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Abstract. A multiresolution shape description algorithm is presented, which
is adequate to describe patterns perceived as the superposition of elongated
regions. The weighted skeleton of the pattern is partitioned into a number of
subsets, each corresponding to a pattern subset having simple shape, by means
of a polygonal approximation. Different levels of description are possible,
depending on the tolerance adopted during the approximation process. The
computational cost of the algorithm is rather modest. A compact
representation of the pattern is obtained, that takes simultaneously into
account the representations of the pattern at the different levels.

1 Introduction

Shape description is an important step in a pattern recognition process. A multiresolution
shape description scheme can be followed to facilitate recognition: a preliminary match can
be attempted by comparing a rough description of the pattern at hand with the rough
description of the prototypes; this allows one to reduce the number of prototypes in
correspondence of which more fine details comparisons are necessary. Multiresolution can
be obtained in two distinct ways: by varying the scale used by the adopted tool while the
picture has fixed size, or by varying the resolution of the picture while the scale of the tool
is fixed. In this paper we follow the first approach.

The structural approach is convenient to describe a pattern having complex shape: the
pattern is decomposed into a number of simple regions that, by hypothesis, can be easily
described by means of a suitable set of features; then, the description of the pattern is given
in terms of the description of the obtained regions and of their spatial relationships. The
same result can be obtained by decomposing, in place of the pattern, a suitable
representation of it.

The decomposition should divide the representation system in such a way that each
component could be interpreted as the representation of one of the simple regions into
which the pattern is expected to be decomposed. Thus, the description of each region can
be obtained by exploiting the information carried on by the corresponding component of
the representation system. The choice of the representation system depends, besides the
approach selected for shape description, also on the available computer architecture as well
as on the shape structure of the pattern to be analysed.

A contour-based or a region-based system can be used to represent a single-valued
pattern. A well-known region-based representation system, particularly suited to shape
description [1-3], is the labelled skeleton. This is a thin subset of the pattern and its




structure reflects the topological and geometrical features of the pattern. Each pixel of the
skeleton is labelled with its distance from the complement of the pattern. Accordingly, it
can be interpreted as the centre of a disc (whose shape depends on the adopted distance
function) which fits the shape, the radius of the disc being proportional to the label of the
pixel.

A correspondence can be established between any subset of the skeleton and the region
of the pattern, which is the union of the discs associated with the pixels constituting the
skeleton subset. This region can be recovered at a small computational cost by applying the
reverse distance transformation to the skeleton subset. In fact, when conventional
sequential computers are used, this process only requires two raster scan inspections of the
array [4]. However, when regions associated to distinct skeleton subsets are of interest, the
various skeleton subsets have to be individually subjected to the reverse distance
transformation to avoid merging of the corresponding regions. The repeated application of
the reverse distance transformation could excessively increase the overall computational
cost, so preventing its use in the framework of a pattern decomposition process. Thus, it is
desirable a skeleton analysis method which allows one to draw the regions associated with
the skeleton subsets without resorting to the previous recovery process.

In this paper the skeleton of a pattern, perceived as constituted by the superposition of
elongated regions, is interpreted as a curve in the 3D space, where the three co-ordinates of
any pixel are the planar co-ordinates and the label. In the 3D space, the skeleton is
partitioned by means of a polygonal approximation, in such a way that each partitio
component corresponds to a region with simple shape.

The obtained skeleton components are used to describe the corresponding regions, These
can be drawn starting from the planar co-ordinates and labels of the extremes of the
corresponding skeleton components, without resorting to the reverse distance
transformation. Each region is constituted by the union of a central portion, which is
trapezium-shaped, with two discs, whose diameters are equal to the bases of the trapezium.
An example is shown in Fig.1. The centres of the discs are aligned along the skeleton
component, which in turn is a symmetry axis for the trapezium. While the shape of the
central portion does not depend on the distance function used to label the skeletal pixels,
the discs are more circular if a quasi Euclidean distance is adopted.

Fig. 1. A simple region associated with a skeleton component.

Reasonable approximations of the Euclidean distance are provided by the weighted
distance functions [5, 6], where a suitable number of integer weights are used to measure
the distance in between neighbouring pixels, depending on their relative positions. Here,
we refer to a weighted distance involving two weights, respectively equal to 3 for the
horizontal/vertical neighbours and 4 for the diagonal neighbours, and use the (3, 4)-
weighted skeleton [3, 7] to represent the pattern at hand. Our description method has been
inspired by a previous work [8], relative to the case of ribbon-like patterns, represented by
the city-block distance labelled skeleton.

Pattern description is provided at different resolution levels, corresponding to different
values for the threshold used during the polygonal approximation. The highest resolution




level provides a fine details description and corresponds to the smallest threshold value.
Each remaining level can be directly extracted from the highest level, without resorting to
repeated application of the polygonal approximation. Thus, the computational cost to
obtain the multiresolution description is practically the same as that necessary 1o get only
the highest resolution description. The representations of the pattern at the various
resolution levels are properly linked to each other, to provide a unigue compact pattern
representation.

2 The Weighted Skeleton

Let B and W be the two sets of black and white pixels constituting a binary picture
digitised on the square grid. B and W are also referred to as the pattern and the
complement. The 8-connectedness and the 4-connectedness are assumed for B and W,
respectively. The 8-connectedness holds also for skeleton S, since this is a subset of B. We
assume that a cleaning step aimed at removing the salt-and-pepper noise is accomplished
on the picture, before computing the skeleton. In fact, loops originated in correspondence
with non meaningful holes of B would irreparably bias the skeleton structure, and skeleton
branches originating from non meaningful protrusions of B would require to include in the
skeletonization algorithm also a pruning step. Cleaning will also prevent the existence of
pathological patterns, as the lace-edged ones, that due to the complex structure of their
contour could not be skeletonized.

The skeleton is a stick-like representation of the pattern which accounts for different
shape properties, such as symmetry, elongation, width, and contour curvature. Research on
skeletonization has been influenced, at least as concerns distance driven methods [7, 9-12],
by the work of H. Blum involving the primitive notion of a symmetric point and a growth
[13]. In a continuous pattern, a point p is called symmetric if at least two points of the
boundary exist, such that their distance from p is equal to the distance of p from the
boundary. For every symmetric point, the associated maximal disc is the largest disc,
obtained as growth of the symmetric point, which is contained in the pattern. The set of
symmetric points, each labelled with the radius of the associated maximal disc, constitutes
the skeleton of the pattern. In turn, the pattern can be exactly reconstructed as the union of
the maximal discs, the envelope of the discs being the pattern boundary.

The (3, 4)-weighted skeleton is the subset S of B having the following properties: 1) §
has the same number of 8-connected components as B, and each component of S has the
same number of 4-connected holes as the corresponding component of B. 2) S is centred
within B. 3) S is union of simple 8-arcs and 8-curves. 4) The pixels of S are labelled with
their (3, 4)-weighted distances from W. 5) S includes all the centres of the maximal discs of
B, except for those removed to fulfil property 3).

We classify the pixels of S as end points, normal points and branch points, as follows,
An end point is a pixel having a unique (4-connected) component of neighbours not in the
skeleton. The end points identify the starting points of skeleton arcs and are placed in
correspondence with the tips of pattern protrusions. A branch point is any pixel of S which
is not an end point and has more than two neighbours in 8. The branch points identify
crossings of skeleton arcs, and are located in correspondence of superposition of regions of
B. A normal point is a pixel of the skeleton which is neither an end point, nor a branch
point. See Fig. 2.

A skeleton branch is an arc of the skeleton whose pixels are all normal points except for
the two extremes. When all the pixels of the skeleton are normal points, the skeleton is a
simple curve. In this event, to interpret the skeleton as constituted by branches, any pixel of




the curve (e. g., the first skeletal pixel met by scanning the array in forward fashion) is
taken to play the role of both the extremes of a looping skeleton branch.

We briefly outline the skeletonization algorithm [7] used in this paper to compute the (3,
4)-weighted skeleton. The process includes three steps: i) computation of the (3, 4)-
weighted distance map DT, ii) identification of the set ML of the skeletal pixels, and iii)
reduction of the set ML to the unit-wide skeleton S. The DT is a multi-valued replica of B,
where every pixel is labelled with its (3, 4)-weighted distance from W. On the DT, the
identification of the pixels of the ML (centres of maximal discs, saddle pixels and linking
pixels) can be accomplished at a limited computational cost. In particular, one inspection of
the DT is sufficient to identify all the centres of maximal discs and the saddle pixels. The
identification of the centres of the maximal discs is a straightforward task since the label of
any pixel is related to the radius of the associated disc. (The detailed method to correctly
detect the centres of the maximal discs according to the (3, 4)-weighted distance can be
found in [14]). The saddle pixels are identified by counting, in the neighbourhood of any
pixel p, the number of components of neighbours with label respectively smaller and higher
than p. The linking pixels necessary to guarantee the connectedness of the ML are found by
growing paths along the direction of the steepest gradient in the DT, starting from any
already found skeletal pixel. In the third step of the process, the set ML is reduced to unit
width, by employing topology-and-end-point preserving removal operations.

Normal point

Branch point

BZ End point

Fig. 2. Normal points, branch points and end points in the skeleton

Unless explicitly stated, in the following the distance label of any skeletal pixel is
replaced by the normalised label. This can be obtained by dividing the label of the pixel by
the weight used for the horizontal/vertical neighbours, in the adopted distance map. For the
(3, 4)-weighted skeleton, the normalised label of a pixel with distance label p is the
minimal integer k, such thatk 2 p/3.

Using the (3, 4)-weighted distance is useful to obtain a skeleton stable under pattern
rotation, which is an indispensable presupposition to produce the same decomposition
whichever is pattern orientation. In fact, the discs provided by discrete metrics are polygons
whose sides have fixed orientation. Thus the number of discs necessary to recover a pattern
subset depends on geometry and orientation of the contour of the pattern subset. Skeleton
stability increases with the number of sides characterising the disc. In this respect, discs
built according to the (3, 4)-weighted distance have to be preferred to discs built according
to the city-block or the chessboard distance. Stability regards, besides position and number,
also the value of the distance labels associated with the skeletal pixels.

3 The Skeleton Partition

Aim of the partition process is to divide the skeleton into subsets such that each of them
can be interpreted as the spine of a simple region. A region is simple if it satisfies the
following two properties: 1) its local thickness is constant or changes monotonically and
linearly along the spine; 2) the contour arcs of the subset which are common also to the



contour of the elongated region are straight line segments. The spine of a simple region is a
straight line segment along which labels are constant or monotonically and linearly change.

To identify the skeleton subsets representing simple regions, we perform a polygonal
approximation on the skeleton. Indeed, if the skeleton is approximated in the (x, y) plane,
only the property concerning with the rectilinearity of the contour of the represented
regions is reflected by the obtained skeleton decomposition. To represent regions enjoying
the property on thickness, as well as that on contour geometry, also the labels associated to
the pixels of S have to be taken into account while performing the polygonal
approximation.

Preliminarily, the skeleton is divided into its constituting branches. This is equivalent to
perform a decomposition of the pattern into the elongated regions, that could be obtained
by applying to the skeleton branches the reverse distance transformation.

Each skeleton branch is the spine of the corresponding elongated region. Then, on each
branch a further partition is done to simulate the decomposition of the corresponding
elongated region into subsets having simple shape. To this purpose, each branch is
examined and interpreted as a curve in the 3D space. The planar co-ordinates and the
normalised distance label of any skeletal pixel are the three co-ordinates (x, y, z) in the 3D
skeleton representation. The branch is traced and a polygonal approximation is performed
to partition the branch into a number of subsets which, in the limits of the adopted
tolerance, are rectilinear 3D segments.
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Fig. 3. Skeleton partition. The vertices, denoted by "e", are numbered in the
order in which they are found during the polygenal approximation.

The approximation is accomplished by using a split type algorithm [15] in order the
obtained set of vertices be not remarkably influenced by the sequenciality of the tracing
process. The extremes of the current branch (say v; and v¢) are accepted as vertices. Then,
new vertices are identified in a recursive way. The Euclidean distance between any pixel of
the skeleton branch and the 3D straight line (vi, vf) is computed, and the pixel v of the
branch having the largest distance is identified. The pixel v is taken as a new vertex, if its
distance from the straight line (vj, vf) is greater than a threshold, whose value depends on
the adopted tolerance. Then, vertex selection is newly accomplished on the sub-branches v;



v and v vs. The recursive process terminates when the distance of all the pixels in the
current sub-branch is below the threshold. As an example, see Fig. 3, where the skeleton
partition has been obtained by using a threshold value equal to 1. 5.

The obtained components of the partition are used to extract geometric features of the
represented regions. To this purpose, it is not necessary to recover the regions represented
by the components of the partition by employing the reverse distance transformation. In
fact, starting from the co-ordinates (x1, y1, z1) and (x2, 2. z2) of the vertices delimiting
each partition component, an approximated version of the corresponding region can be
built. This is obtained by drawing the octagon-shaped discs associated with the vertices,
and a trapezium-shaped strip having the partition component as its Symmetry axis.

In the past, algorithms to compute a multiresolution skeleton have been proposed [16-
17]. There, by taking into account contour curvature to guide end point detection, different
skeletons were available which differ from each other for the presence and/or for the length
of some peripheral branches. Thus, a hierarchy among skeleton branches, and hence among
elongated pattern subsets, was possible. Here, different representations of the same skeleton
branch are obtained at different levels, by using different (increasing) threshold values to
perform the polygonal approximation. The purpose is that of obtaining a multiresolution
description of the elongated region associated with a skeleton branch. The lowest threshold
produces the highest level (fine details) description.

Indeed, the polygonal approximation is performed only once, by employing the lowest
value for the threshold. In fact, due to the use of a split type algorithm, candidates to be
vertices at lower levels are pixels accepted as vertices at the highest level. The information
necessary to identify the vertices of the successive approximations is available provided
that as soon as a vertex is selected at a given step of the recursive process we record its
distance. As the threshold increases, the description becomes rougher and rougher. In fact,
whichever threshold is used, the region associated with a component of the skeleton
partition is interpreted as consisting of the union of a trapezium-shaped strip with two
discs. As an example, the regions obtained at four different resolution levels are shown in
Fig. 4.

To use the various pattern descriptions by means of a compact representation, we
associate each vertex of the polygonal approximation a quadruplet (x, y, label,
permanence), where "permanence” accounts for the number of resolution levels at which
the pixel is selected as a vertex. The compact pattern representation is illustrated in Table I
with reference to the 25 vertices found in the highest level decomposition of the skeleton
shown in Fig. 3 and the successive four lower level pattern representations shown in Fig. 4.
In Table I, the entries x, y, 1, p, and t respectively indicate the Cartesian co-ordinates x and
Y, the normalised label, the permanence of the vertex in the successive approximations, and
the pixel type (b, €, and n respectively stand for branch point, end point and normal point).

TABLE1

xtyltlt]lplt Xijvyviljtip X  yiliplt
1130340(15¢§ 5¢{ b 10111073 815§ 3§ n 1911120223141 5 i e
2120338112151 e 11]1104:69 3145 1§ n 2011061258131 1 i n
313531281164 51 e 12195:673153 Sin 21 188:26§131 1 i n
4 1513128117114 n 13168:68:12% 21 n 221731323121 2 i n
5173311291145 41§ n 14151:744§11§{ 3% n 23155341143 1 i n
6 11053118} 12¢ 5 { n 15134:75816f Si n 24136§39:131 1 n
7 11163104t 143 3 i n 16131 :68$15§ 1 i n 251315401151 5i b
8 1117i8 141 51 n 17131 :51§11§ 21 n
9 1115:79416% 1 { n 18131 :41§14¢{ 5% b

The complexity of the skeleton decomposition algorithm is order of n. log(n), where n is
the number of pixels of the skeleton. Using the normalised labels rather than the true




distance labels allows us to apply the same polygonal approximation algorithm, whichever
weighted distance function is used to label the skeletal pixels. Moreover, this enables us to
treat uniformly both the planar and the label co-ordinates, since a displacement of at most
one unit in each of the three directions is done when passing from a pixel of S to one of its
neighbours along the skeleton branch. In this way, the 3D representation of the skeleton has
the same topological properties as the 2D skeleton.

Fig. 4. Four decomposition levels corresponding to four approximations of the
skeleton, respectively obtained by setting the threshold equal to 2. 5, (a), 4,
(b), 6, (c), and 8, (d). The approximations are directly derived from the
polygonal approximation done with threshold 1.5 (see Fig. 3).

4 Conclusion

A multiresolution description of the shape of a single-valued pattern is obtained starting
from its weighted skeleton. The method is adequate for the description of patterns
perceived as the superposition of elongated regions. The skeleton is partitioned into 3D
rectilinear subsets by means of a polygonal approximation that takes into account both
curvature and label variations. Since curvature and label variations reflect contour
curvature variations and pattern thickness variations, the performed partition divides the
skeleton into subsets corresponding to regions that, in the limits of the adopted tolerance,
are characterised by linearly changing orientation and width. The value of the threshold
used within the polygonal approximation conditions the number of partition components, as
well as the quality of the obtained pattern decomposition. Thus, descriptions of the pattern
at different resolution levels are possible. The highest resolution (fine details) level
corresponds to the smallest threshold value. The vertices of the approximations at the lower
levels can be directly identified while selecting the vertices at the highest resolution level.
A compact representation of the pattern is obtained, that takes simultaneously into account



the representations of the pattern at the different levels. This goal is reached by associating
each vertex of the polygonal approximation corresponding to the highest resolution level a
quadruplet (x, y, label, permanence) to record, besides the 3D co-ordinates, also the number
of levels at which a pixel results to be a vertex of the approximating polygon.

The computational cost of the proposed method is order n. log(n). The use of a quasi
Euclidean distance to label the skeletal pixels makes the decomposition of the skeleton (and
hence of the pattern) stable under pattern rotation. Experimentation on the effects of
rotation are currently under development.
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