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Unité Mixte de Recherche 6166
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CMI, 39 rue Joliot-Curie, F-13453, Marseille, France.

{Solange.Coupet, Delobel}@cmi.univ-mrs.fr.

Abstract/Résumé

We give an axiomatization of Recursive Path Orders in the Calculus of Induc-
tive Constructions. Then, we show that they are monotonic strict partial orders,
and that they are well-founded. The proof of the well-foundedness is particu-
larly short and elementary. Finally, we produce three relations that are proved
to model the axiomatization: the Multiset Path Ordering, the Lexicographic
Path Ordering, and the Recursive Path Ordering with status. All this work is
implemented in the Coq proof assistant.

Keywords: Term Rewriting Systems, Termination, Constructive Proofs, The-
orem Proving, Coq.

Nous présentons une axiomatisation constructive des Ordres Récursifs sur les
Chemins. Puis, nous démontrons que ce sont des ordres stricts, monotones
et bien-fondés. La preuve de bonne fondation est particulièrement courte et
élémentaire. Enfin, nous produisons trois modèles: l’ordre multi-ensemble sur
les chemins, l’ordre lexicographique sur les chemins, et l’ordre récursif sur les
chemins avec status. Tout ce travail est implémenté dans l’assistant de preuves
Coq.
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1 Introduction

This paper presents a constructive axiomatization in the Calculus of Inductive
Constructions (CIC) of Recursive Path Orders (RPO). These orders compare
first order terms by first comparing their root, and then the lists of their im-
mediate sub-terms. These lists can be compared either as multisets in the case
of the Multiset Path Order (MPO), defined in the seminal work of Dershowitz
[Der82], or lexicographically in the case of Lexicographic Path Order (LPO) due
to Kamin and Levy [KL80], or by a relation depending on the status τ(f) of
the root f (RPO with status, first considered by Lescanne [Les83]). RPO are
powerful tools for proving the termination of term rewriting systems, due to
their key property: the well-foundedness. In general, in literature, the proof of
their well-foundedness relies on the fact that they are simplification orders, and
therefore they contain the homeomorphic embedding that is a well partial order
(and thus well-founded) from Kruskal’s theorem [Kru60]. However, the proof
of Kruskal’s theorem is not constructive and only applies when the signature is
finite.

This work falls into two parts. Firstly, we define axiomatically RPO with status
and we study two kinds of properties that are clearly separated: the fact of being
monotonic strict orders and the well-foundedness. In both cases we introduce
conditions on the relations defined by the status τ(f) for the properties to hold.
Secondly, we show that MPO, LPO, and RPO with lexicographic and multiset
status are models of this axiomatization, by establishing that both status satisfy
the required conditions.

The main points of our contribution we would like to emphasize are the fol-
lowing:
– The proof of the well-foundedness is elementary and quite short. It is simply
a sequence of nested inductions.
– Both properties are perfectly independent. In particular, the well-foundedness
does not require the transitivity.
– Our approach is general. It applies to any RPO for which the sufficient con-
ditions for one or other or both of the properties are fulfilled. Moreover, the
terms we consider are not supposed to be ground nor the signature to be finite.
– This entire work has been carried out in the Coq proof-assistant [Tea04] to be
part of CoLoR, the Coq Library on Rewriting and Termination
(http://color.loria.fr). Our development is strongly structured thanks to the
Coq module mechanism.

The paper is organized as follows. Section 2 is devoted to specifying in the
CIC the notions of accessibility, well-foundedness, and well-founded induction.
Section 3 deals with first order terms and the standard definition of RPO. In
section 4, RPO are axiomatized and we prove that they are monotonic strict
orders and that they are well-founded. In section 5, we show that RPO with the
lexicographic and multiset status is a model of the axiomatization in section 4.
We present related work and we conclude in section 6. The appendix describes
the architecture of the Coq Library.
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2 Well-Foundedness

Let (A, <) be a set equipped with a binary relation. The key notion for express-
ing the well-foundedness of < is accessibility. Intuitively, an element a of A is
accessible for the relation <, and this is denoted by (acc< x), if and only if all
descending chains starting with x are finite. In the CIC, this is expressed by
the inductive definition (1), associated with the induction principle (2) below:

∀y : A, y < x → (acc< y)
(acc< x)

(1)

(acc< x) (∀y : A, y < x → (P y)) → (P x)
(P x)

(2)

Moreover, a relation < is well-founded if and only if all elements are accessible.
So :

(WF <) : Prop := (∀a : A), (acc< a) (3)

We also define the notion for an element to be accessible for the restriction of a
relation < to a subset of A, characterized by a predicate S.

∀y : A, (S y) → y < x → (acc<|S
y)

(acc<|S
x)

(4)

Here is the related induction principle :

(acc<|S
x) (∀y : A, (S y) → y < x → (P y)) → (P x)

(P x)
(5)

Lastly, we define the notion of restricted well-foundedness by:

(WFS <) : Prop := (∀a : A), (S a) → (acc<|S
a) (6)

3 Recursive Path Ordering (RPO)

RPO are binary relations on first order terms and we start by specifying this
notion in the CIC.

3.1 First order terms

Let us consider a set F of functional symbols, equipped with a preorder (i.e. a
reflexive and transitive relation) ≤F . As a preorder, ≤F contains an equivalence
relation :

=F := λf, g. f ≤F g ∧ g ≤F f

and a strict partial order :
<F := λf, g. f ≤F g ∧ f 6=F g .

We define inductively the type term of first order terms on the signature F

and the set X of variable names, by the rules :

x : X

(V ar x) : term

f : F ss : (list term)
(App f ss) : term

4



where the type list is parameterized by a set A and classically defined by:

nil : (list A)
h : A ss : (list A)
(cons h ss) : (list A)

In the sequel, we shall use the usual simplified notations:
– (s1, . . . , sn) for (cons s1(. . . (cons sn nil) . . . ))
– h :: ss for a list with head h and tail ss.
– f(s1, . . . , sn) for (App f (s1, . . . , sn))
– x for (V ar x)
– V ars(s) for the set of the variables that occur in term s.
– s ∈ ss to express that s is an element of list ss.

An induction principle associated with type term can be stated by the following
rule, in which P is a predicate on term.

∀x : X, P (V ar x)
∀f : F, ∀ss : (list term), (∀s : term, s ∈ ss → (P s)) → (P f(ss))

∀s : term, (P s)
(7)

This principle is proved by induction on the size of the terms.

3.2 Standard Definition of RPO

The relation <RPO as described below compares two terms by first comparing
their roots, and then the lists of their immediate subterms. The comparison
relation on these lists depends on the root symbol. We thus assume the exis-
tence of a status function τ : F → (relation term) → (relation (list term))
compatible with the relation =F . In the sequel <τ(f) will denote (τ f <).

The Recursive Path Ordering <RPO is a relation on the terms defined recur-
sively by the 3 rules below:

g <F f ∀i ∈ {1, . . . , m}, ti <RPO s

g(t1, . . . , tm) <RPO s = f(s1, . . . , sn)
(RPO1)

f =F g (t1, . . . , tm) <
τ(f)
RPO (s1, . . . , sn) ∀i ∈ {1, . . . , m}, ti <RPO s

g(t1, . . . , tm) <RPO s = f(s1, . . . , sn)
(RPO2)

∃i ∈ {1, . . . , n}, t ≤RPO si

t <RPO f(s1, . . . , sn)
(RPO3)

Classically, ≤RPO denotes the reflexive closure of <RPO.

We cannot specify directly <RPO in the CIC by an inductive definition re-
lying on the rules RPOi, i ∈ {1, 2, 3}, since certain syntactical criteria for the
definition to be accepted are not satisfied. Instead, we take an axiomatic ap-
proach in which the relation is just a parameter, assumed to be a fixpoint of
the operator on the binary relations on term, say F , related to the recursive
standard definition above.
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4 Axiomatization of RPO

The fact that a relation <RPO is a fixpoint of the operator F is expressed by
four axioms as follows.

4.1 An Axiomatic Definition

The three introduction rules RPO1, RPO2, RPO3 are considered as axioms
that state that F(<RPO) ⊂<RPO. We introduce a fourth one, called RPOinv,
that expresses that s <RPO t can only be obtained from one of the three rules,
in other words, that <RPO⊂ F(<RPO). So, all throughout this section, <RPO

is a parameter, and simply denotes a binary relation on the first order terms
that satisfies these four axioms.

4.2 Symbols Behavior in RPO

These axioms are sufficient to establish some preliminary facts, that are related
to the behavior of functional symbols and variables with respect to <RPO, and
will be instrumental for the sequel.

Lemma 1 Let s be a term, ss a list of terms, and f and g two functional
symbols such that f =F g. Then s <RPO f(ss) → s <RPO g(ss).

Proof By nested inductions on terms f(ss) and g(ss), following principle (7).

Lemma 2 Variables are minimal terms for the relation <RPO.

Proof This is immediate since no axiom among RPOi, i ∈ {1, 2, 3}, makes it
possible to derive s <RPO x, where s is a term and x is a variable. 2

Lemma 3 For all terms s and all variables x, if x <RPO s then x ∈ V ars(s).

Proof By induction on s. 2

Lemma 4 For all terms s and all variables x, if x ∈ V ars(s) and x 6= s, then
x <RPO s.

Proof By induction on s. 2

Lemma 5 Let s and t be two terms. If t ≤RPO s then V ars(t) ⊂ V ars(s).

Proof By nested inductions on terms t and s.

4.3 A Monotonic Strict Partial Order

We now introduce the additional conditions on the status function τ for <RPO

to be a monotonic strict order. We treat simultaneously the transitivity and the
irreflexivity, which may seem surprising. This comes from the fact that these
properties are not independent when τ(f) is the multiset order.

Theorem 6 Let us assume that for all relations < on the set of terms, for all
functional symbols f , and for all lists of terms ss :
∀s : term, s ∈ ss → ¬(s < s) ∧ (∀s1, s2 : term, s < s1 → s1 < s2 → s < s2)
implies
¬(ss <τ(f) ss) ∧ (∀ss1, ss2, ss <τ(f) ss1 → ss1 <τ(f) ss2 → ss <τ(f) ss2).
Then <RPO is irreflexive and transitive.
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Proof We proceed by induction on the structure of s following principle (7).
Assuming that the property is fulfilled by all the terms of a list ss, we must
prove that f(ss) also satisfies it. The proposition ¬(f(ss) <RPO f(ss)) follows

from the fact that ¬(ss <
τ(f)
RPO ss) by the induction hypothesis. For the second

part of the goal:
∀t, u : term, f(ss) <RPO t → t <RPO u → f(ss) <RPO u

we do two nested inductions on the structure of terms t and u. The proof is
quite long, and for lack of space we do not give it here. A detailed version can
be found in [CD05], where it is performed in the particular case of the Multiset
Path Order, but is quite similar to this one. Let us mention that one uses the
preliminary results given in section 4.2. 2

In the theorem below :
- ss[p] stands for the element of index p in list ss. It is of type (option term)
since it can be undefined in case p is greater than the length of ss.
- ss[p := t] is the list obtained from ss by replacing the element of index p by t.

Theorem 7 Let us assume that for all relations < on the set of the terms, for
all functional symbols f , and for all lists of terms ss :
∀s : term, ∀p : nat, ss[p] = (some s) → ∀t : term, s < t → ss <τ(f) ss[p := t].
Then <RPO is monotonic.

Proof By induction on the structure of s. 2

4.4 Well-Foundedness of RPO

This section is devoted to the well-foundedness of <RPO. Let us point out that it
is independent from the previous one. As a matter of fact, the well-foundedness
does not require any of the assumptions introduced in section 4.3.

Following Ferreira and Zantema’s terminology ([FZ95]), we define the notion
of lifting.

Definition 8 Let A be a set with a binary relation <. A binary relation <λ on
(list A) is called a lifting if and only if, for every well-founded part S of (A, <),
the restriction of <λ to the lists whose elements are in S is well-founded.

Using the notion of restricted well-foundedness introduced in section 2 (defini-
tion (6)), this is simply expressed in the CIC by:

lifting := WFaccs (8)

where predicate accs is defined by: accs := λss : (list A).∀s ∈ ss, (acc< s).

The lifting definition is in fact parameterized by the set A and the relation <.
As far as the well-foundedness of <RPO is concerned, we specialize the definition
by taking (A, <) = (term, <RPO). Therefore, predicate accs is now:

accs := λss : (list term).∀s ∈ ss, (acc<RP O
s).

We can state now our main theorem.

Theorem 9 Let us assume that :
(i) the strict partial order <F on the functional symbols is well-founded

7



(ii) for all functional symbols f, <
τ(f)
RPO is a lifting.

Then, <RPO is well-founded.

Proof Let s be a term and let us prove that s is accessible for <RPO. We
proceed by induction on s (principle (7)).

• Base Case If s is a variable, from lemma 2 s is a minimal element, and
thus it is accessible.

• Induction Step Let f be a functional symbol and ss be a list of terms.
We have to prove (acc<RP O

f(ss)) under the induction hypothesis:
HInd1: (accs ss)
This amounts to proving that ∀f : F, (P f) where predicate P is defined
by:
P := λf : F. ∀ss : (list term), (accs ss) → (acc<RPO

f(ss)).
Let f be a functional symbol. From (i), f is accessible for this relation
and then, using induction principle (2), we are led to prove (P f) under
the induction hypothesis
Hind2: ∀g : F, g <F f → (P g).

The goal can be written ∀ss : (list term), (Q ss) where predicate Q is
defined by Q := λss : (list term). (accs ss) → (acc<RP O

f(ss)).
Let ss be a list of terms such that (accs ss). From hypothesis (ii), we

know that ss is accessible for the relation <
τ(f)
RPO restricted to the subset

defined by predicate accs. Consequently, using induction principle (5), we
have to prove (acc<RP O

f(ss)) under the induction hypothesis:

HInd3: ∀ts : (list term), ts <
τ(f)
RPO ss → (Q ts).

By definition, the goal is equivalent to ∀t, (R t) where R is defined by:
R := λt : term. t <RPO f(ss) → (acc<RPO

t)
Let us do an induction on term t.

– Base Case If t is a variable, from lemma 2, t is a minimal element,
and thus it is accessible.

– Induction Step Let g be a functional symbol and ts a list of terms.
Let us prove (R g(ts)) under the induction hypothesis:
HInd4 : ∀t : term, t ∈ ts → (R t).
By the definition of R, we have to establish that (acc<RPO

g(ts)) un-
der the hypothesis g(ts) <RPO f(ss). As <RPO satisfies the axiom
RPOinv, this assumption leads us to consider three cases, following
the rule (RPOi) from which the inequality is derived.

Case RPO3. In this case, g(ts) is less or equal than an element
s of ss. Since by HInd1, s is accessible, so is g(ts).

In both other cases, we know that ∀t : term, t ∈ ts → t <RPO f(ss),
and therefore from hypothesis HInd4, we can deduce that all t in ts

are accessible for <RPO, so we add to the context the hypothesis
H : (accs ts).

Case RPO1. As g <F f , by using hypotheses Hind2 and H, we
are done.
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Case RPO2. The hypotheses are: (*) f =F g

(**) ts <
τ(f)
RPO ss

From (∗) and lemma 1, the goal is now (acc<RPO
f(ts)). From (∗∗)

and HInd3 we deduce that ts satisfies Q. Therefore, we can conclude
by applying hypothesis H. 2

5 IRPO: A Model of RPO

We now define a model, denoted by <IRPO, of the axiomatization presented in
section 4. This not only ensures its consistency, but it also provides all the
results we aim at obtaining in the particular case of the Recursive Path Order
with lexicographic and multiset status. The cases of MPO and LPO are just
simplications of this model and are treated similarly.

5.1 Inductive Definition of IRPO with Status

Let (A,∼) be a setöıd with a decidable equality.

Lexicographic Order We assume that < is a binary relation on A, com-
patible with ∼. It induces a lexicographic order <lex on (list A), inductively
defined by:

s ∼ s′ l <lex l′

s :: l <lex s′ :: l′
s < s′ (length l) = (length l′)

s :: l <lex s′ :: l′
(9)

Multiset Order We give here a brief description of the Coq specification of
the multiset order. For a more detailed presentation, we refer the interested
reader to [CD05].
A standard way to define multisets is to consider them as total functions from A

to the set IN of the natural numbers, compatible with ∼. Given such a multiset
M , for all elements a of A, M(a) is called the multiplicity of a in M . By defi-
nition, an element a belongs to M if and only if its multiplicity in M is greater
than 0. We will be handling here multisets whose elements are the (finitely
many) immediate subterms of certain terms. Therefore, all the multisets we
consider in this paper are finite, and this precision will be omitted in the sequel.
As far as their Coq implementation is concerned, we refer to Koprowski’s work
[Kop04]. The author first gives an axiomatic specification, then he shows that
it can be modeled by the set of the finite lists of elements of A. The axiomatiza-
tion involves a parameter Multiset for the type of the multisets, a multiplicity
mult : Multiset → A → nat, and an equivalence relation ∼mul. Given M

and N of type Multiset, M ∼mul N holds if and only if for all element a of A

(mult M a) = (mult N a). Let us point out that, in absence of the axiom
of extensionality, this does not implies the equality of (mult M) and (mult N).
The axiomatization also includes the union and the difference operations and
a special element ∅ for the empty multiset. The finiteness of the multisets is
expressed by means of the following reasoning principle:

(P ∅) (∀M : (Multiset A))(∀a : A) (P M) → (P M ∪ {{a}})
∀M : (Multiset A) (P M)

(10)
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where {{a}} is the multiset whose only element a has multiplicity 1. From
these axiomatic definitions, several other operations are introduced. In par-
ticular, a function list2multiset transforms recursively each list into a mul-
tiset. We have added a function multiset2list which builds a list from a
multiset M by induction on M (principle (10)), and we have proved that
(list2multiset (multiset2list M)) ∼mul M .

We assume now that > is a binary relation on A, compatible with ∼. It induces
a relation ≫ on the multisets of A. A multiset N is less than a multiset M if it
is obtained by replacing some elements of M by smaller elements. This relation
is precisely defined by induction as follows:

M ∼mul Z ∪ X N ∼mul Z ∪ Y ¬(X ∼mul ∅)
(∀y : A, y ∈ Y → ∃x : A, x ∈ X ∧ x > y)

M ≫ N

Let ≪ denote the transposed relation and let us define its inverse image by
list2multiset. We obtain the following binary relation on the lists:

<mul := λ l, l′ : (list A). (list2multiset l) ≪ (list2multiset l′)

IRPO with Status The modeling of RPO is parameterized by the signature
of the first order terms, that is S = (X, (F,≤F )) as described in section 3.1. We
introduce the set name = {lexicographic, multiset} of the status names, and a
parameter status : F → name which is assumed to be compatible with =F .
The relation <IRPO is then inductively defined in Coq by the four introduction
rules below:

g <F f ∀i ∈ {1, . . . , m}, ti <IRPO f(s1, . . . , sn)
g(t1, . . . , tm) <IRPO f(s1, . . . , sn)

(IRPO1)

f =F g ∀i ∈ {1, . . . , m}, ti <IRPO f(s1, . . . , sn)
(status f) = lexicographic (t1, . . . , tm) <lex

IRPO (s1, . . . , sn)
g(t1, . . . , tm) <IRPO f(s1, . . . , sn)

(IRPO2,lex)

f =F g (status f) = multiset (t1, . . . , tm) <mul
IRPO (s1, . . . , sn)

g(t1, . . . , tm) <IRPO f(s1, . . . , sn)
(IRPO2,mul)

∃i ∈ {1, . . . , n}, t ≤IRPO si

t <IRPO f(s1, . . . , sn)
(IRPO3)

From this inductive definition we can prove straightforwardly that <IRPO fulfills
the four axioms of section 4.1.

5.2 IRPO is a Monotonic Strict Order

It is sufficient to verify that the relations <lex and <mul defined in section 5.1
satisfy the hypotheses of theorems 6 and 7. For the lexicographic order, the
proofs are standard. Let us just mention that the two first are performed by
induction on the list on which the statements are universally quantified. For
the multiset order, the proofs are also simple and do not deserve any comment
(see [CD05] for more details).

10



5.3 IRPO is Well-Founded

Assuming that the precedence on the functional symbols is well-founded, we
must prove that both the lexicographic order and the multiset order induced by
<IRPO are liftings. This follows from the two next lemmas.

Lemma 10 For all sets A and for all binary relations < on A, <lex is a lifting.

Preliminaries. Let us define accs := λl : (list A).∀a ∈ l, (acc< a). We have to
prove that the relation <lex has the following property:

∀l : (list A), (accs l) → (acc<lex

|accs

l) .

In fact we change the goal into:
∀n : nat, ∀l : (list A), (length l) = n → (accs l) → (acc<lex

|accs

l)

Proof We proceed by induction on n.
Base Case n = 0 and then l = nil. From definition (9), nil cannot be com-
pared with any list, and thus, by definition 4, it satisfies acc<lex

|accs

.

Induction Step Let n be a natural number. Under the induction hypothesis
Hind1: ∀l, (length l) = n → (accs l) → (acc<lex

|accs

l)

we have to prove this property for n + 1. A length-(n + 1) list is of the form
h :: l. Assuming that it satisfies predicate accs, we deduce that (acc< h) and
(accs l). Therefore we are led to prove a new goal of the form

∀h : A, (acc< h) → (P h)
with P = λh. ∀l, (length l) = n → (accs l) → (acc<lex

|accs

l) → (acc<lex

|accs

h :: l)

We proceed by induction on (acc< h). We have to prove (P h) under the in-
duction hypothesis: Hind2: ∀h′ : A, h′ < h → (P h′)
Let us consider a list l, such that H0: (length l) = n and H1: (acc<lex

|accs

l). We

must prove the goal (Q l) where Q is defined by :
Q := λl.(accs l) → (acc<lex

|accs

h :: l).

By applying principle (5) on H1, we get the induction hypothesis:
Hind3: ∀l′, (accs l′) → l′ <lex l → (Q l′).
Assume H2: (accs l). The goal is now (acc<lex

|accs

h :: l), that is, from defini-

tion (4), ∀l′, (accs l′) → l′ <lex h :: l → (acc<lex

|accs

l′).

Let l′ such that H3: (accs l′) and H4: l′ <lex h :: l. The goal is now (acc<lex

|accs

l′).

From H4, and by definition (9), two cases are considered:

• l′ is of the form l′ = h :: l′′ with l′′ <lex l. Moreover, from H3, we deduce
that (accs l′′). Thus, we can conclude by Hind3.

• l′ is of the form l′ = h′ :: l′′ with h′ < h and (length l′′) = (length l).
From Hind2, h′ satisfies predicate P . But, (length l′′) = n from H0.
It follows from H3 that (accs l′′), and thus we have (acc<lex

|accs

l′′) from

Hind1. Therefore, all the premises of (P h′) are fulfilled, and so, we are
done. 2

Lemma 11 For all sets A and for all binary relations < on A, the multiset
order <mul on the lists is a lifting.

Proof The proof is not trivial. It relies on the fact that <mul is included in the
transitive closure of a reduction relation <red defined by :
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M ∪ X <red M ∪ {{a}} ↔ ∀x ∈ X, x < a

Let us point out that the inverse inclusion holds as soon as < is transitive. But
this extra hypothesis is not required here. One can prove that all finite multisets
whose elements are accessible for < are accessible for <red [Nip98, Kop04], which
is stronger than the lifting property. It is well known that the accessibility for
a relation implies the accessibility for its transitive closure, and therefore for the
stronger relation <mul. We refer the reader to [CD05] for more details on this
lemma.

6 Related Work and Conclusion

As far as the well-foundedness of RPO is concerned, various non constructive
proofs have been performed as in Dershowitz’s paper [Der82]. Ferreira and Zan-
tema in [FZ95] demonstrate several theorems related to the well-foundedness of
first order term orderings. Their results are quite general and even complete
with respect to the termination of the term rewriting systems in the case of
finite signatures. They can be applied straightforwardly to RPO. But although
their proofs do not rely on Kruskal’s theorem, they are not constructive.
In a precursory attempt towards an elementary proof of the well-foundedness,
Lescanne [Les82] introduces a decomposition order (DO) on the terms, that
he proves to be equivalent to MPO. Then, he establishes the well-foundedness
of DO assuming that the precedence relation on the functional symbols is to-
tal and well-founded. His proof is not really constructive, but it seems that
with some efforts a constructive version, more intricate than ours, could be ob-
tained. Moreover, Zorn’s Lemma is required when the signature is infinite and
the precedence non total, to embed it in a total one. However, this approach is
interesting since it provides an efficient algorithm for comparing two terms.
In [JR99, JR03] Jouannaud and Rubio propose a constructive proof of termi-
nation of higher-order of recursive path ordering (horpo) by the Tait-Girard
technique [GLT88] whose specialization to the case of first order terms leads
to a proof of the well-foundedness of MPO by structural induction on terms as
pointed out in [van01]. Our Coq proof relies on a simplification of this special-
ization, in the sense that it does not require the auxiliary lexicographic order
on triples they use.
In [GL01], Goubault-Larrecq establishes a theorem the proof of which has been
carried out in the Coq proof assistant. The result is general since it does not
depend on the term structure, and therefore it applies to other algebras. The
proof of the theorem is elementary. However, proving that it generalizes Ferreira
and Zantema’s results involves a non constructive step. Moreover, applying this
theorem to RPO, and in particular, proving that hypothesis (iv) is satisfied is
not simpler than our direct proof.
Dawson and Goré [DG04] prove a general theorem for establishing the well--
foundedness of relations closed under context. This theorem has been machine-
checked in Isabelle. Again, proving that the hypotheses of the theorem are
satisfied may be difficult and requires in particular to find out an appropriate
auxiliary relation to be proved well-founded (that may be non trivial). The
authors apply it to various examples including LPO. The proof obtained in this
last case seems reasonably easy and it would be interesting to compare this
approach for RPO with a direct one as ours.
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Let us also mention the work of Leclerc [Lec95] who carries out in Coq a termina-
tion proof of term rewriting systems with RPO. However, the proof is achieved
without using the well-foundedness of RPO, which is not established, but rather
an embedding of the rewrite relations into some well-founded ordering based on
the Grzegorzcyk hierarchy of number theoretic functions.

We have given a constructive axiomatization of RPO in the CIC, and we have
applied it to MPO, LPO and RPO with multiset and lexicographic status. We
have strongly structured our approach and tried to use hypotheses as weak as
possible when proving that RPO are well-founded monotonic strict orders. We
aimed at giving a good insight into the properties, by simplifying at most their
proofs and pinpointing their possible independence. This could be a good start-
ing point towards the study of horpo, for instance. This work results in a Coq
development available in the CoLor Library (http://color.loria.fr). Its modular
architecture allows to enrich easily the model with other status such as, for
instance, the pointwise order on the lists.
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tion of Rewriting. In Computer Science Logic, CSL’04, number 3210 in
LNCS, pages 100–114. Springer-Verlag, 2004.

[FZ95] Maria.C.F. Ferreira and Hans Zantema. Well-foundedness of Term Or-
derings. In 4th International Workshop on Conditional Term Rewriting
Systems (CTRS’94), number 968 in LNCS, pages 106–123. Springer-
Verlag, 1995.

[GL01] Jean Goubault-Larrecq. Well-Founded Recursive Relations. In 15th
Worshop on Computer Science Logic (CSL’01), Paris, volume 2142 of
LNCS, pages 484–497. Springer-Verlag, 2001.

[GLT88] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types.
Cambridge Tracts in Theoritical Computer, Science 7, 1988.

[JR99] Jean-Pierre Jouannaud and Albert Rubio. The Higher-Order Recursive
Path Ordering. In Proceedings of the 14th annual IEEE Symposium
on Logic in Computer Science (LICS’99), pages 402–411, Trento, Italy,
1999.

[JR03] Jean-Pierre Jouannaud and Albert Rubio. Higher-
Order Recursive Path Orderings a la carte. Techni-
cal report, http://www.lix.polytechnique.fr/ Labo/Jean-
Pierre.Jouannaud/biblio.html, 2003.

13



[KL80] Sam Kamin and Jean-Jacques Levy. Two generalizations of the recur-
sive path ordering. Technical report, University of Illinois, 1980.

[Kop04] Adam Koprowski. Well-foundedness of the Higher-Order Recursive
Path Ordering in Coq. Master thesis, Free University of Amsterdam
(The Netherlands) and Warsaw University (Poland), 2004.

[Kru60] J.B. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s
conjecture. Trans. AMS, 95:210–225, 1960.

[Lec95] François Leclerc. Termination Proof of Term Rewriting System with
the Multiset Path Ordering. A Complete Development in the System
Coq. In TLCA, pages 312–327, 1995.

[Les82] Pierre Lescanne. Some Properties of Decomposition Ordering, a
Simplification Ordering to Prove Termination of Rewriting Systems.
R.A.I.R.O. Theoretical Informatics, 14(4):331–347, 1982.

[Les83] Pierre Lescanne. Computer Experiments with the REVE Term Rewrit-
ing System Generator. 10th ACM Symposium on Principles of Pro-
gramming Languages (POPL), pages 99–108, 1983.

[Nip98] Tobias Nipkow. An Inductive Proof of the Well-foundedness of
the Multiset Order. Due to Wilfried Buchholz. Technical report,
http://www4.informatik.tu-muenchen.de/̃ nipkow/misc/index.html,
1998.

[Tea04] The Coq Development Team. The Coq Proof Assistant Reference Man-
ual – Version V8.0. Technical report, LogiCal Project-INRIA, 2004.

[van01] Femke van Raamsdonk. On termination of higher-order rewriting. In
Proceedings of the 12th International Conference on Rewriting Tech-
niques and Applications (RTA’01), pages 261–275, Utrecht, The Nether-
lands, 2001.

Appendix : The Modular Architecture of the Coq
Library

Figure 1 displays the modular architecture of the Coq library. It is composed
of three main modules, each of them parameterized by a signature S:

• Module RPO Hyps contains all the axioms, classified in three module
types which are related respectively to the fixpoint definition
(RPO Axioms Type), the hypotheses for the well-foundedness
(RPO Wf Type), and those for the relation to be a monotonic strict
partial order (RPO MSO Type). The last two inherit of the first one.

• Module RPO Facts as a similar structure, and contains the proofs of the
properties. Three sub-modules take as parameter a module of type one of
the three module types defined in RPO Hyps. They correspond to the
proofs presented in sections 4.2, 4.3 and 4.4 respectively.
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• In module RPO Model, a model is built. The relation <IRPO, with the
two possible status, is defined. Two modules dedicated to the lexico-
graphic order and the multiset order are loaded. They are parameterized
by the base setöıd A which is then instantiated by the first order terms.
Finally, one builds three modules that model the axiomatization since they
have the correct module type. They correspond to the proofs of sections
5.1, 5.2, and 5.3 respectively.

Module Type RPO_MSO_Type Module Type RPO_Wf_Type

Module Type RPO_Axioms_Type

          Section 4.3

 Section 4.1

Module LexOrder (A: EqSet)

  Module RPO_Model (S: Sig)

Section 5.1  

RPO Definition

Section 5.1 : The 4 axioms are satisfied

Module RPO_MSO_Model : RPO_MSO_Type Module RPO_Wf_Model : RPO_Wf_Type

are  satisfied

Section 5.2 Section 5.2

Module RPO_MSO_Facts (RPO: RPO_MSO_Type) Module RPO_Wf_Facts (RPO: RPO_Wf_Type)

                                Section 4.2 : proofs of  lemmas 1 to 5

: 4 axioms  for  RPO

Load MultisetOrder

Load LexOrder

M1 M2 : M1 is passed as parameter to M2

M1 M2 : M1 is of type (or a model of) M2

Module RPO_Facts (S: Sig)

Module RPO_Hyps (S: Sig)

Module Symb_Beh_Facts (RPO: RPO_Axioms_Type)

Module RPO_Axioms_Model : RPO_Axioms_Type

Section 4.3 : proofs of theorems 6, 7 Section 4.4 : proof of theorem 9

Section 5.3: Hypotheses of theorem 9

Section 5.3 : lemma 10 Section 5.3 : lemma 11

  Section 5.2: Hypotheses of theorems 6 and 7

    are satisfied

M1 

Hypotheses of  theorem 9

           Section 4.4

 Hypotheses of  theorems 6 and 7

: M2 inherits from M1

Module ListMultisetOrder (A: EqSet)

M2

Figure 1: Architecture of the Coq Library
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