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ABSTRACT

A unified distance-driven algorithm is presented to extract the skeleton of a digital pattern
from its distance map. The algorithim equally runs whichever distance is selected to compute
the distance map, among four commonly used path-based distance functions. The resulting
skeletons are compared on a large set of 512x 512 input pictures, in terms of reversibility
and computation time.

1. Introduction

Distance maps, computed according to different distance functions, can be adopted
to guide pattern skeletonization. On the discrete plane, path-based distances are
commonly used, where the distance between two pixels is defined as the length of a
shortest path linking them. The degree of approximation to the Euclidean distance
depends on the number of different unit moves permitted along the path, and on the
weights used to measure them. City-block distance (one unit move, unitary weight) and
chessboard distance (two unit moves, both with unitary weight)) [1] are a natural choice
on the square grid, but roughly approximate the Euclidean distance. Better
approximations are obtained by using weighted distance functions allowing two (or three)
differently weighted unit moves [2-5].

Skeletonization algorithms driven by the city-block distance d;, the chessboard
distance dy |, the two-weight distance d3 4 and the three-weight distance ds 7 1; can be
respectively found in [6-9].

In this paper we provide a unique skeletonization algorithm equally running,
whichever among the previous four distance functions is used to build the distance map
DM of the pattern to be skeletonized. After computing the DM, the skeletal pixels (i.e. the
centres of the maximal discs, the saddle points and the linking pixels) are identified and



marked on it, during one sequential raster scan inspection of the DM. An unmarking
process is then accomplished on the DM, so as to reduce 1o unit width the set of the
skeletal pixels; finally, an unmarking-and-shifting process is done to prune the skeleton
and to improve its aesthetics, during which the marker is removed from a skeletal pixel or
is shifted to some of its non marked neighbors. Unmarking and unmarking-and-shifting
can be accomplished by directly accessing on the DM the skeletal pixels, whose
coordinates can be recorded at a limited memory expense. The performance of the
algorithm when using each of the four distances is evaluated by comparing the results
obtained on a large set of 512x512 input pictures, in terms of reversibility and

computation tume.
2. The distance driven skeletonization algorithm

Let F={1} and B={0} be the two sets constituting a binary picture digitized on the
square grid. We select the 8-metric for F and the 4-metric for B. We suppose F
constituted by a single 8-connected component, while no assumption 1s done on the
number of 4-connected components of B.

The distance map DM of F with respect to B is a replica of F, where the pixels are
labeled with their distance from B. Each pixel of DM can be interpreted as the centre of a
disc fitting F, the label of the pixel being related to the radius length. A pixel is centre of a
maximal disc if the associated disc is maximal, i.e. is not included by any other single
disc of F.

The skeleton S of F is a subset of F characterized by the following properties: 1) S
has the same number of 8-connected components as F, and each component of S has the
same number of 4-connected holes as the corresponding component of F. 2) S is centred
within F. 3) S is the unit-wide union of simple 8-arcs and 8-curves. 4) The pixels of S
are labeled with their distance from B. 5) S includes almost all the centres of the maximal
discs of F (complete inclusion is not compatible with fulfilment of property 3).
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Figure 1. The set N(p).
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Generally, the neighborhood N(p) of a pixel p includes the neighbors n{p) of p,
i.e. the pixels that can be reached with a unit move from p. Accordingly, N(p) should
include from a minimum of 4 pixels, when dy is used, up to 16 pixels, when ds 711 is




used. In this paper, N(p) includes all the 16 pixels surrounding p, as shown in Figure 1.

The ni(p) are also called horizontal/vertical neighbors, for i={1, 3, 5, 7}; diagonal
neighbors, for i={2, 4, 6, 8}; and knight neighbors, for i={9, 10,..., 16}.The neighbors
of ni(p) are indicated as ng(n;) (k=1, 2,...,16). In the following, p will be used to
indicate both the pixel and its associated label.

2.1 Distance Map Computation
To compute the DM, the sequential local operations ﬁ(p) and fz(p) are respectively
applied to every p in F, during a forward and a backward raster inspection of the picture.

J1(p)= min{min [nj(p)+w1], min [ni(p)+w3], min [n;(p)+ws]}
i={1.3} i=(2.4} i={9.10.11,12)

f2(p)= min{p, min [ni(p)+w], min [ni(p)+w;], min [nj(p)+ws]}
i=(5.7) i=(6,8) i=(13,14,15.16)

The values to be used for wy, wa, and wa, o0 as to cause correct propagation from
p to the pixels nj(p) which are neighbors of p according to the selected distance function,
are given in Table 1, where oo stands for a sufficiently high value.

Table 1 Table 4 (ds.7.1;-DM case)
W Wy W3 label hiv d k
4,.DM 1 - = ;} 171 10 14
dii-DM |1 1 o 10 14 15 20
d34-DM |3 4 oo 14 18 20
ds,1i-DM |5 |7 |11 16 22
5.7.11 18 75 28
Table 2 g‘; gg 30
label h/v d k 33 53 30 33
p p+\V1 p+W2 p+W3 27 3,3
Table 3 (d3 4-DM case) 29 33
label | hiv d K 31 37
3 ) C 32 | 38 ]
6 g 9 35 39 41 45
3% 44
Table 5 39 45
40 14
VI 1V2 V3 12 48
d;-DM 2 3 -1 46 32
d;-DM |2 3 -1 49 55
53 59
d3 4-D) 4 ]
3.4-DM 3 1 0 e
ds7,1-DM |5 7 11




2.2 Centre of maximal disc detection

With reference to the four distance functions adopted in this paper, centres of
maximal discs can be detected by using local criteria involving suitable label comparisons
[9,10], or by resorting to the use of look-up tables [11]. We prefer the second
possibility, which makes the algorithm more homogeneous. Given a distance function,
the corresponding look-up table has a number of entries, representing the labels occurring
in the selected DM. Each entry p is associated a record containing as many fields as many
are the different unit moves, which orderly identify the minimal label that the neighbors
of p should have to prevent p to be centre of a maximal disc. A pixel p of the DM is
marked as a centre of a maximal disc if its neighbors are labeled less than the values
stored in the corresponding fields of the record associated to p.

The look-up table for the selected DM is built in during the distance map
computation. Generally, the fields of a record are tilled in by following the rule shown in
Table 2, where h/v, d and k respectively refer to the horizontal/vertical, diagonal and
knight neighbors of p. A few exceptions occur in the dz 4-DM and ds 7 11-DM case, and
the records tor which the tilling rule of Table 2 does not apply have to be memorized .
They are given in Table 3 and Table 4, respectively. Blank cells in these Tables
correspond to fields where the filling rule correctly applies.

2.3 Saddle point detection

Saddle points constitute a ridge between two subsets of the DM, including pixels
with higher label. Most of the saddle points are centres of maximal discs; the remaining
ones are the pixels p for which at least one of the following conditions is satisfied:
(1) The set {ni(p), n2(p), ..., ng(p)} includes two (4-connected) components of pixels
having label smaller than p;
(2) The set {n(p), na(p), ..., ng(p)} includes two (&-connected) components of pixels
having label larger than p;
(3) The pixels of one of the triples (n;(p), na(p), n3(p)), (ma(p), na(p), ns(p)), (n5(p),
ng(p), n7(p)), (n7(p), ng(p), n1(p)) are all labeled as p;

To count the 4-connected and the §-connected components in Conditions (1) and
(2), the crossing number [12] and connectivity number [13] are respectively used.
Condition (3) is checked for all the pixels of the DM when w=1, only for the pixels
labeled wyq, otherwise.

2.4 Linking pixel detection

Generally, the set including the centres of the maximal discs and the saddle points
is not connected. The linking pixels, necessary to gain skeleton connectedness, are
identitied by growing paths through the ascending gradient in the DM. Path growing is
attempted in correspondence of every marked pixel p of the DM (centre of maximal disc




or saddle point). N(p) includes at most two §-connected components of pixels labeled
more than p, from which an ascending path can be started. For each component, the
neighbor ni(p) in correspondence of which the gradient assumes the maximal value is
marked as the first linking pixel in the path. Then, the ng(n;) are inspected to recursively
identify the next linking pixel. (Note that only one component of pixels labeled more than
ni(p) is likely to exist.) Path growing proceeds, through the ascending gradient, as far as
pixels providing a positive gradient are found. For any nj(p) labeled more than p, the
gradient is: gradj = [nj(p) - p] /vk, where the vk assume the values indicated in Table 5.

Negative values are assigned to the vy corresponding to the unit moves which are
not permitted in the selected DM. In the d)-DM and d; 1-DM cases, the values of the
positive vi are different from the values of the wy used to compute the DM; this is done
both to force the creation of §-connected paths, and to avoid path thickening and fan
creation. In the d3 4-DM, at most a pair of neighbors ni(p) (for i=1, 2,..., 8), 4-adjacent
to each other, equally maximize the gradient. When this is the case, only the nj(p) with i
odd 1s accepted in the path, to avoid path thickening. In the ds 7 1;-DM case, three pixels
could equally maximize the gradient: a horizontal/vertical neighbor, its 4-adjacent
diagonal neighbor, and the intermediate knight neighbor (e.g., ny, ny and ng). To have an
8-connected path and to avoid path thickening, we accept as linking pixels both the knight
neighbor and the horizontal/vertical neighbor. If only the knight neighbor maximizes the
gradient, the horizontal/vertical neighbor and diagonal neighbor on its sides are checked,
and the pixel, out of these two, providing the largest gradient is also accepted in the path.
Whenever the knight neighbor is accepted as a linking pixel, path growing continues only
from it.

2.5 Spurious hole filling

Spurious loops are created in the set of the skeletal pixels when two paths, aligned
along parallel directions, are so close to each other that pixels in a path are diagonal
neighbors of pixels in the other path. In the d;-DM, d; ;-DM and d3 4-DM, the only
possibility to create spurious loops occurs in presence of pairs of diagonally oriented
paths. The enclosed spurious holes are one-pixel in size. In the ds 7 ;-DM, directions
constituted by runs of two horizontal/vertical pixels are created during path growing,
when the knight neighbor is accepted as a linking pixel. If two paths of this type are very
close to each other, one more possibility exists to create spurious loops. The enclosed
spurious holes are two-pixel in size.

Spurious holes have to be identified and filled, i.e., their pixels have to be marked
as skeletal pixels. Hole filling does not create excessive thickening of the set of the
skeletal pixels, since only a few sparse spurious holes generally exist. An unmarked pixel
p belongs to a spurious hole and is marked as skeletal pixel, if any of the following
conditions is satisfied during a forward raster scan inspection of the DM:



(1) all the horizontal/vertical ni(p) are marked as skeletal pixels;
(2) ns(p) is not marked, while ny(p), n3(p), na(p), ns(p), n7(p) and ns(ns) are marked;
(3) n7(p) is not marked, while n(p), na(p), ns(p), ns(p), ng(p) and ny(ny) are marked;

2.6 Reduction to Unit Width

Reduction to unit width of the set of the skeletal pixels can be obtained by applying
topology preserving removal operations, designed in such a way to avoid excessive
shortening of the skeleton branches. Reduction to unit width is here referred to as an
"unmarking" process since we remove from any deletable pixel the marker, previously
ascribed to distinguish it from the non-skeletal pixels of the DM.

To favor skeleton centrality within the figure, unmarking is accomplished within
two inspections of the set of the skeletal pixels. The pixels which are 4-internal in the set
of the skeletal pixels are preliminarily identified. They are prevented from unmarking
during the first inspection. All the marked pixels undergo the unmarking process, during
the second inspection.

A marked pixel p 1s unmarked during the first (the second) inspection of the set of
the skeletal pixels, if it satisties the following Condition (1) (Conditions (1) and (2)):

(D) At least a triple of neighbors n(p), ni+2(p), ni+s(p) exists (i=1, 3, 5, 7, addition
modulo 8), such that ni(p) and nj42(p) are marked, while nj;s(p) is not marked;
(2) At least one horizontal/vertical neighbor of p is not marked;

Condition (1) prevents both altering the connectedness, and shortening skeleton

branches, while Condition (2) prevents creation of holes in the set of the skeletal pixels.

2.7 Pruning

Pruning is accomplished to simplify the skeleton structure by deleting peripheral
branches (i.e. branches delimited by end points) that do not correspond to figure
protrusions, significant in the problem domain.

To keep under control the loss of information caused by branch deletion, a criterion
based on the relevance of the protrusion associated with the skeleton branch is used. A
branch can be safely pruned if a negligible difference exists between the two sets
recovered by applying the reverse distance transtormation to the skeleton and to the
pruned skeleton, respectively. Such a difference can be evaluated in terms of labels and
relative distance of the extremes of the (portion of) skeleton branch to be pruned. The
difference can then be compared with a suitable threshold to decide about pruning [8].
We generalize the expression used in {8], in such a way that it can be used whichever of
the four distance functions is considered. Moreover, we do not limit pruning only to the
branches which are peripheral in the initial skeleton.

Let H and D be the horizontal/vertical and diagonal unit moves, along a minimal
length 8-connected path linking two pixels p and g. It is H=(2d, ;-d|) and D=(d;-d; 1).




By taking into account that when ds 7,11 is used any pair of (horizontal/vertical, diagonal)
moves is substituted by a knight move, it is immediate to verify that the distance between
p and g can be computed as follows:

d1:H+2D dx’1:H+D
d34=3H+4D ds711=5H+ 7D + (11-7-5) X min(H,D)

A unique expression can be used to compute any of the four above distances:

d=wH + w,D +Flagxmin(H,D)
where Flag= 0 in the d;-DM, d,;-DM, and d3 4-DM cases, while Flag= -1 in the ds 7 11-
DM case.

Let K be the maximum number of peripheral rows and/or columns one accepts to
lose in recovery due to branch deletion. Let p be the end point of a peripheral skeleton
branch, and q and any other pixel on that skeleton branch. Pruning from p to g, q
excluded, can be safely accomplished in the limits of the adopted tolerance if:

p-q+ d< Kxw,

The most internal pixel up to which pruning can be accomplished is identified by
checking the above condition on every pixel q, found while tracing the peripheral
skeleton branch originating from p.

When a branch point is transformed into an end point, due to deletion of all the
peripheral branches sharing it, a new peripheral branch is originated. This branch can be
pruned without causing a summation effect in the loss of figure recovery. To this
purpose, the information relative to the starting point(s) of the branch(es) is propagated
through the branch(es) while performing pruning. In this way, the relevance of the entire
protrusion mapped in the union of the current peripheral skeleton branch with the
neighboring, already pruned, skeleton branches can be evaluated.

2.8 Beautifying

To have a skeleton whose shape is more appealing, the zigzags due to noise on the
contour of F and/or to the process done to obtain a unit wide skeleton should be
straightened. The beautifying process is accomplished by shifting the marker from a pixel
p having just two marked neighbors nj(p) and nj4,(p) (i=2, 4, 6, 8; addition modulo 8) to
its neighbor ni41(p). Shifting the marker from p to nj;1(p) may cause either of nj(p) and
nj4+2(p) to become deletable. These neighbors of p are checked and possibly removed.

3. Discussion and Conclusion

In this paper, we have introduced a unified scheme to extract the labeled skeleton
from the distance map, computed according to four commonly used path-based distance




functions. The algorithm can be extended to treat DM computed by using other path-
based distance functions, where the weights are different from the ones we have selected.
Using different distance functions provides differently structured distance maps and,
accordingly, ditferent skeletons. Thus, one can select the distance function more suited to
the specific needs. Moreover, the comparison among the different skeletons associated to
the same figure by difterent distance functions is facilitated.

The skeletonization algorithm can be summarized as follows:

Step 1. Compute the distance map DM, and build the look-up table. (Two raster scans)

Step 2. Mark on the DM the skeletal pixels, i.e., the centres of the maximal discs, the
saddle points and the linking pixels. (One raster scan interleaved with a path
growing process)

Step 3. Mark on the DM the pixels inside the spurious loops of the set of the skeletal
pixels and record the coordinates ot all the marked pixels. (One raster scan)

Step 4. Unmark on the DM suitable skeletal pixels, so as to obtain the unit wide skeleton
(The skeletal pixels are directly accessed)

Step 5. Unmark on the DM suitable skeletal pixels, so as to perform pruning and
beautifying (The skeleton is traced starting from the end points)

At the end of the process, the skeleton is the set of pixels marked on the DM.

The computational cost of the algorithm is modest since only four raster scan
inspections are necessary whichever is the thickness of the pattern to be skeletonized.
However, the computation time depends on the ratio between the pixels of F and B, and
on the adopted distance function.

The algorithm has been checked on a large number of patterns in 512%512 binary
pictures. A set of 20 differently structured sample patterns is shown in Figure 2. From
top left to bottom right the set includes: elongated rubber joints for car windows, rather
free from digitization noise (p01-p07); complex clusters of differently sized blobs
mutually overlapping (p08-p11); artificially drawn patterns characterized by remarkable
thickness and significant contour curvature variations (pl12-pl5); and thin, but
intertwined in a rather complex way, wood fibres in paper pulp (p16-p20).

Some results, pertaining the previous sample patterns are shown in Table 6. The
last row refers to the mean value computed on the sample set. The second column (F/B)
gives the percentage ratio between the number of pixels in the foreground F and in the
background B. The successive 16 columns are grouped in quadruplets, respectively
pertaining the d;-DM, dy,;-DM, dsz 4-DM, and ds 7,;;-DM cases. For each quadruplet,
the first column (F/S) gives the ratio between the pixels of the foreground to the pixels of
the skeleton and indicates the compression ratio measured in number of pixels; the second
column (t) shows the computation time measured in seconds on a SUN Sparcstation 2;
the third column (bp) and the fourth column (ap) indicate the percentage ratio to the pixels
of F of the pixels which are not recovered starting from the skeleton before and after the
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pruning step, respectively. The values in (bp) and (ap) give a measure of skeleton
reversibility.

By looking at the mean values, we note that the computation time is a bit larger in
the ds,7,11-DM case, as expected due to the need of performing operations on a larger
number of arguments. The larger time required in the d; ;-DM case with respect to the
remaining two cases, is mostly due to the generally larger thickness of the set of the
skeletal pixels. (This can be appreciated by noting that the ratio bp is higher in the d ;-
DM case, where a remarkable number of centres of maximal discs have to be canceled to
reduce to unit width the set of the skeletal pixels.)
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Figure 2. The set of sample patterns in 5312x 512 binary pictures.

A reasonable compromise between computation time and skeleton reversibility is
obtained in the d3 4-DM case. This skeleton also shows a good stability under pattern
rotation, translation or scaling. Thus, the dj 4-skeleton can be generally employed for
applications. The ds 7 ;;-skeleton has to be preferred when a considerable accuracy 18
required, since its geometrical features very closely reflect pattern features; the slightly




Figure 3. Skeletons driven by dy, dy,1, d3 4, and ds 7,11 (from top left to bottom right).



higher cost necessary for its computation is repaid by the higher stability degree under
isometric transformations of the pattern.
In Figure 3, the performance of the skeletonization algorithm driven by the four

different distance functions is shown on the test pattern p07. The four frames refer, from
top left to bottom right, respectively to the dy, dy 1, d3 4 and ds 7,11 case. The threshold
adopted during the pruning step is 2xw. The skeleton (black pixels) is shown
superimposed on the input pattern (grey pixels). To point out that the representative
power of the skeleton is not remarkably biased by the unmarking process, the pixels of
the input pattern which are not recovered starting from the pruned skeleton are shown in
dark grey.
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