
LIF

Laboratoire d’Informatique Fondamentale

de Marseille

Unité Mixte de Recherche 6166
CNRS – Université de Provence – Université de la Méditerranée

A Uniform and Certified Approach for Two
Static Analyses

Solange Coupet-Grimal and William Delobel

Rapport/Report 24-2005

26 April 2005

Les rapports du laboratoire sont téléchargeables à l’adresse suivante

Reports are downloadable at the following address

http://www.lif.univ-mrs.fr

A Uniform and Certified Approach for Two Static Analyses

Solange Coupet-Grimal and William Delobel

LIF – Laboratoire d’Informatique Fondamentale de Marseille

UMR 6166

CNRS – Université de Provence – Université de la Méditerranée

CMI, 39 rue Frédéric Joliot-Curie 13453 Marseille Cedex 13

{Solange.Coupet, Delobel}@lif.univ-mrs.fr

Abstract/Résumé

We give a formal model for a first order functional language to be executed on a stack machine
and for a bytecode verifier that performs two kinds of static verifications : a type analysis and a
shape analysis, that are part of a system used to ensure resource bounds. Both are instances of
a general data flow analyzer due to Kildall. The generic algorithm and both of its instances are
certified with the Coq proof assistant.

Keywords: Mobile code, formal verification, Calculus of Constructions.

Nous présentons un modèle formel pour un langage fonctionnel du premier ordre exécuté sur une
machine à pile et pour un vérificateur de bytecode qui effectue deux types de vérifications statiques
: une analyse de types et une analyse de formes. Les deux sont utilisées dans un système visant
à garantir une borne des ressources et sont des instances d’un algorithme générique du à Kildall.
L’algorithme et ses deux instances, sont certifiés dans l’assistant de preuves Coq.

Mots-clés : Code mobile, vérification formelle, Calcul des Constructions.

Relecteurs/Reviewers: Roberto Amadio and Silvano Dal Zilio.

1 Introduction

Over the last decade, research on mobile code has been a hot topic and intensive efforts have been
made to reduce the risk of malicious (Java) applets performing a security attack. For this, a crucial
functionality of the Java Platform is the bytecode verifier which performs a static type analysis
on programs. This kind of analysis ensures integrity properties of the execution environment such
as the absence of memory faults. Consequently, there has been considerable interest in specifying
formally the Java Virtual Machine and proving the correctness of its bytecode verifier (see for
instance [BDJMdS02, BDJ+01, Nip01, KN03] . . .).

More recently, these investigations have been extended to establishing an additional property
that contributes to guarantee the safety of bytecode by ensuring bounds on the computational re-
sources needed by its execution. Within this context, a project has been undertaken [ACGDZJ04]
which focuses on a rather standard first-order functional programming language with inductive
types, pattern matching, and call-by-value, to be executed on a simple stack machine. The lan-
guage comes with various bytecode static analyses: a standard type analysis, an analysis on the
algebraic shape of the values in the stack, an analysis of the size of these values, and an analysis
that insures the termination. The last three analyses, and in particular their combination, are
instrumental in predicting the space and time required for the execution of a program.

This paper deals with the formal specification of the virtual machine related to this language
and the certification in the Coq proof assistant of an extended bytecode verifier which performs
the first two phases of the analysis, that is the type and shape verifications. Our contribution is
threefold. First, we present a verifier designed in a uniform way, so as both verification processes
become special cases of a general framework for data flow analysis based on the well known
algorithm due to Kildall [Kil73]. Second, we propose a functional specification in Coq of Kildall’s
algorithm and we prove its correctness. This is related to Klein and Nipkow’s work with the
system Isabelle/HOL [Nip01, KN03]. However our formalization differs from theirs by the heavy
use of Coq dependent types and the way of encoding a recursive function which is not structurally
recursive. With this approach, properties common to both analyses are established once and for
all. Note that this approach also suits size analysis, although this remains work to be done in
future. Third, these generic properties are used, for proving not only the correctness of type
verification which is now quite standard, (see [Gol98, Nip01]), but also, and this is the novelty,
that of algebraic shape verification.

The paper is organized as follows. The first section is a quick description of the problem: we
present the language, the bytecode instructions, and both kinds of analyses. Section 3 is dedicated
to encoding Kildall’s algorithm in Coq and proving its correctness. Section 4 is related to both
type and shape analyses which are formally specified and proved correct. In section 5 we make a
comparison with related work and give a conclusion. Some proofs are detailed in the appendix.

2 The functional language and the bytecode instructions

A formal and rigorous description of the source language, the bytecode instructions, their oper-
ational semantics, and of the type and shape analyses can be found in [ACGDZJ04]. For lack
of space, we have chosen to give here an informal but intuitive presentation that we illustrate
by examples to give a quick understanding of the problem. The source language is a first order
functional language, with (mutually) inductive types. Functions are defined by a sequence of
pattern matching rules of the form f(p1, . . . , pn) = e, where e is an expression and p1, . . . , pn are
linear patterns (a variable occurs at most once). As an illustration, Fig.1 displays a program that
evaluates boolean expressions. Each function is compiled to bytecode to be executed by a virtual
machine. At run time, a frame (f, pc, P) is created at each function call: f is the function’s name,
pc is the program counter that indicates the index of the current instruction (initially 0), and P is
a stack of values that is initialized by the arguments of the function. This frame is pushed on the
top of the current configuration, that is the stack constituted by all the frames of the functions
currently active. Fig.2 shows a possible bytecode program for function member in Fig.1, as well

3

type bool = T | F ;;

type nat = Z | S of nat ;;

type env = Nil | C of nat * env ;;

type form = Var of nat| Not of form | Or of form * form | Ex of nat * form ;;

not (T) = F or (T,y) = T eq (Z,Z) = T eq (S(x),Z) = F

not (F) = T or (F,T) = T eq (S(x),S(y)) = eq (x,y) eq (Z,S(x)) = F

or (F,F) = F

member (x,Nil) = F

member (x,C(y,l)) = or(eq(x,y),member(x,l))

check (Var(x), l) = member (x,l) qbf (f) = check(f,Nil)

check (Not(f1), l) = not (check(f1,l))

check (Or(f1,f2), l) = or (check(f1,l),check(f2,l))

check (Ex(x,f1), l) = or (check(f1,l),check(f1, C(x,l)))

Figure 1: A program for evaluating boolean formulae

as a symbolic execution of the function on natural number x and environment l. Each line shows
the value pc of the program counter, the related instruction, and the expression stack on which
the instruction of rank pc is executed (the top of the stack is on the left). Let us describe the

member:

0: load(1); [l x] Id

1: branch("Nil",4); [l l x] Id

2: build("F",0); [Nil x] l=Nil

3: return; [F Nil x] l=Nil

4: branch("C",13); [l l x] Id

5: load(0); [t h C(h,t) x] l = C(h,t)

6: load(2); [x t h C(h,t) x] l = C(h,t)

7: call("eq",2); [h x t h C(h,t) x] l = C(h,t)

8: load(0); [eq(x,h) t h C(h,t) x] l = C(h,t)

9: load(3); [x eq(x,h) t h C(h,t) x] l = C(h,t)

10: call("member",2); [t x eq(x,h) t h C(h,t) x] l = C(h,t)

11: call("or",2); [member(x,t) eq(x,h) t h C(h,t) x] l = C(h,t)

12: return; [or(eq(x,h),member(x,t)) t h C(h,t) x] l = C(h,t)

13: stop; [l l x] Id

14: return; ⊥

Figure 2: Symbolic execution of function member

operational semantics of the instructions that appear in this piece of bytecode.

• Instruction load(j) pushes on top of P the element of rank j, counting from the bottom of
the stack. pc is incremented. Note that the bottom of P is rank 0.

• Instruction branch(c, j) matches element e on the top of the stack with constructor c of arity
m. If the matching succeeds, e is popped out from the stack, it is deconstructed and its m
arguments are pushed on the stack. pc is incremented. If the matching fails, the stack is left
unchanged and pc is set to j.

• Instruction build(c, m), where c is a constructor of arity m, discards the m values v1, . . . , vm

on the top of P and pushes c(v1, . . . , vm). Program counter pc is incremented.

4

• Instruction return returns to the environment the result on the top of the stack. The current
function is deactivated, that is its frame is popped out from the current configuration.

• Instruction stop stops the execution.

• Instruction call(g, m) pushes, over the frame of the calling function, a new frame for executing
function g of arity m. In this new frame, the program counter is set to 0 and the value stack
is constituted by m values, popped out from the value stack of the calling function.

2.0.1 Shape analysis as a symbolic execution

Fig.2 is nothing but the result of a symbolic execution of function member in the sense that
the stack contains algebraic expressions, built with constructors, functions names and variables,
instead of values built from constructors only (as in a true execution). In particular, the arguments
of the function have been replaced by two variables x and l. Within this context of symbolic
execution, each instruction branch(c, j) gives raise to a substitution that matches the expression
on the top of the stack with a pattern c(x1, . . . , xm). Here, m is the arity of constructor c and
x1, . . . , xm are fresh variables. Substitutions in the last column of Fig.2, keep track of these
pattern matchings. The current substitution is updated when encountering a branch instruction,
by composing it with that resulting from the new pattern matching. Symbolic execution furnishes
information on the shape of the values in the stack during an actual execution. Although it is out
of the scope of this paper, let us mention that this kind of analysis can be used to ensure bounds
on the resources required by a program execution. For that, it is assumed that the bytecode
comes with polynomial annotations for the constructors and the functions. These polynomials
(introduced by Marion [Mar00] under the name of quasi-interpretations) are intended to provide
bounds on the size of the values built with the constructors or returned by the functions. A bound
on the overall memory used by the program is then deduced from considerations on termination.
One can refer to [ACGDZJ04] for more details.

2.0.2 Type analysis as an abstract execution

The bytecode is also supposed to be accompanied by type annotations, that is functions’ and
constructors’ signatures. Type analysis comes before shape analysis. It consists in an abstract
execution of the bytecode, in which the values are replaced by their types. The type verification
checks the compatibility between the types in the stack and the current instruction, with respect to
the signatures. When executing an instruction branch(c, j) for instance, one checks that the value
on the top of the stack is the type of constructor c. In case of error, an error state > is produced.
One proves, and this is now quite standard, that if the bytecode is correctly typed, there will be
no out of bounds access to the value stack, all function calls will apply to well typed arguments,
and each new value is built with a constructor and arguments the types of which are consistent . . .

Both abstract and symbolic executions can be viewed as instances of a generic data flow ana-
lyzer due to Kildall ([Kil73]) that we present in the next section.

2.0.3 Notations

In the sequel, we will use the following notations :
–e :: l is the list with head e and tail l
–l@l′ is the concatenation of lists l and l′

–|l| is the size of list l
–[v0; . . . ; vk] is the list of elements v0, . . . , vk. So [] is the empty list.
–l[i] the ith element of the list, elements being indexed from 0
–e ∈ l means e is an element of list l

5

3 Kildall’s algorithm

3.1 Parameterizing the generic data flow framework

Kildall’s algorithm traverses the control flow graph of a function. It is a graph whose vertices are
the instructions’ indices in the bytecode program. There is an edge between p and q if instruction
of index q can be executed immediately after that of index p. This graph has an only source, 0, that
corresponds to the entry point of the function. The generic data flow framework is parameterized
by:

• the number n of instructions of the bytecode, that characterizes the set {0, . . . , (n − 1)} of
the vertices also called instructions when it is clear from the context.

• a function succs, which associates with each instruction in {0, . . . , (n − 1)} the list of in-
structions that can immediately follow it. It characterizes the set of the edges.

Moreover, with each vertex of the graph is associated a state, which generalizes the symbolic
stack in front of each instruction in Fig.2, or a type stack in case of the type analysis. Thus, we
introduce:

• σ, the type of the states. σ is equipped with a relation >σ, a supremum function supσ, and a
top element >. Moreover, we assume that all ascending chains in σ are finite. Intuitively, the
states can be seen as constraints on the value stacks handled by the virtual machine during
the evaluation of a function. Relation >σ compares constraint strength: if instruction p can
be executed in state s, it has to be so for every state s′ such that s >σ s′.

The length-n lists ss of elements of σ are called function states. In the case of symbolic analysis
for example, they correspond to the lists of n symbolic stacks as those displayed in Fig.2.

The algorithm also relies on a flow function step that takes as arguments an instruction p and
a state s. (step p s) is the list of all states (one for each possible successor of instruction p)
resulting from the execution of p in state s. Functions step and succs are combined to de-
fine function step′ such that, if (step p s) = [t1, . . . , tk] and (succs p s) = [q1, . . . , qk] then
(step′ p s) = [(q1, t1), . . . , (qk, tk)].

3.2 Description of the algorithm

As already mentioned, the algorithm traverses the function’s flow graph. A function state ss asso-
ciates state ss[p] in σ with each vertex p. In practice, initially all the vertices except 0 will have a
special state that represents a constraint always satisfiable. It is encoded as the least element of σ
(which is not mentionned in the previous section since it is not used for specifying and proving the
algorithm). For vertex 0, the initial constraint depends on the kind of analysis that is performed.
When an instruction p is reached, a call (step′ p ss[p]) computes a new state t for each successor
q of p. The current state ss[q] is updated by (supσ t ss[q]). If ss[q] has actually been modified, q
is moved to the working list of the instructions to be examined again. The process goes on until
stability. Therefore, the stability of an instruction p with respect to a function state ss is defined
as follows:

(stable ss p) := ∀(q, t) ∈ (step′ p ss[p]), ss[q] ≥σ t
Kildall’s algorithm starts with any function state ss and the list (called (worklist ss)) of all in-
structions p that are not stable for ss. It calls a main loop, iterate, which takes as arguments a
function state ss and a working list w. Iterate examines each element p in w to make it stable.
This is achieved through a call to the propagation function propagate, which, for all successors q
of p, updates ss[q] and adds q to w if ss[q] has been changed.

6

(kildall ss) := (iterate (ss, (worklist ss)))
(iterate (ss, w)) := match w with

[]⇒ ss|
p :: w′ ⇒ (iterate (propagate ss w′ (step′ p ss[p])))

(propagate ss w l) := match l with
[]⇒ (ss, w)|
(q, t) :: l′ ⇒ if (supσ t ss[q]) = ss[q] then (propagate ss w l′)

else (propagate ss[q ← (supσ t ss[q])] q :: w l′)

It can be noticed that the propagation function is defined by a recursion on the structure of
its third argument. In contrast, function iterate is not defined by structural recursion. This
requires us to exhibit a well-founded order on pairs (ss, w), and a non-trivial building of iterate
from a termination proof. This is detailed in the second part of section 3.3. Lastly, remark that
although quite straightforward, the definition of propagate requires the equality to be decidable
on σ.

3.3 Encoding in Coq Kildall’s algorithm

As far as the algorithm’s specification in Coq is concerned, and comparatively to Klein and Nip-
kow’s work with Isabelle [Nip01, KN03], two main points must be emphazised: the use of dependent
types and the way of encoding function iterate. These are the essential differences and we shall
briefly discuss the advantages of each approach.

Specifying with dependent types As we have seen, function states are lists of states whose
length is meant to remain constant and equal to the number n of instructions in the function’s
bytecode. This data type is encoded quite naturally in Coq by a dependent type:

Inductive sized_list : nat -> Set:=

sd_nil : (sized_list 0)|

sd_cons : (∀ n:nat), α -> (sized_list n)-> (sized_list (S n)).

Notice that these lists are polymorphic: they depend on set α that is supposed to be declared as
a parameter in the current section. Outside the section, α is discharged and thus must appear
explicitly in the type. This specification avoids the presence of hypotheses of the form |ss| = n
in a great number of lemmas, all throughout the development. Similarly, we define inductively
the lexicographic order and the componentwise order on lists with a type that expresses that only
same-length lists can be compared:

lexn, <n : (sized_list n) -> (sized_list n) -> Prop

With this approach, we can prove by induction on parameter n that the lexicographic order is
well-founded provided the underlying order on the elements is well-founded. Since for all natural
numbers n, lexn is weaker than <n, we can conclude that <n is well-founded too.

Function succs computes the list of the successors of an instruction p. Instruction p and its suc-
cessors all must be natural numbers less than n. Instead of taking the hypothesis:

(∀p : nat), p < n→ (∀q : nat), q ∈ (succs p)→ q < n .
we define the type dep list of the lists the elements of which satisfy a certain predicate:

dep_list : (∀ α: Set)(α -> Prop) -> Set.

So, we obtain the type d list of the lists of natural numbers less than n as an instance of this
data type :

d_list : =λn:nat.(dep_list nat λp:nat.p<n)

Consequently, the types of functions succs, step, and step′ are the following:

7

succs : (∀ p : nat), p<n -> (d_list n)

step : (∀ p : nat), p<n -> σ -> (list σ)
step’ : (∀ p : nat), p<n -> σ -> (dep_list nat*σ λ(q,t):nat*σ.q<n)

As an example, a version without dependent types leads to establishing
propagate(ss, w, l) = (ss′, w′)→ |ss′| = |ss|

while this is implicitly stated in the type of function propagate in our development.

propagate: (sized_list σ n) -> (d_list n)-> (dep_list nat*σ λ(q,t):nat*σ.q<n) ->

(sized_list σ n) * (d_list n)

To be fair, this has been achieved through an increased effort on preliminary results, mainly
concerning lists (consequent libraries on lists with dependent types have been built). But doing
so, we “factorize” some proofs by moving them from specialized parts of the development to
generic ones. Thus they become reusable and they are performed once and for all. Moreover, let
us point out that not only the statements of the lemmas are simplified but also the proofs and
the use of the lemmas, since in their applications, fewer hypotheses must be shown to be satisfied.
However, using dependent types raises some difficulties. In such specifications there is a strong
interdependence between logical parts, namely proof terms elegantly expressing constraints on
data types, and purely computational parts. In practice one has to establish that these logical
parts are irrelevant as far as computational aspects are concerned. For example, as the elements
of lists of type dep list are pairs made of an element and a certificate, one must define a projection
:

dep_list_to_list : (∀ α:Set)(∀P: α -> Prop) (dep_list α P) -> (list α).

and an equivalence on dependent lists by:

l ≡ l’ := (dep_list_to_list l) = (dep_list_to_list l’)

The specification and the verification of Kildall’s algorithm are performed under the following
hypotheses:

(H1): (∀ p : nat)(∀ C: p < n)(∀ s:σ), |(succs p C)| = |(step p C s)|

(H2): (∀ p : nat)(∀ C,C’: p < n), (succs p C) ≡ (succs p C’)

(H3): (∀ s : σ) (∀ p: nat) (∀ C,C’: p < n), (step p C s) = (step p C’ s)

(H4): (∀ p : nat)(∀ C: p < n)(∀ s, t:σ), s≤σt -> (step p C s)≤(step p C t)

In (H4), ≤ stands for the componentwise relation on the standard lists. This hypothesis expresses
the monotonicity of function step.

Defining function iterate by well-founded induction The specification of function iterate
in Coq is not straightforward since this system only supports total functions defined by struc-
tural recursion. This specification must include a proof of termination within its structure. The
approach that we take here is due to Yves Bertot and Antonia Balaa [BB02]. The term is built
by approximations in a style inspired by Tarski’s fixpoint theorem. Here are the main steps for
constructing the term iterate.

1. We define a family of relations ≺n, that we prove to be well-founded, on the set of pairs
(ss, w): (sized list σ n)*(d list n)

by: (ss’,w’)≺n(ss,w) := (ss’>nss) ∨ (ss=ss’ ∧ (|w’| < |w|)

2. We prove that for all n-length function states ss, instructions p, proofs C : p < n, and
instruction lists w:

(propagate ss w (step’ p C ss[p])) ≺n(ss, p::w)

Thus, the recursive call in the evaluation of (iterate (ss, w)) is on an argument strictly less
than (ss, w) with respect to the well-founded relation ≺n.

8

3. Let F be the functional defined by:
(F f) = λ(ss,w) if w = [] then ss else

let (p, C)::w’ = w in (f (propagate ss w’ (step’ p C ss[p]))).

We prove that for any function bot on pairs (ss, w)

∀(ss, w) ∃v (∃k0:nat)(∀k> k0) (Fk bot (ss, w)) = v

For a given pair (ss, w) the proof is performed by induction on the fact that this pair is
accessible for relation ≺n, which follows from the well-foundedness of the relation.

4. A proof term of such a statement is a pair (f, h) where:
– f is a function which associates with each argument (ss, w) value v
– h is a proof that (∃k0:nat)(∀k> k0) (Fk bot (ss, w)) = v

By deconstructing such a pair, it is possible to forget the logical comment h and to get the
computational part of the term, that is program f .

5. This function f is in fact the function iterate that we intend to define. Indeed, we prove
that f satisfies the fixpoint equation (F f)=f.

This is to be compared with the specification in Isabelle. In an early version of their work
[Nip01], Klein and Nipkow used an opaque well-founded recursion whereas in a more elaborate
version [KN03] they express the function in terms of the predefined while-combinator of type :
(α⇒ bool)⇒ (α⇒ α)⇒ α⇒ α which satisfies the equation

while b c s = (if (b s) then (while b c (c s)) else s)

This equation is a directly executable functional program. It makes it possible to define functions
without proving any well-foundedness. However, to reason on such functions, establishing their
termination is mandatory. As a matter of fact, proving that a certain property Q holds on a
returned value (while b c s) is achieved through the following while-rule:

P s ∧ (∀s, P s ∧ b s ⇒ P (c s)) ∧ (∀s, P s ∧ ¬ b s ⇒ Q s) ∧ wf r ∧ (∀s, P s ∧ b s ⇒ (c s, s) ∈ r)
⇒ Q (while b c s)

Moreover, this approach only applies to tail recursive functions.

3.4 Correctness of Kildall’s algorithm

We mentioned that the greatest element > of σ stands for the error state. Therefore, all the
bytecodes whose analysis generates a function state containing > will be rejected. In order to
prove that only erroneous programs are rejected, we establish that Kildall’s algorithm produces
the least stable function state, greater than its argument (for relation <n). This is done by using
the monotonicity of function step. Now, how can this data flow analyzer be used for bytecode
verification? And first of all what does it mean that the bytecode is correct with respect to a
certain kind of analysis? This is expressed by a parameter wi to be later instantiated by a com-
patibility relationship between the instructions and a function state ss. For instance, in case of
type verification, if instruction of index p is the return instruction, (wi ss p) holds if and only
if the element on the top of stack ss[p] is less than or equal to the return type of the function.
Assuming the following relationship between predicates wi and stable:

(H5): ∀ss, > /∈ ss -> ((∀p: nat)(∀C: p<n), (wi ss p C) <-> (stable ss p C))

9

we can deduce the following two propositions:

> /∈ (Kildall ss) → (∀p : nat) (∀C : p < n), (wi (Kildall ss) p C) (1)

((∃ ts ≥n ss) (∀p : nat) (∀C : p < n), (wi ts p C)) → > /∈ (Kildall ss) (2)

We do not detail the proofs here. They are similar to that in [Nip01]. The differences are not in
the proof schemes themselves, but rather in the specification style.

4 Application to two static analyses

Let us now apply this algorithm to perform type and shape analyses on the function bytecodes
for the language introduced in section 2. We start by encoding in Coq the bytecode instructions
and the virtual machine. This part of the development is parameterized by the set name of the
names of types, functions, and constructors. The only axiom set on name is the decidability of
equality over it.

4.1 The virtual machine

Instructions It is assumed that every function in the program passed the following preliminary
verifications : for each instruction p, successors of p are valid indices in the function’s bytecode.
That condition falls into to parts :

• last instruction of a bytecode is not one of load j, call g ar, build c ar or branch c j (whose
successors contain the instruction which immediately follows it in the bytecode)

• jump indices j in branch c j instructions are less than the length of the bytecode

We choose to represent the bytecode programs by using the dependent type of lists of fixed length
n. This allows us to force the second condition directly in the instruction definition, by adding a
third argument of type j < n to instruction branch. Therefore, type instruction itself depends
on n. It is defined as follows:

Inductive instruction (n:nat) : Set :=

return : instruction n|

stop : instruction n|

load : nat -> instruction n|

call : name -> nat ->instruction n|

build : name -> nat -> instruction n|

branch : name -> forall (j:nat), j<n -> instruction n.

We can now introduce the following definition:

Definition bytecode:= (∀ n: nat), (sized list n (instruction n)).

As expected, the successors set of an instruction of index p is [p] for a return instruction, [] for
a stop instruction, [p + 1; j] for (branch c j), and [p + 1] otherwise. The function that computes
successors is encoded so as to produce lists of natural numbers less than n. It has type:

Succs: (∀ n: nat), (bytecode n) -> (∀ p: nat), p<n -> d list n.

We can easily prove that function succs:=(Succs n bc) fulfills condition (H2) in section 3.3.

Functions Type function is that of records of the form f̃ = mkfun(f, sigf , |f |, bcf), where

• f , of type name, is the name of the function.

• sigf , of type name*(list name), is the signature of the function. It is a pair made of the
return type, and the list of the arguments’ types.

10

• |f | is an integer that denotes the bytecode’s length.

• bcf is the bytecode of the function, of type (bytecode |f |).

For clarity, we describe record types in a simplified notation. For instance, if we denote by f̃ a
term of type function, f is an abbreviation for f̃.fun name. Similarly, sigf stands for f̃.fun sig,
|f | stands for f̃.fun size, and bcf stands for f̃.fun bytecode.

Another parameter in this part of the development is functions: (list function) that rep-
resents the list of the functions the program is made of. Elements of this list are assumed to fulfill
the following hypotheses :

(H6) : (∀~f : function), ~f ∈ functions → |f| > 0

(H7) : (∀~f : function), ~f ∈ functions → last return or stop bcf

Here, last return or stop is a predicate on lists of instructions that expresses that the last in-
struction of bcf (i.e. element at index |f | − 1) is either a return or a stop instruction.
Function Get function: name → (Opt function) will be used to find in list functions the
first record with name field f . Get function’s return type is optional to handle the case where no
function named f appears in the program.

Constructors The type, constructor is that of records c̃ = mkcons(c, retc, argsc), where

• c, of type name, is the constructor’s name.

• retc, of type name, is the name of the type built by c̃.

• argsc, of type (list name), is the list of the types of its arguments.

As for functions, parameter constructors: (list constructor) contains all the constructors
declared in the program. Get constr plays for constructors a role similar to Get function for
functions.

Frames Their type frame is that of records f̄ = mkfr(f, pcf , stackf , argsf), where

• f is the name of the function being evaluated in f̄ .

• pcf is the index of the current instruction.

• stackf , of type (list value), is the value stack.

• argsf , of type (list value), is the initial stack, i.e. the arguments on which function f̃ is
evaluated.

Type value is that of trees the nodes of which are elements of type name. The fourth component
in a frame does not appear in the description of the virtual machine as given in section 2. It
must be considered as a dummy field without any computational relevance. It will only be used
to achieve proofs. Let us point out that with these simplified notations, given a term f̄ of type
frame, f is an abbreviation for f̄.frm name. Similarly bcf will stand for x.fun bytecode where
(Get function f̄.frm name) = (Some x). Therefore, invoking bcf given a frame f̄ implicitly in-
duces the presence of a function named f̄.frm name in parameter functions.

Configurations Type configuration aliases (list frame) and it represents the machine states at
runtime. The top frame (i.e. the most recent one) is the head of this list. The empty configuration
[] represents an erroneous configuration. The instructions’ semantics (see section 2) is encoded by
a predicate reduction on the configurations. Let us take instruction call as illustrative example.
Its formal semantics is expressed by the rule:

11

pcf < |f | bcf [pcf] = call g ar g ∈ functions stackf = [var; . . . ; v1] :: l

(f, pcf , stackf , argsf) :: M → (g, 0, [var ; . . . ; v1], [var; . . . ; v1]) :: (f, pcf , l, argsf) :: M
(3)

Predicate reduction is defined inductively in Coq. Here is the constructor for instruction call :

red call : (∀ M : configuration) (∀ f̄ : frame) (∀ x,y : function)

(∀ g : name) (∀ ar:nat) (∀ args, l : list value),

Get_function f = Some x ->

x.fun_bytecode[pcf] = Some (call x.fun_size g ar) ->

Get_function g = Some y ->

split_k_elements ar stackf = Some (args, l) ->

(reduction f̄:: M (mkfr(g,0,args,args)::mkfr(f,pcf,l,argsf)::M).

Here, (split k elements k l) returns an optional pair Some (lk, lr), with l = lk@lr and |lk| = k
if |l| ≥ k, None otherwise. Condition pcf < |f | is implicitly expressed by the fact that the pcth

f

element of the bytecode of f is of the form (Some . . .). We can now express that a predicate is
invariant by reduction :

(invariant P):= (∀ M M’: configuration), (P M) → (reduction M M’) → (P M’)

Well-formed configurations Predicate wellformed configuration holds on all configurations
M that satisfy both conditions wf1 and wf2:
(wf1) for each frame f̄ in M , (Get function f̄ 6= None) and pcf < |f |
(wf2) for each pair of consecutive frames (f̄ , h̄) in M , frame f̄ has been created by the last eval-
uated instruction in frame h̄, i.e. bch[pch] = Some (call |h| f |argsf |)

This predicate enjoys the following property, proved by case analysis on the reduction rule applied:

Lemma 1 Predicate wellformed configuration is invariant by reduction.

Executions are defined by an inductive predicate
execution: name -> (list value) -> (list configuration) -> Prop

such that (execution f args L) holds if and only if L is an initial segment of the history of the
configurations met when running the program that computes function f on arguments args. It is
introduced by two constructors:
ex1 : (∀f: name)(∀args: (list value)), (execution f args [mkfr(f,0,args,args)])

ex2 : (∀f: name)(∀args: (list value))(∀ L: (list configuration))

(∀ M, M’: configuration), (execution f args (M:: L)) -> (reduction M M’) ->

(execution f args (M’:: M:: L))

It is shown that all properties P preserved through reduction are satisfied by all the configu-
rations of an execution, provided P is true on the initial configuration :

Lemma 2 (∀P: configuration -> Prop) (∀f: name)(∀args: (list value)),

(P [mkfr(f,0,args,args)]) -> (invariant P) ->

(∀L: (list configuration)), (execution f args L)->

(∀M: configuration), M ∈ L -> (P M)

This statement is proved by induction on term (execution f args L).

Results and errors By definition, (config result M v) is satisfied if and only if
– configuration M contains an only frame f̄ ,
– the instruction of rank pcf in the bytecode of function named f is a return instruction,
– value v is the top element of value stack stackf .
Similarly, an erroneous configuration is either the empty configuration, or a configuration on which
no reduction can be performed and such that ∀v : value, ¬(config result M v).

12

4.2 Type verification

Type instantiation We instantiate Kildall’s generic algorithm in order to obtain a type verifi-
cation algorithm called KildallT. This is done inside a Coq section parameterized by a function
f̃ : function. Therefore, in the terms introduced now, parameter f̃ will be either implicit (inside
the Coq section) or explicit (when they are referred to outside the Coq section). As usual, bcf

denotes the bytecode of f̃ and Rt = (fst sigf) denotes its return type. Terms of type σT may be
either abstract stacks encoded as lists of type names, or a special element >T that stands for an
erroneous state, or ⊥T that reflects the absence of constraints.

Inductive σT : Set := >T : σT | ⊥T : σT | Types : (list name) -> σT .

Relation >σT
is the flat order: >T is the greatest element, ⊥T is the least element, and all the

other elements are incomparable. KildallT will be run on the initial function state

(initT f̃) := (Types (reverse(snd sigf)))::[⊥T; . . . ;⊥T]

since, when starting the analysis, the only constraint is to call the function with well typed
arguments. The flow function step is instantiated by a function StepT defined by cases on bc[p].
For lack of space we only present the case of instruction return.

(StepT p C s) := match bcf[p] with

return => match s with

⊥T => [⊥T] | >T => [>T] |

(Types l) => match l with

[] => [>T]|

Ret::t => if Ret=Rt then [s] else [>T]

Predicate wi is instantiated by a predicate Wti that specifies whether instruction p in bytecode bc
is well-typed with respect to function state ss. As for StepT , we only give the case related to the
return instruction.

(Wti ss p C) := match ss[p] with

>T => False | ⊥T => True |

Types l => match bcf[p] with

return => match l with

Ret::t => if Ret = Rt then True else False |

_ => False

It is now mandatory to prove that the hypotheses taken in 3 are fulfilled by these terms. More
precisely, we establish that function StepT is monotone, that (StepT p C s) does not depend on
certificate C, that (σT , >σT

) has the expected properties, and lastly that Wti coincides with stable
on all top-free function states. Though some of these proofs are long, none is difficult. They will
not be shown here. We have now at our disposal a certified type verifier, program KildallT , such
that:

>T /∈ (KildallT ss) → (∀p : nat) (∀C : p < n), (Wti (KildallT ss) p C) (4)

((∃ ts ≥n ss) (∀p : nat) (∀C : p < n), (Wti ts p)) → >T /∈ (KildallT ss) (5)

We can now establish two kinds of results for programs that have passed successfully the type
analysis: a well-typedness property on the executions and a progress property.

Well-typed frames Let us assume that every function in the program has passed the type
verification, that is:

(H8) ∀~f : function, ~f ∈ functions→ >T /∈ (KildallT ~f (initT ~f))

13

Then we introduce the notion of well-typed frames. Let f̄ be a frame and f̃ the function re-
trieved in parameter functions from the function name appearing in f̄ . Frame f̄ is well-typed if
and only if the types of the elements in its value stack actually are those in the abstract stack of
index pcf in the function state computed by (KildallT f̃ (initT f̃)):

welltyped frame f̄:= stack typing stackf (KildallT f̃ (initT ~f))[pcf]

Well-typed configurations The notion of well-typedness is extended to configurations. A con-
figuration satisfies predicate welltyped configuration if and only if:
wt1 : M is a well-formed configuration,
wt2 : the top frame of M is well-typed,
wt3 : for each pair of consecutive frames (f̄ , h̄) in M , frame mkfr(h, pch, argsf@stackh, argsh)
is well-typed.

As a matter of fact, no frame in a valid configuration, except the top one, is well-typed. They are
in an intermediate state, in which the current instruction is a function call, but the arguments
of the function have been popped out from the stack. The main results are in the following three
lemmas. For lack of space we do not detail the proofs.

Lemma 3 Predicate welltyped configuration is invariant by reduction.

Lemma 4 All configurations in all executions are well-typed provided the initial function call
occurs on well-typed values.

Lemma 5 (Progress) (∀M : configuration),(welltyped configuration M)->

(M = [])∨(∃v: value), (config result M v)∨(∃M’: configuration), (reduction M M’)

4.3 Shape verification

4.3.1 Shape instantiation

Since shape verification is done by performing a symbolic execution, it handles algebraic expressions
built from variables, function names and constructor names. We shall consider distinguished ex-
pressions called patterns, in which no function symbol occurs. Fresh variables created by an
instruction (branch c) at rank p, with a m-ary constructor c, and a stack of height h, will
be xp,h, . . . , xp,h+m−1. Similarly, initial arguments in the symbolic execution of a m-ary function
are x0,0, . . . , x0,m−1. Set name of constant symbols is extended to a set Name that contains both
constants symbols and variables.

Inductive Name: Set := x : nat→ nat→ Name | symbol: name → Name

Type Expression will be that of trees whose nodes and leaves are marked with elements of Name.
Elementary substitutions (of type subst elem) are records made of two variable indices and an
expression. We will note {xi,j ← expr} such an elementary substitution. As substitutions are
compositions of elementary substitutions, type Substitution is that of lists of elementary substi-
tutions. Various functions are defined to handle expressions and substitutions :

• apply elem tree and apply respectively apply an elementary substitution and a substitu-
tion to an expression.

• (fresh p h m) returns a forest of single-node trees xp,h, . . . , xp,h+m−1.

• (init vars f̃) is the list of expressions [x0,m−1; . . . ; x0,0] with m = |snd sigf |

• init subst:nat->nat->(list value)->(Opt Substitution). Term (init subst h m args)

is the substitution that matches variables x0,h, . . . , x0,h+m−1 with args, that is the list
[{x0,h+m−1 ← args[0]}; . . . ; {x0,h ← args[m− 1]}]. It equals None if |args| 6= m.

14

• tree is pattern: Expression -> Prop indicates whether its argument is a pattern or
not.

• make substitution: (forest Name)->(forest name)->(Opt Substitution)matches a
forest of expressions with a forest of values.

As in section 4.2, all terms introduced in the sequel of this section are implicitly parameterized
by a given function f̃. Kildall’s algorithm is particularized, resulting in algorithm KildallS. The
new state type σS is defined by:

Inductive σS:Set:= >S : σS | ⊥S : σS | Shapes: Substitution->(list Expression)->σS.

As for types, relation >σS
is the flat order over σS . KildallS will be run on initial function state

(init S f̃) := (Shapes [] (init vars f̃))::[⊥S; . . . ;⊥S]

Let us now describe function StepS when instruction of index p is a branch instruction, which is
the most interesting case. The formal semantics of instruction branch is defined by two rules:

pcf < |f | bcf [pcf] = (branch c) stackf = c(a1, . . . , am) :: l

(f, pcf , stackf , argsf) :: M → (f, pcf + 1, [am; . . . ; a1]@l, argsf) :: M
(6)

pcf < |f | bcf [pcf] = (branch c j) stackf = d(. . .) :: l c 6= d

(f, pcf , stackf , argsf) :: M → (f, j, stackf , argsf) :: M
(7)

In the definition below, given in a simplified form, c and d are constructor names and x is a
variable.

(StepS p C s) = match bcf[p] with (branch c j) =>

match s with (Shapes S l) =>

match l with

d(e1, ...,em)::l’ => if c = d then

[(Shapes S [em; ...;e1]@l’); ⊥S]

else

[⊥S; s] |

x::l’ => if ‘‘c is a constructor name’’ then

let (m = arity c) in

let vars = (fresh p |l| m) in

let subst = {x ← c(vars)} in

let l’’ = (map (apply elem subst subst) l’) in

[(Shapes (subst::S) (reverse vars)@l’’ ; s]

else [>S; >S] |

_ => [>S; >S]

Lastly, parameter wi is instantiated by Wshi. We describe below the part of its definition related
to instruction branch. One can observe that the definitions of StepS and Wshi are much alike.

(Wshi ss p) = match ss[p] with (Shapes S l) =>

match bcf[p] with (branch c j) =>

match l with

d(e1, ...,em)::l’ => if c = d then ss[p+1] = (Shapes S [em;...;e1]@l’)

else ss[j] = ss[p] |

x::l’ => if ‘‘c is a constructor name’’ then

let (m = arity c) in

let vars = (fresh p |l| m) in

let subst = {x ← c(vars)} in

15

let l’’ = (map (apply elem subst subst) l’) in

ss[p+1]= (Shapes subst::S (reverse vars)@l’’)

∧ ss[j] =ss[p]

else False |

_ => False

From section 3.4, we deduce the following two results:

>S /∈ (KildallS ss) → (∀p : nat)(∀C : p < n), (Wshi (KildallS ss) p C) (8)

(∃ ts ≥n ss (∀p : nat)(∀C : p < n), (Wshi ts p C)) → >S /∈ (KildallS ss) (9)

Well-shaped frames Let us assume that every function in the program has passed both the type
and shape verifications, that is:

(H9): (∀~f : function), (~f ∈ functions) → >S /∈ (KildallS ~f (initS ~f))

We introduce the notion of well-shaped frames. Let f̄ be a frame and f̃ be the function re-
trieved in parameter functions from the function name appearing in f̄ . Frame f̄ is well-shaped if
and only if the elements in its value stack actually match the expressions in the symbolic stack of
index pcf in the function state computed by (KildallS f̃ (initS f̃)). More precisely, assuming
that (KildallS f̃ (initS f̃))[pcf] = (Shapes S l), there exists a substitution ρ such that :

• ρ results from the matching of the actual arguments argsf in the function call and

(map (apply S) (init vars f̃)).

• l and stackf are same length.

• For each pattern pj of rank j in the symbolic stack l, if vj denotes the value of same rank in
the value stack stackf then vj = (apply ρ pj).

Well-shaped configurations Similarly to what has been done for type verification, the notion of
well-shapedness is extended to configurations. Configuration M satisfies predicate
wellshaped configuration if and only if:
wsh1 : M is a well-typed configuration,
wsh2 : the top frame of M is well-shaped,
wsh3 : for each pair of consecutive frames f̄ h̄ in M , frame (h, pch, argsf@stackh, argsh) is well-
shaped.

We establish the following two lemmas that are the analogous of lemmas 3 and 4 in section 4.2.

Lemma 6 Predicate wellshaped configuration is invariant by reduction.

Lemma 7 All configurations in all executions are well-shaped provided the initial function call
occurs on well-typed values.

Lemma 7 is a straightforward corollary of lemma 6. But proof of lemma 6 is quite long. It is
performed by case analysis on the reduction rule that is applied. We detail the case of rule 6 in
appendix A.

Let us mention that, as an instruction branch performs a pattern matching on the top of the
current stack, the symbolic analysis only makes sense if the top of this stack is a pattern. This
condition is not too restrictive and is fulfilled by all the bytecode programs produced by our
compiler. In case of untrusted bytecode, it can be easily checked by scanning the function state
computed by (KildallS f̃ (initS f̃)). Consequently, we will assume that:

(H10) For all function f̃ in the program that passed the shape analysis, the expression on the
top of the symbolic stack on which a branch instruction is performed is a pattern.

16

5 Conclusion

In other work, such as those cited in the introduction, the java bytecode verifier has been described
as an instance of a generic data flow analyser. Here, we really make use of such a generic approach
since we apply it to two distinct kinds of static analyses, and we intend to extend it to a third
one. All of them are part of the same system designed to ensure bounds of the memory used when
executing a program.
Let us point out that Kildall’s data flow analyser is much more powerful than needed for our
language, since it accomodates any state space which is a well-founded lattice (this is the case of
the type lattice for languages with subtyping). In this paper, we only deal with flat lattices and
the functions’ flow graphs are supposed to be trees. We intend in the near future to allow bytecode
optimisations, code sharing, and to enrich the language with object features. This is why we have
treated carefully the generic part of this work. Moreover, such a functional specification of the
broadly used Kildall’s algorithm is of general interest. In this field, the work closest to ours is
that of Klein and Nipkow’s [Nip01, KN03], and a detailed comparison is given in section 3. Let
us also mention the work of Barthe and al. [BDJMdS02] where an “abstract virtual machine” for
the JavaCard language is specified in the Coq Proof Assistant.
The whole Coq development consists of 14000 lines among which 1900 are related to the generic
Kildall’s algorithm, 2500 to type analysis, 5500 to shape analysis, and 2600 to dependent lists.
This shows in particular that the second verification is much more complex than the first one.
Coq files will be available at the URL: http:://www.cmi.univ-mrs.fr/∼solange.

References

[ACGDZJ04] Roberto M. Amadio, Solange Coupet-Grimal, Silvano Dal-Zilio, and Line Jakubiec.
A functional scenario for bytecode verification of resource bounds. In CSL, pages
265–279, 2004.

[BB02] Antonia Balaa and Yves Bertot. Fonctions récursives générales par itération en
théorie des types. In Journées Francophones pour les Langages Applicatifs, January
2002.

[BDJ+01] Gilles Barthe, Guillaume Dufay, Line Jakubiec, Bernard P. Serpette, and
Simão Melo de Sousa. A formal executable semantics of the javacard platform.
In ESOP, pages 302–319, 2001.

[BDJMdS02] Gilles Barthe, Guillaume Dufay, Line Jakubiec, and Simão Melo de Sousa. A for-
mal correspondence between offensive and defensive javacard virtual machines. In
Verification, Model Checking, and Abstract Interpretation, VMCAI, volume 2294 of
Lecture Notes in Computer Science. Springer, 2002.

[Gol98] Allen Goldberg. A specification of java loading and bytecode verification. In ACM
Conference on Computer and Communications Security, pages 49–58, 1998.

[Kil73] Gary Arlen Kildall. A unified approach to global program optimization. In ACM
Symposium on Principles of Programming Languages, pages 194–206, 1973.

[KN03] Gerwin Klein and Tobias Nipkow. Verified bytecode verifiers. Theoretical Computer
Science, 298:583–626, 2003.

[Mar00] Jean-Yves Marion. Complexité implicite des calculs de la théorie à la pratique. PhD
thesis, Habilitation à diriger des recherches, Université Nancy 2, December 2000.

[Nip01] Tobias Nipkow. Verified bytecode verifiers. In M. Miculan F. Honsell, editor, Foun-
dations of Software Science and Computation Structures (FOSSACS 2001), volume
2030 of LNCS, pages 347–363. Springer-Verlag, 2001.

17

A Proof of lemma 6

Let f̃ be a function having passed the shape analysis and let us define ss = (KildallS f̃ (initS f̃)).
From hypothesis (H9) (section 4.3), we know that ss does not contain >S , and from proposition
(8) (also in in section 4.3) we deduce that

∀p < |f |, (Wshi ss p) (10)

Let M and M ′ be two configurations such that (reduction M M’) holds. Assuming that M is well-
shaped, we have to prove that M ′ is well-shaped. We proceed by case analysis on the rule applied
in the derivation of (reduction M M’). We will focus on the sole rule reduction (6). We know that:

M = f̄ :: M0, stackf = c(a1, . . . , am) :: l and M ′ = (f, pcf + 1, [am; . . . ; a1]@l, argsf) :: M0.
Moreover, bcf [pcf] = (branch c). f̄ being well-shaped, ss[pcf] = (Shapes S (e :: L)) and there

exists a substitution ρ that matches argsf and (map (apply S)(init vars f̃)), that is :

(map (apply ρ) (map (apply S) (init vars f̃))) = argsf
1 (11)

Moreover, we also have :
|e :: L| = |stackf | (12)

Lastly, for each pattern pj of rank j in the symbolic stack e :: L, if vj denotes the value of same
rank in the value stack stackf then

vj = (apply ρ pj). (13)

In particular, since e is a pattern from (H10) (see section 4.3), we have (apply ρ e) = c(a1, . . . am),
and thus, we deduce that:

(e is a variable) ∨ (e = c(e1, . . . , em) ∧ ∀i ∈ {1, . . . , m} (apply ρ ei) = ai) (14)

From lemma 3, M ′ satisfies wsh1. It can be shown without difficulty that wsh3 is also satisfied by
M ′. Let us consider condition wsh2. We have thus to prove that frame
(f, pcf + 1, [am; . . . ; a1]@l, argsf) is well-shaped, that is:

(a) ss[pcf + 1] = (Shapes S′ L′)

(b) |L′| = |[am; . . . ; a1]@l|

(c) there exists a substitution ρ′ such that
(map (apply ρ′) (map (apply S′) (init vars f̃))) = argsf .

(d) for each pattern pj of rank j in the symbolic stack L′, if vj denotes the value of same rank in
the value stack [am; . . . ; a1]@l, then vj = (apply ρ′ pj)

From (10) we know that (Wshi ss pcf). From (14) and from the definition of Wshi, we have:

– either e = c(e1, . . . , em), then ss[pcf + 1] = (Shapes S [em; . . . ; e1]@L). In this case, con-
ditions (a) and (b) are immediately satisfied. Conditions (c) and (d) are fulfilled by choosing
ρ′ = ρ.

– or e is a variable. Let e = x. In this case,

(i) ss[pcf + 1] = (Shapes subst :: S (reverse vars)@SL) where:

(ii) vars = (fresh pcf |e :: L| m). This call to function fresh generates m fresh variables in the
way described in section 4.3. For readability, in this proof we denote them x1, . . . , xm, and
we assume that they are actually fresh. The freshness of the generated variables is formally
proved in Coq in a non trivial lemma.

1Here, args is the conversion of a list of values into a list of expressions. This is just syntax, since values can be

injected in expressions, and not relevant for the proof.

18

(iii) subst = {x← c(x1, . . . , xm)}

(iv) SL = (map (apply elem subst subst) L)

Again, conditions (a) and (b) are trivially satisfied.
Let Σ = [{x1 ← a1}; . . . {xm ← am}] and ρ′ = ρ@Σ. Establishing condition (c) amounts to
prove, from (11), that for all variables y in (init vars f̃):

(apply ρ@Σ@(subst :: S) y) = (apply ρ@S y)
Let us pose (apply S y) = expr[x, y1, . . . , yk] where expr is a context and x, y1, . . . , yk are the
variables occurring in the expression. By definition,

(apply (subst :: S) y) = expr[c(x1, . . . , xm), y1, . . . , yk].
Since x1, . . . , xm are fresh, we can deduce the following two equalities, that are proved by using
several Coq auxiliary lemmas:
(apply Σ@(subst :: S) y) = expr[c(a1, . . . , am), y1, . . . , yk]
(apply ρ@Σ@(subst :: S) y) = expr[c(a1, . . . , am), (apply ρ y1), . . . , (apply ρ yk)] =

expr[(apply ρ x), (apply ρ y1), . . . , (apply ρ yk)] = (apply ρ expr[x, y1, . . . , yk] = (apply ρ@S y)

Let us now consider condition (d). By hypothesis (13), substitution ρ matches all patterns in
x :: L with the value of same rank in c(a1, . . . , am) :: l. We have to prove the similar property for
substitution ρ@Σ and stacks [xm; . . . ; x1]@L and [am; . . . ; a1]@l. We can easily conclude from the
fact that variables x1, . . . , xm are fresh.

The proof of the whole lemma in Coq takes approximatively 1,000 lines. It uses a lemma concerning
function fresh whose proof takes 2,000 lines.

19

