
Enumerating All Solutions of a
Boolean CSP by Non-Decreasing Weight

Nadia Creignou, Frédéric Olive, and Johannes Schmidt

Laboratoire d’Informatique Fondamentale de Marseille, CNRS UMR 6166,
Aix-Marseille Université, 163, avenue de Luminy, F-13288 Marseille Cedex 9, France

[nadia.creignou,frederic.olive,johannes.schmidt]@lif.univ-mrs.fr

Abstract. We address the problem of enumerating all models of Boolean for-
mulæ in order of non-decreasing weight in Schaefer’s framework. The weight
of a model is the number of variables assigned to 1. Tractability in this context
amounts to enumerating all models one after the other in sorted order, with poly-
nomial delay between two successive outputs. The question of model-enumeration
has already been studied in Schaefer’s framework, but without imposing a specific
order. The order of non-decreasing weight changes the complexity considerably.
We obtain a new dichotomous complexity classification. On the one hand, we
develop new polynomial delay algorithms for Horn and 2-XOR-formulæ to enu-
merate the models by non-decreasing weight. On the other hand, we prove that in
all other cases such a polynomial delay algorithm does not exist, unless P = NP.

Keywords: Enumeration, complexity, polynomial delay, generalized satisfiabil-
ity, CSP.

1 Introduction

This paper is concerned with algorithmic and complexity of enumeration, the task of
generating all solutions of a given problem. The area of enumeration algorithms has ex-
perienced tremendous growth over the last decade. This is motivated by the explosion in
the size of the data that algorithms are called upon to process in everyday applications.
The prime application is query answering in databases, where huge answer sets arise
naturally. Computing queries incrementally and efficiently has become an increasingly
important issue. For instance users of web search engines want to obtain the first re-
sults of their keyword search as quickly as possible. Other application domains include
constraint solving, operations research, data mining, Web mining, bioinformatics and
computational linguistics (see e.g. [17,8,1]).

Because of the amount of solutions that enumeration algorithms possibly produce,
the size of their output is often much larger (e.g. exponentially larger) than the size
of their input. Therefore, polynomial time complexity is not a suitable yardstick of ef-
ficiency when analyzing their performance. Actually, one would be interested in the
regularity of these algorithms rather than in their total running time. For this reason,
polynomial delay is customarily regarded as the good notion of tractability for enumer-
ation complexity: an enumeration algorithm has polynomial delay p(n) if the elapsed
time between two successive outputs is polynomial in the size of the input.

Since the seminal result of Schaefer [19], the theoretical interest of the CSP point
of view on complexity questions has been largely assessed (see e.g. [5]). By offering a
unified framework which has intimate connections with various problems in database,
it allowed numerous classification results for a variety of computational tasks, see [7]
for a survey. The present paper refers to this line of research.

In the context of non-uniform Boolean CSP we fix a constraint language Γ , which
is a finite set of Boolean relations. A Γ -formula is then a conjunction of clauses where
the form of the clauses is restricted by Γ . Thus the problem of enumeration can be
phrased as follows: given a Γ -formula, can we efficiently enumerate all its models?
Prior works handled that question. In [4], Creignou and Hébrard proved a first classi-
fication result about enumeration for Γ -formulæ: if Γ is Horn, dual-Horn, bijunctive
or affine, there exists a polynomial delay algorithm that enumerates all models of any
Γ -formula; otherwise, such an algorithm does not exist unless P = NP. But their result
ignores an important feature in the design of enumeration algorithms: the specification
of the order in which we wish the solutions to be output. This is a fundamental aspect of
enumeration because in many cases we cannot afford to enumerate all the solutions, but
rather we want to produce the most "important" ones in some metric. In other cases we
need to find a solution that satisfies some other complicated side conditions and thus we
generate the solutions in order of preference until we find an acceptable one (see some
examples in [15,26]). Besides, it turns out that the order affects heavily the complexity.
Johnson et al. [10] prove for instance that maximal independent sets of a graph can be
enumerated in lexicographical order by a polynomial delay algorithm, while there is no
such algorithm for the reverse lexicographical order, unless P = NP.

In this paper, we specify the order in which we wish the models of Γ -formulæ to
be output. We deal with enumeration of models according to their weight, which is
the number of variables they assign to 1. The weight is a natural parameter in Boolean
CSPs [16,18,6], that can be seen as a cost of the assignment. Hence our approach refers
to numerous works that focus on enumeration by non-decreasing cost [25,15,26]. Thus,
the key problem addressed in this paper is: can one enumerate efficiently all models
of a Γ -formula by non-decreasing weight? We answer this question with a dichoto-
mous classification result: If a set of relations Γ is Horn or width-2 affine, there is a
polynomial-delay algorithm that generates all models of a Γ -formula by non-decreasing
weight. Otherwise such an algorithm does not exist, unless P = NP. The proof of this
theorem reveals new enumeration algorithms for Boolean CSPs, different from the ones
developed so far, in particular in the case of Horn formulæ.

The paper is organized as follows. In Sect. 2 we give the relevant material on
Boolean CSPs and enumeration algorithms. We also state our main result, Theorem 2.
The proof of this theorem is presented throughout the following sections. Section 3
deals with efficient enumeration algorithms in the case where Γ is width-2 affine or
Horn. In Sect. 4 we prove the negative part of Theorem 2: for any relation Γ that is
neither Horn nor width-2 affine, the existence of a polynomial delay algorithm for enu-
merating the models of a Γ -formula by non-decreasing weight would imply P = NP.
We conclude and briefly point out open questions in Sect. 5.

2 Material

2.1 Constraint languages and Γ -formulæ

A logical relation of arity k is a relation R ⊆ {0, 1}k. By abuse of notation we do not
make a difference between a relation and its predicate symbol. A constraint, C, is a
formula C = R(x1, . . . , xk), where R is a logical relation of arity k and the xi’s are
(not necessarily distinct) variables. If u and v are two variables, then C[u/v] denotes
the constraint obtained from C in replacing each occurrence of v by u. If V is a set
of variables, then C[u/V] denotes the result of substituting u to every occurrence of
every variable of V in C. An assignment m of truth values to the variables satisfies
the constraint C if

(
m(x1), . . . ,m(xk)

)
∈ R. A constraint language Γ is a finite set

of logical relations. A Γ -formula ϕ, is a conjunction of constraints using only logical
relations from Γ and is hence a quantifier-free first order formula. With Var(ϕ) we
denote the set of variables appearing in ϕ. A Γ -formula ϕ is satisfied by an assign-
ment m : Var(ϕ) → {0, 1} if m satisfies all constraints in ϕ simultaneously (such a
satisfying assignment is also called a model of ϕ). Assuming a canonical order on the
variables we can regard models as tuples in the obvious way and we do not distinguish
between a formula ϕ and the logical relation Rϕ it defines, i.e., the relation consisting
of all models of ϕ.

Throughout the text we refer to different types of Boolean relations following Schae-
fer’s terminology [19]. We say that a Boolean relation R is Horn (resp. dual Horn) if
R can be defined by a CNF formula which is Horn (resp. dual Horn). A relation R is
bijunctive if it can be defined by a 2-CNF formula. A relation R is affine if it can be
defined by an affine formula, i.e., conjunctions of XOR-clauses (consisting of an XOR
of some variables plus maybe the constant 1) — such a formula may also be seen as a
system of linear equations over GF[2]. A relation is affine with width 2 (width-2 affine,
for short) if it is definable by a conjunction of clauses, each of them being either a unary
clause or a 2-XOR-clause (consisting of an XOR of 2 variables plus maybe the constant
1) — such a conjunctive formula may also be seen as a system of linear equations over
GF[2] with at most two variables per equation. A relation R is 0-valid (resp., 1-valid)
if R(0, . . . , 0) = 1 (resp., R(1, . . . , 1) = 1). Finally, a constraint language Γ is Horn
(resp. dual Horn, bijunctive, affine, width-2 affine, 0-valid, 1-valid) if every relation in
Γ is Horn (resp. dual Horn, bijunctive, affine, width-2 affine). We say that a constraint
language is Schaefer if Γ is either Horn, dual Horn, bijunctive, or affine.

There exist easy criteria to determine if a given relation is Horn, dual Horn, bi-
junctive, or affine. Indeed all these classes can be characterized by their polymor-
phisms (see e.g. [7] for a detailed description). We recall some of these properties here
briefly for completeness. The operations of conjunction, disjunction, and addition ap-
plied coordinate-wise on k-ary Boolean vectors m,m′,m′′ ∈ {0, 1}k are defined as
follows:

m ∧m′ = (m[1] ∧m′[1], . . . ,m[k] ∧m′[k])
m ∨m′ = (m[1] ∨m′[1], . . . ,m[k] ∨m′[k])
m⊕m′ = (m[1]⊕m′[1], . . . ,m[k]⊕m′[k])

where m[i] is the i-th coordinate of the vector m and ⊕ is the exclusive-or operator.
Given a logical relationR, the following closure properties fully determine the structure
of R.

– R is Horn if and only if m,m′ ∈ R implies m ∧m′ ∈ R.
– R is dual Horn if and only if m,m′ ∈ R implies m ∨m′ ∈ R.
– R is affine if and only if m,m′,m′′ ∈ R implies m⊕m′ ⊕m′′ ∈ R.
– R is affine and 0-valid if and only if m,m′ ∈ R implies m⊕m′ ∈ R.

The satisfiability problem for Γ formulæ, denoted by SAT(Γ), was first studied
by Schaefer [19] who obtained a famous dichotomous classification: If Γ is Schaefer
or 0-valid or 1-valid, then SAT(Γ) is in P; otherwise SAT(Γ) is NP-complete. The
complexity of finding a non-trivial solution (i.e., a solution different from all-zero and
all-one), SAT∗(Γ), was studied in [4]: If Γ is Schaefer, then SAT∗(Γ) is in P; otherwise
SAT∗(Γ) is NP-complete. Since then and in the recent past, complexity classifications
for many further computational problems for Γ -formulæ have been obtained (see [7]
for a survey).

2.2 Enumeration

In this paper, we focus on enumeration by non-decreasing weight of the models of
Boolean constraint formulæ, the weight of an assignment being the number of variables
assigned to 1. The corresponding problem can be displayed as follows:

Problem: ENUM-SATw(Γ)
Input: a Γ -formula ϕ.
Output: generate all models of ϕ by non-decreasing weight.

We say that an algorithmA computes the enumeration problem ENUM-SATw(Γ) if
for a given input ϕ,A generates one by one the models of ϕ, by non-decreasing weight,
without repetition, and stops after writing the last one.

Polynomial time complexity is not a suitable yardstick of efficiency when analyz-
ing an enumeration algorithm since the output size is usually exponential in the size
of the input. In [10] several notions of efficiency are discussed. The least we could ask
is that the enumeration algorithm runs in polynomial total time, that is that the time
required to output all solutions be polynomial in the size of the input and in the number
of solutions (i.e., the size of the output). This notion is also referred to as output polyno-
mial. An important feature of an enumeration algorithm is the ability to start generating
configurations as soon as possible, and more generally to generate configurations in a
regular way with a limited delay between two successive outputs. Hence we say that an
enumeration algorithm runs in polynomial delay if the delay until the first solution is
output and thereafter the delay between any two consecutive solutions is bounded by a
polynomial p(n) in the input size. It is worth noticing that such an algorithm generates
the first k outputs in time k · p(n). This is an important property of polynomial delay
algorithms, since when one has not enough time to enumerate all solutions, at least the
first k solutions (the top-k-ranked in the case of an enumeration in a ranked order) can

be efficiently enumerated. If ENUM-SATw(Γ) is computable by a polynomial delay
algorithm, we write ENUM-SATw(Γ) ∈ delayP.

For characterizing space efficiency we ignore the amount of space needed for writ-
ing the output, only the space used for storing intermediate results is measured. Enu-
meration algorithms are sometimes required to run in polynomial space, which means
that the amount of space involved during the whole computation is polynomial in the
size of the input. This requirement is restrictive, even for polynomial delay algorithms.
Indeed there are polynomial delay algorithms, especially when a specified order is re-
quired, that build exponentially large data structures (see [10,14,24]). This is also the
case for the polynomial delay algorithm for Horn formulæ, described in Sect. 3. Never-
theless, any polynomial delay algorithm runs in incremental polynomial space, which
means that the space needed for generating the first k solutions is bounded by k times a
polynomial in the input size.

2.3 Main result

The complexity of enumerating all models of generalized Boolean formulæ, without
specifying any order, has been studied in [4]. An alternative proof making use of partial
polymorphisms was given later in [21].

Theorem 1. (Model enumeration [4].) If Γ is Schaefer, then there is a polynomial-
delay algorithm that generates all models of a Γ -formula. Otherwise such an algorithm
does not exist unless P = NP.

In this paper we are interested in enumerating all models by non-decreasing weight.
Of course, when Γ is Schaefer, Theorem 1 enables to do that in polynomial total time:
first, generate all solutions in lexicographic order with the algorithm underlying the
proof of this theorem; then, sort the solutions in order to output them by non-decreasing
weight. However such a procedure forbids any control on the regularity of the enumera-
tion since for instance, the first solution is output after an exponential amount of time if
there is an exponential number of models. Therefore, we have to develop specific tech-
niques to perform efficient enumeration in this order. Sets of relations that admit a good
behavior with respect to this task do not coincide with Schaefer’s ones. Our main the-
orem details this situation, stating a new dichotomy result concerning the enumeration
of models by non-decreasing weight.

Theorem 2. (Enumeration by non-decreasing weight.) If Γ is Horn or width-2 affine,
then there is a polynomial-delay algorithm that generates all models of a Γ -formula by
non-decreasing weight. Otherwise such an algorithm does not exist unless P = NP.

This result is proved in the two forthcoming sections. In Sect. 3 we provide effi-
cient enumeration algorithms in the case where Γ is width-2 affine (Proposition 1) or
Horn (Proposition 2). In Sect. 4, we prove the negative part of the theorem. That is, we
establish that for any relation Γ that is neither Horn nor width-2 affine, the existence
of a polynomial delay algorithm for ENUM-SATw(Γ) implies P = NP. Actually, we
achieve this objective by proving that in this case finding the first or the second lightest
solution is NP-hard (Proposition 4).

3 Efficient enumeration algorithms

The efficient enumeration algorithms proposed earlier in [4] (see Theorem 1) were
based on self-reducibility ([23,13,20]). The self-reducibility property of a problem al-
lows a “search-reduces-to-decision” algorithm to enumerate the solutions. As a conse-
quence, the models are provided in lexicographical order. Moreover the algorithms use
only polynomial space. Enumerating the solutions in order of non-decreasing weight
requires new algorithms. The two classes of constraint languages under examination in
this section, namely width-2 affine and Horn, invoke different algorithmic approaches.
Indeed they differ in the complexity of their associated k-ONES problem, in which,
given a formula and an integer k, we want to know whether there exists a model with
exactly k ones. For width-2 affine formulæ this problem is in P, whereas for Horn for-
mulæ it is NP-complete (see [6]). As a consequence for width-2 affine formulæ one can
use the tractability of the k-ONES problem to get an efficient enumeration algorithm.
In contrast, Horn formulæ require another strategy. It is natural to use a data structure
which maintains an ordered set of elements and which supports efficient operations of
insertion and extraction. The algorithm we will present for the Horn case makes use of
a priority queue in order to produce the right order of the output solutions. This method
was already used in e.g. [10,14]. As in these papers, our priority queue allows inser-
tion of elements and extraction of the top element in logarithmic time in the size of the
queue. Thus the size of the queue may grow exponentially whereas polynomial delay is
still maintained.

Proposition 1. If Γ is width-2 affine, then there is a polynomial-space polynomial-
delay algorithm that generates all models of a Γ -formula by non-decreasing weight.

Proof. Let Γ be width-2 affine and let ϕ be a Γ -formula. Without loss of generality we
can suppose that ϕ does not contain unitary clauses. Then each clause of ϕ expresses
either the equality or the inequality between two variables. Using the transitivity of the
equality relation and the fact that in the Boolean case a 6= b 6= c implies a = c, we
can identify equivalence classes of variables such that each two classes are either inde-
pendent or they must have contrary truth values. We call a pair (A,B) of classes with
contrary truth values cluster, B may be empty. It follows easily that any two clusters
are independent and thus to obtain a model of ϕ, we choose for each cluster (A,B)
either A = 1, B = 0 or A = 0, B = 1. We suppose in the following that ϕ is satisfiable
(otherwise, we will detect a contradiction while constructing the clusters). Let n ≥ 1 be
the number of clusters, then the number of models will be 2n. The weight contribution
of each cluster to a model is either |A| or |B|, where |A| = |B|may occur. We represent
a model by an n-tuple s ∈ {0, 1}n, indicating for each cluster which of the two assign-
ments is taken. In the case |A| 6= |B| we indicate by 0 the light assignment and by 1
the heavy assignment. Surely (0, 0, . . . , 0) will represent a model of minimal weight,
and (1, 1, . . . , 1) will represent a model of maximal weight. For enumeration we may
consider only the weight difference

∣∣|A| − |B|∣∣ of each cluster, since we can subtract
the weight of a minimal model. Setting (w1, . . . , wn) to these weight differences of the
clusters, we reduce our problem to the following enumeration problem:

Problem: SUBSET-SUM

Input: A sequence of non-negative integers (w1, . . . , wn) ∈ Nn

Output: generate all n-tuples s ∈ {0, 1}n by non-decreasing weight δ(s),
where δ(s) = Σn

i=1si · wi

To solve this enumeration problem we make use of the fact that in our case the
sum of the weights W := Σn

i=1wi is linearly bounded by the number of variables of
the original formula ϕ. This allows a strategy of dynamic programming to compute in
polynomial time a matrix A ∈ {0, 1}(n+1, W+1) such that A(i, k) = 1 if and only if
with the weights w1, . . . , wi one can construct the sum k, where 0 ≤ i ≤ n, 0 ≤ k ≤
W . The matrix A is constructed by first setting A(0, 0) = 1 and A(0, k) = 0 for all
k ≥ 1, and then filling the other fields row by row according to the rule A(i, k) = 1
if and only if A(i − 1, k) = 1 or A(i − 1, k − wi) = 1. Thus the computation of A
takes time O(n ·W). After this precomputation, for each k for which there is at least
one solution of weight k we enumerate all such solutions by constructing the solution
strings from ε (the empty string) recursively.

Algorithm 1 Algorithm for SUBSET-SUM.
MAIN(w1, . . . , wn)

1: compute A ∈ {0, 1}(n+1, W+1)

2: for k = 0 to W do
3: if A(n, k) = 1 then
4: CONSTRUCTSOLUTIONS(n, k, ε) /* enumerate all solutions of weight k */
5: end for

CONSTRUCTSOLUTIONS(i, j, s)

1: if i = 0 then
2: output s
3: else
4: if A(i− 1, j − wi) = 1 then
5: CONSTRUCTSOLUTIONS(i− 1, j − wi, 1 ◦ s) /* ◦ stands for the concatenation

operator */
6: if A(i− 1, j) = 1 then
7: CONSTRUCTSOLUTIONS(i− 1, j, 0 ◦ s)

The reader may convince himself or herself that Algorithm 1 enumerates all solu-
tions s of the SUBSET-SUM problem by non-decreasing weight δ(s). Since both n and
W are linearly bounded by the number of variables of ϕ, Algorithm 1 has a quadratic
precomputation time and a linear delay thereafter. The translations between our original
problem and SUBSET-SUM can be performed in polynomial time. We finally observe
that the quadratic space requirement can be improved to linear space, since for each col-
umn k of the matrix A, we have only to store at which row i we pass from 0 to 1. 2

Proposition 2. If Γ is Horn, then there is a polynomial-delay algorithm that generates
all models of a Γ -formula by non-decreasing weight.

Proof. Let Γ be Horn and let ϕ be a Γ -formula. Then ϕ is equivalent to a conjunction
of Horn clauses. We will use a priority queue Q to respect the order of non-decreasing
weight and to avoid duplicates. The command Q.enqueue(s, k) enqueues an element s
with an integer key-value k (a weight). The queue sorts by non-decreasing key-value
and inserts an element s only if it is not yet present in the queue.

For notational convenience we represent a model by the set of variables it sets to
1. We use the well-known fact that for Horn formulæ the intersection of all models
is the unique minimal model which is polynomial time computable. For a satisfiable
Horn formula ϕ we indicate the minimal model by mm(ϕ). Note that for a set of vari-
ables V ⊆ V ars(ϕ) the formula ϕ ∧ V := ϕ ∧

∧
v∈V v is still representable as a

Horn formula and thus, if ϕ ∧ V is satisfiable, also mm(ϕ ∧ V) can be computed in
polynomial time.

Algorithm 2 Algorithm for HORN-SAT.
Require: ϕ a Horn formula
1: if ϕ unsatisfiable then
2: return ’no’
3: Q = newPriorityQueue
4: m := mm(ϕ)
5: Q.enqueue(m, |m|)
6: while Q not empty do
7: m := Q.dequeue
8: output m
9: for all x ∈ V ars(ϕ) \ m do

10: if ϕ ∧m ∧ x satisfiable then
11: m′ := mm(ϕ ∧m ∧ x)
12: Q.enqueue(m′, |m′|)
13: end for
14: end while

We claim that Algorithm 2 enumerates the models of a given Horn formula with
polynomial delay, by non-decreasing weight. The polynomial delay is easily seen. By
definition of the priority queue and by the fact that the models m′ generated out of
m in line 12 are always of bigger weight than m itself, it is also easily seen that the
models are output in the right order and that no model is output twice. To prove that no
model is omitted, it suffices to show that for every model m′ 6= mm(ϕ) there exists a
submodel m (m′ such that in line 12 the algorithm generates m′ out of m. That is,
there must be an x ∈ m′ \m such that m′ = mm(ϕ∧m∧ x). Consider for this the set
H := {m | m a model of ϕ and m (m′}. The set H is not empty since it contains at
least the minimal model mm(ϕ). A maximal element m of H fulfills our needs, since
it satisfies m′ = mm(ϕ ∧m ∧ x) for any x ∈ m′ \m.

Let us finally stress that in contrast to Algorithm 1, Algorithm 2 potentially runs in
exponential space. 2

4 Hardness results

In this section we investigate the case where Γ is neither Horn nor width-2 affine.
Clearly, in order to enumerate the models of a Γ -formula by non-decreasing weight,
it is a necessary condition to be able to find the lightest model efficiently. As we will
prove, this is not a sufficient condition, we need also to be able to find the second one
efficiently. So let us introduce the following problems.

Problem: MIN-ONES(Γ)
Input: a Γ -formula ϕ, an integer W
Question: Is there a model of ϕ that assigns 1 to at most W variables?

Problem: MIN-ONES∗(Γ)
Input: a Γ -formula ϕ, an integer W
Question: Is there a model of ϕ different from all-0 that assigns 1 to at most

W variables?

From the classification obtained in [12] for the corresponding optimization problem,
one can deduce the following.

Proposition 3. (Minimum ones satisfiability [12].) If Γ is 0-valid or Horn or width-2
affine, then MIN-ONES(Γ) is in P, otherwise MIN-ONES(Γ) is NP-complete.

Our main contribution in this section is the following hardness result, which obvi-
ously proves that when Γ is neither Horn nor width-2 affine, there is no polynomial
delay algorithm that enumerates all models of a Γ -formula in order of non-decreasing
weight, unless P = NP.

Proposition 4. Let Γ be a set of relations which is neither Horn nor width-2 affine.
Then MIN-ONES∗(Γ) is NP-complete.

Proof. If Γ is not Schaefer, then SAT∗(Γ) is NP-complete [19] and hence so is the
problem MIN-ONES∗(Γ). If Γ is not 0-valid, then, since it is neither Horn nor width-2
affine, the result follows from the NP-completeness of MIN-ONES(Γ) (Proposition 3).
Therefore, it remains to study sets Γ that are Schaefer and 0-valid but that are neither
Horn nor width-2 affine. There are three cases to analyse.

- Γ is bijunctive and 0-valid but neither Horn nor width-2 affine.
- Γ is affine and 0-valid but neither Horn nor width-2 affine.
- Γ is dual Horn and 0-valid but neither Horn nor width-2 affine.
Observe that a 2-CNF formula which is 0-valid is also Horn. So the first case does

not occur. Besides, one can easily prove that a 0-valid affine relation which is not Horn
cannot be width-2 affine. Therefore the proof of the proposition will be completed when
we successively prove the NP-completeness of MIN-ONES∗(Γ) for any set Γ such that:

1. Γ is affine and 0-valid but not Horn, or
2. Γ is dual Horn and 0-valid but neither affine nor Horn.
The NP-completness of MIN-ONES∗(Γ) for any set Γ fulfilling the description 1

or 2 above is settled, respectively, by the forthcoming Proposition 5 and Proposition 6.
For the reader’s convenience, a scheme of the proof is displayed in Fig. 1. 2

MIN-ONES∗ is NP-hard
(Prop. 6)

∅
(cannot occur)

MIN-ONES∗ is NP-hard
(Prop. 5)

MIN-ONES is NP-hard
[12]

ENUM-SATw ∈ delayP

(Prop. 2)

ENUM-SATw ∈ delayP

(Prop. 1)

SAT∗ is NP-hard
[4]

Is Γ Schaefer?

Is Γ Horn?

Is Γ 0-valid?

Is Γ width-2 affine?

Is Γ dual-Horn?

Is Γ affine?

no

no

no

no

no

no yes

yes

yes

yes

yes

yes

Fig. 1. Scheme of the proof

4.1 Affine, 0-valid, not Horn

In this section we deal with relations that are 0-valid and affine but not Horn. We will
prove that for such a relation R, finding a non-all-0 model of minimal weight of an
R-formula is NP-hard. In order to do so, we need some technical lemmas. The two first
ones are definability results, while the third is a basic hardness result. One of the most
successful techniques to obtain results on the complexity of constraints related problems
(including enumeration), has been the application of tools from universal algebra. A
Galois connection relates the expressive power of a constraint language to its set of
so-called polymorphisms or partial polymorphisms (see e.g. [9,22]). However here it is
not worth using this algebraic tool. The technical results that are needed concern only
very restrictive sets of relations and can be obtained “by hand”.

In the proofs of all the following lemmas, R will denote a relation of arity k and V
a set of k distinct variables, say V = {x1, . . . , xk}.

Lemma 1. LetR be a relation which is 0-valid and affine but neither Horn nor 1-valid.
Then there exists an R-formula equivalent to ¬w ∧ (x⊕ y ⊕ z = 0).

Proof. Consider the constraint C = R(x1, . . . , xk). Since R is non-Horn there exist
m1 and m2 in R such that m1 ∧ m2 /∈ R. Since R is 0-valid and affine, we have

m1 ⊕m2 ∈ R. For i, j ∈ {0, 1}, set Vi,j = {x | x ∈ V,m1(x) = i ∧m2(x) = j}.
Observe that V0,1 6= ∅ (respectively, V1,0 6= ∅), otherwise m1 ∧ m2 = m2 (resp.,
m1 ∧ m2 = m1), contradicting the fact that m1 ∧ m2 /∈ R. Moreover V1,1 6= ∅,
otherwisem1∧m2 = ~0, a contradiction. Consider the {R}-constraint:M(w, x, y, z) =
C[w/V0,0, x/V0,1, y/V1,0, z/V1,1]. According to the above remark the three variables
x, y and z effectively occur in this constraint. Let us examine the set of models of M
assigning 0 to w: it contains 0011 (since m1 ∈ R), 0101 (since m2 ∈ R), 0110 (since
m1 ⊕m2 ∈ R) and 0000 (since R is 0-valid). But it does not contain 0001 (since by
assumption m1 ∧m2 /∈ R). Thus it does not contain 0111 either. Indeed, otherwise it
would contain 0011 ⊕ 0101 ⊕ 0111 (since R is affine), which is equivalent to 0001,
a contradiction. From this one can prove that it contains neither 0010 nor 0100 (since
0000 ⊕ 0011 ⊕ 0010 = 0001 and 0110 ⊕ 0101 ⊕ 0100 = 0111). Note that since R is
0-valid but not 1-valid C[w/V] ≡ ¬w. Hence, let us consider

ϕ(w, x, y, z) = C[w/V] ∧M(w, x, y, z).

The R-formula ϕ is equivalent to ¬w∧ (x⊕y⊕z = 0), thus concluding the proof. 2

Lemma 2. LetR be a relation which is 0-valid, 1-valid, affine but not Horn. Then there
exists an R-formula equivalent to (w ⊕ x⊕ y ⊕ z = 0).

Proof. Observe that an affine relationR which is both 0-valid and 1-valid is necessarily
complementive, i.e. for all m ∈ R we have also ~1⊕m ∈ R. We can mimic the analysis
made in the previous lemma and consider

M(w, x, y, z) = C[w/V0,0, x/V0,1, y/V1,0, z/V1,1].

Thus, the formula ϕ(w, x, y, z) = M(w, x, y, z) ∧M(w, y, z, x) ∧M(w, z, x, y) veri-
fies ϕ(w, x, y, z) ≡ (w ⊕ x⊕ y ⊕ z = 0). 2

Lemma 3. MIN-ONES∗(x ⊕ y ⊕ z = 0) and MIN-ONES∗(w ⊕ x ⊕ y ⊕ z = 0) are
NP-complete.

Proof. Consider a homogeneous linear system over the finite field GF(2). Finding the
non-all-0 solution with minimum weight of such a system is known to be NP-hard
(see [2, Theorem 4.1]). In order to prove the lemma we have to show that this problem
remains hard when restricted to systems that have three (resp., four) variables by equa-
tion. Let S be a homogeneous linear system over GF(2). Suppose that S has n variables,
x1, . . . , xn. In order to reduce the number of variables in each equation we introduce
auxiliary variables. If there is an equation xi1⊕xi2⊕· · ·⊕xik

= 0 for some k ≥ 4, we
introduce a new variable yi1,i2 and replace the original equation by the two equations
yi1,i2 ⊕ xi1 ⊕ xi2 = 0 and yi1,i2 ⊕ xi3 ⊕ . . .⊕ xik

= 0. We repeat this process until all
equations have three variables. The satisfiability is preserved during this transformation.
The number of auxiliary variables is bounded from above by the number of occurrences
of variables in the original system. In order to keep the information on the weight of the
solutions we need to introduce enough copies of the original variables, which make the
auxiliary variables neglectable. Let N be the number of occurrences of variables in S.

Let f be a fresh variable that will play the role of the constant 0. For each i = 1, . . . , n,
we introduceN copy-variables x1

i , . . . , x
N
i of xi and add the equations xi⊕xj

i ⊕f = 0
for j = 1, . . . N . Finally we add the equation f ⊕ f ⊕ f = 0, i.e., f = 0 (this will
ensure that xi = xj

i for all j). There is a one-to-one correspondence between the solu-
tions of S and the solutions of the so-obtained system S′. Moreover S has a non-trivial
solution of weight at most W if and only if S′ has a non-trivial solution of weight at
most W (N + 1) +N . Since the system S′ can be seen as an (x⊕ y ⊕ z = 0)-formula
we have thus proved the NP-hardness of MIN-ONES∗(x⊕ y ⊕ z = 0).

Let us now reduce MIN-ONES∗(x⊕y⊕z = 0) to MIN-ONES∗(w⊕x⊕y⊕z = 0).
Let S be a homogeneous linear system over n variables such that each equation has
exactly three variables. Let w and wi for i = 1, . . . , n+1 be fresh variables. Transform
S into S′ as follows: transform every equation x⊕ y ⊕ z = 0 into w ⊕ x⊕ y ⊕ z = 0
and add the n + 1 equations w ⊕ w ⊕ w ⊕ wi = 0 for i = 1, . . . , n + 1. Solutions
of S′ assigning 0 to w coincide with the solutions of S. Moreover any solution of S′

assigning 1 to w has weight at least n + 1. Therefore, S has a non-trivial solution of
weight at mostW (W ≤ n) if and only if S′ has a non-trivial solution of weight at most
W . This completes the proof. 2

Proposition 5. IfR is 0-valid and affine but not Horn, then the problem MIN-ONES∗(R)
is NP-complete.

Proof. It follows from the three lemmas above: if R is not 1-valid, then Lemma 1
allows a reduction from MIN-ONES∗(x⊕ y⊕ z = 0) to MIN-ONES∗(R) (replace each
constraint (x⊕y⊕z = 0) by theR-formula equivalent to ¬w∧ (x⊕y⊕z = 0), where
w is a fresh variable). If the relationR is 1-valid, then Lemma 2 allows a reduction from
MIN-ONES∗(w ⊕ x⊕ y ⊕ z = 0) to MIN-ONES∗(R). In both cases one can conclude
with Lemma 3. 2

4.2 Dual Horn, 0-valid, neither affine nor Horn

In this section we deal with relations that are 0-valid and dual Horn but neither affine
nor Horn. The method of proof is not the same as in the previous section. We will also
need some intermediate lemmas.

Lemma 4. Let R be a relation which is 0-valid, dual Horn but neither affine nor 1-
valid. Then there exists an R-formula equivalent to ¬t ∧ (u→ v).

Proof. Consider the constraint C = R(x1, . . . , xk). Observe that since R is 0-valid
but not 1-valid, C[t/V] ≡ ¬t. Since R is 0-valid and non-affine there exist two dis-
tinct tuples m1 and m2 in R such that m1 ⊕m2 /∈ R. Since R is dual Horn, we have
m1 ∨m2 ∈ R. For i, j ∈ {0, 1}, let Vi,j = {x | x ∈ V,m1(x) = i ∧m2(x) = j}. Ob-
serve that V1,1 6= ∅, otherwise m1 ∨m2 = m1 ⊕m2, a contradiction. Moreover, since
m1 6= m2 either V0,1 or V1,0 is nonempty. Suppose first that they are both nonempty.
Consider the R-constraint M(w, x, y, z) = C[w/V0,0, x/V0,1, y/V1,0, z/V1,1]. The
three variables x, y and z effectively appear in this constraint. Let us examine the set of
models of M assigning 0 to w: it contains 0011 (since m1 ∈ R), 0101 (since m2 ∈ R),
0111 (since m1 ∨ m2 ∈ R) and 0000 (since R is 0-valid), but does not contain 0110
(since by assumption m1 ⊕m2 /∈ R). The membership of 0100, 0010, 0001 is open:

– If it does not contain 0100, then consider the R-formula ϕ(t, u, v) := C[t/V] ∧
M(t, u, v, v). Its set of models is {001, 011, 000} and therefore, ϕ(t, u, v) ≡ ¬t ∧
(u→ v).

– If it contains 0100, then it does not contain 0010. Indeed otherwise, sinceR is dual-
Horn it would also contain 0110, which provides a contradiction. Thus consider the
R-formulaϕ(t, u, v) := C[t/V]∧M(t, v, u, v). Its set of models is {001, 011, 000}
and therefore, ϕ(t, u, v) ≡ ¬t ∧ (u→ v).

If for instance V0,1 = ∅, then one has to consider

M(w, y, z) = C[w/V0,0, y/V1,0, z/V1,1].

In this case ϕ(t, u, v) := C[t/V] ∧M(t, u, v) is equivalent to ¬t ∧ (u→ v). 2

Lemma 5. Let R be a relation which is 0-valid, 1-valid, dual Horn but not Horn, then
there exists an R-formula equivalent to (u→ v).

Proof. SinceR is dual Horn but non Horn, it is non-complementive, that is, there exists
an m ∈ R such that m ⊕ ~1 /∈ R. Consider the constraint C = R(x1, . . . , xk). For
i ∈ {0, 1}, let Vi = {x | x ∈ V ∧ m(x) = i}. Consider the R-formula ϕ(u, v) =
C[u/V0, v/V1]. Then ϕ(u, v) ≡ ¬u ∨ v ≡ u→ v. 2

Proposition 6. If R is 0-valid and dual Horn but neither affine nor Horn, then the
problem MIN-ONES∗(R) is NP-complete.

Proof. Let R be a relation which is 0-valid and dual Horn but neither affine nor Horn.
Let T be the constant unary relation T = {1}. According to Proposition 3, the problem
MIN-ONES(R, T) is NP-complete. We reduce MIN-ONES(R, T) to MIN-ONES∗(R).
Let ϕ be an {R, T}-formula, ϕ = ψ ∧

∧
x∈V T (x) where ψ is an R-formula. Let t be

a fresh variable and consider

ϕ′ = ψ[t/V] ∧
∧

x∈Var(ϕ)\V

x→ t.

Observe that the only solution that assigns 0 to t in ϕ′ is the all-0 one. Therefore it is
clear that ϕ has a solution of weight at most W (W ≥| V |) if and only if ϕ′ has a
non-trivial solution of weight at most W− | V | +1. The two above lemmas allow to
express ϕ′ as an R-formula (modulo the introduction of an additional variable that will
always take the value 0 when R is not 1-valid), thus concluding the proof. 2

5 Conclusion

We have classified the complexity of enumerating all models of a Γ -formula by non-
decreasing weight. We have proved that in the case of Boolean CSPs a necessary and
sufficient condition for enumerating all solutions in order of non-decreasing weight with
polynomial delay is the ability to efficiently find a non-all-zero solution of minimal
weight. Note that by duality, under the assumption P 6= NP, one can enumerate the

models of a Γ -formula by non-increasing weight with polynomial delay if and only if
Γ is width-2 affine or dual Horn.

Another related question is: When does exist a so-called polynomial time iterator
for the solutions’ weight? That is, given a model m, when are we able to efficiently
compute a model of the next weight level? In the width-2 affine case this task is tractable
since k-ONES is tractable. In the Horn case this task becomes NP-hard: If it were
tractable, by iteration we would be able to efficiently compute a model of maximal
weight, which is NP-hard [12]. In the remaining cases, that is when enumeration by
non-decreasing weight can not be done with polynomial delay unless P = NP, both
situations may occur. A complete classification might reveal new classes of formulæ
interesting in the context of enumeration.

We could also have dealt with the weighted version of the problem, i.e., we have
a weight function w : V → N and the weight of a model m is given by

∑
v∈V w(v) ·

m(v). The algorithm proposed in Proposition 2 for Horn formulæ could also tackle this
variant. But the algorithm proposed in Proposition 1 for width-2 affine formulæ does
not run in polynomial delay when the weights are not polynomially bounded. However,
for cost of exponential space, one can also construct a polynomial delay algorithm for
this case, using a priority queue in a similar way as in the Horn case.

Asking the enumeration to be performed in order of non-decreasing weight has
revealed new enumeration algorithms for Boolean CSPs, different from the ones devel-
oped so far. The algorithm developed for Horn formulæ requires potentially an expo-
nential amount of space. Ideally we would like to avoid this. Interesting open questions
are to find out whether there is a space/delay trade-off and whether the exponential
space requirement is inherent to the order of non-decreasing weight for Horn formulæ.

Another interesting direction of research is the study of enumeration in order of
non-decreasing weight for CSPs over arbitrary finite domains. Enumeration of all so-
lutions of such CSPs has been studied in [3,21]. As mentioned in [21] considering dif-
ferent orderings could be the key to discover further enumeration algorithms. Also, in
[11] the authors studied the complexity of the so-called MAX-SOL(Γ) problem, which
generalizes the MAX-ONES problem to arbitrary finite domains. They identified two
tractable classes of constraint languages, namely injective and generalized max-closed
constraint languages. These two classes can be seen as substantial and nontrivial gener-
alizations of the tractable classes known for the MAX-ONES problem over the Boolean
domain, namely width-2 affine, 1-valid and dual-Horn. It would be interesting to exam-
ine whether these classes give rise to polynomial delay algorithms for the enumeration
of solutions by non-increasing weight.

Acknowledgment

We thank Arnaud Durand for providing us with the reference [2]. This work was par-
tially supported by the project ANR ENUM (ANR 07-BLAN-0327-04).

References

1. G. Bagan, A. Durand, and E. Grandjean. On acyclic conjunctive queries and constant delay
enumeration. In J. Duparc and T. A. Henzinger, editors, CSL, volume 4646 of LNCS, pages
208–222. Springer, 2007.

2. A. Barg. Complexity issues in coding theory. Electronic Colloquium on Computational
Complexity (ECCC), 4(46), 1997.

3. D. A. Cohen. Tractable decision for a constraint language implies tractable search. Con-
straints, 9(3):219–229, 2004.

4. N. Creignou and J.-J. Hébrard. On generating all solutions of generalized satisfiability prob-
lems. Theoretical Informatics and Applications, 31(6):499–511, 1997.

5. N. Creignou, Ph. G. Kolaitis, and H. Vollmer, editors. Complexity of Constraints - An
Overview of Current Research Themes, volume 5250 of LNCS. Springer, 2008.

6. N. Creignou, H. Schnoor, and I. Schnoor. Nonuniform boolean constraint satisfaction prob-
lems with cardinality constraint. ACM Trans. Comput. Log., 11(4), 2010.

7. N. Creignou and H. Vollmer. Boolean constraint satisfaction problems: When does Post’s
lattice help? In Creignou et al. [5], pages 3–37.

8. M. Hagen. Lower bounds for three algorithms for transversal hypergraph generation. Dis-
crete Applied Mathematics, 2009.

9. P. G. Jeavons. On the algebraic structure of combinatorial problems. Theoretical Computer
Science, 200:185–204, 1998.

10. D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. On generating all maximal inde-
pendent sets. Inf. Process. Lett., 27(3):119–123, 1988.

11. P. Jonsson and G. Nordh. Introduction to the maximum solution problem. In Creignou et al.
[5], pages 255–282.

12. S. Khanna, M. Sudan, and D. Williamson. A complete classification of the approximability
of maximization problems derived from Boolean constraint satisfaction. In Proceedings 29th
Symposium on Theory of Computing, pages 11–20. ACM Press, 1997.

13. S. Khuller and V. V. Vazirani. Planar graph coloring is not self-reducible, assuming P 6= NP.
Theoretical Computer Science, 88(1):183–189, 1991.

14. B. Kimelfeld and Y. Sagiv. Incrementally computing ordered answers of acyclic conjunctive
queries. In O. Etzion, T. Kuflik, and A. Motro, editors, NGITS, volume 4032 of LNCS, pages
141–152. Springer, 2006.

15. B. Kimelfeld and Y. Sagiv. Efficiently enumerating results of keyword search over data
graphs. Inf. Syst., 33(4-5):335–359, 2008.

16. A. A. Krokhin and D. Marx. On the hardness of losing weight. In L. Aceto, I. Damgård,
L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, editors, ICALP (1),
volume 5125 of LNCS, pages 662–673. Springer, 2008.

17. K. Makino and T. Uno. New algorithms for enumerating all maximal cliques. In Scandina-
vian Workshop on Algorithm Theory, pages 260–272, 2004.

18. D. Marx. Parameterized complexity of constraint satisfaction problems. Computational
Complexity, 14(2):153–183, 2005.

19. T. J. Schaefer. The complexity of satisfiability problems. In Proccedings 10th Symposium
on Theory of Computing, pages 216–226. ACM Press, 1978.

20. J. Schmidt. Enumeration: Algorithms and complexity. Preprint (2009), available at
http://www.thi.uni-hannover.de/fileadmin/forschung/arbeiten/
schmidt-da.pdf.

21. H. Schnoor and I. Schnoor. Enumerating all solutions for constraint satisfaction problems.
In W. Thomas and P. Weil, editors, STACS, volume 4393 of LNCS, pages 694–705. Springer,
2007.

http://www.thi.uni-hannover.de/fileadmin/forschung/arbeiten/schmidt-da.pdf
http://www.thi.uni-hannover.de/fileadmin/forschung/arbeiten/schmidt-da.pdf

22. H. Schnoor and I. Schnoor. Partial polymorphisms and constraint satisfaction problems. In
Creignou et al. [5], pages 229–254.

23. C. P. Schnorr. Optimal algorithms for self-reducible problems. In International Conference
on Automata, Languages and Programming, pages 322–337, 1976.

24. Y. Strozecki. Enumeration complexity and matroid decomposition. Phd thesis, 2010.
25. V. Vazirani and M. Yannakakis. Suboptimal cuts: Their enumeration, weight and number. In

W. Kuich, editor, Automata, Languages and Programming, volume 623 of Lecture Notes in
Computer Science, pages 366–377. Springer Berlin / Heidelberg, 1992.

26. L.-P. Yeh, B.-F. Wang, and H.-H. Su. Efficient algorithms for the problems of enumerating
cuts by non-decreasing weights. Algorithmica, 56(3):297–312, 2010.

	 Enumerating All Solutions of a Boolean CSP by Non-Decreasing Weight

