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Abstract/Résumé

In this paper, definability in existential second-order logic is considered. Our main goal it to study the relation-
ships between the arity of second-order quantified (i.e. guessed) symbols and the number of first-order universal
variables in formulas. The key idea behind this work is that bounding the arity of guessed symbols strongly limits
the number of first-order universally quantified variables that are really needed to express properties.

We show that, as long as second-order quantifiers of formulas range over function and relation symbols of arity
at most one, two first-order variables say no more than one.

We also generalize this result and show that for some varieties of formulas (including positive ones with unary
signature) the number of universally quantified first-order variables does not really matter.

These results are first steps towards looking for an arity-based characterization of subclasses of NP and towards
proving there exists a strict hierarchy purely based on arity for existential second-order logic, two long standing
open questions in finite model theory.

Keywords: existential second-order logic, second-order arity vs. number of first-order variables, arity based
hierarchy in second-order logic

Dans cet article, on considère la définissabilité au second-ordre existentiel. Notre principal objectif est d’étudier
les liens entre l’arité des symboles du second-ordre quantifiés (i.e. devinés) et le nombre de variables universelles
du premier-ordre apparaissant dans les formules. L’idée clé de ce travail est qu’une borne sur l’arité des symboles
devinés limite fortement le nombre de variables du premier-ordre universellement quantifiées réellement nécessaire
à l’expression de propriétés.

Nous montrons que, tant que les symboles du second-ordre des formules considérées sont restreints à des symboles
de relation et de fonction d’arité au plus 1, deux variables du premier ordre ne disent pas plus qu’une seule.

Nous généralisons ce résultat en montrant que pour certaines classes de formules (incluant les formules positives
de signature unaire), le nombre de variables du premier-ordre universellement quantifiées n’a pas d’incidence sur
le pouvoir d’expression.

Ces résultats sont un premier pas vers une caractérisation des sous-ensembles de NP basée sur l’arité, et vers la
preuve d’une hiérarchie stricte de la logique du second-ordre existentiel purement basé sur l’arité, deux questions
ouvertes depuis longtemps en théorie des modèles finis.

Mots-clés : logique du second-ordre existentiel, arité au second-ordre vs. nombre de varialbles du premier-ordre,
hierarchie basée sur l’arité dans la logique du second-ordre

Relecteurs/Reviewers: Roberto Amadio and Nadia Creignou



1 Introduction and summary of results

Measuring the expressive power of logical formalisms over finite structures is of great importance mainly because
of its connection with database theory and complexity. A well-known and foundational result in this domain is
Fagin’s theorem [4] which shows that properties decidable in NP are those definable in existential second-order
logic (ESO, for short). Such a result (see also [11]) pointed out strong relationships between descriptive and
computational complexities of problems and has initiated an important field of research.

The logical characterization of NP has been refined in a number of ways through the years (see [12, 7, 13, 8]).
Intuitively, taking the non-deterministic random access machine as computation model, a property is decidable in
time O(nd) if and only if it is definable by some formula of the form

∃f1 . . . ∃fk ∀xφ

where the fi are relation or function symbols of arity at most d (the so-called ”guessed” predicates), x is a d-tuple
of first-order variables and φ is a first-order quantifier-free formula. In this result, the computational time bound
is in direct relation with the arity of the guessed predicates and the number of universal variables. The question
whether there exists a characterization of subclasses of NP based on the arity of guessed predicates only is open
(see, for example, Open Problem 7.12 in [10]).

In the same vein, a long standing open question in finite model theory (see [5, 6] - the original statement concern
formulas with relation symbols only) asks whether there exists a strict hierarchy in terms of expressive power based
on arity. Considering existential second-order formulas (with no bound on the number of first-order variables),

∃f1 . . . ∃fk ϕ,

is it true that quantifying over (d+1)-ary function or relation symbols fi is strictly more expressive than quantifying
over d-ary ones ? Over the years, partial answers have been given. For example, for the so-called ”sub-diagonal”
cases, i.e. as long as the arity of guessed symbols is smaller than the arity of the signature (non-quantified second-
order symbols) of formulas, the hierarchy is known to be strict (see [1] and also [9] for a recent study). However,
the problem is still open in the general case.

Results of this paper are contributions to the two above-mentioned problems. Looking for an arity-based
characterization of subclasses of NP, we focus on the relationships between the arity of guessed symbols in ESO-
formulas and the number of universal first-order variables. By transfer and padding arguments, it is easily seen
that without loss of generality, one can concentrate on formulas with unary function symbols only. The general
problem addressed in this paper is the following: given an ESO-formula

Φ ≡ ∃f1 . . . ∃fk ∀x1 . . .∀xd ϕ,

where the fis are unary function symbols, x1, . . . , xd are d first-order variables and ϕ is quantifier-free, does
there exist an ESO-formula logically equivalent to Φ with function symbols of arity one also but with strictly less
universally quantified first-order variables? Or, stronger, with only one such variable?

Surprisingly, some partial and positive answers can be given. The first result of this paper (Theorem 8, Section 5)
shows that, roughly speaking, two variables say no more than one for ESO-formulas of arity one. In other words,
if d = 2 in Φ, an equivalent formula with only one variable can be found. In contrast to what happens with purely
relational signatures, the expressive power of two-variables functional logic does not suffer intrinsic limitations 1.
This fact gives some relevance to our result. One of its consequences, is that the hierarchy based on arity of
guessed predicates for two-variables ESO-formulas is strict between the two first levels and collapses right after
(see Corollary 11).

Though it seems not immediate to generalize the result for d > 2, we also obtain it for any d ≥ 2 in the following
particular cases (see Section 6):

• when ϕ is a positive sentence (i.e. without negation);

1Recall that even one variable is enough to characterize non-deterministic linear time on RAMs.
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• when negation appears in ϕ in a particular way (in, so-called, acyclic formulas).

Finally, in the vein of the results obtained in this paper, we state two realistic conjectures (see Section 7) and
show that they imply the existence of an arity-based characterization of subclasses of NP and the strictness of the
arity hierarchy as defined in [5, 6].

To our knowledge the method used in this paper is new. It combines logical and combinatorial arguments. In
particular, we introduce a notion of (minimal) samples of unary functions, use basic combinatorics to show there
are rather few such objects and, knowing this fact, work on the syntactic form of formulas.

Section 2 presents some standard definitions and well-known results. The basic combinatorial tools are described
in Section 3 and the method is applied on a very simple example in Section 4. Our main results are then presented
along Sections 5 and 6, as mentionned above. Sections 7 and 8 are devoted to some open questions and conclusive
remarks.

2 Basic normalization of formulas

We will often deal with tuples of objects. We denote them by bold letters. A signature (or vocabulary) σ is
a finite set of relation and function symbols, each of which has a fixed arity which can be zero (a 0-ary function
symbol is a constant symbol and a 0-ary relation symbol is a boolean variable). The arity of σ, denoted by
arity(σ), is the maximal arity of its symbols. We call unary a signature whose arity is at most one. A vocabulary
is functional (resp. relational) if it does not contain any relation (resp. function) symbol. When σ and τ are two
disjoint signatures, we often denote by στ their union σ ∪ τ . A (finite) structure S of vocabulary σ, or σ-structure,
consists of a finite domain D of cardinality n > 1, and, for any symbol s ∈ σ, an interpretation of s over D, often
denoted s, for simplicity. The tuple of the interpretations of the σ-symbols over D is called the interpretation of σ
over D and, when no confusion results, it is also denoted σ. The cardinality of a structure is the cardinality of its
domain. For any signature σ, we denote by struc(σ) the class of (finite) σ-structures. We denote by models(Φ)
the set of σ-structures which satisfy some fixed formula Φ.

We use the usual definitions and notations in logic and finite model theory (see [3]). We are interested by
definability in Existential Second Order logic (ESO). Given two disjoint signatures σ = {s1, . . . , sp} and τ =
{t1, . . . , tq} (where the si’s and the ti’s are relation and function symbols of various arities), we write ∃τφ(σ, τ) for
the formula ∃t1 . . . ∃tqφ(s1, . . . , sp, t1, . . . , tq). For a vocabulary σ, we denote by ESOσ the class of σ-formulas of
the form ∃τφ(σ, τ), where τ is a signature disjoint from σ and φ is a first-order sentence of vocabulary στ . We say
that two formulas Φ1 and Φ2 of ESOσ are equivalent if they are equivalent over finite structures, that is, if the sets
models(Φ1) and models(Φ2) coincide.

In the sequel, we will focus on the following syntactic restriction of ESOσ :

Definition 1 ESOσ(∀d, arity `) is the class of ESOσ-formulas that admit a Skolemized prenex form ∃τ∀xφ(σ, τ,x)
such that: φ is quantifier-free, x is a d-tuple of first-order variables and arity(τ)≤`. Similarly, ESOσ(var d, arity `)
is the class of ESOσ-formulas of the form ∃τφ(σ, τ,x) where, this time, φ is a non-necessarily prenex first-order for-
mula with d variables. Finally, we set ESOσ(∀d) =

⋃
` ESOσ(∀d, arity `), ESOσ(∀∗, arity `) =

⋃
d ESOσ(∀d, arity `)

and ESOσ(arity `) =
⋃

d ESOσ(var d, arity `).

The expressive power of these kinds of formulas is quite high. A σ-NRAM is a nondeterministic Random Access
Machine that takes σ-structures as input in the following way: for each s ∈ σ of arity ` and each `-tuple t ∈ D`, a
special register [s, t] contains the value of s(t). Let NTIMEσ(nd) be the class of problems on σ-structures decidable
by a σ-NRAM in time O(nd) where n is the size of the domain D of structures. The following is true.

Theorem 2 ([8]) For all signature σ and all d ≥ 1:

NTIMEσ(nd) = ESOσ(∀d, arity d).

Actually, we will mainly deal with the logic ESOσ(∀d, arity 1). It is easily seen that the conjunctive normal
form of an ESOσ(∀d, arity 1)-formula also belongs to ESOσ(∀d, arity 1). That is, each such formula can be written:
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∃τ∀x(C1 ∧ . . .∧Cp), where the Ci’s are clauses of signature στ over the d-tuple of variables x. In the proofs of the
forthcoming results, we will need to refer to a more restrictive notion of clause. The end of this section is devoted
to the presentation of a normalization of formulas, related to this need.

Definition 3 A unary clause is a quantifier free formula of the form

∨

i

ui(xi) 6= vi(yi) ∨
∨

i

fi(ai) = gi(bi) (1)

where the ui, vi, fi, gi are unary function symbols and xi, yi, ai, bi are first-order variables such that ∀i, xi 6= yi and
ai 6= bi. We say that C is a τ -unary clause over x if all the unary function symbols of C belong to a signature τ
and all its variables are taken from a tuple x.

The following lemma provides an easy normal form for formulas in ESOσ(∀d, arity 1).

Lemma 4 Let σ be a unary signature. Any formula Φ in ESOσ(∀d, arity 1), for d ≥ 2, is equivalent to a formula
Φ′ of the form ∃τ : ∀xφ ∧ ∀x(C1 ∧ . . . ∧ Cp), also in ESOσ(∀d, arity 1), where:

• τ is a unary signature ;

• x (resp. x) is a first-order variable (resp. a d-tuple of first-order variables) ;

• φ is a quantifier free formula of signature στ ;

• the Ci’s are τ -unary clauses over x.

The formula Φ′ will be called the clausal normal form of Φ.

Proof: The usual conjunctive normal form of Φ gives: Φ ≡ ∃τ∀xψ, where τ is a unary signature, x is a d-tuple of
first-order variables and ψ ≡ (C1 ∧ . . . ∧Cp) is a conjunction of στ -clauses over x. For convenience, we will rather
write Φ as: Φ ≡ ∃τ : ∀xφ ∧ ∀xψ, where φ is initially the boolean constant “true” (or equivalently, the formula
x = x). Now, the way to pass from this conjunctive normal form to the expected clausal form can be described as
a sequence of “instructions”:

• Add two new existentially quantified constant symbols 0, 1 and two new unary function symbols zero, one

and set that 0 6= 1 and that zero (resp. one) maps the domain onto 0 (resp. 1). That is: perform τ :=
τ ∪ {0, 1, zero, one} and φ := φ ∧ (0 6= 1) ∧ zero(x) = 0 ∧ one(x) = 1.

• For each constant symbol c occurring in ψ, do: τ := τ ∪ {[c]}, where [c] is a new unary function symbol;
φ := φ ∧ ([c](x) = c); replace each occurrence of c in ψ by [c](y), where y is any variable in x.

• For each monadic relation symbol U occurring in ψ, do: τ := τ ∪ {[U ]}, where [U ] is a new unary function
symbol; φ := φ∧ ((U(x) → [U ](x) = 1)∧ (¬U(x) → [U ](x) = 0)); replace each subformula U(t) (resp. ¬U(t))
of ψ, where t is a term, by [U ](t) = one(t) (resp. [U ](t) = zero(t)).

• For each tuple f1, . . . , fi, i ≥ 0, of unary function symbols such that a term f1 . . . fi(y), y ∈ x, appears in ψ

do: τ := τ∪{[f1 . . . fi]}, where [f1 . . . fi] is a new unary function symbol; φ := φ∧([f1 . . . fi](x) = f1 . . . fi(x));
replace each term f1 . . . fi(y) occurring in ψ by [f1 . . . fi](y).

These modifications clearly give rise to a formula equivalent to Φ of the form: ∃τ : ∀xφ ∧ ∀x(C1 ∧ . . .∧Cp), where
τ , x,x and φ fulfil the requirements of Lemma 4. Furthermore, each Cj is a στ -clause of the form:

∨
i ui(xi) 6=

vi(yi)∨
∨

i fi(ai) = gi(bi), where the ui, vi, fi, gi are unary function symbols and xi, yi, ai, bi are first-order variables.
To fit exactly to the statement of the lemma, it remains to write each Cj as a τ -clause and to ensure that for
each subformula u(x) 6= v(y) (resp. f(x) = g(y)) occurring in Cj , the variables x and y are distinct. This is done
through the following instructions:

• For each symbol of function (resp. relation) s ∈ σ occurring in ψ, do: τ := τ ∪ {[s]}, where [s] is a new
function (resp. relation) symbol of the same arity than s; φ := φ∧ [s](x) = s(x) (resp. φ := φ∧ [s](x) ↔ s(x));
replace each term (resp. subformula) s(t) of ψ by [s](t). After this step, each Ci contains only τ -terms.
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• For each pair (a, b) of unary function symbols such that an equality a(y) = b(y) (resp. disequality a(y) 6= b(y))
occurs in ψ, do: τ := τ ∪{[ab]}, where [ab] is a new unary function symbol; φ := φ∧ (a(x) = b(x) → [ab](x) =
1) ∧ (a(x) 6= b(x) → [ab](x) = 0); replace each subformula a(y) = b(y) (resp. a(y) 6= b(y)) of ψ by
[ab](y) = one(z) (resp. [ab](y) = zero(z)), where z ∈ x is a variable distinct from y.

This concludes the expected normalization of Φ. �

Remark 1 From usual properties of quantifiers and connectives in ESO-formulas, it is clear that a formula Φ ∈
ESOσ(∀d, arity 1) can be written in ESOσ(∀1, arity 1) if, and only if, for each unary clause C involved in its clausal
normal form, the first-order sentence ∀xC can be written in ESOσ(∀1, arity 1).

Before concluding this section, we state without proof the following result, which will be used several times
along this work:

Proposition 5 ([8]) For all ` ≥ d ≥ 1 and all signature σ:

ESOσ(∀d, arity `) = ESOσ(∀d, arity d)
= ESOσ(∀d)
= ESOσ(var d).

Remark 2 In particular, we will freely use the fact that any ESOσ(var 1)-formula (with only one first-order
variable and with guessed symbols of any arity) is equivalent to an ESOσ(∀1, arity 1)-formula.

3 Combinatorial tools

In this section, some combinatorial objects are defined and some basic properties about them are proved. These
objects will play an important role in the rest of the paper. Let [k] denote the interval of integers {1, 2, . . . , k}.

Definition 6 Let E,F be two finite sets and g = (g1, . . . , gk) be a tuple of unary functions from E to F . Let
P ⊆ [k] and (ci)i∈P be a family of elements of F . (ci)i∈P is said to be a sample of g (indexed by P ) over E if

E =
⋃

i∈P

g−1
i (ci).

A sample is minimal if, moreover, for all j ∈ P :

E 6=
⋃

i∈P\{j}

g−1
i (ci).

Finally, if (ci)i∈P is a sample (resp. minimal sample), the set (g−1
i (ci))i∈P is called a covering (resp. minimal

covering) of E by g.

Remark 3 Let P ⊆ [k] and (ci)i∈P be a sample of g. Then, there exists P ′ ⊆ P such that (ci)i∈P ′ is a minimal
sample of g. Informally, it suffices to iteratively eliminate from P the j’s such that E =

⋃
i∈P\{j} g

−1
i (ci).

Although the bound on the number of samples for any tuple of functions depends on the size of the domain,
the situation is far better for what concerns minimal samples.

Lemma 7 Let E, F and g be as in Definition 6. The number of minimal samples of g is bounded by k!, i.e.
depends only on k.

Proof: The set E is identified with {1, . . . , n}. We describe the construction of a tree T of depth n with at most
k! leaves of level n. These leaves represent all the minimal samples of g. Level i of the tree corresponds to element i
of E. Each node x is labelled by a subset Px ⊆ [k]. The root r of the tree is labelled by Pr = ∅.

Let i = 1. There are at most k possibilities to cover element 1 with gj(1) = cj (j = 1, . . . , k). Then, the root of
T branches on k nodes xj each labelled by Pxj

= {j}.
At each level i (i = 2, . . . , n), the same strategy is used. Let x be a node of level i labelled by Px. Two cases

are possible.
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• Either i ∈
⋃

j∈Px
g−1

j (cj) i.e. element i is already covered by (g−1
j (cj))j∈Px

. In this case, node x branches on
a unique point x′ of level i+ 1 labelled by Px′ = Px.

• Or i is not yet covered by (g−1
j (cj))j∈Px

. Two subcases may hold.

– Either Px = [k]. Then, because i 6∈
⋃

j∈[k] g
−1
j (cj), it is not possible to cover element i and the

construction fails and stops here for that branch.

– Or Px  [k]. Then, there are k− card(Px) possible ways to cover element i with gj(i) = cj (j ∈ [k]\Px).
Node x branches on k − card(Px) nodes xj each labelled by Pxj

= Px ∪ {j}.

It is easily seen that each leaf of level n corresponds to (at most) one sample of g and that all the minimal
samples of g are represented by such leaves. By construction, for every value of k ≥ 2, there is at most one node of
degree k on each branch. All the other nodes of the branch have degree one. Then, the number of leaves of level n
is bounded by k! and so is the number of minimal samples. �

4 Some hints of the method

The main goal of this paper is to investigate the possibility to eliminate all but one universal variables in
formulas whose relation and function symbols are of arity one. In this section, we informally describe on a very
simple example the method which achieves this aim (at least under certain conditions). This should give to the
reader a precise idea of the way the proof proceeds in more general statements.

Let us consider the following formula, obtained by fully quantifying a two-variable and positive unary clause:

φ ≡ ∀x∀y : f1(x) = g1(y) ∨ . . . ∨ fk(x) = gk(y).

Clearly, φ holds in a finite structure of domain D if, and only if,

∀x ∈ D : D =
⋃

i≤k

g−1
i (fi(x)). (2)

That is, from Definition 6:

∀x ∈ D, the tuple (fi(x))i∈[k] is a sample of g over D.

Since each sample contains a minimal sample (see Remark 3), we can write (2) as:

∀x ∃P∃(ci)i∈P : (ci)i∈P is a minimal
sample of g over D and

∧
i∈P fi(x) = ci.

(3)

But the number of minimal samples is bounded by k! (Lemma 7). Hence, existential quantification over samples
can be replaced by a disjunction over the k! possibilities. Thus, (3) becomes:

∃(P 1, (c1i )i∈P 1 ), . . . , (P k!, (ck!
i )i∈P k!) :∧

j≤k! ∀y
∨

i∈P j gi(y) = c
j
i ∧ (∗)

∀x
∨

j≤k!

∧
i∈P j fi(x) = c

j
i (∗∗)

(4)

Here, (∗) asserts that the tuples (cji )i∈P j , for j ≤ k!, are all samples of g over the domain 2. Their interpretation
can be taken among minimal ones, hence the bound on j. Formula (∗∗) guarantees that for each x, (fi(x))i∈[k]

contains one of these samples.
It remains to formulate (4) in such a way that it fits with our logical framework. The problem lies in the

quantifications over the P j ’s (which are subsets of [k]) and in the way these sets are involved in the definitions
of the tuples (cji )’s. In order to “internalize” these quantifications in our logic, we introduce a tuple of boolean

2Some of them may be identical i.e. there can be repetitions.
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variables (Sj
i )i≤k for each sample (P j , (cji )i∈P j ). The purpose of such a tuple is to describe which i’s have to be

considered in the tuple (cji ). More precisely, it is easily seen that Equation (4) is equivalent to:

∃(S1
i , c

1
i )i≤k, . . . , (S

k!
i , c

k!
i )i≤k :∧

j≤k! ∀y
∨

i≤k[Sj
i ∧ gi(y) = c

j
i ] ∧

∀x
∨

j≤k!

∧
i≤k[Sj

i → fi(x) = c
j
i ]

(5)

Here, the Sj
i ’s are boolean variables3 and the cji ’s are constant symbols. Now, (5) clearly appears as an ESO-formula

which can trivially be put in prenex form with only one universal quantifier. We won’t give further evidence of the
equivalence (2) ⇔ (5): it will be detailed, in a more general context, in the proof of Theorem 8. Moreover, notice
that Formula (5) may also be put in positive form (where no negation occurs) via an easy reformulation that uses
a big disjunction instead of introducing explicitly the second-order variables Sj

i .

5 On formulas with two first-order variables

Let us first introduce some notations, in order to simplify the presentation of forthcoming results: if u =
(u1, . . . , u`) is a tuple of unary functions on a domain D, we denote by u(x) the tuple (u1(x), . . . , u`(x)) and we
abbreviate by u(x) = v(y) the conjunction

∧
i≤` ui(x) = vi(y). Furthermore, for each α ∈ D`, we denote by

u−1(α) the set {x ∈ D : u(x) = α}. We will use several times the following trivial fact:

Remark 4 Let α,β be two tuples of variables of respective arities p, q and let β be a specified variable in β. Let
furthermore w be a p-tuple of unary function symbols. Then, for any formula Φ(α,β), the following formulas are
equivalent:

• ∀α,β : w(β) = α → Φ(α,β) ;

• ∀β : Φ(w(β),β).

Here is our first main result:

Theorem 8 For every signature σ s.t. arity(σ) ≤ 1:

ESOσ(∀2, arity 1) = ESOσ(∀1, arity 1).

Proof: The right-to-left inclusion is straightforward. For the other one, we have to prove that each formula of
ESOσ(∀2, arity 1) can be written in ESOσ(∀1, arity 1). Because of Lemma 4 and Remark 1, we can restrict our
attention to a formula φ obtained by quantifying a single two-variable unary clause. According to Definition 3, we
can set: φ ≡ ∀x, y :

∨
i≤` ui(x) 6= vi(y) ∨

∨
i≤k fi(x) = gi(y) or, equivalently:

φ ≡ ∀x, y :
∧

i≤`

ui(x) = vi(y) →
∨

i≤k

fi(x) = gi(y).

With the notations introduced above, we get:

φ ≡ ∀x, y : u(x) = v(y) →
∨

i≤k

fi(x) = gi(y),

or equivalently:

∀x(∀y ∈ v−1(u(x))) :
∨

i≤k

fi(x) = gi(y),

where u and v now denote two `-tuples of unary function symbols. With the definition of samples (Definition 6),
this exactly means that for each x, (fi(x))i≤k contains a minimal sample of g over v−1(u(x)). We will prefer

3The reader who doesn’t agree with the use of boolean variables in this framework can replace them by monadic relations and
substitute to each occurrence of S

j

i
the formula S

j

i
(0).
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the more convenient formulation: for each α ∈ D` and for each x ∈ D: if u(x) = α, then (fi(x))i≤k contains a
minimal sample of g over v−1(α). Using the fact that the number of such samples is bounded by k! (Lemma 7)
and describing samples over v−1(α) via boolean variables Sj

i (see Section 4), this can be written:

∀α ∃(S1
i , c

1
i )i≤k , . . . , (S

k!
i , c

k!
i )i≤k :

(∀y ∈ v−1(α))
∧

j≤k!

∨
i≤k[Sj

i ∧ gi(y) = c
j
i ] ∧

(∀x ∈ u−1(α))
∨

j≤k!

∧
i≤k[Sj

i → fi(x) = c
j
i ]

Here, the cji ’s are constant symbols. The first conjunct asserts that for each j ≤ k!, (cj
i ){i s.t. S

j

i
} is a sample of g

over v−1(α), while the second conjunct says that for each x ∈ u−1(α), (fi(x))i≤k contains one of these samples.
Writing this last formula under Skolemized form, we get the following equivalent formula:

Θ ≡ ∃(S1
i , c

1
i )i≤k , . . . , (S

k!
i , c

k!
i )i≤k ∀α :

(∀y ∈ v−1(α))
∧

j≤k!

∨
i≤k[Sj

i (α) ∧ gi(y) = c
j
i (α)]

(∀x ∈ u−1(α))
∨

j≤k!

∧
i≤k[Sj

i (α) → fi(x) = c
j
i (α)]

where the Sj
i (resp. cji ) are now `-ary relation (resp. function) symbols (recall that ` is both the arity of α and of

the tuples of unary functions u and v). From Remark 4, Θ, hence φ, is finally equivalent to:

Φ ≡ ∃(S1
i , c

1
i )i≤k , . . . , (S

k!
i , c

k!
i )i≤k :

∀y
∧

j≤k!

∨
i≤k[Sj

i (v(y)) ∧ gi(y) = c
j
i (v(y))]

∀x
∨

j≤k!

∧
i≤k [Sj

i (u(x)) → fi(x) = c
j
i (u(x))],

where the Sj
i (resp. cji ) are `-ary relation (resp. function) symbols 4. This concludes the proof, since Φ can trivially

be written in ESO(∀1, arity `) and therefore, in ESO(∀1, arity 1) (see Proposition 5). �

Remark 5 Theorem 8 is tight for σ with arity(σ) ≤ 1. It is proved in [8] that if σ = {E} where E is a binary
relation symbol, there exists a graph property (namely : being a complete graph) definable in ESOσ(∀2, arity 1) and
not in ESOσ(∀1, arity 1) = ESOσ(∀1).

Theorem 8 extends to the case of not necessarily prenex formulas with two variables thanks to the following
proposition.

Proposition 9 For any signature σ and any d ≥ 1,

ESOσ(var 2, arity d) = ESOσ(∀2, arity d).

Proof: The right-to-left inclusion is evident. For the other direction, we first prove that for any signature τ , every
two-variable first-order formula φ over τ can be written in ESOτ (∀2, arity 1). The proof is given by induction on
the number n of quantifiers in φ. The case n = 0 is evident. Suppose now the proposition is true for n− 1. Let θ
be a sub-formula of φ of the form:

θ ≡ Qx λ(x, y),

where λ(x, y) is quantifier-free and Q ∈ {∀, ∃}. The intuitive idea is to substitute to the formula θ(y) a new unary
predicate A(y). Let φ0 be the formula obtained after such substitution. Clearly, φ is equivalent to:

∃A (φ0 ∧ ∀y(A(y) → Qx λ(x, y))).

Moreover, φ0 has n− 1 quantifiers (and still at most two variables) and therefore, by the induction hypothesis, it
can be written as: ∃ν∀x∀yψ0, where arity(ν) ≤ 1 and ψ0 is quantifier-free. Thus, φ is equivalent to:

φ̃ ≡ ∃A∃ν (∀x∀yψ0 ∧ ∀y(A(y) → Qx λ(x, y))),

where arity(ν) ≤ 1 and ψ is quantifier-free. Two cases may now happen:

4But always used with one variable.
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• Q = ∃. By Skolemization, we obtain:

φ̃ ≡ ∃A∃ν∃f∀x∀y (ψ0 ∧ (A(y) → λ(f(y), y)));

• Q = ∀. The following is obtained:

φ̃ ≡ ∃A∃ν∀x∀y (ψ0 ∧ (A(y) → λ(x, y))).

In both cases, φ̃ belongs to ESOτ (∀2, arity 1). This is the seeked formula.
The left-to-right inclusion of Proposition 9 easily follows: Any formula Φ ≡ ∃τφ(σ, τ) in ESOσ(var 2, arityd) is

equivalent to Φ̃ ≡ ∃τ φ̃(σ, τ), where φ̃ is the ESOστ (∀2, arity 1)-formula equivalent to φ. And Φ̃ clearly belongs to
ESOσ(∀2, arity d). �

From Proposition 9 and Theorem 8, the following corollary can be immediately derived.

Corollary 10 For every unary signature σ:

ESOσ(var 2, arity 1) = ESOσ(∀1, arity 1).

The results of this section permit to derive a hierarchy based on arity for formulas with two variables (or two
universal quantifiers). As stated by the next result, this hierarchy is strict for the two first levels and collapses
right after.

Corollary 11 For every signature σ and every d ≥ 2,

ESOσ(∀2, arity 1)  ESOσ(∀2, arity 2)
= ESOσ(∀2, arity d)

and
ESOσ(var 2, arity 1)  ESOσ(var 2, arity 2)

= ESOσ(var 2, arity d)

Proof: Only the proof of the first hierarchy is given (the other one is obtained similarly). The equality is proved
in [8] for every σ. The strict inclusion is proved in two steps depending on the arity of σ.

First, suppose that arity(σ) ≤ 1. Then,

ESOσ(∀2, arity 1) = ESOσ(∀1, arity 1) (Thm.8)
= NTIMEσ(n) (Thm.2)
 NTIMEσ(n2) ([2])
= ESOσ(∀2, arity 2) (Thm.2)

Now, if arity(σ) ≥ 2, then σ contain at least one binary relation symbol, say E. It is a consequence of

a result in [1] that the set of finite graphs with an even number of edges is in ESO{E}(∀2, arity 2) but not in

ESO{E}(∀1, arity 1). �

6 The case of acyclic or positive formulas

In this section, we generalize Theorem 8 to formulas with any number of universal variables. However, in that
context, it seems not immediate to extend this result to the case of formulas with unrestricted negative terms. In
the following lines, the notion of acyclic formulas is defined that restrict the way negation is used inside clauses.

Definition 12 Let C be a unary clause over the tuple of variables x. The undirected graph GC = (V,E) is defined
by: V = {x : x ∈ x} and ∀x, y ∈ V , (x, y) ∈ E iff C contains at least one negative atomic formula of the form
u(x) 6= v(y).
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Example: If C ≡ f(x) 6= g(y) ∨ u(y) 6= v(z) ∨ h(x) 6= k(z) ∨ f(t) = h(y), then GC is the clique K3 over vertices
x, y, z.

Definition 13 A unary clause C is said acyclic if its associated graph GC is acyclic. An ESO-formula Φ is
acyclic if all the unary clauses occurring in its clausal normal form5 are acyclic. By ESOσ(∀d, arity 1, acy) we
denote the class of acyclic ESOσ(∀d, arity 1)-formulas. Moreover, we denote by ESOσ(∀d, arity 1, pos) the class
of ESOσ(∀d, arity 1)-formulas without negation. Finally, we set ESOσ(∀∗, arity 1, acy) =

⋃
d ESOσ(∀d, arity 1, acy)

and ESOσ(∀∗, arity 1, pos) =
⋃

d ESOσ(∀d, arity 1, pos).

Note that ESOσ(∀1, arity 1)-formulas are all acyclic. Note also that the expressive power of ESOσ(∀∗, arity 1, pos)
is quite high since such formulas are able to express some NP-complete problems for arity(σ) = 1 (see [14]).

The main result of this section asserts that, provided formulas are acyclic or positive, adding universally quan-
tified variables does not increase the expressive power.

Theorem 14 For each unary signature σ:

1. ESOσ(∀∗, arity 1, acy) = ESOσ(∀1, arity 1);

2. ESOσ(∀∗, arity 1, pos) = ESOσ(∀1, arity 1, pos).

Proof: The right-to-left inclusions are trivial. The proof of the converse inclusions will be done through the
following lemma.

Lemma 15 For each unary signature σ and all d ≥ 2:

1. ESOσ(∀d+1, arity 1, acy) ⊆ ESOσ(∀d, arity 1, acy);

2. ESOσ(∀d+1, arity 1, pos) ⊆ ESOσ(∀d, arity 1, pos).

Proof: Only the proof of the first item is given (the proof of the second one is similar but simpler). From Lemma 4
and Definition 13, and since ESOσ(∀d, arity 1, acy) is closed under conjunction, the result holds if, and only if, each
formula of the form ∀xC - where x is a (d+ 1)-tuple of variables and C is an acyclic unary clause over x - can be
written in ESOσ(∀d, arity 1, acy). So, let φ ≡ ∀xC be such a formula. To achieve the proof we need a method to
separate the variables of φ. For this, we use the well-known fact: Every nonempty acyclic graph contains at least
one vertex of degree bounded by 1, that is, a vertex which is either isolated or related to a unique vertex y. Applied
to the acyclic graph GC , this allows to rewrite φ in the following way:

∀x∀y : u(x) = v(y1) →
(ψ(y) ∨

∨
i≤k fi(x) = gi(ypi

))
(6)

Here, y is a d-tuple (y1, . . . , yd) of variables, x is a variable related to a single variable6y1 ∈ y in the graph GC ,
ψ(y) is a unary clause over y, and for each i ≤ k, ypi

∈ y. The idea is now to treat separately the variable x, in the
spirit of the method used so far. For each `-tuple α of variables in a domain D, where ` in the number of unary
functions occurring in u (resp. v), let us denote by Xα the set {y ∈ Dd+1 : v(y1) = α∧¬ψ(y)}. Furthermore, let
us define a mapping Gi : Dd+1 → D, for each i ≤ k, by: ∀y ∈ Dd+1 : Gi(y) = gi(ypi

). Then (6) can be written:

∀x(∀y ∈ X
u(x)) :

∨
i≤k fi(x) = Gi(y)) (7)

This means: for each x ∈ D, (fi(x))i≤k contains a minimal sample of G = (G1, . . . , Gk) over X
u(x). The reader

should now be familiar with writing this assertion as:

Θ ≡ ∃(S1
i , c

1
i )i≤k , . . . , (S

k!
i , c

k!
i )i≤k ∀α : (8) ∧ (9)

where Sj
i (resp. cji ) are new `-ary relation (resp. function) symbols and (8) and (9) are the formulas below:

∀y : (v(y1) = α ∧ ¬ψ(y)) →∧
j≤k!

∨
i≤k [Sj

i (α) ∧Gi(y) = c
j
i (α)])

(8)

5See Lemma 4.
6In case x is isolated, there is no precondition u(x) = v(y1) and the proof is even simpler.
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∀x : u(x) = α →∨
j≤k!

∧
i≤k [Sj

i (α) → fi(x) = c
j
i (α)]

(9)

But formula (8) is easily seen equivalent to:

∀y : v(y1) = α → (ψ(y)∨∧
j≤k!

∨
i≤k [Sj

i (α) ∧ gi(ypi
) = c

j
i (α)])

(10)

Therefore, the formula Θ above is equivalent to:

∃(S1
i , c

1
i )i≤k , . . . , (S

k!
i , c

k!
i )i≤k ∀α : (10) ∧ (9),

which is equivalent, from Remark 4, to:

Φ ≡ ∃(S1
i , c

1
i )i≤k , . . . , (S

k!
i , c

k!
i )i≤k :

∀y(ψ(y)∨∧
j≤k!

∨
i≤k [Sj

i (v(y1)) ∧ gi(ypi
) = c

j
i (v(y1))])∧

∀x
∨

j≤k!

∧
i≤k[Sj

i (u(x)) → fi(x) = c
j
i (u(x))]

where Sj
i (resp. cji ) are `-ary relation (resp. function) symbols. It should be noted that the `-ary ESO symbols Sj

i

and cji only occur in terms t(x) or t(y1) depending on only one variable (x or y1). For each t, a unary function [t] is
introduced and each term t(x) (resp. t(y1)) is replaced by [t](x) (resp. [t](y1)). Then, an ESOσ(∀1, arity `)-formula
is added that states:

∀x t(x) ↔ [t](x).

Applying Remark 2, this formula can be in turn replaced by an equivalent ESOσ(∀1, arity 1)-formula. Finally, it is
easily seen that Φ can be transformed into a formula in ESOσ(∀d, arity 1, acy). �

The proof of Theorem 14 easily follows by induction from Lemma 15 and Theorem 8 (for the base case). �

Finally, the following separation result means that for positive and universally quantified formulas, binary ESO
functions express strictly more than unary ones.

Corollary 16 For any signature σ:

ESOσ(∀∗, arity 1, pos)  ESOσ(∀∗, arity 2, pos).

Proof: From Theorem 14 and Theorem 2, we get ESOσ(∀∗, arity 1, pos) ⊆ NTIMEσ(n). Moreover, by results of
[14], each problem in NTIME(n2) can be reduced in linear time to some problem expressible in ESOσ(∀∗, arity 2, pos)
for some unary signature σ. The result follows for any unary signature σ by the strict inclusion NTIME(n)  
NTIME(n2) [2]. The result also holds for any signature of arity ≥ 2 since the set of complete graphs belongs to
ESOσ(∀2, arity 2, pos) for σ = {E} but does not belong to NTIMEσ(n) [8]. �

7 Conjectures and consequences on the arity hierarchy

The results given in this paper are modest but real contributions to the study of the trade-off between arity of
guessed symbols and number of variables in existential second-order logic. However, we believe that the method
used is this paper (that mixes simple combinatorial and logical arguments) is not limited to the case of logic with
two variables. We also think it may contribute to prove that there exist strict hierarchies of definability based on
the arity of predicates. In this section, we give some plausible (regarding to the results proved so far) conjectures
and their consequences on arity hierarchies.

Conjecture 1 For every signature σ such that arity(σ) ≤ 1,

ESOσ(∀∗, arity 1) = ESOσ(∀1).
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So far, only the case of acyclic or positive formulas is solved (see Theorem 14). Notice that this conjecture does
not hold if arity(σ) > 1. The following proposition can be easily proved by padding arguments.

Proposition 17 If Conjecture 1 is true then, for every d and every σ such that . arity(σ) ≤ d,

ESOσ(∀∗, arity d) = ESOσ(∀d).

As a corollary, Conjecture 1 implies that the arity hierarchy for universal formulas is true.

Corollary 18 If Conjecture 1 is true then, for every d and every σ,

ESOσ(∀∗, arity d)  ESOσ(∀∗, arity (d+ 1))

Proof: There are two cases depending on the relation between arity(σ) and d. If arity(σ) ≤ d then:

ESOσ(∀∗, arity d) = ESOσ(∀d) Conjecture 1
= NTIMEσ(nd) (Thm.2)
 NTIMEσ(nd+1) [2]
= ESOσ(∀d+1)
= ESOσ(∀∗, arity (d+ 1))

If arity(σ) > d, the strictness of the inclusion follows from results of [1]. �

Let Q be a quantifier prefix, i.e. a word over the alphabet {∀, ∃}. A natural question is whether our result can
also be extended to every first-order prefix. We state the following strong conjecture.

Conjecture 2 For every quantifier prefix Q that contains ∀ and every signature σ with arity(σ) ≤ 1,

ESOσ(Q, arity 1) = ESOσ(∀1).

If Conjecture 2 is true, an analog of Proposition 17 can be proved. More interestingly, we would obtain the
following results that would settle two long standing open problems in finite model theory [5, 6].

Corollary 19 If Conjecture 2 is true then, for every d and every σ such that arity(σ) ≤ d,

ESOσ(arity d) = ESOσ(∀d).

Moreover, for every σ, the arity hierarchy over functions is strict at every level. That is:

ESOσ(arity d)  ESOσ(arity (d+ 1))

Let ESOσ
R(arity d) be the restriction of ESOσ(arity d) to formulas that contain second-order relation symbols

(and no function) of arity d.

Corollary 20 If Conjecture 2 is true, then, for every σ, the arity hierarchy is strict at every level d. That is:

ESOσ
R(arity d)  ESOσ

R(arity (d+ 1))

Proof: Corollary 19 and the fact that functions of arity d can be seen as relations of arity d+ 1 imply:

ESOσ
R(arity d)  ESOσ

R(arity (d+ 2)).

Then, by classical transfer results (see [5] and [9]), it can be shown that two consecutive levels cannot collapse. �

When σ = ∅, this hierarchy is originally called the spectrum arity hierarchy (see [5]). From Corollary 20,
Conjecture 2 would also imply that the arity hierarchy for spectra is strict at each level.
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4 (∀2
, ar 1)

(var 1) 2

Figure 1. Main inclusions between the logics mentioned in this paper (over unary structures).

8 Conclusion

The idea behind this research is that fixing the arity of guessed symbols in ESO-formulas strongly limits the
number of first-order variables (or, equivalently, the complexity) that are really needed to express properties. The
results proved in this paper are first steps in this program. In particular, we have obtained, for arity(σ) ≤ 1, that:

ESOσ(∀2, arity 1) = ESOσ(∀1, arity 1) = NTIMEσ(n)

and ESOσ(∀∗, arity 1, pos) = ESOσ(∀1, arity 1, pos).

In view to prove the two conjectures given in Section 7, it would certainly be essential to measure precisely the
expressive power of these classes of formulas: ESOσ(∀3, arity 1) and ESOσ(∀2∃∗, arity 1).

Figure 1 summarizes the results of this paper, where we denote, for instance, (∀1, ar 1) for the logic ESO(∀1, arity 1).
Each arrow corresponds to an inclusion. The classes included in a same frame are equal. Arrows without label
correspond to trivial inclusions. Labels refer to the following justifications: (1) Theorem 14. (2) Proposition 5.
(3) Proposition 9. (4) Any two-variable clause is acyclic. (5) Theorem 14. (6) Corollary 11.
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