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Abstract. This paper investigates the complexity of query problem for
first-order formulas on quasi-unary signatures, that is, on vocabularies
made of a single unary function and any number of monadic predicates.
We first prove a form of quantifier elimination result: any query defined
by a quasi-unary first-order formula can be equivalently defined, up to
a suitable linear-time reduction, by a quantifier-free formula. We then
strengthen this result by showing that first-order queries on quasi-unary
signatures can be computed with constant delay i.e. by an algorithm
that has a precomputation part whose complexity is linear in the size
of the structure followed by an enumeration of all solutions (i.e. the
tuples that satisfy the formula) with a constant delay (i.e. depending
on the formula size only) between each solution. Among other things,
this reproves (see [7]) that such queries can be computed in total time
F(el)-(IS] + |¢(S)]) where S is the structure, ¢ is the formula, ¢(S) is
the result of the query and f is some fixed function.

The main method of this paper involves basic combinatorics and can be
easily automatized. Also, since a forest of (colored) unranked tree is a
quasi-unary structure, all our results apply immediately to queries over
that later kind of structures.

Finally, we investigate the special case of conjunctive queries over quasi-
unary structures and show that their combined complexity is not pro-
hibitive, even from a dynamical (enumeration) point of view.

1 Introduction

The complexity of logical query languages is a well-studied field of theoretical
computer science and database theory. Understanding the complexity of query
evaluation for a given language is a good way to measure its expressive power. In
this context, first-order logic and its fragments are among the most interesting
and studied such languages.

In full generality, the data complexity of first-order queries is in ACY hence
in polynomial time [15] (see also [11]). However, the size of the formula appears
as a major ingredient in the exponent of the polynomial. Hence, taking into
account the sizes of both the structure and the formula, the combined complexity
becomes highly intractable, even for small formulas. Nevertheless, tractability
results have been obtained for natural query problems defined by restricting



either the logic or the set of structures. This is the case, for example, for acyclic
conjunctive queries [16, 13], or for full first-order queries on relational structures
of bounded degree [14, 5, 12] or on tree-decomposable structures [8] (see also [7]).

A quasi-unary signature consists of one unary function and any number of
monadic predicates. First-order logic over quasi-unary structures has been often
studied and some of its aspects are quite well understood. The satisfiability
problem for this kind of first-order formulas is decidable, while by adding just
one more unary function symbol in the vocabulary we can interpret graphs,
and hence all the first-order logic. In particular, first-order logic over two unary
functions structures is undecidable (even for formulas with one variable [9]).
In [3], it is proved that the spectrum (i.e. the set of cardinalities of the finite
models) of formulas over one unary function are ultimately periodic. This result
has been generalized in [10] even to the case of spectra of monadic second-order
formulas.

In this paper, we continue the study of first-order logic on quasi-unary vo-
cabularies and show some new structural properties that have interesting con-
sequences on the complexity of query problems for such languages. Our first
result shows that it is possible to eliminate variables in first-order formulas on
quasi-unary vocabularies at reasonable cost while preserving the answers of the
queries. More precisely, given a quasi-unary structure S and a first-order formula
, one can construct a quantifier-free formula ¢’ and, in linear time in the size
S, a new quasi-unary structure S’ such that the results of the queries ¢(.S) and
¢’ (S’) are the same. The method used to prove this result is mainly based on
combinatorial arguments related to covering problems.

Then, as in [5], we explore the complexity of query evaluation from a dynam-
ical point of view: queries are seen as enumeration problems and the complexity
is measured in terms of delay between two successive outputs (i.e. tuples that
satisfy the formula). Such an approach provides very precise information on the
complexity of query languages: by adding up the delays, it makes it possible to
obtain tight complexity bounds on complexity evaluation (in the classical sense)
but also to measure how regular this process is. This latter kind of information
is useful, for example, for query answering “on demand”.

Taking as a starting point the quantifier elimination method, we show that a
first-order query ¢ on a quasi-unary structure S can be computed with constant
delay i.e. by an algorithm that has a precomputation part whose complexity is
linear in the size of the structure, followed by an enumeration of all the tuples
that satisfy the formula with a constant delay (i.e. depending on the formula size
only) between two of them. Among other things, this gives an alternative proof
that such queries can be computed in total time f(|¢|).(]S|+ |©(S)|) where f is
some fixed function, hence the complexity is linear (see [7] remarking that the
graph of one unary function is of tree-width two). One nice feature of quasi-unary
structures is their proximity to trees: any forest of (colored) ranked or unranked
tree is a quasi-unary structure, hence, all our results immediately apply to queries
over trees. Several recent papers have investigated query answering from an
enumeration point-of-view for monadic second-order logic on trees (see [1,2]).



They mainly prove that the results of MSO queries on binary trees or on tree-
like structures can be enumerated with a linear delay (in the size of the next
output) between two consecutive solutions. The methods used in these papers
rely on tree-automata techniques and some of these results apply to our context.
However, our goal in this paper, is to prove strong structural properties of logical
formulas (such as quantifier elimination) in this language and show how these
properties influence the complexity of query answering.

The paper is organized as follows. In Sect. 2, main definitions about query
problems, reductions and enumeration complexity are given. A normal form for
formula over quasi-unary vocabularies is also stated. In Sect. 3 the combinatorial
material to prove the main results are introduced. Then, in Sect. 4, the variable
elimination theorem for first-order formula on quasi-unary vocabulary is proved.
Section 5, is devoted to query evaluation and our result about enumeration of
query result is proved. Finally, in Sect. 6, the special case of conjunctive queries
is investigated.

2 Preliminaries

Definitions. All formulas considered in this paper belong to first-order logic,
denoted by FO. The FO-formulas written over a same signature o are gathered
in the class FO?. The arity of a first-order formula ¢, denoted by arity (), is
the number of free variables occuring in ¢. We denote by FO(d) the class of
FO-formulas of arity d. When the prenex form of a FO-formula ¢ involves at
most ¢ quantifiers, we say that it belongs to FO,. Combining these notations,
we get for instance that FOOE (d) is the class of quantifier-free formulas of arity
d and of signature {E'}.

Given a signature o, we denote by STRUC(0) the class of finite o-structures.
The domain of a structure S is denoted by dom(S). For each S € sSTRUC(0) of
domain D and each ¢ € FO?(d), we set:

QO(S):{(alw"ﬂad) EDd:(Saala"'ﬂad) lzsﬁ(l’l,...,ilid)}-

Two o-formulas @, 1) of same arity are said equivalent if ¢(S) = 1(S) for any
o-structure S. We then write ¢ ~ .

Let C C sTRUC(0) and £ C FO7. The query problem for C and L is the
following:

QUERY(C, L)

input: A structure S € C and a formula (%) € £ with free-variables T ;
parameter: the size |¢| of () ;
output:  (5).
Instances of such a problem are thus pairs (S, ¢) € C x L.
Most of the complexity results of this paper will be expressed in terms of the

structure size, considering the size of the formula as a parameter. This explain
the definition of a query problem as a parameter problem.



When ¢ has no free variable then the boolean query problem is also known as
the model-checking problem for L, often denoted by MC(L). Most of the time, C
will simply be the class of all o-structures STRUC(0) for a given signature o and
restriction will only concern formulas. In this case, the query problem is denoted
QUERY(L) and its instances are called L-queries.

Reductions, complezity and enumeration problems. The basic model of compu-
tation used in this paper is standard Random Access Machine with addition. In
the rest of the paper, the big-O notation Oy (m) stands for O(f(k).m) for some
function f. Such a notation is used to shorten statements of results, especially
when k is a parameter whose exact value is difficult to obtain. However, when
this value can be made precise, we use the classical big-O notation. The definition
below specifies the notion of reductions between query problems.

Definition 1. We say that QUERY(C, £) linearly reduces to QUERY(C', L) if
there exist two recursive functions f :C x L —C' and g : L — L' such that:

—if (S,p) € Cx L and (S',¢") = (f(S,¢),9(¢)), then dom(S) = dom(S") and
arity (¢) = arity (¢');

— the results of the queries are the same: o(S) = ¢'(S");

— the function f : (S,¢) — S’ is computable in time O),(]S]).

(There is no requirement on g, but its computability.)

This reduction is a kind of fixed-parameter linear reduction with some ad-
ditional constraints. Notice that this definition differs from the usual notion of
interpretation: here, the interpretive structure S’ depends both on the structure
S and on the formula ¢ to be interpreted (notice also that, in the sequel, S” will
always be an extension of S with only new additional monadic predicates).

In Sect. 5, query evaluation is considered as an enumeration problem. A non
boolean query problem QUERY(C, L) is enumerable with constant delay if one
can compute all its solutions in such a way that the delay beween the begin-
ning of the computation and the first solution, between two successive solutions,
and between the last solution and the end of the computation are all constant.
We denote by CONSTANT-DELAY the class of query problems which are enu-
merable with constant delay. This class is not robust: a problem which is in
CONSTANT-DELAY when represented with a given data-structure may not be in
this class anymore for another presentation. Nevertheless, this definition will be
relevant to forthcoming technical tasks. The complexity class that is of real in-
terest was first introduced in [5]: the class CONSTANT-DELAY(lin) collects query
problems that can be enumerated as previously described after a step of pre-
proccessing which costs a time at most linear in the size of the input. This class
is robust. A more formal definition of it is given in the following.

Definition 2. An query problem QUERY(C, L) is computable within constant
delay and with linear precomputation if there exists a RAM algorithm A which,
for any input (S, ), enumerates the set (S) in the following way:



1. A uses linear space
2. A can be decomposed into the two following successive steps
(a) PRECOMP(A) which performs some precomputations in time O(f(y).|S|)
for some function f, and
(b) ENUM(A) which outputs all elements in o(S) without repetition within
a delay bounded by some constant DELAY(A) which depends only on |¢|
(and not on S). This delay applies between two consecutive solutions and
after the last one.

The complezity class thus defined is denoted by CONSTANT-DELAY (lin).
The following fact is immediate.

Fact 3. If QUERY(C,L) € CONSTANT-DELAY (lin), then each query problem
that linearly reduces to QUERY(C, L) also belongs to CONSTANT-DELAY (lin).

Logical normalization. We now specify the kind of structures and formulas that
are considered in this paper. A unary signature contains only unary relation
symbols. A quasi-unary signature is obtained by enriching a unary signature
with a single unary function symbol. That is, quasi-unary signatures have the
shape {f,U}, where f is a unary function symbol and U is a tuple of unary
relation symbols.

For any signature o, a unary enrichment of o is a signature obtained from
o by adding some new unary relation symbols. Therefore, unary enrichments of
quasi-unary signatures are also quasi-unary signatures. Structures over quasi-
unary (resp. unary) signatures are called quasi-unary (resp. unary) structures.

Notice that structures over one unary function are disjoint collections of
“whirlpools”: upside down trees whose roots come together at a cycle (see Fig. 1).
Therefore, considering the case where all the cycles consist of a single node, we
see that the set of quasi-unary structures includes that of (colored) forests and,
a fortiori, that of (colored) trees.

Let us consider a quantifier-free disjunctive formula ¢ over a quasi-unary
signature. For any y € var(y), we can “break” ¢ into two pieces 1 and 6, in
such a way that y does not occur in @ while it occurs in 6 in a very uniform
way. More precisely, each quantifier-free disjunctive formulas over a quasi-unary
signature can be written, up to linear reduction, under the form (1) below. This
normalization is formally stated in the next proposition. It will provide us with
a key tool to eliminate quantified variables in any first-order formulas of quasi-
unary signature.

Proposition 4. Let FO"[V] be the class of quantifier-free disjunctive formulas
over a quasi-unary signature. Then, QUERY(FOZ"[V]) linearly reduces to the
problem QUERY(Ly), where Ly is the class of FOE"[V]-formulas that fit the shape:

V@) V(MY =2 AU®W) =\ ) = @), (1)

2

where 1 is a quantifier-free disjunctive formula, 0 <mq <---<mp <m, z €T
and U is a unary relation.



Note that an essential consequence of this normalization is that on the left-
hand side of the implication, only one atomic formula involving function f and
variable y appears. This will make the elimination of variable y easier.

3 Acyclic representation

Because of the normal form stated in Proposition 4, a corner-stone of our on-
coming results lies on the way we handle formulas of the type:

p(@) =Vy: (f"y=aAU(y)— \ fMy=c (2)
i€ [k]
where 0 < m; < --- < mp < m, U is a unary relation and a,cq,...,c are

terms in Z. In order to deal efficiently (from a complexity point of view) with
such formulas, we introduce in this section a data structure related to the tuple
f = (fm™,...,f™) and the set X = f~(a) N U. Then we show that this
structure allows for a fast computation of some combinatorial objects — the
samples of f over X — which are the combinatorial counterparts of the logical
assertion (2).

Until the end of this section, f denotes a unary function on a finite domain
D, X is a subset of D and 0 < m; < mgy < --- < my are nonnegative integers.
Furthermore, f denotes the tuple (f™1,..., f™). We associate a labelled forest
to f and X in the following way (and we right now refer the reader to Fig. 1
and 2 to follow this definition):

— The set of vertices of the forest is partitioned into k + 1 sets Lo, L1,..., Ly
corresponding to the sets X, f™1(X),..., f™(X).

— For each i, the label function ¢ is a bijection from L; to f™i(X)

— There is an edge from y to z if and only if there exists ¢ € [0..k] such that:
x € L;, y € Lipq and fit1i—mif(x) = (y).

Then we enrich this labelled forest with the data root, next, back, height defined
from some depth-first traversal of the forest:

— root is the first root of the forest visited by the depth-first traversal.

— next(s) is the first descendent of s visited after s, if such a node exists.
Otherwise, next(s) = s.

— back(s) is the first node visited after s which is neither a parent nor a de-
scendant of s, provided that such a node exists. Otherwise, back(s) = s.

— height(s) is the height of s in F. That is, height(s) is the distance from s to
a leaf.

The resulting structure is called the acyclic representation of f over X. We
denote it by F(f, X). Besides, we denote by height(F) the height of F(f, X),
that is the maximum of the values height(s), for s in F, and we call branch of
the forest any path that connects a root to a leaf (i.e. any maximal path of a
tree of F).



Ezample 5. A function f : D — D, where D = {1,...,16}, is displayed in
Fig. 1. The acyclic representation of f = (f, f, f2, f*, f°, f7) over the set D \
{3,8,10, 14,16} is given in Fig. 2.
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Fig. 1. A function f : [16] — [16]

We let the reader check that the following Lemma is true (the acyclic repre-
sentation can be easily built by sorting and running through image sets f™i(X),
for all ¢ < k).

Lemma 6. The acyclic representation of f = (f™ ..., f™) over X can be
computed in time O(k.my.|X|).

Let us come back to the combinatorial objects (the samples - this terminology
comes from the earlier papers [6,4]) mentioned at the beginning of this section.
For each m > 0 and each ¢ € D, we denote by f~™(c) the set of pre-images of
¢ by f™. That is: f~™(c) ={z € D | fmx = c}. We set:

Definition 7. Let P C [k] and (c;)icp € DT The tuple (c;);cp is a sample of
f over X if
X<l Fmie).
icP

This sample is minimal if, moreover, for all j € P:

x¢ U e

i€P\{j}
Notice that each sample contains a minimal sample: if (¢;);cp is a sample of

f over X, then (¢;);eps is a minimal sample of f over X, where P’ is obtained
from P by iteratively eliminating the j’s such that X C ;cp\ /7" ()

Samples provide a combinatorial interpretation of some logical assertions. It
is easily seen that the assertion Vy € X : \/z‘e[k] fMiy = ¢; exactly means that
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Fig. 2. The acyclic representation of a tuple f = (f™,..., f™*) over a set X. Here,
f is the function drawn in Fig. 1, f is the tuple (f, f, f2, f*, f*, f7) and X is the set
[16] \ {3,8,10,14,16}. Each L; at the top of the figure corresponds both to the set
f™(X) and to the set of nodes of height i in the forest.



(¢i)iep) is a sample of f over X. In particular, assertion (2) holds if, and only if,
(ci)ielk) is a sample of (f™?);cx) over f~™(a) NU. This equivalence will yields
the variable elimination result of Sect. 4.

Another characterization of samples connects this notion to that of acyclic
representation: Let (x;);cp be a sequence of pairwise distinct nodes in F(f, X),
where P C [k]. We say that (z;);cp is a minimal branch marking of F(f, X) if
each branch of the forest contains a unique z; and if, furthermore, each x; lies
on the level L; of the forest. Clearly, (z;);cp is a minimal branch marking of
F(f, X) iff the tuple (£(x;));cp is a minimal sample of f over X (recall {(x) is
the label of x in F(f, X)). Roughly speaking: minimal samples of f over X are
exactly sequences of values that label minimal branch markings of F(f, X).

The next lemma states that both the total number of minimal samples and
the time required to compute all of them can be precisely controlled. According
to the equivalence above, evaluating all minimal samples of f over X amounts
to compute all minimal branch markings of F(f, X). This underlies an efficient
procedure to carry out such an evaluation. We will not give the proof of the next
Lemma: it has already been proved in a more general context in [6, 4].

Lemma 8. There are at most k! minimal samples of f over X and their set
can be computed in time O (| X|).

We now slightly modify the presentation of minimal samples in order to
manipulate them more conveniently inside formulas. The levels (with a few other
information) of the acyclic representation are introduced explicitly.

Definition 9. Let m be an integer, a € D and X, C f~™(a). The sets Lf)’h,
with P C [k], h < k! and i € P, are defined as the minimal sets such that, for
alla € f™(D) :

if (s:)iep is the ht" minimal sample of f over X, then, for alli € P, s; €
L

K2

Note that if the image set f™(D) is reduced to a single element i.e. f™(D) =
{a}, then each Lf’h contains at most one element. We will use this property in
the sequel. Note also that each x € Lf)’h belongs to the level L; of the acyclic
representation of f: for fixed i, sets Lf)’h are refinements of level L;.

Not all sets Lf’h for P C [k] and h < k! are non empty and hence need to be
defined. We denote by P the set of such (P, h) for which the sets Lf’h are not
empty (i € P). The following lemma details how to compute the sets ij’h.

Lemma 10. With the notation of Definition 9, the collection of sets Lf’h for
i € P and (P,h) € PH can be computed in time Oy (|D)).

Proof. We first set L7" = () for all P C [k],h < k! and i € P. By Lemma 8, for
each a € f™(D), one can compute the set of the at most k! minimal samples
of X, in time Ok(|X,|) and assign a different number A < k! to each. Now,



running through these samples, if (s;);cp is the A" of them, one add each s; to
set Lf’h. This step needs to be repeated for each a € f™(D). Since all sets X,
are pairwise disjoints and since their union is included in D, the whole process
requires time Og(|D|) which is the expected time bound. Note that, for indices
(P, h) & P, the sets Lf) " remain empty. O

4 Variable elimination

We are now in a position to eliminate quantifiers in a first-order formula to be
evaluated on a quasi-unary structure. As mentioned in Sect. 3, a first step must
be to eliminate y in a formula ¢ of the following form:

p@) =Vy: (f"y=arUy) =\ fMy=cq
1€ [k]

where 0 < my <--- <my < m, U is a unary relation and a,cy,...,c; are terms
in . To deal with this task, we understand () as meaning:

(ci)ie(r is a sample of f over f~P(a) NU.
That is, since every sample contains a minimal sample:
(¢i)iepr) contains a minimal sample of f over f~"(a) NU
or, equivalently:
3P C [k] such that (c¢;)icp is a minimal sample of f over f~™(a) N U
From the previous section, this assertion can now be stated as:
Jh < k! 3P C [k] such that Vi € P: Lf’h(ci) and fM ™Mic; = a

This is more formally written:

Vo AE ) n e = a).

(P,h)ePuicP

All predicates in this last assertion can be computed in linear time and the
disjunction and conjunction deal with a constant number (depending on k) of
objects. Variable y is now eliminated. This provides a general framework to
iteratively eliminate variables.

Lemma 11. Every FOq-query of the form (Vyp(Z,y),S), where o(Z,y) is a
quantifier-free disjunctive formula over a quasi-unary signature o, linearly re-
duces to an FOy-query over a quasi-unary signature.



Proof. Let S be a quasi-unary structure and ¢(%, y) be a quantifier-free disjunc-
tive formula. Thanks to Proposition 4, Vyp(Z, y) may be considered, up to linear
reduction, as fitting the form:

B@) VYL (7Y = [12 AU)) = Ve F™ () = [(@)]

where z € T U {y}. Assume z # y (otherwise the proof gets simpler). Denoting
f = (f™,...,f™), the second disjunct simply means that (f"(Z));cp is a
sample of f over f~P(f%(z)) N U. From what has been said before, this implies
that there exists P C [k] such that (f™(¥));cp is a minimal sample of f over
F7P(f9(2)). Recalling Definition 9 and the discussion that followed, one can
write:

(S Ev@ Y\ N LT @) AT @) = f(2)
(P,h)EPu i€P
Variable y is well eliminated. From Lemma 10, the collection of sets Lf’h are
linear time computable from structure S. This concludes the proof. ad

Theorem 12. Each non-Boolean (resp. Boolean) FO-query over a quasi-unary
signature linearly reduces to a FOy-query (resp. FO,-query) over a quasi-unary
signature.

Proof. The proof is by induction on the number k of quantified variables of the
query. Most of the difficulty already appears for the case k = 1. Let (p(z),S) €
FOJ xsTrUC(0) and Z be the nonempty tuple of free variables of ¢. Since Jy 1 is
equivalent to —~(Vx —1), one may suppose that ¢ is of the form £Vyp(z,y) (where
+ means that one negation = may occur). The conjunctive normal form for the
matrix of ¢ must be computed, and, since universal quantification and conjunc-
tion commute, one can put the formula in the form ¢(z) = £ A, Vyva (7,7, v),
where each ¢, is a quantifier-free disjunctive formula. By Lemma 11, we know
that the query (A, Yy¢a(Z,y),S) linearly reduces to a quantifier-free query
(¥(z,T),S") over a quasi-unary signature. This concludes this case.

Assume the result for £ > 1 and prove it for £ 4+ 1. For the same reason as
above, ¢(Z) can be put under the form p(z) = QT £ A, Vypa(z, T, y), where
each ¢, is a quantifier-free disjunctive formula and T is a tuple of k& quantified
variables. Again, from Lemma 11 query (A, Yy¢a(Z, T, y), S) linearly reduces to
a quantifier-free query (¢(z, ), S’) and then, (¢(%), S) linearly reduces to the k
variable query (QZv(z,7),S"). O

5 Query enumeration

In this section we prove that each first-order query over a quasi-unary struc-
ture (D, f,U) can be enumerated with constant delay after a linear time pre-
processing step. The proof involves the cost of the enumeration of all the elements
of D whose images by different powers of f (i.e. by functions of the form f%)



avoid a fixed set of values. It appears that the elements thus defined can be
enumerated with constant delay, provided the inputs are presented with the ap-
propriate data structure. Let us formalize the problem, before stating the related
enumeration result.

AUTHORIZED VALUES

input: the acyclic representation of a k-tuple f = (f™,..., f™*) over
aset X C D, and a set of forbidden pairs F C [k] x D ;
parameter: k, |F| ;
output:  the set A= {y e X | /\ fMiy # ¢}
(4,c)eF

Lemma 13. AUTHORIZED VALUES € CONSTANT-DELAY. Moreover, the delay
between two consecutive solution is O(k.|F|).

Proof. Each forbidden pair (i,c) € F is either inconsistent (i.e. f~™i(c) = () or
corresponds to a node s of F(f, X) such that height(s) = i and £(s) = c. If we
denote by forbid those nodes s of F(f, X) for which (height(s),4(s)) € F, the
set A to be constructed is exactly the set of values y € D that label leaves of
the forest whose branches avoid all forbidden nodes. Therefore, computing A
amounts to finding all the leaves described above.

This can be done by a depth-first search of the forest, discarding those leaves
whose visit led to a forbidden node. Furthermore, the search can be notably sped
up by backtracking on each forbidden node: indeed, such a node is the root of a
subtree whose all leaves disagree with our criteria. This algorithm clearly runs
in linear time. Let us show it enumerates solutions with constant delay:

Consider a sequence of p nodes si,...,s, successively visited by the algo-
rithm. If p > k, the sequence must contain a leaf or a forbidden node. Indeed,
if it does not contain any node of forbid, the algorithm behaves as a usual DFS
between s; and s,. Therefore, one node among s», . .., sp1 has to be a leaf since
height(F(f, X)) = k.

Now, if s,s’ are two leaves successively returned by the algorithm and if
fi,..., fp are the forbidden nodes encountered between these two solutions, then
the previous remark ensures that the algorithm did not visit more than k nodes
between s and fi, between f, and s’ or between two successive f;’s. The delay
between the outputs s and s’ is hence in O(pk) and therefore, in O(k|forbid|).
Furthermore, this reasoning easily extends to the delay between the start of the
algorithm and the first solution, or between the last solution and the end of the
algorithm. This concludes the proof. ad

Now we can prove the main result of this section.

Theorem 14. QUERY(FO?) € CONSTANT-DELAY (lin) for any quasi-unary sig-
nature o.



Proof. Because of Theorem 12 and Fact 3, we just have to prove the result for the
quantifier-free restriction of FO?. We prove by induction on d that every FOg (d)-
query can be enumerated with constant delay and linear time precomputation.
(Recall o is a quasi-unary signature.)

The result is clear for d = 1: Given an instance (S, p(x)) of QUERY(FO{ (1)),
the set ¢(S) can be evaluated in time O(|S]) since ¢ is quantifier-free. Therefore,
the following procedure results in a CONSTANT-DELAY (lin)-enumeration of ¢(.5):

Algorithm 1 ENUMERATION(1, »(y))

1: compute (5)
2: enumerate all the values of ¢(S)

Let us now suppose the induction hypothesis is true for d > 1 and examine the
case d+ 1. This case is divided in several steps. Let (S, (T, y)) be a FOJ (d+ 1)-

query.

Step 1. By standard logical techniques, ¢(T,y) can be written in disjunctive nor-
mal form as \/,, 6. (Z,y), where the 6,’s are disjoint conjunctive (quantifier-free)
formulas (i.e., 0,(S)N03(S) = 0 for o # 3). And this normalization can be man-
aged in linear time. But it is proved in [5] that the class CONSTANT-DELAY (/in)
is stable by disjoint union. Therefore, we do not loose generality when focusing
on the CONSTANT-DELAY/(lin)-enumeration of a query of the form (S, 0,(Z,y)).

Step 2. One can separate parts of formulas that depends exclusively on T, then
a conjunctive FO((d + 1)-formula 0(Z, y) can be written 0(Z,y) = ¥(T) A (T, y).
It is essential to consider tuples T that satisfy (%) but that can also be com-
pleted by some y such that 6(,y) holds. Hence, one considers the equivalent
formulation :

0(z,y) = ¥(T) A 3yd(T,y) A O(T,y)

If we set 1(T) = ¢Y(T) A Jyd(T,y), formula 6(T,y) can now be written, thanks
to Proposition 4:

0(z,y) = 1 () A O(T, ), ®3)
where 11 (Z) is a conjunctive FO, (d)-formula and §(Z, y) is a conjunctive FO,(d+
1)-formula of the form f™y = f"Z AUy A N\;cpy [y # 2.

The idea is to enumerate the (d+ 1)-tuples (T, y) satisfying 6 by enumerating
the d-tuples T satisfying (%) and, for each such Z, by enumerating the values
y fulfilling 6(Z,y). Both these enumerations can be done with constant delay:
the first, by inductive hypothesis ; the second by Lemma 13. As we made sure
that any tuple satisfying ¢1(Z) can be completed by at least one convenient y,
our enumeration procedure will not explore bad directions in depth. Next step
makes this precise.



Step 3. By induction hypothesis, there exists a CONSTANT-DELAY (/in)-enumeration
algorithm ENUMERATION(d, ) for formulas ¢ of arity d. Then, we get the fol-
lowing CONSTANT-DELAY (l/in)-enumeration algorithm for conjunctive formulas
of arity d + 1, together with its linear time precomputation procedure:

Algorithm 2 PRECOMP(d + 1,0(Z, y)))

1: write # under the form (3) B

2: build the complete acyclic representation of f = (f™!,..., f™*) over X
frrmnU

3: PRECOMP(d, ¢1(T))

Notice that items 1 and 2 of the above algorithm are carried out in time
O(]X|), thanks to Proposition 4 and Lemma 6.

Algorithm 3 ENUMERATION(d + 1, 6(Z, y))

1: PRECOMP(d + 1,6(Z,y)))

2: for all T in ENUM(d, ¢ (T)) do

3: for all y in AUTHORIZED VALUES (f, X, (i, f"Z);c)) do
4: return (T,y)

Finally, we get a complete CONSTANT-DELAY (lin)-enumeration algorithm
for FO,(d + 1)-formula by running successively the algorithms for the disjoint
conjunctive formulas 0, (T, y) obtained in the first step. O

6 Conjunctive queries

So far, we proved that the first-order query problem over quasi-unary signature
is “linear-time” computable. However, in full generality the size of the constant
(depending on the formula) may be huge: this is essentially due to the variable
elimination process that, at each step, may produce an exponentially larger for-
mula. Notice that, once variables are eliminated in formulas, query answering
become tractable both in terms of formula and of structure sizes. However, it is
not straightforward to know in advance which kind of query admit equivalent
formulation in terms of a quantifier-free query of polynomially related size. This
amounts to determine the number of expected minimal samples in different sit-
uations. This will be the object of further investigation in the extended version
of this paper.

In what follows, we examine the very easy particular case of conjunctive
queries.

Definition 15. A first-order formula is existential conjunctive if it uses con-
junction and ezistential quantification only. Conjunctive queries are queries de-
fined by existential conjunctive formulas.



Conjunctive queries (even union of conjunctive queries) over quasi-unary
structures are more tractable from the point of view of answer enumeration.
Enumeration of query result is tractable even from the point of view of the
constant size. The following result is easy to see by a direct algorithm.

Proposition 16. The conjunctive query problem over quasi-unary structures
belongs to the class CONSTANT-DELAY with a delay between two consecutive
tuples in O(|y|).
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