0DV and E0DV
02-E such that V 0a| and each

vertex of the graph ðV 0;E0Þ is of degree 3:)
non-planar ¼ fGAgraph such that G is not planarg;

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597 583

Finally, we denote by f -center the class of connected graphs G ¼ ðV ;EÞ that contain an f -
center, that is a vertex c such that for any vertex xAV ; there is a path of length smaller than
f ðn � 1Þ (where n ¼ jV j) that links c to x:

Proposition 6.1. hamilton; connex; strong-connex; cubic-subgraph; f -center (for any unary
function f definable in ESO1) and biconnex all belong to vertexNLIN.

Proof. A graph G ¼ ðV ;EÞ is Hamiltonian iff we can linearly order its vertices in such a way that
two successive vertices are linked by an edge and the maximal vertex is linked to the minimal one.
Therefore, hamilton is characterized by the following formula:

(ðp; pred; succ;min;maxÞAfull-linord

Eðmax;minÞ4ð8xamaxÞEðx; succðxÞÞ
which can be written in ESO1 by Lemma 5.1.
A graph G ¼ ðV ;EÞ is connected iff it can be spanned by a tree. This yields a characterization of

connex by the following formula:

(TAtree 8x : TðxÞax-EðTðxÞ;xÞ
according to which T is a tree whose all edges that are not loop are in E: This formula can be
written in ESO1 by Corollary 5.2 and by the remark following it.
A directed graph G ¼ ðV ;EÞ is strongly connected iff there exists a spanning tree T for G and a

spanning tree Tr for Gr (the reverse graph ðV ;ErÞ of G; defined by: Erðx; yÞ iff Eðy; xÞ) with the
same root. Thus strong-connex is characterized by the formula:

ð(TAtreeÞð(TrAtreeÞ 8x :

fTx ¼ x2Trx ¼ xg4fTxax-ðEðTx;xÞ4Eðx;TrxÞÞg
which can be written in ESO1 by Corollary 5.2, by the remark of Section 5.2 and by Implication
(9) of Section 5.1.
The following sentence characterizes the problem cubic-subgraph:

(f1; f2; f3 (c :

f1ðcÞac 4 8x

f1ðxÞ ¼ f2ðxÞ ¼ f3ðxÞ ¼ x½
 3
f1ðxÞ; f2ðxÞ; f3ðxÞ and x are pairwise distinct

4
V

i Eðx; fiðxÞÞ 4
V

i

W
j fjfiðxÞ ¼ x

" #8><
>:

9>=
>;

which is obviously in ESO1: (Observe that the existence of c such that f1ðcÞac guarantees that the
cubic subgraph is nonempty.)

Let f be a unary function definable in ESO1 (e.g., x1=2; logðxÞ; etc.). We know that distT can be
defined in ESO1½o
 if T is a unary function, then, a fortiori, if T is a tree. Furthermore, we have
seen (see the remark following the proof of Corollary 5.4) that equalities such as distTðux; vxÞ ¼
distTðu0

x; v0xÞ (where ux; vx; u0x; v0x are first-order terms) are order invariant and therefore, can be

expressed in ESO1 (i.e. without help of a built-in linear order). We let the reader verify that it is
also the case for inequalities such that distTðux; vxÞpf ðtxÞ; when f is definable in ESO1: Now, a
graph G has an f -center c iff it is spanned by a tree T of root c such that, for all xAV ;

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597584

distTðc;xÞpf ðmaxÞ: Therefore, f -center is characterized by the following formula (where Dð f Þ is
the ESO1-formula that defines f):

(ðo; pred; succ;min;maxÞAfull-linord (TAtree (f (c 8x :

ð xaTðxÞ-EðTðxÞ; xÞ Þ4TðcÞ ¼ c 4 distTðc; xÞpf ðmaxÞ4Dð f Þ
which can be written in ESO1 by the above remarks.
The definability of biconnex in ESO1 is justified by the following well known result (see [1], for

example):

Lemma 6.1. A graph G ¼ /V ;ES is biconnected iff there exists a spanning tree T for G (e.g. its

depth-first search spanning tree) such that the following conditions hold: (i) the root of T has at most
one child; (ii) for any vertex xAV which is neither the root of T nor a child of the root, there is some

vertex y in the subtree descTðxÞ which is adjacent in G to a proper T-ancestor z of TðxÞ (that is, to a
T-ancestor z of TTðxÞ).

Hence we get a characterization of our problem by the following formula:

(ðT ;T�ÞAtreeþ tc

8x : TðxÞax-Eðx;TðxÞÞ 4
(u8x : ðTTðxÞ ¼ TðxÞ4TðxÞaxÞ-x ¼ u 4

8x(y(z : TTðxÞaTðxÞ-ðT�ðy;xÞ4T�ðTTðxÞ; zÞ4Eðy; zÞÞ

whose prenex form is in ESO1 by Corollary 5.2 and by the remark that follows it. This concludes
the proof of Proposition 6.1. &

We are now going to prove that non-planar belongs to the class vertexNLIN. In order to build
a logical ESO1-characterization of non-planar we could use Kuratowski’s characterization: a
graph is not planar iff it contains a subgraph homeomorphic to K5 or K3;3: It could be done by

expressing that there exist several mutually disjoint paths between some specified pairs of vertices.
Because of the technicality of such an assertion, we prefer to use another characterization of
nonplanar graphs given by Harary (see [7, Theorem 4.11, p. 100], for instance). Let us first recall

that a graph H is said contractible to some graph H0 if H can be transformed into H0 by
successive identifications of pairs of adjacent vertices. Then we have

Proposition 6.2 (Harary [7]). A graph G is nonplanar iff G contains a subgraph H which is

contractible to K5 or K3;3:

But we trivially get the following characterization of such contractions, due to Ranaivoson [43]:

Lemma 6.2. Let H ¼ ðV ;EÞAgraph: Then:

1. H is contractible to K5 iff V contains five mutually disjoint sets V1;y;V5 such that both
following conditions hold:
(a) H restricted to Vi; i ¼ 1;y; 5; is connected;

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597 585

(b) for each pair ðVi;VjÞ; 1piojp5; there is an edge fx; yg of H such that xAVi and yAVj:
2. H is contractible to K3;3 iff V contains six mutually disjoint sets U1;U2;U3;V1;V2;V3 such that

both following conditions hold:
(a) each HUi

(resp. HVi
), i ¼ 1; 2; 3; is connected;

(b) for each pair ðUi;VjÞ; 1pi; jp3; there is an edge fx; yg of H such that xAUi and yAVj:

Hence we get

Corollary 6.1. non-planar belongs to vertexNLIN.

Proof. As the sets Ui; Vj involved in Lemma 6.2 are connected, they can be viewed as connected

components of a spanning forest F of G: Now, assume that two of these sets, say U and V ; are
respectively rooted in u and v; according to F : Then, U and V are related by an edge of G iff there
exist two vertices a and b in the graph such that: F�ða; uÞ and F�ðb; vÞ and Eða; bÞ: This remark
allows to interpret Proposition 6.2 and Lemma 6.2 by the following formula, which therefore
characterizes non-planar:

(ðF ;F�ÞAforestþ tc

8x : FðxÞax-Eðx;FðxÞÞf g
4

(v1;y; v5 :
V

1pip5

FðviÞ ¼ vi 4
V

1piojp5

viavj 4V
1piojp5

(a; b ðF�ða; viÞ4Eða; bÞ4F�ðb; vjÞÞ

2
64

3
75

3
(u1; u2; u3; v1; v2; v3 :

V
1pip3

ðFðuiÞ ¼ ui4FðviÞ ¼ viÞ 4

u1; u2; u3; v1; v2; v3 are pairwise distinct 4V
1pi;jp3

(a; b ðF�ða; uiÞ4Eða; bÞ4F�ðb; vjÞÞ

2
6664

3
7775

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

and this formula can be written in ESO1 by Corollary 5.2 and by the remark following it. This
yields the expected conclusion. &

7. Structural complexity of vertexNLIN

In this section, we study for vertexNLIN the main questions that are of interest for any
complexity class such as P, NP, NLOGSPACE, DLIN, NLIN, etc.

* upper/lower bounds: to prove that some natural problems do or do not belong to the concerned
class;

* structural complexity: has the class some structural property? For instance, is it closed under
complementation? is it strictly included in some other class?

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597586

Surprisingly, although most of those questions are open and seem very hard for most
classical complexity classes, we are going to solve many of them for vertexNLIN. For
instance, we shall prove for quite some combinatorial problems that they do not belong to
vertexNLIN.

Notation. For a decision problem P; let non-P denote the complement (i.e. negation)
problem of P: For a complexity class C; let co-C denote the class of problems whose
complements belong to C:

Here follow some new graph decision problems:

is-tree ¼ fGAgraph s:t: G is connex and acyclicg;

is-forest ¼ fGAgraph s:t: G is acyclicg;

euler ¼ fGAgraph s:t: G has some Eulerian cycleg;
(Recall that a cycle in G is Eulerian if it uses each edge exactly once.)

perf-match ¼ fGAgraph s:t: G has some perfect matchingg;
for any kAN� define the k-colourability problem:

k-colour ¼ fGAgraph s:t: G can be coloured with k coloursg;

colour ¼ fðG; kÞAgraph�N� s:t: G can be coloured with k coloursg;

clique ¼ fðG; kÞAgraph�N� s:t: G contains a clique of size kg;

path ¼ fðG; s; tÞ s:t: G is a graph and s; t are two vertices related by a pathg:
First, we are going to prove that many of those problems and/or their complements do not

belong to vertexNLIN. The proofs are quite easy and uniform: to prove that a property P does
not belong to vertexNLIN, we essentially construct a family ðGnÞ of graphs in P with arbitrary

large cardinality n and a set An of Yðn2Þ edges such that, for every aAAn: Gn,fageP (resp.

Gn\fageP). As a consequence, any s-NRAM M that recognizes P has to read all the Yðn2Þ bits
corresponding to An in the input adjacency matrix of Gn; this is because if some bit aAAn was not
read, then the same accepting computation of M would also accept Gn,fageP (resp.
Gn\fageP), a contradiction.

Proposition 7.1. The following problems do not belong to vertexNLIN:

is-forest is-tree non-is-tree euler

clique non-colour non-clique non-path

non-connex non-hamilton ðk-colourÞkX2 colour

planar non-perf-match non-euler

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597 587

Proof. For each problemP among those above quoted, we shall prove that there exists a constant

c40 such that any s-NRAM that recognizes P should read more than cn2 bits of the input
matrix. This will imply the result. This will be done by the construction of sets Gn and An as above
mentioned. These constructions will be generally obtained by bringing together some of the
following sets and graphs:

* Vm ¼ fa0;y; am�1g; V 0
m ¼ fb0;y; bm�1g; Vm-V 0

m ¼ |;
* the path graph Pm ¼ ðVm;E

P
mÞ where EP

m ¼ ffai�1; aig : 0oiomg and its copy P0
m ¼ ðV 0

m;E
P0
m Þ

where EP0
m ¼ ffbi�1; big : 0oiomg;

* the clique graph Km ¼ ðVm;E
K
m Þ where EK

m ¼ ffai; ajg : iojomg and its copy K 0
m ¼ ðVm;EK 0

m Þ
where EK 0

m ¼ ffbi; bjg : iojomg;
* the cycle graph Cm ¼ ðVm;EC

mÞ where EC
m ¼ EP

m,fam�1; a0g;
* the stable graph Sm ¼ ðVm; |Þ:

Now, let us describe the construction of families ðGnÞ and ðAnÞ for each problem involved in the
statement:

Problem is-tree (resp. is-forest).
Let Gn be the path graph Pn which is a tree (resp. a forest). Let An ¼ ffai; ajg : i þ 1ojong:

Then, jAnj ¼ Yðn2Þ and for every aAAn; Gn,fag has a cycle and thus is not a tree (resp. a forest),
as required.
Since the proofs for the other problems are very similar, we essentially give, for each problem

P; the graphs GnAP and the sets of edges An: We leave the details to the reader.
Problem non-is-tree:
Let n ¼ 2m and Gn be the disjoint union of the path graphs Pm and P0

m: Clearly, Gn is not

connected and therefore, is not a tree. Let An ¼ ffai; bjg : i; jomg: Clearly, Gn,fag is a tree for
every aAAn:

Problem euler:

Let Gn be the cycle graph Cn ¼ ðVn;E
C
n Þ and An ¼ ffai; ajg : iojon and fai; ajgeEC

n g:
Clearly, GnAeuler and Gn,fageeuler for every aAAn:

Problem clique (resp. non-colour).
Let Gn be the n-clique graph Kn (notice that Gn is not ðn � 1Þ-colourable). Let An ¼ ffai; ajg :

iojong: Obviously, Gn\fag contains no n-clique (resp. is ðn � 1Þ-colourable) for every aAAn:
Problem non-clique:
Let Gn be the n-stable Sn which contains no 2-clique. Let An ¼ ffai; ajg : iojong: Then

Gn,fag contains a 2-clique for every aAAn:
Problem non-path (resp. non-connex).
Let n ¼ 2m þ 2 and Gn be the disjoint union of the clique graphs Km; K 0

m and two new vertices s;
t with the additional edges fs; aigiom and fbj; tgjom: Let An ¼ ffai; bjg : iojomg: Clearly, there
is no ðs; tÞ-path in Gn (resp. Gn is not connected), but there is one in Gn,fag (resp. Gn,fag is
connected) for every aAAn:

Problem non-hamilton:
Same proof as for non-path; with the same graph Gn; but with the additional edge fs; tg:
Problem k-colour; kX2:

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597588

Let n ¼ m þ k � 1 and Gn be the disjoint union of the stable graph Sm and the clique graph
K 0

k�1; with the additional edges fai; bjg; for iom and jok � 1: Let An ¼ ffai; ajg : iojomg:
Clearly, Gn can be coloured with k colours, but Gn,fag cannot, for every aAAn:

Problem colour:
This problem generalizes k-colour:
Problem planar:
Let Gn ¼ ðVn;EnÞ be any triangulated planar graph of cardinality n: By Euler’s formula (see [7]

for example), we have jEnj ¼ 3n � 6; which is the maximal number of edges of planar graph of
cardinality n: Let An ¼ ffai; ajg : iojon and fai; ajgeEng: Then, for every aAAn; Gn,fag has

too many edges to be planar.
Problem non-perf-match:
Let n ¼ 4m þ 2 and Gn be the disjoint union of the clique graphs K2mþ1 and K 0

2mþ1: Let An ¼
ffai; bjg : i; jomg: Then, Gn has no perfect-matching but for every aAAn; Gn,fag has one that
includes a: Note that an easy variant of the above construction (left to the reader) can also prove
that the restriction of the problem non-perf-match to bipartite graphs does not belong to
vertexNLIN.

Problem non-euler:
This proof is slightly more complicate than the previous ones. First, recall that a graph is

Eulerian if and only if it is connected and each of its vertices is of even degree. Let n ¼ 4m þ 2 and
Gn be the disjoint union of K2mþ1 and K 0

2mþ1; so that the degree of each vertex is even.

Nevertheless, Gn is not connected and thus, is not Eulerian. The new idea consists in adding to Gn

a fixed number of edges (not only one) so that the graph becomes connected and each vertex
remains of even degree. For each ordered pair ði; jÞA½m
 � ½m
; let

Aij ¼ ffa2i; b2jg; fa2i; b2jþ1g; fa2iþ1; b2jg; fa2iþ1; b2jþ1gg:

Notice that the Yðn2Þ sets of edges Aij are pairwise disjoint. Let M be a s-NRAM that recognizes

the problem non-euler and, consequently, accepts Gn by a computation Cn: Now, assume there
exist i; jom such that Cn reads none of the four bits corresponding to Aij: Then, the same

computation Cn accepts the modified graph G0
n ¼ Gn,Aij: This is a contradiction since G0

n is

Eulerian. So, we have proved that each computation of M that accepts Gn must read at least one

input bit of Aij for each ordered pair ði; jÞA½m
2: Hence, it should read at least m2 ¼ Yðn2Þ distinct
input bits, as claimed. This concludes the proof of Proposition 7.1. &

By using those counterexamples, we are now in a position to answer several natural questions
about the structural complexity of vertexNLIN. For example, we have proved in Section 5.3 that
ESO1 ¼ vertexNLIN is not enlarged by existential quantification over transitive closure of unary
functions. It easily implies that this logic is not enlarged if one allows ESO1-formulas to refer to
transitive closure of any unary function, whether it is existentially quantified or is a part of the
input. In contrast, we have:

Corollary 7.1. If one allows transitive closure of binary relations in ESO1-formulas, then some
properties that are not in vertexNLIN become definable.

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597 589

Proof. Problem non-path; which does not belong to vertexNLIN (contrarily to path), is clearly
defined by the formula :E�ðs; tÞ; where E� denotes the transitive closure of the input binary
relation E: &

Corollary 7.2.

(a) vertexNLINaco-vertexNLIN:
(b) DLIN\ðvertexNLIN,co-vertexNLINÞa|: Furthermore, there are problems P in DLIN such

that every nondeterministic algorithm for P and every nondeterministic algorithm for non-P

both require Oðn2Þ steps.
(c) vertexNLINkNLIN:

Proof

(a) For example, connex and hamilton belong to vertexNLIN while their complements do not.
(b) Problems is-tree and euler are such separating problems.
(c) Immediate consequence of (b) since DLINDNLIN: &

Notice that Proposition 7.1 and Corollary 7.2 provide some precise informations about the
comparative rôle of determinism and nondeterminism, in particular, for the resolution of specific
problems such as the following:

Problem euler (resp. is-tree) belongs to DTIMEsðn2Þ: This should be compared to the fact

that if euler (resp. is-tree) belongs to NTIMEsðTðnÞÞ or to co-NTIMEsðTðnÞÞ; then TðnÞ ¼
Oðn2Þ should hold. That means that neither nondeterminism nor co-nondeterminism can
significantly help in solving problems euler and is-tree:
Problems hamilton; connex and perf-match are very different from their complements: all

three belong to NTIMEsðnÞ but we have proved that if any of them belong to co-NTIMEsðTðnÞÞ;
then TðnÞ ¼ Oðn2Þ should hold.
The rôle of nondeterminism is essential in the fact that the graph problems we have studied belong to

vertexNLIN. In the deterministic model, they all require at least Oðn2Þ steps. Natural questions arise
about the deterministic restriction of vertexNLIN, that is, about vertexDLINs ¼def DTIMEsðnÞ:
* Is vertexDLIN a robust complexity class that contains significant problems?
* Does the strict inclusion vertexDLINkvertexNLIN-co-vertexNLIN hold?

Part of the answers will be provided by the analysis of two new digraph properties:
In a digraph, a leader is a vertex s ‘‘liked’’ by everybody, i.e. such that the edge ðx; sÞ exists for

every vertex xas: A sink is a leader s for which no edge ðs; xÞ starting from s exists. (Note that a
digraph may have several leaders whereas it cannot have more than one sink.) We denote:

leader ¼ fGAdigraph s:t: G has a leaderg;

sink ¼ fGAdigraph s:t: G has a sinkg:

The next result can be found without proof in [9]:

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597590

Proposition 7.2. sink belongs to vertexDLIN.

Proof (Communicated by [5]). Let us consider the following algorithm whose input is a digraph
given by its 0=1 adjacency matrix E½i; j
i;jon:

Algorithm 1 (sink).

integer sink-candidate; j;
begin

sink-candidate :¼ 0; j :¼ 1;
while jon do/� no vertex ioj is a sink, except possibly sink-candidate �/

if E½j; sink-candidate
 ¼ 1 then /� j is not a sink �/
j :¼ j þ 1

else /� sink-candidate is not a sink �/
begin sink-candidate :¼ j ; j :¼ j þ 1 end

end while

/� j ¼ n : no vertex ion is a sink, except possibly sink-candidate �/
Check whether sink-candidate is really a sink by consulting both the line and
the column numbered sink-candidate ;
if it is not then reject /� the digraph has no sink �/
else accept;
end.

Our inserted comments indicate how to prove the correctness of the algorithm, which obviously
runs in time OðnÞ: &

So, vertexDLIN contains a significant combinatorial problem. On the other hand, one can
show that this complexity class, which generalizes the class DLIN in some way, is similarly robust
(see [25]). Let us now look for candidate problems to separate vertexDLIN from vertexNLIN.
First, notice that graph problems expressed by first-order sentences of the form (x8ycðE; x; yÞ;
where c is a quantifier-free formula with only two first-order variables x; y; trivially belong to
vertexNLIN-co-vertexNLIN: E.g., problems leader and sink do, since they are expressed by the
following respective sentences:

f
leader

 (x8y : yax-Eyx;

f
sink

 (x8y : yax-ðEyx4:ExyÞ:

Proposition 7.3. leader belongs to ðvertexNLIN-co-vertexNLINÞ\vertexDLIN: More precisely,
for every deterministic algorithm A that decides leader and for each integer n; there exists a graph

GnðAÞ of cardinality n such that the computation of A on input GnðAÞ reads at least n2 � n input

bits.

Proof (Essentially due to Lautemann [33]). There only remains to prove the complexity lower
bound. First, note that the result of a deterministic algorithm A only depends on the sequence of

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597 591

input bits it reads during the computation. Let us fix the cardinality n: Without loss of generality,
assume that the only queried bits are E½i; j
; for iaj; since all the diagonal bits E½i; i
 are zero. We
can imagine those nondiagonal bits supplied by an adversary, who uses the following strategy:
when queried ‘‘E½i; j
’’?

� if question ‘‘E½i; j
?’’ has been previously asked, she gives the same answer;
� otherwise, i.e. if the question ‘‘E½i; j
?’’ is asked for the first time, she answers:

3 1; if there is some i0ai such that question ‘‘E½i0; j
?’’ has not yet been asked;
3 0 otherwise, i.e. when all the bits of column j have been queried.

Let CnðAÞ denote the computation so defined. Assume that CnðAÞ stops after having queried less
than the n2 � n nondiagonal bits. Also, assume that CnðAÞ accepts. Then, set the (nondiagonal)
non queried bits to 0: This gives an accepted input which is not in leader: a contradiction. So,
CnðAÞ rejects. Now, set the (nondiagonal) non queried bits to 1: This gives at least one column
where the n � 1 nondiagonal bits are all 1’s. Hence, the rejected input belongs to leader: a

contradiction. This proves that CnðAÞ reads all the n2 � n nondiagonal bits of the input GnðAÞ so
obtained. This concludes the proof of Proposition 7.3. &

Fig. 6 summarizes the main results of this section. The problems quoted without brackets have
been proved as belonging to the precise intersection on which they lie on the figure. Those between
brackets are just candidates to belong to a given subset. Subsets that contain only candidate
problems (e.g. co-vertexNLIN\NLIN) or no problem at all (e.g. ðco-vertexNLIN-vertexNLINÞ\
DLIN) are possibly empty. They are marked with a ‘‘?’’.

Remark.

� non-2-colour belongs to vertexNLIN since a graph is not colourable with 2 colours iff it
contains an odd length cycle.

� non-perf-match belongs to NLIN because for a given matching M in a given graph G; one
can check in deterministic linear time whether M is a maximum matching of G: For bipartite
graphs, this is proved for example in [39]; for general graphs, this is proved by sophisticated
technics in [35,50] or in [4]. That yields the following NLIN algorithm:
3 guess a nonperfect matching M of G;
3 check that M is a maximum matching of G:

8. Conclusions and open problems

The main aim of computational complexity theory is to determine the intrinsic time (resp.
space) complexity of ‘‘natural’’ problems. We think that logic, or more precisely, descriptive
complexity, gives us tools and results to study and to better understand that complexity. This
paper was initially motivated by the following two items:

An observation: most ‘‘natural’’ NP-complete problems belong to NLIN, i.e., are recognized by
NRAMs in nondeterministic linear time; e.g. Grandjean [22] mentions that the 21 NP-complete
problems exhibited by Karp [31] are in NLIN; for a graph problem P; that means P is recognized

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597592

in time OðjV j þ jEjÞ; where G ¼ ðV ;EÞ is the input graph, or, equivalently (by our results [24]), P
is defined by an ESOðarity 1; 81Þ formula on the domain V,E:

A question (asked by Grandjean and Lynch in FMT open problems [Oberwolfach 94, problem 8]
and [Luminy 95, problem 23]): investigate the class of graph properties that can be defined
in ESOsðarity 1Þ; where s ¼ fEg and E is a binary relation symbol, i.e., by existential
second-order formulas with unary function and constant symbols only, interpreted in the domain
of vertices.
In the present paper, we have studied in detail vertexNLIN, that is the class of s-problems (i.e.,

decision problems every input of which is a first-order structure of any fixed signature s) that are
recognized in nondeterministic time OðnÞ where n is the cardinality of the domain of the input
structure. So, the time OðnÞ can be much less than the input size. For instance, the size of a graph
presented by its adjacency matrix is exactly its number of bits, n2: The conclusions of our study are
the following:

* vertexNLIN is a robust complexity class, as shown by its closure properties (e.g., for some
restricted transitive closure operators) and its various logical characterizations such as
ESOsð81Þ ¼ ESOsðarity 1; 81Þ: (Note that this last characterization states that this class is
(strictly?) included in ESOsðarity 1Þ:)

* vertexNLIN (and hence also ESOsðarity 1Þ) contains many classical combinatorial problems,
including connex; non-planar and hamilton:

* Although vertexNLIN appears to be a genuine complexity class, as attested by the two previous
items, we have succeeded in proving, by simple arguments, several structural properties of this
class; the key point is that for any specific graph problem we have studied till now, we have
been able to prove that it belongs or does not belong to vertexNLIN; in particular, it is the case
for all the graph problems known to belong to DLIN (deterministic linear time) we have

ARTICLE IN PRESS

Fig. 6. Mutual inclusions between the complexity classes mentioned in this section.

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597 593

studied; actually, we have exhibited inside DLIN (see Fig. 6) a kind of microcosm of our
complexity questions with a strict partition of DLIN in five nonempty subclasses:

1. the vertexDLIN problems (e.g. sink);
2. some problems in ðvertexNLIN-co-vertexNLINÞ\vertexDLIN (e.g. leader);
3. some other ones in vertexNLIN\co-vertexNLIN (e.g. connex and path);
4. some other ones in co-vertexNLIN\vertexNLIN (e.g. 2-colour and planar) and finally,
5. the other ones out of vertexNLIN,co-vertexNLIN (e.g. euler and is-tree).

* vertexNLIN appears to be the minimal nondeterministic time complexity class for graph
problems, or, more generally, for decision problems of first-order structures. (Note that its
deterministic counterpart, vertexDLIN, although less significant, is also of some interest.) We
cannot imagine a nondeterministic process that recognizes any significant graph problem in
time oðnÞ where n is the number of vertices of the graph.

Our thesis, which may explain the difficulty to establish complexity lower bounds, is that
‘‘natural’’ combinatorial problems are generally of very low complexity in the following sense.
While some of them, e.g. the contraction problem of acyclic digraphs (see [41]) are NLIN-
complete, most of them either belong to vertexNLIN or to co-vertexNLIN, or, as euler and
colour; can be solved in time OðnÞ by ‘‘alternating’’ RAMs, namely RAMs which can perform
nondeterministic (i.e. existential) ‘‘guess’’ instructions and (dual) co-nondeterministic (i.e.
universal) ‘‘guess’’ instructions, with a fixed number k of alternations between existential and
universal instructions.3 Let ATIME-ALTsðn; kÞ denote this complexity class for s-problems and
let us define the vertex-linear hierarchy4 as the union:

vertexLinHs ¼
[

k

ATIME-ALTsðn; kÞ:

Notice that this class can be easily characterized by second-order formulas (SO) with second-order
relation or function symbols of arityp1 (resp. of arityp1 and only 1 first-order variable), namely:

vertexLinHs ¼ SOsðarity 1Þ ¼ SOsðarity 1; var 1Þ:

(Compare those equalities with the similar characterization of LinH by Lynch [34] and Immerman
[29,30].)
Of course, the main significant (realistic!) time complexity is neither the nondeterministic time,

nor the alternating time (here, with a fixed number of alternations), but is deterministic time.
Unfortunately, we are still unable to prove any significant deterministic time lower bound on a
general-purpose model of computation, for any natural problem in NP. However, we hope to
have explained convincingly ‘‘where’’ the difficulty lies. Most of (or all ?) the ‘‘natural’’ problems
are of nondeterministic ‘‘minimal complexity’’, that means they can be solved in time linear with
respect to their size (or, better, with respect to their domain cardinality), provided
nondeterminism (or its generalization: alternation, with a fixed number of alternations between
nondeterministic phases and co-nondeterministic phases) is allowed.

ARTICLE IN PRESS

3For a detailed presentation of alternating machines, see for instance Papadimitriou’s book [38].
4Similar to the linear time hierarchy for words problems, denoted LinH or rudimentary languages. See Hajek and

Pudlak’s book [28].

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597594

Thus, the paradigm determinism/nondeterminism is still and ever the crucial and central point of
computational complexity, but it merits to be studied in the linear context for at least as good

reasons as in the traditional polynomial context. In other words, the DLIN ¼? NLIN question is

quite significant and more precise than the P ¼? NP question. We hope that this paper can

contribute to convince the readers of the interest of that new problematic. Specifically, our study
of the class vertexNLIN, because it allows simple proofs, may help or give some indications of

methods to manage the more significant DLIN ¼? NLIN question.

Let us conclude this paper by giving a list of open problems:

1. Characterize the graph (resp. digraph) problems, such as sink and leader; that belong to
vertexNLIN-co-vertexNLIN (a seemingly very strong condition). Are they all in PTIME? in
DLIN?

2. Does ESOsð81Þ ¼ ESOsðarity 1Þ holds for arity ðsÞ ¼ 1? Notice that the equality fails for
arity ðsÞ ¼ 2 since, e.g., the set of complete graphs does not belong to ESOsð81Þ: A positive
answer would imply the equality, for each integer d; ESOsð8dÞ ¼ ESOsðarity dÞ when
arity ðsÞpd; and would yield (by the hierarchy theorem proved by Cook [8] for
nondeterministic time complexity) the strictness of the arity hierarchy (an old and difficult
open problem of [13]).

3. Exhibit a (nondirected) graph problem in vertexDLIN as natural as the digraph problem sink:
4. Prove for all the classical NP-complete graph (digraph) problems, e.g., kernel; 3-colour,

cubic-subgraph (see Garey and Johnson’s book [15]) that they belong or do not belong to
vertexNLIN and that each of them does not belong to co-vertexNLIN (such a systematic proof
of nonbelonging would be a weakened form of the conjecture that each of them does not belong
to co-NLIN).

5. Prove a conjunctive logical characterization of vertexNLIN, similar to the conjunctive
characterization of NLIN given by [37]. This would provide some ‘‘natural’’ vertexNLIN-
complete problems (via very strict reductions such as the ‘‘affine’’ reductions of [25]).

6. The classical graph properties we have studied, either belong to vertexNLIN, i.e., can be

recognized within nondeterministic time OðnÞ; or require Oðn2Þ nondeterministic time. Can we
fill this gap, i.e., exhibit ‘‘natural’’ graph problems that are recognized nondeterministically in

time oðn2Þ and that are not in vertexNLIN? (Of course, the ‘‘nonnatural’’ set of graphs that

have at least n3=2 edges fulfils those conditions.)

Acknowledgments

We warmly thank C. Lautemann and S. Ranaivoson who have obtained in collaboration with
us (Refs. [32,33,42,43]) some of the results of this paper, in particular the results mentioned in
Sections 5.2 and 5.3, in addition to Lemma 6.2, Corollary 6.1 and Proposition 7.3. This
collaboration and those results were essential in the genesis of this paper. Thanks to G. Bonfante
for his proof of Proposition 7.2. Thanks to Arnaud Durand, who suggested to us that a purely
logical proof of Proposition 3.1 was possible. We also gratefully acknowledge the help of F.
Madelaine in the correction of many English mistakes of the manuscript. Finally, we are pleased

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597 595

to thank the referees for their many remarks and suggestions that help us to notably improve the
readability of the paper.

References

[1] A.V. Aho, J. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley,

Reading, MA, 1974.

[2] P. Beame, A general sequential time–space tradeoff for finding unique elements, SIAM J. Comput. 20 (2) (1991)

270–277.

[3] A. Ben-Amram, N. Jones, Computational complexity via programming languages: constant factors do matter,

Acta Inform. 37 (2000) 83–120.

[4] N. Blum, A new approach to maximum matching in general graphs, in: W.R. Cleaveland (Ed.), ICALP, Lecture

Notes in Computer Sciences, Vol. 443, Springer-Verlag, Warwick, England, 1990, pp. 586–597.

[5] G. Bonfante, Personal communication, 2001.

[6] A. Borodin, S. Cook, A time-space tradeoff for sorting on a general sequential model of computation, SIAM J.

Comput. 11 (2) (1982) 287–297.

[7] G. Chartrand, L. Lesniak, Graphs and Digraphs, Wadsworth and Brooks, California, 1986.

[8] S.A. Cook, A hierarchy of nondeterministic time complexity, J. Comput. System Sci. 7 (1973) 343–353.

[9] T. Cormen, C. Leiserson, R. Rivest, Introduction to Algorithms, McGraw-Hill, New York, 1991.

[10] N. Creignou, Temps Linéaire et Problèmes NP-Complets, Ph.D. Thesis, Université de Caen, France, 1993.

[11] H.-D. Ebbinghaus, J. Flum, Finite Model Theory, Springer, Berlin, 1995.

[12] R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets, in: R.M. Karp (Ed.), Complexity

of Computation, SIAM-AMS Proceedings, 1974, pp. 43–73.

[13] R. Fagin, A spectrum hierarchy, Z. Math. Logik Grundlagen Math. 21 (1975) 123–134.

[14] L. Fortnow, Time–space tradeoffs for satisfiability, J. Comput. System Sci. 60 (2) (2000) 337–353.

[15] M.R. Garey, D.S. Johnson, Computers and Intractability—A Guide to the Theory of NP-Completeness, Freeman,

New York, 1979.

[16] E. Grädel, On the notion of linear time computability, Internat. J. Foundations Comput. Sci. 1 (1990) 295–307.

[17] E. Grandjean, The spectra of first-order sentences and computational complexity, SIAM J. Comput. 13 (2) (May

1984) 356–373.

[18] E. Grandjean, Universal quantifiers and time complexity of random access machines, Math. System Theory 13

(1985) 171–187.

[19] E. Grandjean, First-order spectra with one variable, J. Comput. System Sci. 40 (1990) 136–153.

[20] E. Grandjean, A nontrivial lower bound for an NP problem on automata, SIAM J. Comput. 19 (1990) 438–451.

[21] E. Grandjean, Invariance properties of RAMs and linear time, Comput. Complexity 4 (1994) 62–106.

[22] E. Grandjean, Linear time algorithms and NP-complete problems, SIAM J. Comput. 23 (1994) 573–597.

[23] E. Grandjean, Sorting, linear time and the satisfiability problem, Ann. Math. Artificial Intelligence 16 (1996) 183–236.

[24] E. Grandjean, F. Olive, Monadic logical definability of nondeterministic linear time, Comput. Complexity 7 (1998)

54–97.

[25] E. Grandjean, T. Schwentick, Machine-independent characterizations and complete problems for deterministic

linear time, SIAM J. Comput. 32 (1) (2002) 196–230.

[26] Y. Gurevich, S. Shelah, Nearly linear time, Lecture Notes in Computer Science, Vol. 363, 1989, pp. 108–118.

[27] Y. Gurevich, S. Shelah, Nondeterministic linear-time tasks may require substantially nonlinear deterministic time

in the case of sublinear work space, J. ACM 37 (3) (1990) 674–687.
[28] P. Hájek, P. Pudlak, Metamathematics of First-Order Arithmetic, Springer, Berlin, 1993.

[29] N. Immerman, Languages that capture complexity classes, SIAM J. Comput. 16 (August 1987) 760–778.

[30] N. Immerman, Descriptive Complexity, Graduate Texts in Computer Science, Springer, Berlin, 1999.

[31] R.M. Karp, Reducibility among combinatorial problems, in: Complexity of Computers Computations, IBM

Symposium 1972, Plenum Press, New York, 1972.

[32] C. Lautemann, Personal communication, 1999.

[33] C. Lautemann, Personal communication, 2001.

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597596

[34] J.F. Lynch, Complexity classes and theory of finite models, Math. System Theory 15 (1982) 127–144.

[35] S. Micali, V. Vazirani, An Oð
ffiffiffiffiffiffiffi
jV j

p
jEjÞ algorithm for finding maximum matching in general graphs, in: FOCS,

1980, pp. 17–27.

[36] F. Olive, Caractérisations logiques des problèmes NP: robustesse et normalisation, Ph.D. Thesis, Université de

Caen, France, 1996.

[37] F. Olive, A conjunctive logical characterization of non-deterministic linear time, in: Proceedings of the 11th

Annual Conference of the EACSL (CSL’97), Lecture Notes in Computer Science, Vol. 1414, 1998, pp. 360–372.

[38] C.H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA, 1994.

[39] C.H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Prentice-Hall,

Englewood Cliff, NJ, 1982.

[40] W.J. Paul, N. Pippenger, E. Szemeredi, W.T. Trotter, On determinism versus non determinism and related

problems (preliminary version), In 24th Annual Symposium on Foundations of Computer Science, IEEE, New

York, 1983, pp. 429–438.

[41] S. Ranaivoson, Nontrivial lower bounds for some NP-complete problems on directed graphs, in: Lecture Notes on

Computer Science, Vol. 533, CSL’90, 1991, pp. 318–339.

[42] S. Ranaivoson, Personal communication, 1999.

[43] S. Ranaivoson, Personal communication, 2000.

[44] K. Regan, Machine models and linear time complexity, in: SIGACT News, Vol. 24, Fall 1993.

[45] T. Schwentick, Algebraic and logical characterizations of deterministic linear time classes, in: Proceedings of the

12th Symposium on Theoretical Aspects of Computer Science (STACS’97), 1997, pp. 463–474.

[46] I.A. Stewart, Logical descriptions of monotone NP problems, J. Logic Comput. 4 (1994) 337–357.

[47] I.A. Stewart, On completeness for NP via projection translations, Math. System Theory 27 (1994) 125–157.

[48] I.A. Stewart, Complete problems for monotone NP, Theoret. Comput. Sci. 145 (1995) 147–157.

[49] L.J. Stockmeyer, The polynomial-time hierarchy, Theoret. Comput. Sci. 3 (1977) 1–22.

[50] V. Vazirani, A theory of alternating paths and blossoms for proving correctness of the Oð
ffiffiffiffiffiffiffi
jV j

p
jEjÞ general graph

maximum matching algorithm, Combinatorica 14 (1) (1994) 71–109.

ARTICLE IN PRESS

E. Grandjean, F. Olive / Journal of Computer and System Sciences 68 (2004) 546–597 597

	Graph properties checkable in linear time in the number of vertices
	Introduction
	Preliminaries
	Structures and problems
	Computational model and complexity classes
	Logic and definability classes

	A logical characterization of NTIME(nd)
	Other logical characterizations
	Similar results for monotone classes
	Semantical invariance properties of ESO(forall1)
	Existential quantification over sets of structures
	Prefix order in a forest
	Transitive closure of a function
	Distance in an ordered functional graph

	Some problems in vertexNLIN
	Structural complexity of vertexNLIN
	Conclusions and open problems
	Acknowledgements
	References

