
LIF

Laboratoire d’Informatique Fondamentale

de Marseille

Unité Mixte de Recherche 6166
CNRS – Université de Provence – Université de la Méditerranée

Controllers from proofs:

An alternative approach to control synthesis

for µ-calculus specifications

Nicolas Baudru and Peter Niebert

Rapport/Report 23-2004

October 21, 2004

Les rapports du laboratoire sont téléchargeables à l’adresse suivante

Reports are downloadable at the following address

http://www.lif.univ-mrs.fr

Controllers from proofs:

An alternative approach to control synthesis

for µ-calculus specifications

Nicolas Baudru and Peter Niebert

LIF – Laboratoire d’Informatique Fondamentale de Marseille

UMR 6166

CNRS – Université de Provence – Université de la Méditerranée

Laboratoire d’Informatique Fondamentale (LIF) de Marseille
Université de Provence – CMI

39, rue Joliot-Curie / F-13453 Marseille Cedex 13

[baudru,niebert]@cmi.univ-mrs.fr

Abstract/Résumé

Given a ”plant” S, the control synthesis problem can be understood as the search
for a component C such that the combined system S × C meets a specification
ϕ. The properties may range from simple reachability constraints to arbitrary fi-
nite state branching time properties such as specified in the µ-calculus. Previous
works typically combine the (finite state transition) system S and the specifi-
cation of the desired behavioural property ϕ into a specification ψ(S, ϕ) of the
controller C to be synthesized.

In a twist to this setting, we show how the control synthesis problem can be
presented as controllability problem for the uncontrolled system S, i.e. we give
a simple transformation of the control goal ϕ specification into a property ς(ϕ)
such that any system S satisfies ς(ϕ) iff a controller C exists such that S × C
satisfies ϕ. S |= ς(ϕ) can then be established by model-checking and we also
show how to extract C from the result (tableau) of the model-checking process.

The proof technique used for the main theorem is based on transformations
of proofs (tableaus) and may have an interest of its own. Beyond model-checking,
and beyond previous works on control synthesis for the µ-calculus, our approach
may also be applied to the algorithmic construction of controllers for provably
controllable infinite state systems. However, we see the main potential advan-
tage in opening an easy way of implementing general control synthesis in existing
model-checking frameworks (like Spin, Murφ or CADP), including application
of model-checking heuristics that may provide reduced size controllers.

Keywords: control synthesis, µ-calculus, model-checking, approximations, dis-
junctive formulas, control formulas.

Etant donné un système S, le problème de la synthèse de contrôleurs peut
être compris comme la recherche d’un composant C tel que le système combiné
S × C rencontre une spécification ϕ. Les propriétés considérées peuvent aussi
bien être de simples contraintes d’accessibilité que des propriétés temporelles
arborescentes à état finis spécifiées dans le µ-calcule. Les travaux précédents
combinent un système (de transition à états finis) S et une spécification de la
propriété comportementale désirée ϕ en une spécification ψ(S, ϕ) du contrôleur
C à synthétiser.

Notre approche diffère des précédentes: nous montrons que le problème de la
synthèse de contrôleurs peut être présenté comme un problème de contrôlabilité
du système à contrôler S: nous présentons une simple transformation de la
spécification ϕ exprimant le but du contrôle en une propriété ς(ϕ) telle qu’un
système S satisfait ς(ϕ) ssi un contrôleur C tel que S × C satisfait ϕ existe.
S |= ς(ϕ) peut être alors établie par model-checking et nous montrons comment
extraire C à partir du résultat (tableaux) du processus de model-checking.

La technique de preuve utilisée pour le théorème principal est basée sur
des transformations de preuves (tableaux) et présente un intérêt en soi. Au-
delà du model-checking, et au-delà des précédents travaux sur la synthèse de
contrôleurs pour le µ-calcule, notre approche peut être aussi utilisée pour la
construction algorithmique de contrôleurs pour des systèmes contrôlables avec
un espace d’états infini. De plus, nous verrons que le principal avantage de notre
méthode est qu’elle permet une implémentation facile du problème de la synthèse
de contrôleurs dans des domaines particuliers du model-checking (comme Spin,
Murφ ou CADP), incluant des heuristiques qui peuvent réduire la taille des
contrôleurs.

Mots-clés : synthèse de contrôleur, µ-calcule, model-checking, approximations,
formules disjunctives, formules de contrôles.

Relecteurs/Reviewers: Luigi Santocanale and Rémi Morin.

3

1 Introduction

Control synthesis addresses the question of finding (if it exists) a controller C for
a “plant” S such that the combination S × C of plant and controller satisfies a
desired behavioural property ϕ, written S×C |= ϕ. Originally, it was introduced
by Ramadge and Wonham [9] for the problem of avoiding undesired states where
it was shown how such controllers can be computed. The verification community
has subsequently identified this question as being related to synthesizing parts
of an open system. A huge body of work both fundamental and pragmatic has
emerged from this question. In particular, it has been found that the proper-
ties amenable to automatic synthesis can be extended to arbitrary finite state
branching time properties such as the µ-calculus [2].

These works, but also older works for synthesizing processes from a context
and a specification [1,6] typically transform the problem S×? |= ϕ into an equiv-
alent problem ? |= ψ(S, ϕ), i.e. a specification ψ(S, ϕ) that a transition system
must fulfill to be a controller for S and the desired property ϕ. Then, a satisfia-
bility problem has to be solved for ψ(S, ϕ), which – if the system is controllable
as desired – yields a controller.

In this work, we show that a twist to this problem is possible where the exis-
tence of a controller for some system S and behavioural property ϕ is rewritten
as a property ς(ϕ) of S, i.e. S |= ς(ϕ) iff there exist a C such that S × C |= ϕ.
It is noteworthy that this comes with a transformation ς(ϕ) which is completely
independent of S and that the existence of a controller is now presented as a ver-
ification problem (rather than a synthesis problem). In contrast to previous work
it is therefore not excluded that S is an infinite state system, in which human
aided proof may replace fully automatic model-checking. However, throughout
this work we assume full observability of the plant states. We intend to consider
partial obserbability in future work.

Both model-checking or human aided proof produces as a side effect a tableau
or proof object we call derivation graph here. In a second step, we show how to
construct a controller directly from the derivation graph of S |= ς(ϕ), the con-
troller thus has at most the size (or, for infinite state systems, at most the
algorithmic space and time complexity) of the derivation graph. In the case of S
finite, we obtain confirmation of the published bounds on the decision and size of
the controllers. However, the smaller proofs give smaller controllers. This opens
a very appealing perspective: The collected knowledge about heuristic accelera-
tions in model-checking (abstractions, symmetry reduction, symbolic state space
representations like BDDs, ...) may then service the search for smaller proofs and
smaller controllers, essential for applicability in bounded resource situations. We
intend to further explore this question in the future.

The formal framework of this work relies on transition systems, synchronous
products and the µ-calculus as specification logic. More precisely, we consider
µ-calculus formulas in a normal form called disjunctive formulas [5]. The normal

4

form, avoiding conjunctions between behavioural parts of the specification1, is
essential for an easy translation ς(ϕ). Janin and Walukiewicz [5] have shown
that any µ-calculus formula can be transformed into an equivalent disjunctive
formula, at the price of an exponential blowup and the introduction of alter-
nations (between least and greatest fixpoints) in the formula. However, from a
pragmatic perspective it is possible to code many interesting control problems
directly as a disjunctive formula, as we will discuss. In summary, the translation
of an arbitrary µ-calculus formula ϕ to a controllability-formula ς(ϕ) is done in
two steps, first the passage to an equivalent disjunctive formula ϕ′ (technically
difficult and with an exponential blowup, yet already extensively treated in the
literature) followed by a second – and much easier step – of the transformation
of disjunctive ϕ′ to a control formula. In this work we only need to discuss the
second step.

Given disjunctive formulas, our translation ς encodes the capabilities of the
controller. We obtain a µ-calculus formula ς(ϕ) that has a tightly similar struc-
ture and – depending on the control problem – at most a linear blowup in size
(with sharing).

We assume a model-checking procedure that computes a derivation graph
(tableau/proof object), a low level circular structure consisting of pairs (s, α),
s a state and α a “sub-formula” (in a certain sense) of ς(ϕ), a subgoal in the
justification why ς(ϕ) holds at the initial state of S. In [10], the existence of
derivation graphs is shown to be an alternative semantics for the µ-calculus,
even for infinite state systems.

For finite state systems, if S |= ς(ϕ) then the model checking algorithm will
find a derivation graph for it. From this derivation graph, we construct at the
same time C and a derivation graph proving S ×C |= ϕ. In fact, every derivation
graph gives thus a controller and the freedom in the construction of the derivation
graph provides a corresponding freedom for the construction of a controller.

If to the contrary S 6|= ς(ϕ) then – due to closure under negation of the
µ-calculus – according to [10], there exists a derivation graph for S |= ς(ϕ). We
then show how to construct from this derivation graph for any finite state or
infinite state system C a derivation graph for S × C |= ϕ, hence S × C 6|= ϕ and
no controller exists.

Both directions of our proof are thus based on transformations of derivation
graphs which turn out once more to be an excellent tool for reasoning about the
µ-calculus.

The rest of this article is structured as follows: In Section 2, we formalize the
control synthesis problem treated in this paper, control synthesis for synchronous
discrete event systems with full observability. In Section 3, we introduce the µ-
calculus and the normal forms important to this work. In Section 4, we recall
known notions from model checking as well as the derivation graph character-
isation of [10]. Section 5 contains the main technical contribution, translation

1 In terms of tree automata, the formulas correspond to non-deterministic automata
after the elimination of alternations

5

to control formulas, controller synthesis and correctness proofs. In Section 6, we
discuss the applicability of our approach to an action based setting.

In the future we intend to explore extensions of the current framework to
partial observability and we intend to explore the approach experimentally in
combinations with model checking heuristics.

2 The control synthesis problem

We address the control synthesis problem for synchronous discrete event systems
under the assumption of complete observability. I.e. we assume that the controller
has by observation of events complete information of the system state and that
the system and the controller “take turns”. This setting applies to a number
of industrial control problems, notably error handling in production plants. In
Section 6, we discuss applicability to variants of this basic control problem.

As formal framework, we introduce the notion of controllable state transition
system.

Definition 1. A transition system over a set of actions Σ is a tuple T =
(S, s0, δ) where S is a set of states, s0 ∈ S is the initial state and δ ⊆ S ×Σ×S
is the transition relation. We say that T is deterministic iff for each s ∈ S and
a ∈ Σ there is at most one s′ ∈ S such that (s, a, s′) ∈ δ.

The set of accessible states A ⊆ S is inductively defined as the least set such
that s0 ∈ A and for each s ∈ A, (s, a, s′) ∈ δ implies s′ ∈ A.

The synchronous product of two transition systems T1 = (S1, s
1
0, δ1), T2 =

(S2, s
2
0, δ2) is the transition system T1 × T2 = (S1 × S2, (s

1
0, s

2
0), δ×), where

((s1, s2), a, (s
′
1, s

′
2)) ∈ δ× iff (s1, a, s

′
1) ∈ δ1 and (s2, a, s

′
2) ∈ δ2.

A controllable state transition system S = (S,C, s0, δ) is a deterministic
transition system (S, s0, δ) with a subset C ⊆ S of controllable states.

A controller for S is a transition system T = (S′, s′0, δ
′) such that for any

accessible state (s, s′) in the synchronous product S × T with s /∈ C and
(s, a, s1) ∈ δ1 there also exists s′1 ∈ S′ such that (s′, a, s′1) ∈ δ′.

Determinism is the formalization of complete observability: A given path labeling
a1 . . . an in the synchronous product S × T corresponds to only one state of the
system S. The definition of a controllable state transition system and a controller
informally describes as “controlling” restricting the transitions in controllable
states.

3 The propositional µ-calculus

As a logic for the specification of behavioural properties of transition systems,
we use the propositional µ-calculus as introduced by Kozen [7]. Behavioural
properties are properties that combine static state properties with a means of
specifying the dynamic behaviour of the system in passing from one state to
another.

6

In order to specify the state properties of a transition system, we assume a
set A of atomic propositions that hold at certain states and not at others, i.e.
we consider for a transition system T = (S, s0, δ) a function v : A → 2S.

In addition to the set A = {p, q, r, . . .} of atomic propositions we assume a
disjoint set of variables V = {X,Y, Z, . . .} for recursive definitions. The variant of
the µ-calculus we use in this work is then defined to be the least set of formulas
of one of the following forms :

X |p|¬p|
∧
Φ|

∨
Φ|�α|♦α|µX.α|νX.α

where p ∈ A is some atomic proposition, Φ is itself a finite set of formulas, α
is a formula, and X ∈ V is some variables. We also write binary conjunctions
(α1 ∧ α2 =

∧
{α1, α2}) and disjunctions (α1 ∨ α2 =

∨
{α1, α2}).

In the following, α, β, α1 ... will denote formulas., X ,Y , X1 ... variables and
p, q, p1, ... the atomic propositions. We will use σ to denote either the operator
µ or the operator ν. The operators µ,ν bind variables and we assume the notions
of sub-formulas, free occurrences of variables and substitutions α[β/X] (of all
free occurrences of X in α by β) as standard and obvious.

Semantics

Let T = (S, s0, δ) be a transition system over Σ, v : A → 2S be a valuation
mapping atomic propositions to subsets of states of S and e : V → 2S be an
environment mapping variables to subsets of states of S. In analogy to syntactic
substitutions, we introduce the notation e[X 7→ U] for the environment with
e[X 7→ U](X) = U and e[X 7→ U](Y) = e(Y) for Y 6= X .

The satisfaction of a formula with respect to T , v and e is inductively defined
as follows:

– (T , s) |=v
e p iff s ∈ v(p). (T , s) |=v

e ¬p iff s /∈ v(p).
– (T , s) |=v

e X iff s ∈ e(X).
– (T , s) |=v

e

∧
Φ iff for all α ∈ Φ it holds that (T , s) |=v

e α.
– (T , s) |=v

e

∨
Φ iff for some α ∈ Φ it holds that (T , s) |=v

e α.
– (T , s) |=v

e �α iff for all a ∈ Σ, s′ ∈ S with (s, a, s′) ∈ δ we have (T , s′) |=v
e α.

– (T , s) |=v
e ♦α iff there exists a ∈ Σ, s′ ∈ S with (s, a, s′) ∈ δ and (T , s′) |=v

e α.
– (T , s) |=v

e µX.α iff s ∈
⋂
{U ⊆ S | U ⊇ {s′ | (T , s′) |=v

e[X 7→U] α}}.
– (T , s) |=v

e νX.α(X) iff s ∈
⋃
{U ⊆ S | U ⊆ {s′ | (T , s′) |=v

e[X 7→U] α}}.

Note that (T , s) |=v
e α iff (T , s) |=v

e′ α for all environments e and e′ and all
states s as soon as the formula α is closed. So, we write (T , s) |=v α to refer
to the semantics of a closed formula. We say that a transition system T with
valuation v satisfies α if (T , s0) |=

v α, i.e. if α is satisfied at the initial state.
Despite the absence of explicit negation in the logic, it is immediate to find

for each formula its dual formula α expressing its negation:

p = ¬p ¬p = p
X = X �α = ♦α∧
Φ =

∨
{α | α ∈ Φ}

∨
Φ =

∧
{α | α ∈ Φ}

µX.α = νX.α νX.α = µX.α

7

Proposition 2. (1) α = α. (2) For a closed formula α we have (T , s) |=v α iff
(T , s) 6|=v α.

Disjunctive formulas

For algorithmic manipulation and the formulation of proof systems, certain nor-
mal forms are beneficial compared to the syntactically full µ-calculus. This is
particularly the case for so called guarded [7] disjunctive formulas [5], a subclass
of formulas that does not impose any semantic restriction. That is, any formula
of the µ-calculus can be transformed into a disjunctive formula – at the price of
a potential exponential blowup.

There are two parts to this normal form.

Definition 3. We say that a fixpoint of the form σX.α is guarded if all free
occurrences of the variable X in α appear in sub-formulas of α of the form �β
or ♦β. We say that a formula α is guarded if all fixpoints of α are guarded.

Next, we introduce a new operator2 → and its dual operator ⇒ defined below:

→ Φ =
∧

{♦α | α ∈ Φ} ∧�
∨
Φ and ⇒ Φ =

∨
{�α | α ∈ Φ} ∨ ♦

∧
Φ

where Φ is a finite set of formulas of µ-calculus. These operators can thus either
be seen as macros based on existing operators or as actual syntactic extensions
with the semantics defined according to the above syntactic definition.

We can use these new operators to replace the usual ones: For instance, the
formula ♦α can be rewritten as → {α,>} and the formula �α as → {α}∨ → Ø,
where > is some formula that is always true, e.g. > :=

∧
∅ is a valid choice.

We furthermore extend the notation of dual formulas to sets of formulas with
→ and ⇒:

→ Φ = ⇒ {α | α ∈ Φ} ⇒ Φ = → {α | α ∈ Φ}

This extension is coherent with the syntactic definitions of → and ⇒ and obvi-
ously preserves the validity of Proposition 2.

Note also, that the notion of guarded and closed formulas extends to formulas
with the new operators in an obvious way.

Now we can present the special set of formulas that we will use in the sequel
of this paper:

Definition 4. (Janin, Walukiewicz) The set of disjunctive formulas is defined
inductively as follows.

– all variables X ,
– all disjunctions of disjunctive formulas,

2 The version of the µ-calculus used here has no action names in modalities. The
operator as described in [5] is written

a

−→ and is restricted to transitions labeled a

in the modalities 〈a〉 rather than ♦ and [a] rather than �.

8

– all conjunctions of the form
∧
L∧ → Φ where Φ is a finite set of disjunctive

formulas and L is a finite set of literals (p or ¬p),
– all formulas of the form µX.β or νX.β where β is a disjunctive formula.

Note that there is a slight adaptation from [5] in this definition. The latter
allows also conjunctions

∧
L with no component → Φ. It is however no problem

to “add” such components without changing the semantics: The formula νX.(→
∅∨ → {X}) is true at any state in any transition system. Hence, we can rewrite
the conjunction

∧
L as (

∧
L∧ → ∅) ∨ (

∧
L∧ → {νX.(→ ∅∨ → {X})}).

The following Proposition summarizes the essential results of works by Kozen
[7] and Janin and Walukiewicz [5] respectively on transformations of µ-calculus
formulas into normal forms.

Proposition 5. (Kozen,Walukiewicz,Janin) For each (closed) formula in the
propositional µ-calculus, there exists an (semantically) equivalent (closed) guarded
disjunctive formula.

In the following we consider only closed guarded disjunctive formulas.

4 Model checking and derivation graphs

There is a solid body of literature on the model checking problem [4,3,11] and the
satisfiability problem [10] for the µ-calculus. The principle task of model checking
algorithms is to check whether (T , s0) |=

v ϕ. However, by nature model checking
algorithms can provide diagnostic information, like “counter examples” in linear
time model checking.

In the case of branching time logics like the propositional µ-calculus, the
nature of diagnostic information is less obvious from a user’s perspective, but
most model checking procedures can provide at little additional cost an object
resembling a “proof”, which we will formalize as derivation graph below. In the
next section, we will use these derivation graphs for controller synthesis.

Pre-derivation graphs

If it were not for the fixpoints, the semantics given in Section 3 immediately
allows to define a kind of proof objects, which we will call pre-derivation graphs
for now:

Definition 6. Let T = (S, s0, δ) be a transition system over a set of actions
Σ, v : A → S be a valuation of T and α be a closed formula. A pre-derivation
graph for T , α and v is a (labeled) graph G = (V,−→) where V is a set of
nodes, pairs 〈s, β〉 where s ∈ S is a state and β a formula is a set of nodes and
−→⊆ V × (Σ ∪ {ε}) × V is a set of edges (also called the derivation relation)
such that G satisfies the following conditions:

(v) If 〈s, p〉 ∈ V then s ∈ v(p) and if 〈s,¬p〉 ∈ V then s 6∈ v(p).

9

(∨) If 〈s,
∨
Φ〉 ∈ V then there exists a unique β ∈ Φ such that 〈s, β〉 ∈ V and

〈s,
∨
Φ〉

ε
−→ 〈s, β〉.

(∧) If 〈s,
∧
Φ〉 ∈ V then for all β ∈ Φ, 〈s, β〉 ∈ V and 〈s,

∧
Φ〉

ε
−→ 〈s, β〉.

(♦) If 〈s,♦β〉 ∈ V then there exists a transition (s, a, s′) ∈ δ such that 〈s′, β〉 ∈ V

and 〈s,♦β〉
a

−→ 〈s′, β〉.

(�) If 〈s,�β〉 ∈ V then for all transitions (s, a, s′) ∈ δ, 〈s′, β〉 ∈ V and 〈s,�β〉
a

−→
〈s′, β〉.

(→) If 〈s,→ Φ〉 ∈ V then for all formulas β ∈ Φ, there exists a transition

(s, aβ , s
′
β) ∈ δ such that 〈s′β , β〉 ∈ V and 〈s,→ Φ〉

aβ

−→ 〈s′β , β〉 and on other
hand for all transitions (s, a, s′) ∈ δ, there exists some β ∈ Φ with 〈s′, β〉 ∈ V

and 〈s,→ Φ〉
a

−→ 〈s′, β〉.
(⇒) If 〈s,⇒ Φ〉 ∈ V then either there exists a formula β ∈ Φ such that for all

transitions (s, a, s′) ∈ δ, 〈s′, β〉 ∈ V and 〈s,⇒ Φ〉
a

−→ 〈s′, β〉 or there exists
a transition (s, a, s′) ∈ δ such that for all formulas β ∈ Φ, 〈s′, β〉 ∈ V and

〈s,⇒ Φ〉
a

−→ 〈s′, β〉.

(µ) If 〈s, µX.β〉 ∈ V then 〈s, β[µX.β/X]〉 ∈ V and 〈s, µX.β〉
ε

−→ 〈s, β[µX.β/X]〉.

(ν) If 〈s, νX.β〉 ∈ V then 〈s, β[νX.β/X]〉 ∈ V and 〈s, νX.β〉
ε

−→ 〈s, β[νX.β/X]〉.

Supposing that a formula α contains no fixpoint then it is obvious that T , s |=
α, if a derivation graph containing the node 〈s, α〉 exists. Moreover, the nodes
〈s′, β〉 can be restricted to s′ ∈ S and β a sub-formula of α. Supposing that α
only contains the greatest fixpoint operator νX , then if T , s |= α holds, a pre-
derivation graph can be defined in an inductive manner and conversely a from a
pre-derivation graph assigning U = {s | 〈s, νX.β〉 ∈ V } the semantic definition
of immediately yields T , s |= νX.β for all s ∈ U , a reasoning due to Park [8].

Approximations of Fixpoints

However, least fixpoints are not correctly characterized by the existence of pre-
derivation graphs. Without reexploring the full complexity of the issue, it is
useful for the understanding to recall an approximation approach to the seman-
tics of fixpoints:

Let µ0X.α =
∨
∅ and µn+1X.α = α[µnX.α/X] be approximations of a least

fixpoint µX.α and let Un = {s | (T , s) |= µnX.α}. Monotonicity implies that
∅ = U0 ⊆ U1 ⊆ U2 . . . ⊆ Un ⊆ Un+1 and since Un ⊆ S are finite sets, there is
some k with Uk = Uk+1 which is easily seen to be the actual least fixpoint. This
is the essential content of Kleene’s fixpoint theorem. Dually, greatest fixpoints
are approximated by ν0X.α =

∧
∅ and νn+1X.α = α[νnX.α/X]. In [10], it

is shown (for multiple fixpoints in a formula) how to extend this reasoning to
the generalized Kleene theorem with transfinite approximations where µn is
generalized to µκ, κ an ordinal (for limit ordinals λ like e.g. ω we define Uλ =⋃

κ<λ Uκ). This shows that approximations are not in principle limited to finite
state systems. Supposing accordingly a syntactic modification where the least
fixpoints are annotated with ordinals, this gives rise to an alternative version of
pre-derivation graphs with the following to rules for approximated least fixpoints:

10

(1) if 〈s, µκ+1X.α〉 ∈ V then also 〈s, α[µnX.α/X]〉 ∈ V and 〈s, µκ+1X.α〉
ε

−→
〈s, α[µnX.α/X]〉 ∈ V ; (2) if λ is a limit ordinal and 〈s, µλX.α〉 ∈ V then for

some κ < λ also 〈s, µκX.α〉 ∈ V and 〈s, µλX.α〉
ε

−→ 〈s, µκX.α〉 ∈ V .
From here, [10] obtained a remarkable abstraction: The ordinals in such a

pre-derivation graph witness of a certain termination condition. They formalize
it as follows:

Definition 7. In a pre-derivation graph G, a least fixpoint formula µX.β is
regenerated from a state s to a state s′ if there is a non-zero length path from
〈s, µX.β〉 to 〈s′, µX.β〉 in G such that any intermediate node 〈s′′, γ〉 on the path
is such that µX.β is a sub-formula of γ.

A least fixpoint µX.β is infinitely regenerated if there exists an infinite se-
quence s1, s2, . . . of (not necessarily pairwise different3) states of S such that
µX.β is regenerated from si to si+1 for every i ≥ 1.

Definition 8. A derivation graph is a pre-derivation graph with no infinitely
regenerated least fixpoint.

The notion of a derivation graph thus avoids explicit approximation ordi-
nals retaining their essential role of termination witnesses. Before stating their
theorem, we additionally observe that the set of formulas needed in the (pre-
)derivation graphs is limited to the Fischer-Ladner closure of the initial formula,
a notion of sub-formulas that is compatible with the fixpoint rules:

Definition 9. The Fischer-Ladner closure of a formula α, is the smallest set
FL(α) of formulas satisfying the following constraints:

1. α ∈ FL(α),
2. if β ∨ γ ∈ FL(α) then β, γ ∈ FL(α), if β ∧ γ ∈ FL(α) then β, γ ∈ FL(α),
3. if ♦β ∈ FL(α) then β ∈ FL(α), if �β ∈ FL(α) then β ∈ FL(α),
4. if µX.β ∈ FL(α) then β[µX.β/X] ∈ FL(α), if νX.β(X) ∈ FL(α) then
β[νX.β/X] ∈ FL(α),

5. if → Φ ∈ FL(α) then Φ ⊆ FL(α), if ⇒ Φ ∈ FL(α) then Φ ⊆ FL(α).

Example 10. The Fischer-Ladner closure of the formula µX.(p∧ → {¬q,X})
consists of the following five formulas: µX.(p∧ → {¬q,X}), p∧ → {¬q, µX.(p∧ →
{¬q,X})}, p, → {¬q, µX.(p∧ → {¬q,X})}, ¬q.

Proposition 11. The cardinality of the Fischer-Ladner closure of a formula α
is bounded by the (printed) length of α: |FL(α)| ≤ |α|.

The Fischer-Ladner closure of a closed/guarded/disjunctive formula contains
only closed/guarded/disjunctive formulas.

Note that |FL(α)| may be much smaller than |α| due to the implicit sharing of
common sub-formulas.

Now we can state the desired result concerning derivation graphs:

3 On a finite state transition system, the definition is equivalent to a cyclic regeneration
from s back to the same s.

11

Proposition 12 (Streett-Emerson [10]). For a transition system T = (S, s0, δ),
valuation v and closed formula α it holds that (T , s) |=v α iff there exists a
derivation graph G = (V,−→) with 〈s, α〉 ∈ V . Moreover, |V | ≤ |S| · |FL(α)| and
| −→ | ≤ |δ| · |FL(α)|.

Our above discussion ignores some technical difficulties due to simultaneous
fixpoints, but the idea we want to recall is that the characterisation is based on
approximations.

Model checking generates derivation graphs

The aim of the following discussion is to give hints why algorithms like [4,3] can
easily be adapted to actually compute derivation graphs as a by product. By
nature, they compute a satisfaction relation that can serve as a set of nodes V
of a derivation graph and the backward propagation over rules shows that the
algorithms readily compute pre-derivation graphs. But even for systems where
a property holds, an arbitrary pre-derivation graph is rarely a derivation graph:
Disjunctions require a choice that assures finite regeneration of least fixpoints.

The algorithms in question actually evaluate fixpoints for finite transition sys-
tems based on approximations (for both greatest and least fixpoints). A näıve
view would be to consider a nested of fixpoints like a hierarchy of loops that have
to be iterated until stabilisation (at some finite ordinal). For a state s a formula
β[µX.γ/X] containing an outermost least fixpoint sub-formula µX.γ this means
that there is a least n where T , s |= β[µnX.γ/X] is found by backward propaga-
tion, e.g. if β = β1 ∨ β2 then the smallest n1 such that T , s |= β1[µ

n1X.γ/X] or
(or and) a smalles n2 such that T , s |= β2[µ

n2X.γ/X]. Then n is the minimum
of n1 and n2 and (in accord with [10]) the βi with the smaller ni as justification

ε
−→ is a safe choice for obtaining a derivation graph.

5 Synthesizing a controller through a control formula

In Section 2, we generally introduced the notion of a controller. We still have to
make precise the notion of a controller achieving a property (in the µ-calculus).
First, we have to define what it means for a proposition to hold at a state in a
synchronous product.

Let S = (S, s0, δ) be a controllable states transition system over a set of
actions Σ, v a valuation from A to 2S and T = (S′, s′0, δ

′) be another transition
system over Σ. Then for the synchronous product S ×T , we define v× to be the
valuation from A to 2S×S′

such that v×(p) = {(s, s′) ∈ S × S′ | s ∈ v(p)}.
For a given µ-calculus formula α and valuation v, the control synthesis prob-

lem is now to find a controller T for S, such that S × T |=v× α.
Our approach to this problem consists of three steps:

– Derive a control formula ς(α) from α, such that a controller T as required
exists iff S satisfies ς(α)

12

– Verify that S satisfies ς(α) by model checking and if it holds, obtain a deriva-
tion graph G.

– Obtain a transition system TG from the derivation graph that is provably a
controller achieving α.

Control formula. Let α be a closed and guarded disjunctive formula over A
and V . We moreover assume an extension Ac = A ∪ {c} where c is a fresh
atomic proposition intended to represent controllability: For a given valuation
v : A −→ 2S, let vc : Ac −→ 2S such that vc(c) = C and vc(p) = v(p) if p 6= c.

We inductively build from α a new formula ς(α) (not necessary in a disjunc-
tive form) called control formula:

– ς(l) = l for all literals l, ς(X) = X for all variables X ,
– ς(

∨
Φ) =

∨
{ς(α) | α ∈ Φ}, ς(

∧
Φ) =

∧
{ς(α) | α ∈ Φ},

– ς(→ Φ) = (c ∧
∧
{♦ς(α) | α ∈ Φ}) ∨ (¬c∧ → {ς(α) | α ∈ Φ}),

– ς(µX.α) = µX.ς(α), ς(νX.α) = νX.ς(α).

The idea is the formula α expresses the property that the controlled system
S × T must satisfy whereas the control formula ς(α) expresses whether we can
control the controllable system S in order to satisfy α.

Example 13. Let νX.µY.((→ {X} ∧ p)∨ → {Y }) be a disjunctive formula. The
corresponding control formula is:

νX.µY.(([(c ∧ ♦X) ∨ (¬c∧ → {X})] ∧ p) ∨ [(c ∧ ♦Y) ∨ (¬c∧ → {Y })])

Proposition 14. Let α be a closed guarded disjunctive formula. Then ς(α) is
closed and guarded (but not disjunctive) and |FL(ς(α))| ≤ O(|FL(α)|).

From derivation graphs to controllers. We explain here how we turn a derivation
graph G into a controller TG .

Let G = (V,−→) be a derivation graph for a transition system S = (S, s0, δ)
over Σ, a formula α and a valuation v. We say that a node 〈s, β〉 derives to a

node 〈s′, β′〉 by ε-transitions and we write 〈s, β〉
ε
 〈s′, β′〉 if 〈s, β〉 = 〈s′, β′〉 or

〈s, β〉
ε

−→ . . .
ε

−→ 〈s′, β′〉. Then 〈s, β〉
a
 〈s′, β′〉 for an action a ∈ Σ if there is a

node 〈s′′, β′′〉 ∈ V with 〈s, β〉
ε
 〈s′′, β′′〉

a
−→ 〈s′, β′〉 in G.

Proposition 15. Let S be a deterministic transition system, α a closed guarded
disjunctive formula over A and V, and v be a valuation from A to 2S. Let
G = (V,−→) be a derivation graph for S, α and v (if it exists). Then for all

nodes 〈s, β〉 ∈ V there exists a unique 〈s,→ Φ〉 ∈ V such that 〈s, β〉
ε
 〈s,→ Φ〉.

The transition system TG over Σ is the tuple (SG , 〈s0, α〉, δG) where SG and
simultaneously δG are inductively defined to be the least set/relation such that

〈s0, α〉 ∈ SG and for all 〈s, β〉 ∈ SG and a ∈ Σ if 〈s, β〉
a
 〈s′, β′〉 in G then

〈s′, β′〉 ∈ SG and(〈s, β〉, a, 〈s′, β′〉) ∈ δG .
Now we can state the main theorem of this work:

13

Theorem 16. Let S be a controllable state transition system, α a disjunctive,
guarded and closed µ-calculus formula, v an evaluation, vc, vx defined accord-
ingly.

1. If S |=vc ς(α) then for all derivation graphs G for S and ς(α), TG is a
controller for S and S × TG |=v× α.

2. If there exists a controller C such that S × C |=v× α, then S |=vc ς(α).

The rest of this section is devoted to the proof of Theorem 16 and is done in
several steps.

Proof of Theorem 16, part (1)

Lemma 17. All accessible states in S × TG are of the form (s, 〈s, β〉).

Proof. Let S × TG be the synchronous product (S × SG , (s0, 〈s0, α〉), δ×). We
use an induction on the distance from (s0, 〈s0, α〉) in S × TG . First the initial
state (s0, 〈s0, α〉) satisfies the invariant. Suppose that (s1, 〈s1, β〉) is an accessible
state of S × TG and ((s1, 〈s1, β〉), a, (s2, 〈s3, γ〉) ∈ δ×. Then (s1, a, s2) ∈ δ and

(〈s1, β〉, a, 〈s3, γ〉) ∈ δG . By construction of TG , 〈s1, β〉
a
 〈s3, γ〉 in G. It follows

from the definition of G that (s1, a, s3) ∈ δ and then s2 = s3 because S is
deterministic.

Proposition 18. TG is a controller for S provided α is a control formula.

Proof. Let S×TG be the synchronous product (S×SG , (s0, 〈s0, α〉), δ×). Suppose
that (s, 〈s, β〉) is accessible in S × TG , s 6∈ C and (s, a, s′) ∈ δ. Since α is a
control formula there is a formula γ ∈ FL(α) such that γ = (c ∧

∧
{♦γ′ | γ′ ∈

Φ}) ∨ (¬c∧ → Φ) and 〈s, β〉
ε
 〈s, γ〉 ∈ G. Moreover 〈s, γ〉

ε
−→ 〈s,¬c∧ →

Φ〉
ε

−→ 〈s,→ Φ〉 because s 6∈ C. Then following the definition of G there is a

formula γ′ ∈ Φ such that 〈s,→ Φ〉
a

−→ 〈s′, γ′〉 and this because (s, a, s′) ∈ δ.

It follows that 〈s, β〉
a
 〈s′, γ′〉 that is (〈s, β〉, a, 〈s′, γ′〉) ∈ δG . Consequently

((s, 〈s, β〉), a, (s′, 〈s′, γ′〉)) ∈ δ×.

Lemma 19. If S |=vc ς(α) then for any derivation graph G for S, ς(α) and vc

is such that S × TG |=v× α.

Proof. Let S = (S, s0, δ) be the controllable state transition system and let
G = (V,−→) be a derivation graph for S, ς(α) and vc with (s0, ς(α)) ∈ V . Let
S × TG be the synchronous product (S × SG , (s0, 〈s0, ς(α)〉), δ×). We construct
from the derivation graph G a graph G× = (V×,−→×) as it follows:

1. V× = {〈(s, 〈s, β〉), γ〉 ∈ S × SG × FL(α) | 〈s, β〉
ε
 〈s, ς(γ)〉 and 〈s, ς(γ)〉 ∈

V },

2. 〈(s, 〈s, β〉), γ〉
ε

−→× 〈(s, 〈s, β〉), γ′〉 iff 〈s, ς(γ)〉
ε

−→ 〈s, ς(γ′)〉,

3. 〈(s, 〈s, β〉),→ Φ〉
a

−→× 〈(s′, 〈s′, ς(γ′)〉), γ′〉 iff 〈s, ς(→ Φ)〉
a
 〈s′, ς(γ′)〉.

14

We prove now that G× is really a derivation graph for S ×TG , α and v×. Let
〈(s, 〈s, β〉), γ〉 be a node of V×.

Condition (v): γ is a proposition p. Then ς(γ) = p and by (1) 〈s, β〉
ε
 〈s, p〉

and 〈s, p〉 ∈ V . Since G is a derivation graph s ∈ v(p). It follows that (s, 〈s, β〉) ∈
v×(p).

Condition (∨): γ is of the form
∨
Φ. Then ς(

∨
Φ) =

∨
{ς(γ′) | γ′ ∈ Φ}

and by (1) 〈s, β〉
ε
 〈s, ς(γ)〉 and 〈s, ς(γ)〉 ∈ V . Since G is a derivation graph

there exists a unique γ′ ∈ Φ such that 〈s, ς(γ′)〉 ∈ V and 〈s, ς(γ)〉
ε

−→ 〈s, ς(γ′)〉.

It follows by (1) that 〈(s, 〈s, β〉), γ′〉 ∈ V× and by (2) that 〈(s, 〈s, β〉), γ〉
ε

−→
〈(s, 〈s, β〉), γ′〉.

Conditions (∧), (µ) and (ν): the proofs are similar to the previous case
(∨). Moreover we have not to deal with the conditions (♦), (�) and (⇒) because
α is in a disjunctive form and then these operators never appear in formulas of
FL(α). The last case to deal with is the condition (→).

Condition (→): γ is of the form → Φ. Then ς(→ Φ) = (c∧
∧
{♦ς(γ′) | γ′ ∈

Φ}) ∨ (¬c∧ → {ς(γ′) | γ′ ∈ Φ}). By (1) 〈s, β〉
ε
 〈s, ς(γ)〉 and 〈s, ς(γ)〉 ∈ V .

If s is an uncontrollable state (that is s 6∈ C): Then 〈s, ς(γ)〉
ε
 〈s,→

{ς(γ′) | γ′ ∈ Φ}〉. Following the condition (→): On one hand, for all formu-
las γ′ ∈ Φ, there exists a transition (s, aγ′ , sγ′) ∈ δ such that 〈sγ′ , ς(γ′)〉 ∈

V and 〈s,→ {ς(γ′) | γ′ ∈ Φ}〉
aγ′

−→ 〈sγ′ , ς(γ′)〉. This means that 〈s, β〉
aγ′

〈sγ′ , ς(γ′)〉 i.e. (〈s, β〉, aγ′ , 〈sγ′ , ς(γ′)〉) ∈ TG . Consequently for all γ′ ∈ Φ there
exists in the product S × TG a transition ((s, 〈s, β〉), aγ′ , (sγ′ , 〈sγ′ , ς(γ′)〉)) ∈ δ×

such that by (1) 〈(sγ′ , 〈sγ′ , ς(γ′)〉), γ′〉 ∈ V× and by (3) 〈(s, 〈s, β〉),→ Φ〉
aγ′

−→×

〈(sγ′ , 〈sγ′ , ς(γ′)〉), γ′〉. On other hand for all transitions ((s, 〈s, β〉), a, (s′, 〈s′, β′〉))

in δ× we have (s, a, s′) ∈ δ, 〈s′, β′〉 ∈ V and 〈s, β〉
ε
 〈s,→ {ς(γ′) | γ′ ∈ Φ}〉

a
−→

〈s′, β′〉. Then there exists some γ′ ∈ Φ such that ς(γ′) = β′. Consequently by (1)

〈(s′, 〈s′, ς(γ′)〉), γ′〉 ∈ V× and by (3) 〈(s, 〈s, β〉),→ Φ〉
a

−→× 〈(s′, 〈s′, ς(γ′)〉), γ′〉.

If s is a controllable state: Then for all formulas γ′ ∈ Φ 〈s, ς(γ)〉
ε
 〈s,♦ς(γ′)〉.

Following the condition (♦), there exists a transition (s, aγ′ , sγ′) ∈ δ such that

〈sγ′ , ς(γ′)〉 ∈ V and 〈s,♦ς(γ′)〉
aγ′

−→ 〈sγ′ , ς(γ′)〉. This means that 〈s, β〉
aγ′

〈sγ′ , ς(γ′)〉 i.e. (〈s, β〉, aγ′ , 〈sγ′ , ς(γ′)〉) ∈ TG . Consequently for all formulas γ′ ∈ Φ
((s, 〈s, β〉), aγ′ , (sγ′ , 〈sγ′ , ς(γ′)〉)) ∈ δ×. Then by (1) 〈(sγ′ , 〈sγ′ , ς(γ′)〉), γ′〉 ∈ V×

and by (3) 〈(s, 〈s, β〉),→ Φ〉
aγ′

−→× 〈(sγ′ , 〈sγ′ , ς(γ′)〉), γ′〉. On the other hand, fol-
lowing the construction of TG , all possible transitions from (s, 〈s, β〉) are exactly
the previous set {((s, 〈s, β〉), aγ′ , (sγ′ , 〈sγ′ , ς(γ′)〉)) ∈ δ× | γ′ ∈ Φ}. It follows that
the condition (→) is satisfied.

Infinitely regenerated condition. It remains to prove the global condition
on the least fixpoint. We show that if G× is not a derivation graph because of
an infinite regeneration of a least fixpoint, then G already contains an infinite
regeneration and is not a derivation graph – contradicting assumptions.

Suppose that there exists a regeneration from a node 〈(s1, 〈s1, β1〉), µX.γ〉
to a node 〈(s2, 〈s2, β2〉), µX.γ〉 then based on the construction of G× from G
there exists a regeneration from 〈s1, ς(µX.γ)〉 to 〈s2, ς(µX.γ)〉. Structurally, the

15

only difference in the derivations concerns sub-formulas → Φ, which have less
structure than their translations ς(→ Φ). However, if µX.γ occurs as sub-formula
of some formula β ∈ Φ then ς(µX.γ) occurs accordingly as sub-formula of ς(β) in
ς(→ Φ). Useful properties of ς for understanding this simulation of regeneration
are: ς(α1[α2/X]) = ς(α1)[ς(α2)/X]) and in particular ς(µX.γ) = µX.ς(γ) =
ς(γ)[µX.ς(γ)/X] = ς(γ)[ς(µX.γ)/X] = ς(γ[µX.γ/X]).

Applying the above construction, an infinitely regenerated least fixpoint in
the graph G× gives us an infinitely regenerated least fixpoint in G.

Finally, since S |=vc ς(α) then 〈s0, ς(α)〉 ∈ V . Consequently by (1), we have
〈(s0, 〈s0, ς(α)〉), α〉 ∈ V× that is S × TG |=v× α.

Proof of Theorem 16, part (2)

The second part of Theorem 16 is shown in the inverse sense, based on Proposi-
tion 2, part (2): If S 6|=vc ς(α) then S |=vc ς(α). Based on the following Lemma
20 and another application of Proposition 2, we conclude S × C 6|=v× α.

Lemma 20. If S |=vc ς(α) then for all controllers C, S × C |=v× α.

Proof. Let S = (S, s0, δ) be the controllable state transition system and C =
(S′, s′0, δ

′) be a controller for S. Let S × C be the synchronous product (S ×
S′, (s0, s

′
0), δ×). Since S |=vc ς(α) there is a derivation graph G = (V,−→) for

S, ς(α) and vc with 〈s0, ς(α)〉 ∈ V . From G we construct a derivation graph
G× = (V×,−→×) for S × C, α and v× as it follows:

1. V× = {〈(s, s′), β〉 ∈ S × S′ × FL(α) | 〈s, ς(β)〉 ∈ V },

2. 〈(s, s′), β〉
ε

−→× 〈(s, s′), β′〉 iff 〈s, ς(β)〉
ε

−→ 〈s, ς(β′)〉,

3. 〈(s, s′),→ Φ〉
a

−→× 〈(s1, s′1), β
′〉 iff 〈s, ς(→ Φ)〉

a
 〈s1, ς(β′)〉 and (s′, a, s′1) ∈

δ′.

We prove now that G× is really a derivation graph for S × C, α and v×. Let
〈(s, s′), β〉 be a node of V×.

Condition (v): β is a proposition p. Then ς(β) = p and by (1) 〈s, p〉 ∈ V .
Since G is a derivation graph s ∈ v(p). It follows that (s, s′) ∈ v×(p).

Condition (∨): β is of the form
∨
Φ. Then ς(β) =

∨
{ς(β′) | β′ ∈ Φ}

and by (1) 〈s, ς(β)〉 ∈ V . Since G is a derivation graph there exists a unique

β′ ∈ Φ such that 〈s, ς(β′)〉 ∈ V and 〈s, ς(β)〉
ε

−→ 〈s, ς(β′)〉. It follows by (1) that

〈(s, s′), β′〉 ∈ V× and by (2) that 〈(s, s′), β〉
ε

−→ 〈(s, s′), β′〉.
Conditions (∧), (µ) and (ν): the proofs are similar to the previous case

(∨). Moreover we have not to deal with the conditions (♦), (�) and (→) because
α is in a disjunctive form and then these operators never appear in formulas of
FL(α). The last case to deal with is the condition (⇒).

Condition (⇒): β is of the form ⇒ Φ. Then ς(β) = (¬c ∨
∨
{�ς(β′) | β′ ∈

Φ}) ∧ (c∨ ⇒ {ς(β′) | β′ ∈ Φ}) and by (1) 〈s, ς(β)〉 ∈ V .
If s is an uncontrollable state (i.e. s 6∈ C): Then following the condition (⇒),

either there exists a formula β′ ∈ Φ such that for all transitions (s, a, s1) ∈ δ,

16

〈s1, ς(β′)〉 ∈ V and 〈s, ς(β)〉
a
 〈s1, ς(β′)〉. Then for all ((s, s′), a, (s1, s

′
1)) ∈ δ×

by (1) 〈(s1, s′1), β
′〉 ∈ V× and by (3) 〈(s, s′), β〉

a
−→× 〈(s1, s′1), β

′〉. Or there
exists a transition (s, a, s1) ∈ δ such that for all formulas β′ ∈ Φ, 〈s1, ς(β′)〉 ∈ V

and 〈s, ς(β)〉
a
 〈s1, ς(β′)〉. Since s is an uncontrollable state, there exists also a

transition ((s, s′), a, (s1, s
′
1)) ∈ δ× for some s′1. Moreover for all formula β′ ∈ Φ

by (1) 〈(s1, s′1), β
′〉 ∈ V× and by (3) 〈(s, s′), β〉

a
−→ 〈(s1, s′1), β

′〉.
If s is a controllable state: Then following the condition (�), there exists a

formula β′ ∈ Φ such that for all transitions (s, a, s1) ∈ δ, 〈s1, ς(β′)〉 ∈ V and

〈s, ς(β)〉
a
 〈s1, ς(β′)〉. Then for all transitions ((s, s′), a, (s1, s

′
1)) ∈ δ× by (1)

〈(s1, s′1), β
′〉 ∈ V× and by (3) 〈(s, s′), β〉

a
−→× 〈(s1, s′1), β

′〉.
Infinitely regenerated condition. Similarly to the proof of Lemma 19, an

infinite regeneration of a least fixpoint µX.β = νX.β in the graph G× can be
reduced to an infinite regeneration of ς(νX.β) = µX.ς(β) in G.

Finally, since S |=vc ς(α) then 〈s0, ς(α)〉 ∈ V and by (1), 〈(s0, s′0), α〉 ∈ V×
that is S × C |=v× α.

6 Controller Synthesis in an Action Based Setting

Since previous works like [2] present the synthesis problem in an action based
setting rather than the state/proposition based setting we have presented so
far, we indicate in which manner our results carry over and are fully valid with
actions.

The µ-calculus is typically presented with a modality 〈a〉α (there is a tran-
sition labeled “a” to a state with α rather than any transition as for ♦α) and
[a]α (for all a-labeled transitions). Likewise, the operator → can be restricted to

a-labeled transitions, written as
a
→ Φ as originally described in [5]:

a
→ Φ =

∧
{〈a〉α | α ∈ Φ} ∧ [a]

∨
Φ and

a
⇒ Φ =

∨
{[a]α | α ∈ Φ} ∨ 〈a〉

∧
Φ

where Φ is a finite set of formulas of µ-calculus. Disjunctivity in this setting may

allow conjunctions of formulas
a
→ Φ and

b
→ Φ′, provided a 6= b.

For the control synthesis problem in the action based setting, we now assume
a distinction into controllable and uncontrollable actions by labels: Σ = Σc]Σu.
A controller is now a transition system that never refuses uncontrollable actions
but which may refuse controllable actions.

Based on disjunctive formulas, the definition of the transformation ς(.) changes

with respect to the
a
→ operator: (1) ς(

a
→ ∅) =

a
→ ∅ if a ∈ Σu, (2) ς(

a
→ ∅) = > iff

a ∈ Σc, (3) ς(
a
→ Φ) =

a
→ {ς(α) | α ∈ Φ} if Φ 6= ∅.

The meaning of a control formula is easier to understand when we study this
setting. The key is the formulas of the form

a
→ ∅. Suppose that we want control a

state s of a controllable action transition system S in such a way the controlled
state s satisfies

a
→ ∅. There is two cases: Either the state a is controllable in

which case it suffices to prevent all transitions labeled by a from s in S. Or a is
uncontrollable then no transition a must be possible from s since no controller
could prevent a at s from occurring and rendering

a
→ ∅ invalid.

17

Example 21. Let S be a transition system over Σ = {a, b}, Σc = {b}, Σu = {a}.
The property ”there is no transition labeled by a in S” may be expressed the

disjunctive formula α := νX.((
a
→ ∅∧

b
→ {X})∨ (

a
→ ∅∧

b
→ ∅). The corresponding

control formula is (equivalent to) ς(α) := νX.((
a
→ ∅∧

b
→ {X}) ∨ (

a
→ ∅ ∧ >),

after simplification this is easily seen to be equivalent to
a
→ ∅, i.e. the property

is controllable for systems that do not propose a at the initial state (by cutting
all b-transitions).

The construction of a controller from a derivation graph remains unchanged
as well as the essential structure of all proofs.

The reason why the action based setting becomes seemingly simpler than the
elaborated state based setting is due to the more severe structure of disjunctive
formulas. Typically, expressing state based properties in the action based setting
leads to an explosion of the disjunctive representation.

Acknowledgments

We thank Rémi Morin for many discussions on the topic. A lot of thanks
go to Luigi Santocanale for advice with normal forms of the µ-calculus. This
work was supported by the IST project AMETIST, contract IST-2001-35304,
http://ametist.cs.utwente.nl.

References

1. H.R. Andersen and G. Winskel. Compositional checking of satisfaction. Formal
Methods in System Design, 1(4), 1992.

2. A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controllers with
partial observation. Theor. Comput. Sci., 303(1):7–34, 2003.

3. A. Browne, E. M. Clarke, S. Jha, D. E. Long, and W. Marrero. An improved
algorithm for the evaluation of fixpoint expressions. Theor. Comput. Sci., 178(1-
2):237–255, 1997.

4. Rance Cleaveland, Marion Klein, and Bernhard Steffen. Faster model checking for
the modal mu-calculus. In Proceedings of the Fourth International Workshop on
Computer Aided Verification, pages 410–422. Springer-Verlag, 1993.

5. David Janin and Igor Walukiewicz. Automata for the modal mu-calculus and re-
lated results. In Proceedings of the 20th International Symposium on Mathematical
Foundations of Computer Science, pages 552–562. Springer-Verlag, 1995.

6. O. H. Jensen, J. T. Lang, C. Jeppesen, and K. G. Larsen. Model construction
for implicit specifications in modal logic. In CONCUR’93: Proc. of the 4th In-
ternational Conference on Concurrency Theory, volume 715 of Lecture Notes in
Computer Science, pages 247–261. Springer, 1993.

7. D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27:333–354, 1983.

8. D. Park. Fixpoint induction and proofs of program properties. Machine Intelli-
gence, 5, 1970.

9. P.J.G. Ramadge and W.M. Wonham. The control of discrete event systems. IEEE
Proceedings: Special issue on Discrete Event Systems, 77:81–98, 1989.

18

10. R.S. Streett and E.A. Emerson. An automata theoretic decision procedure for the
propositional mu-calculus. Inf. Comput., 81(3):249–264, 1989.

11. L. Tan and R. Cleaveland. Evidence-based model checking. In Computer Aided
Verification (CAV), volume 2404 of Lecture Notes in Computer Science, pages
455–470, 2002.

19

