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Introduction

_—Iw‘nave approached the problem of shape by asstfnfnfg that the ;u;zent

mathematical tools were somehow missing essential elements o f )

problem. For despite more than two millennia of geometry, no or;nu

lation which appears natural for the biological p‘robliin thzzoinrr;iijeh;s
is i surprising perhaps when one recognizes tha

::elrsl ;So:;to;éiprij:;?;gpand his grown in close collaboration with phys-

‘s Do
ical science and its mensuraiion problems. A corollary to this p

. ical
ition is that there is some central difference between the biologica
si ‘
problem that we are trying to deal with and the physical problem that

have been dealing with. Consequently, such an approach requires a
we

restudy of visual function to assess what such a geomwetr?f sh:)‘uldtfjei:d
try to accomplish. Unfortunately, the problem o ‘ex loring L;-HC‘L;A i
nodt easy to do in isolation, since the visual.world 1‘s extrerfe };or;c; )
and hypotheses about visual shapes and their funct104nal va u: e
organism may reflect the cultural bias of the experimenter to

i th-
degree. I have chosen to enter the problem from the middle by hypo

g X xXploring
g ch , an hen explorin
es1zZing s mple shape processing me anisms, a dt

i h
together the geometry and visual function that result. One suc

i i stic
mechanism is presented in this paper. Since it leads to a dra

reformulation of a number of notions of visual shape, %t may be uszf:il_
to review briefly some of the notions implicit in our views and exp
me\;:lsi;e local attributes of the visual field (intensity, color, edge,us
angle, motion) and average global propertie‘s such a-s tota; lul::rl‘:tanding,
flux have been subject to progressive experimentation an 'unl .
the attributes of shape, global properties in which the particu arhape
tribution is precisely relevant, are still largely unko.wn. Yet, Sisual
has been shown 1o be a particularly stable organization ofhourt\;'ck "
stimulus by the degree and variety of distortion that are t e:recog-
trade of artists and cartoonists — even being used to enhanc

nition Wh then, ha it bheen so difficult 1o tease out the ™ erties
Y s i S ffi prop
. > 2
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of shape? A primary reason ig that the number and variety of shapes
are enormous, so that it ig impossible within the limits of experiment
to explore more than a small sampling of the variables. Consequently,

one assumes a theory of shape, at least implicitly, in the selection of
experimental stimuli. This reason is compounded by the degree to
which geometry and reading, both synthetic processes, imposed on us
culturally and with congiderable difficulty, have biased our view of
shape., Asa result, stimuli in even the best animal experiments have
been largely rectilinear or other unnatural geometric shapes presented
in isolation on a unifcrm field (for example, see Sutherland, 1960),
Except for a limited number of terminated experiments (for example,
Attneave and Arnoult, 19586), quantitative work with humans has been
subject to similar limitations and greater confusion due to the intimate
interaction with cultural artifacts. Consequently, the most primitive
problems of shape vision, segmentation of the field into objects, defin-
ing locations and recognition of biologically relevant amorphous shapes,
are implicitly ignored, It ig precisely toward these problems that
the process considered here is useful,
If it cannot be assumed that a shape can be isolated and normalized
a priori, or that the wide variety of perturbations that a shape may
take and still be identified, can be exhaustively enumerated, it ig
necessary to develop some way of obtaining shape properties without
becoming enmeshed in the huge combinatorics of simple congruence
views. A number of people have proposed to have the shape interact
with itgself 1o accomplish this. The Gestalt school (Koffka, 1935, for
example) used field theoretic notions. Deutsch (1 955), and Bitterman,
Krauskopf and Hochberg (1954), have proposed propagation or dif-
fusion models of interaction. Kazmierczak (1960) has used an electric
field analogy and Kirsch, Cahn, Ray and Urban (1958) have used
computer rules on a rectangular grid to allow a wide variety of self-
interactions, including propagation. However, these models failed to
arrive at a set of incigive shape attributes, The present model de-
velops these notions somewhat differently and arrives at a number of
distinet attributes which are ugeful in two ways: (a) in developing a
physchology of shape for everyday life, and (b) in focusing attention on
Some of our biases. The model can be developed in a number of ways.,
The propagation scheme used has been chosen for its tutorial ease.
Another view of it, perhaps having more physiological relevance, is

introduced later. A word of warning is important. The model does not
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intend to deal with the central perceptual problem in which the entire
history of the organism, its set, and its total stimulus input must be
considered., The output of the transformation merely gives a set of
shape atiributes on which the organigm can perform selection, using
criieria of usefulness and relevance similar to those used in other

sensory processes.

Definition Using Time

Consider a continuous isotropic plane (an idealization of an active
granular material or a rudimentary neural net) that has the following
properties at each point: (a) excitation — each point can have a value
of either 0 or 1; (b) propagation — each excited point excites an ad-
jacent point with a delay proportional to the distance; and {c) refrac-
tory or dead time — once fired, an excited point is not affected by a
second firing for some arbitrary interval of time. A visual stimulus
from which the contours or edges have been extracted, impinges on such
a plane at some fixed time and excites the plane at those points. This
excitation spreads uniformly in all directions but in such a way that
the waves generated do not flow through each other. Figure 1 shows
this procegs occurring for an input pattern of two points. The waves
start as two expanding circles and merge into a single contour when
these circles intersect. (One can visualize the contours as the front
of a grass fire.) Figure 2 shows the generated wave for a number of
other simple shapes. This wave passes by each point of the space
once and only once. For most points of the space the wave flows by in
a good fashion, each point on the wave front generating a new point on
a new wave front. This is not the case, however, for those places
where corners appear in the wave, or where waves collide with each
other in a frontal or circular manner. The wave front undergoes
cancellation at these places. These places are shown by the dotted
lines in Figures 1 and 2. The two dots of Figure 1 give riseto a line
which starts with an infinite velocity and becomes asymptotic to the
space velocity., From Figure 2, it can be seen that such points occur
only on the inside of an angle or an arc. The corner appears only
after the center of curvature is reached. In the triangle three corners
start propagating and disappear at the center of the largest inscribed
circle. Inthe case of the ellipse, these points start at the shortest
radius of curvature and disappear at the center of the largest inscribed

circle. Since both of these shapes are convex, they generate no such
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Fig. 1. Wave fronts
- L generated by a two- poi
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Fig. 2. Wave fronts and "eo
simple excitations (dotted lin
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ption is a single point. The series of dots in a circle is included
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to show a closure property of the process. By sefting a velocity
threshold (this is equivalent to a smoothress criterion of the wave
front), one gees that it is possible to have these pointe disappear snd
reappear at the center. Inthis way, a circle and a series of dots in
a circle can be equated. Clearly, under these conditions, the process
{g pot dimensicn preserving. Let us examine the process more care-
fully since these points along with the times or digtances associated
with them form an alternate description of a shupe.

Figure 3 consists of 2 eircular ares and the tangents connecting
them. A corver does not immediately appear in the wave front gsince
it is a smooth figure. A corner appears at time tl‘ propagates to the
tight and disappears :t time tz. Each stage of thege expanding waves
represents a figure parallel to the original one. The appearance of
a single corner cccurs at the minimum radius of curvsture of the
figure, The dissappearance of 2 corner represents a largest circle
that can be drawn in the figure. Al the cornar points have a velocity
agsociated with them that is determined by the angle formed « tha
sharper the angle, the [aster the velocity. Since the parallel Hgures
generated In Figure 3 all have the same angle, the velocity along thig
ceutral lne is a constant. An accelerating point would result from
curvature toward this locus; a decelerating point would result from
curveture away [rom this locus. The locus of corners will be called
the "medial axis' (MA). When the times of corner oceurrence on the
medial axis is Included, It will be referred toas the ''medial axis
function” (MAF).‘ As long as the MA is a straight line, the figure is
symmetrical. Clearly an arbitrary parameter, such ag paralle] dis-
tance, could be substituted for time.

The transformation !rom the original pattern to the medial axis
function description is unique and hence invertible. It can be seen
that the original pattern can be degcribed by the envelope of cireles of
proper radius (MATF time divided by the spacé velocity) associzted with
each point. This can be done more alegantly by the following inversion
procedure, Excite the space slong the MA st a tixne defined by the
negative of the MAF. Thus, the later pdints of the function are pre-
excited and allowed 0 expand by the proper amount before the earlier

‘This locus has also been called the "gkeleten’" end the function on the
skeleton, the "skeletal function.”
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Fig. 3. Generation of new con-
tour description (medial axis
function) centered on enclosed
space. (t is appearance of
corner, t_"is disappearance.

Fig. 4. A three-dimensional
static alternative to the two-
dimensional kinetic view of
the process. (The MATF is the
ridge formed where the union
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The locug of points and their

of cones on the input contou
Y . r
times are required,) "

intersect each cther.,)

points of the function are excited. This procedure uses a reciprocity
property like that of electromagnetic theory.

Alternate Definitions

There are a number of alternate ways of looking at the transforma-
tion, each of which sheds a somewhat different light on the process.
Consequently, it is worth describing them. Figure 4 shows a formu-
lation proposed by Kotelly (1 963) in applying an earlier version of this
process to the problem of patiern masking (metacontrast). Here,
vertical distance is substituted for time. Instead of a propagating
Wwave, one obtains a representation as a surface which is the envelope
of cones whose apexes sit on the original contour. The MAT is then
the locus of discontinuities in this surface, Still another way of looking
at the process is from the viewpoint of field theory. The wave can
be considered as a "nearest distance' field., The MAF is then the
locus of discontinuities in the derivative of that field. Such a field
departs sharply and in important ways from the conventional fields of
physics and psychology, in whvich the value at a point is an integral of
a distance function to the total input. Still one more, and I feel

particularly interesting definition of it, is gotten from an equidistance
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viewpoint, Consider the {minimum]) distance from each point of the
nlane to the stimulus shape. For most points this distance is unique

to one point on the shape. For points on the MA, however, this distance
is not unique to one point on the stimulus. Consequently, the MA is the
locus of points equidistant from the pattern and in this sense represents
a line of symmetry of the pattern. The MAF can be considered a
symmetrical central description of the space whose boundary is the
stimulus contour. It has been particularly satisfying to me to find that
the process can be expressed in so simple a geometric notion. If one
considers contours as coming from a world of objects, then these
original contours are extremities of objects or transition points be-
tween objects., For even so simple a notion as location of an object,

the contour or perimeter description is particularly poor.

Properties

Let us see what kind of categorizations are natural to such a process
by considering a number of smooth, simply connected closed curves.
The MATF of the circle and the ellipse were shown in Figure 2. Figure
5 shows the MAFs for a number of more undulating curves. The
"pinch' in the upper left figure generates a double set of MA points
which propagate in opposite directions. The pinches in the lower left
""3-bulb " do the same., The outward moving points disappear, indicating
closure; the inward points form a triple branch indicative of the three-
sided structure of the figure. That the "3-star' on the lower right
has such a triple structure is again shown by this three branch. At
this point, it can be seen heuristically that by use of the directed graph
of the MAF, it is possible to specify a generic 3-bulb, for example.
This leads to a geometry whose character lies between topology, which
is too general for shape categorization, and the '"hard" congruent
geometries such as Euclidean and projective geometry. Figure 6 shows
such a geometry at workin describing an anthropomorphic outline and a
gross distortion of it. It should be pointed out that since these figures
are not convex, they have MAF points which lie outside themselves.
The outside MAFs are generated only by the points of the contours that
are not on the convex hull of the contours.

Since the contour and the MAF description are equivalent and in-

vertible there is no information lost or gained in the transformation.
K is clear, then, that this categorization could have been done on the

contour itself. What then is the virtue of the new description? I believe
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Fig. 5. Representation of simple sha

directed graph structure of the MAF, Pe properties by

e,

Sey @
.
fecosmfenon

LTI

Fig. 8. Two anthropomorphs and their MAFs,

it 1:(? be in defining natural shape properties on the new primitive de-
tshcr'lptcrs. It could be argued that the properties I have discussed in
€ last paragraph could be gotten by such simple contour properties

&s counting the inflection points and the total curvature of the shape
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where simvole equivalent descriptors cannot be

Figare 7 show
simple

w
o
¥
ol
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found on the boundary. The upper and lower figures can be arranged
to have the same number of inflexion points and the same total curva-
ture; yet they are quite different visual figures. What is different
about the figures has to do with the distance across the enclosed space.
Carrying along such a distance function to all sorts of other points
across the contour as one moves along the contour is a formidable
task indeed. To try to deal with such properties from a boundary
description such as the intrinsic co-ordinates, for example, implies
that one cannot describe a swan's neck until one has gone completely
around the swan. This point is illustrated in a different way in Figure
8. 'The upper figure shows a rectangle and its MAF. The heavy dots
indicate poinis which represent parallel lines and so occur at the same
time (infinite velocity). The middle figure shows this rectangle dis-
torted perspectively. [ can be seen that the velocity of the central
element, a local property, becomes the cue to perspective angle if one
assumes one is looking at a rectangle. The lowest figure has been in-
cluded to emphasize that all is not roses with this theory. For ex-
treme distortions, the MAF structure stays the same but the perspec-
tive cue changes. Note that in going from the top to the bottom figure,
one passes through a degenerate state when the figure can be circum-
scribed about a cirele. It is an interesting conjecture, that with proper
constraints, the MAF structure cannot change without going through
such a degenerate state.

An interesting question of continuity is raised in Figure 9. In both
parts of this figure the outside shape is continuously transformed to
the circle, but by different paths. The intermediate shapes lead to
distinctly different MAs. In the upper figure, the MA is continuously
deformed from that of the original figure to that of the circle, the
central dot. In the lower figure, however, the limiting MA is a radius
of the circle. The velocity of the lower MAF, however, becomes

asymptotic to the space velocity. Consequently, a viable notion of

Fig. 7. The width measure of the
W shape as a primitive property-
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_ - Fig. 8. The MAF fora r
— . 8 MAF ecta
@ "fuil face" and in perspectivengle

Fig. 9. Dependenc '
fig. y of MAF
i3.11111% on path of curve perturba-
ion.

contl Y 4 Lo
ontinuit must include the velocit dlrneIlSlO]‘ This dllllenslon is also

import

- portant for the closure property introduced in the circle of dots in
1g1,'1re 2 and in the completing of masked figures discussed later
Figure 10 illustrates .

L Pr - -
S
he ocess considered as a co-or dlnate trans

The upper and middle figures depict symmetrical contours

and so ave a sitraight-1 he 1ew desc ]ptl()ll onsists of the
lbh ine MA, T scr (o]
10(58( on o e MA on o me (or ler h of he 1()1'11)31)
M pointas a functi ( gt
to the IVIA~ Accelexatlon represents cur vature to the axis deC@leZ 2~

tion i
» away from the axis. An explicit formulation can be given for

curvature in terms of velocity and acceleration of the MAF

condition that no branching occurs at a point on the MA
two contour

point. The
. generated by
s is that the center of curvature of the points mapping into

it d ie
0 not lie between the MA and those points. (The condition of two

co s .
o ntours is inserted since a third contour may enter for curves with
_ i
€ir centers of curvature on the side opposite the MA such as is
shown in the case of the 3-bulb of Figure 5

e The lowest figure shows a

o In this case the contours are described by two compo
ern )
s, the MAF curvature and the acceleration curvature — one curve
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ceeannn Fig. 10. The MAF as a co-ordi-
nate transformation.

being the sum and the other being the difference when proper compo-
nents of these curvatures have been taken. Consequently, a curve has
an infinite number of descriptions since it can be described from a
wide variety of MAs, and the location of the MAs is determined by what
elge ig in the input field. Figure 11 illustrates this. The upper left
figure is a semiellipse, its MA being its evolute continued by the per-
pendicular bisector of its end points. The upper right figure shows
the change in form of description gotten by completing the ellipse.
The lower left figure shows a descriptor appearing outside the elliptic
arc when space is enclosed there, and the altered description obtained
by putting a barrier line underneath the elliptic arc. These illustrate
clearly the barrier effect of the process. Only the closest contour can
affect the MAF. This guarantees that a description of a shape repre-~
gents the bounding contour alone. Conventional field theories alter the
relevant description by modifications due to outside contours both far
and near. As such, these and other complete interaction processes,
such as two-dimensional autocorrelation, are certain to become un-
wieldy as the complexity of the input goes up. I feel that this type of
segmentation property is essential to a realistic theory of shape.
Figure 12 shows an abstract generalized input. Except for special
cases, which complicate the description, but not the properties, the
transformation maps each point on the contour into a 2 MAF points,
and each MAF point results from 2 contour points. (To make the
statement general, it is necessary to consider ray paths rather than
contours and MAFs.) Gross properties of the MAF are equivalent to

gross properties of the pattern. Each connected space is represented

ransformation for Extracting Descriptors of Shape

Fie. 11 . . . A \
bagr‘ielzr ef%\’fe%r%-superpOSabzht‘; of partial descriptions and

Fig, 12.

A generalized input showing I imi
space seen from contour, put showing MAE" as limit of

by a separate graph piece. A connected space with no holes in it is
represented by a "tree, "

each hole in a space being represented by a
loop.

. (Topological properties of the space are thus available ag
primitive properties of the graph.) The order and connection of the

e . .

¥panding spaces is represented by the structure of the directed graph

Sin ! i i
ce the MA represents discontinuities in the wave, the discontinuities
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of the MAF (appearance, disappearance, impulse, and branch points)
can be considered as second-order discontinuities of the process.
These can be categorized by a number pair in which the first number
is the number of MATF points immediately prior to the discontinuity and
the second, the number immediately after the discontinuity. That each
of these represents a particular natural figure property is shown by
Figure 13. A 0,0 represents acircle; a 0,1 acircular arc of less than
180 degrees; a 1,0 a circular arc of greater than 180 degrees; a 2,0 a
double closure such as in an ellipse; a 0,2 a pinch in the contour; a 1,1
a case where the center of curvature lies on the MAF, etc. Simple
constraints of geometry, such as the closest distance between three
points being between two of them, impose a number of constraints on
the possibility of such pairs, which leads to forbidden pairs and pairs
possible only at t = 0. Figure 14 illustrates the equivalent matrix of
the graphical description. Graph discontinuity properties go into the
diagonal, continuous properties into the off diagonal. Each term in
the matrix is a vector, in general. Finding good vectors cannot in
general be done theoretically but must be decided by new experiments

on visual shape. This may be a fruitful area of exploration,

PRE-DISCONTINUITY BRANCHES

0 ! 2 El

) f\ SR
;Tm\’/ /

\ oS

POST DISCONTINUITY BRANCHES

3

Fig. 13. Shape equivalents of discontinuities on MAF.

Compound Shapes

Thus far we have been considering shapes merely as spaces ona
plane. Figure 15 contains an illustrative example for showing an ex-

tension of this process for shapes which are masked by others. In the

B . .
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Fig. 14, MAF description allows analysis by matrix of graph,

Fig. 15. Extension of MAF
to masked shapes.

left-hand figure, an ellipse and partially masked square are shown
the masking considerably complicating the MAF of the square. If ;:he
MAF of the ellipse is recognized and its contour removed after itg
recognition, as shown in the right figure, the representation is con-
siderably simplified, (This can be done from the MAF function by
presenting it in negative time so that the ellipse is formed at t = 0. It
further propagation is stopped, the input can be made refractory at the
locations of the ellipse.)

The remaining square contour can easily be
recognized,

In this way, one can attempt to cancel sequentially the

entire stimulus contour and equate this cancellation with an acceptable

interpretation of it. Clearly, alternate sequences are possible. A

number of properties of such a sequential process are particularly

interesting. (a) Masking cues are primary outputs of the process

(b) There is an inherent figure-

. ground effect that comes from matching
I

AF descriptions rather than the contour itself. (c) There is an
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asymmetry of the process with respect to additive and subtractive
noise. Additive noise, such as a masking object, must be explicitly
removed. Subtractive noise, such as a missing contour, is implicitly
filled in. Figure 16 shows a stylized animal behind a tree. If the iree
is recognized by any cues, such as the green of its leaves and brown
of its trunk, its contour can be removed. This facilitates making a
single object of the animal. Such an object completion property may
be an extremely important one to vigion; a cat must see through grass,

a monkey through leaves.

Fig. 16. Making a contiguous
world of masked objects.

0!

Psychology and Physiology

Although the transformation has been developed to deal with the
visual problems of everyday life, it is interesting td see how it checks
with the anomalies of vision, the illusions. In Figure 17, I have shown
a number of standard illusions and the MAFs associated with these.

In the right-hand figures, I have accented the faster velocity MAF's.

If one assumes that the visual process tries to line up MAFs, (these
represent the spaces or objects) rather than the contours themselves,
the illusions have a natural meaning. The figures on the left are self-
explanatory, I feel. The MAF opens a new range of processes for ex-
plaining the standard illusions. I feel that it goes much deeper than
that, however. The process allows us to take a much broader view of
shape vision. We have been looking at vision as a recognition process,
rather than as a segmentation process. The closure properties sug-
gest that the appearance of a dotted figure as a continuous contoured
one (Figure 2) is an illusion. The process suggests that the whole of
our sensitivity to circles, parallels, and symmetric figures may be an
iliusion. If one asks what life and death problem such sensitivities
have emerged to solve, one finds no ready answer. It is suggested
here that these are by-products of an inverting process of the visual
co-ordinates useful for coping with the problems of localization, seg-

mentation, and organization of a world of visual objects.

- - . .
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Fig. 17. The MAF as a source of new expl: i fi
optical illusions. e explanations for

A word must be said about how such a process relates to the results
of Hubel and Wiesel (1862, 1965) on cortical cell responses. This has
been abstracted and stylized in Figure 18. The upper-left figure shows
the receptive fields of the "simple cells" that would be fired by a
particular contour. The upper right shows the receptive fields of
their "complex cells." Whereas Hubel and Wiesel have looked at these
responses as detectors of lines at particular angles, [ am suggesting
that they can be looked at as generators of parallel shapes. The lower
left shows the kinds of corners that could be formed from the inter-
action of the output of such cells. The lower right shows a selection
of proper "symmetrical corners' obtained by having a cell that re-
sponds to a corner at a particular location, but not in an adjacent
location. Such a sequence can perform the transformation without the
barrier property. This requires a further condition. Unfortunately

no one has looked for such a property, as far as I know.

General Comments and Conclusion

A word should also be said about the mathematical implication of the

transformation. (It should be clear that I speak for mathematicians
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Fig. 18. MAF extraction by idealized properties of visual
cortical cell receptive fields.

here without their permission.) The general Cartesian view of geom-
etry metricizes a space (builds a co-ordinate system) and then de-
scribes the curve in that metric in some functional form. Unfortu-
nately, the transformation from geometry to analysis is highly
discontinuous and gives preference to shapes which have easy functicnal
rather than geometric meaning. The approach introduced here ‘sug—
gests that the co-ordinate system be built on the curve and space be
explored from the curve. The MA is then the boundary of the space
(in some Riemann sense) that must exist if one is fo have a good single
valued co-ordinate system. The process indicates that the curve is
then describable from the boundary as the envelope of circles on that
boundary. I have talked hitherto about a Fuclidean orthogonal process,
but there is no need to impose such a limitation. This transformation
can be done with non-Euclidean processes, as the spherical visual
mapping may well demand, or it can be done in higher dimensions, as
a three- or four-dimensional wecrld may demand.

Figure 19 shows my first physical embodiment of the process. It
uses a movie projector and camera with high contrast film. These are
symmetrically driven apart from the lens in such a way as to keep a
one to one magnification, but to increase the circle of confusion (de-
focussing). The lower right inset shows how this dilates the contour.
Corner detection is done separately by a subsequent process. Iam

presently building a closed loop electronic system to do both the wave
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Fig. 19. An early opticomechanical device for ch
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generation and corner detection.

In conclusion, I would like to emphasize that our view of vision has
been constrained for too long by problems of physical geometry. Suc-
cessful methods there have locked at shape as a superposable process
where the total collection of elements is equal to the sum of the parts.
I have tried fo depart from this by looking for processes in which the
interaction is precisely the item of interest, without getting into a

conceptual space so rich in possibilities that all things are encompas-
sable in it.
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