
LIF

Laboratoire d’Informatique Fondamentale
de Marseille

Unité Mixte de Recherche 6166
CNRS - Université de Provence - Université de la Méditerranée

Synthesis of max-plus quasi-interpretations

Roberto M. Amadio

Rapport/Report 18-2004

4 January, 2004

Les rapports du laboratoire sont téléchargeables à l’adresse suivante

Reports are downloadable at the following address

http://www.lif.univ-mrs.fr

1

Synthesis of max-plus quasi-interpretations

Roberto M. Amadio

Laboratoire d’Informatique Fondamentale

UMR 6166
CNRS - Université de Provence - Université de la Méditerranée

amadio@lif.univ-mrs.fr

Abstract/Résumé

Quasi-interpretations are a tool to bound the size of the values computed by a first-order functional pro-

gram (or a term rewriting system) and thus a mean to extract bounds on its computational complexity. We

study the synthesis of quasi-interpretations selected in the space of polynomials over the max-plus algebra. We

prove that the synthesis problem is np-hard under various conditions and in np for the particular case of multi-

linear quasi-interpretations when programs are specified by rules of bounded size. We provide a polynomial

time algorithm to synthesize homogeneous quasi-interpretations of bounded degree and show how to extend the

algorithm to synthesize (general) quasi-interpretations. The resulting algorithm generalizes certain syntactic

and type theoretic conditions proposed in the literature to control time and space complexity.

Les quasi-interprétations sont un outil pour borner la taille des valeurs calculées par un programme fonc-

tionnel du premier ordre (ou un système de réécriture de termes) et ainsi un moyen pour extraire des bornes sur

sa complexité. Nous étudions la synthèse des polynômes sur l’algèbre max-plus. Nous démontrons que dans ce

cas le problème de la synthèse est np-difficile sous différentes conditions et dans np pour le cas particulier des

quasi-interprétations multi-linéaires quand les programmes sont spécifiés par des règles de taille bornée. Nous

définissons un algorithme polynomial en temps pour synthétiser des quasi-interprétations homogènes de degré

borné et nous montrons comment adapter l’algorithme pour synthétiser des quasi-interprétations générales.

L’algorithme dérivé généralise certaines conditions syntaxiques et de typage proposées dans la littérature pour

contrôler la complexité en temps et en espace.

Relecteurs/Reviewers: Fréderic Dabrowski, Silvano Dal Zilio.

Notes: The author is partly supported by ACI CRISS.

2

1 Introduction

Cobham’s well known characterization of polynomial time functions by bounded recursion
on notation [Cob65] is based on definitions by primitive recursion on binary notation where
the size of the result of the defined function is explicitly bounded by a polynomial. From a
programming point of view, the annoying aspect of bounded recursion on notation is that the
programmer has to find the size bound while defining functions by primitive recursion.

Some years ago, Bellantoni-Cook [BC92] and Leivant [Lei94] have introduced a notion of
ramification leading to another characterizations of the functions computable in polynomial
time. In [BC92] this is expressed as a distinction between normal and safe arguments and
a restriction on the way primitive recursion can be applied and functions composed ([Lei94]
introduces a related notion of tier). By complying to this programming discipline the pro-
grammer is relieved from the problem of explicitly providing a bound. This bound is implicit
in the constraints imposed by ramification and when needed can be explicitly computed. It has
been observed [Cas97] that this programming discipline rules out many natural algorithms.

More recently, Marion et al. [Mar00, MM00, BMM01] have identified a notion of quasi-
interpretation. Quasi-interpretations are inspired by polynomial simplification interpretations
which are one of the traditional tools used in proving the termination of term rewriting systems
(TRS), see, e.g., [BN98]. However, the goal is less ambitious: quasi-interpretations are used
to bound the size of the values computed by a program and not to prove its termination.
Because of this, it turns out that in practice quasi-interpretations are somehow easier to find
[Moy01].

Moreover, Marion et al. have shown that when combined with recursive path orderings,
polynomially bounded quasi-interpretations entail polynomial complexities in time and/or
space. More generally, we observe (section 3) that a quasi-interpretation by itself entails a
complexity bound on the computed function. Next, we address the problem of the automatic
synthesis of quasi-interpretations. For efficiency reasons, we propose to restrict our attention
to multi-variate polynomials over the so called max-plus algebra [BCOQ92]. We anticipate
that polynomials over the max-plus algebra have a growth rate that is linear in the size of
the argument. This growth rate is indeed a very severe restriction if we think in terms of
traditional interpretations, i.e., of the time taken by the computation to terminate. However,
as pointed out above, we are interested in quasi-interpretations as a mean to bound the
space needed to compute a function. Then we can still accommodate an interesting class
of functions. For instance, following Hofmann’s work on type systems ensuring non-size
increasing computations [Hof00], one can represent all functions computable in exponential
time whose output’s size is bounded by the input’s size; this is a respectable class of functions
including for instance all decision problems decidable in time 2O(n).

We prove that the synthesis problem is np-hard in a quite robust sense (section 4) and
in np for the particular case of multi-linear quasi-interpretations when the size of the rules is
bound by a constant (section 5). We also provide a polynomial time algorithm to synthesize
homogeneous quasi-interpretations of bounded degree and show how to extend the algorithm
to synthesize (general) quasi-interpretations. The resulting algorithm (section 6) generalizes
certain syntactic and type theoretic conditions proposed in the literature to control time and
space complexity [Jon97, Hof02].

3

2 A first-order functional language

We consider a first-order, simply typed, functional language operating over inductively defined
data types according to a call-by-value evaluation strategy. A program in this context is given
by a collection of data types declarations, a collection of mutually recursive function definitions
relying on pattern matching, and a function symbol which is designated as initial. Following
Marion et al., an alternative framework for this study could be term-rewriting rules with a
distinction among constructors and function symbols.1

2.1 Types

Inductive types are given by a set T = {t1, . . . , tn} of type identifiers and for each type
identifier t ∈ T a definition of the shape:

t = c1 of t1,1, . . . , t1,n1 || · · · || cm of tm,1, . . . , tm,nm

where ti,j occur in the list of type identifiers, and the constructors ci occur at most once in
the definitions. These types allow for the definition of basic data structures. For instance, we
can define bool = tt || ff to represent booleans, tnat = 0 || s of tnat to represent tally natural
numbers, and tnatlist = nil || cons of tnat , tnatlist to represent lists of tally natural numbers.

2.2 Expressions

We reserve: c, c′, . . . for constructor symbols, f, f ′, . . . for function symbols, and x, x′ . . . for
first-order variables. Moreover, we introduce the syntactic categories of values, patterns, and
expressions as follows:

v ::= c(v, . . . , v) (values)
p ::= x || c(p, . . . , p) (patterns)
e ::= x || c(e, . . . , e) || f(e, . . . , e) (expressions).

We denote with Var(e) the collection of variables occurring in the expression e. Note that
values are closed patterns, i.e., Var(v) = ∅, and patterns are expressions without function
symbols.

We denote with [e/x]e′ the substitution of e′ for x in e. A signature Σ attributes to every
function symbol f a functional type Σ(f) ≡ t1, . . . , tn → t. As usual if u is either a constructor
or a function symbol we denote with ar (u) the number of expected arguments as specified
by its type. A context Γ is a finite list x1 : t1, . . . , xn : tn where xi 6= xj if i 6= j. We use the
judgement Γ `Σ e : t to state that the expression e has type t with respect to the signature Σ
and the context Γ. Provable typing judgement are defined by the following inference system:

x : t ∈ Γ

Γ `Σ x : t

t = · · · || c of t1, . . . , tn || · · · Γ `Σ ei : ti i = 1, . . . , n

Γ `Σ c(e1, . . . , en) : t

Σ(f) = t1, . . . , tn → t Γ `Σ ei : ti i = 1, . . . , n

Γ `Σ f(e1, . . . , en) : t
.

1In this perspective, note that we work with orthogonal TRS and that for these TRS termination is equi-
valent to innermost termination [Gra96].

4

2.3 Functions’ definitions

Function symbols are defined by a finite system of mutually recursive equations so that each
function symbol is defined by exactly one equation. If Σ(f) = t1, . . . , tn → t then the equation
defining f has the shape:

f(x1, . . . , xn) =
x1 = p1,1, . . . , xn = p1,n ⇒ e1

· · ·
x1 = pm,1, . . . , xn = pm,n ⇒ em

where the formal parameters x1, . . . , xn are distinct and

(1) Patterns are linear, i.e. in pi,j no variable occurs more than once and Var(pi,j) ∩
Var(pi,j′) = ∅ if j 6= j ′. We assume that if Var(pi,j) = ∅ then pi,j is a constant constructor.2

In the examples, we take the freedom of omitting trivial patterns of the shape xi = xi.

(2) Patterns do not superpose, i.e., if i 6= j then the set of equations {pi,1 = pj,1, . . . , pi,n =
pj,n} is not unifiable. In particular, this entails that the programs we consider are determin-
istic.

(3) Expressions’ variables are contained in patterns’ variables, i.e., Var(ek) ⊆
⋃

j=1,...,n pk,j.

(4) Patterns and expressions are well typed, i.e., for i = 1, . . . ,m there are contexts Γi such
that:

Γi `Σ pi,j : tj for j = 1, . . . , n and Γi `Σ ei : t .

We call rule a clause of the shape x1 = p1, . . . , xn = pn ⇒ e in f , we will often write it as
f(p1, . . . , pn) ⇒ e.

2.4 Evaluation

A program is a finite collection of inductive types and a finite system of function definitions
with a selected main function. Expression evaluation follows a call-by-value strategy which
is specified as follows:

(cst)
ej 7→ vj j = 1, . . . , n

c(e1, . . . , en) 7→ c(v1 . . . , vn)
(fun)

ej 7→ vj , j = 1, . . . , n, f(p1, . . . , pn) ⇒ e
∃σ σpj = vj, j = 1, . . . , n, σ(e) 7→ v

f(e1, . . . , en) 7→ v

assuming the function f is defined as in section 2.3 and σ denotes a pattern-matching substi-
tution.

3 Max-plus quasi-interpretations

We introduce first the general notion of quasi-interpretation.

Definition 1 (size) The size of a value v is defined by 3

|c(v1, . . . , vn)| =

{

0 if n = 0
1 + Σi=1,...,n|vi| if n > 0 .

2This is a technical condition that does not impair the expressivity of the language as general patterns
without free variables can be simulated by introducing auxiliary function symbols.

3The alternative definition of size where we assign a positive size to constants is equivalent to the present
one within a constant multiplicative factor.

5

Definition 2 (assignment) Given a program, an assignment associates:

(1) With every constructor c with k arguments a function qc : (Q+)k → Q+ such that:

(1.1) qc = 0 if c has arity 0 and

(1.2) qc = d + Σi=1,...,nxi for some d ≥ 1, otherwise.

(2) To every function symbol f with k arguments a function qf : (Q+)k → Q+ such that:

(2.1) qf (n1, . . . , nk) ≥ ni for i = 1, . . . , k and

(2.2) qf (n1, . . . , nk) ≥ qf (m1, . . . ,mk) if ni ≥ mi for i = 1, . . . , k.

Definition 3 (extension of the assignment) Given an assignment and an expression e
with Var (e) = {x1, . . . , xk} we can define a function qe : (Q+)k → Q+ by induction on e as
follows:

qx = x, qc(e1,...,en) = qc(qe1 , . . . , qen), qf(e1,...,en) = qf (qe1 , . . . , qen) .

Definition 4 (quasi-interpretation) Given a program, the related assignment q is a quasi
interpretation if for every rule f(p1, . . . , pn) ⇒ e, the following condition holds (where func-
tions are ordered pointwise):

qf(p1,...,pn) ≥ qe . (1)

The notion of assignment we consider is obviously inspired by the simplification inter-
pretation method used in termination proofs of TRS. The specific conditions on constructors
correspond to the notion of kind 0 quasi-interpretation presented in [BMM01]. However, we
work over the non-negative rationals rather than over the natural numbers and we force the
interpretation 0 for constants. This last condition allows to simplify some interpretations by
neglecting the space needed to store constant values.

3.1 Basic properties of quasi-interpretations

The following proposition summarizes the basic properties of quasi-interpretations.

Proposition 5 (basic properties) Suppose q is a quasi-interpretation for a given program.
Then:

(1) There is a constant d such that for any value v, |v| ≤ qv ≤ d|v|.

(2) If e 7→ v then qe ≥ qv ≥ |v|. In particular, if f(v1, . . . , vn) 7→ v then |v| ≤ qf (d|v1|, . . . , d|vn|).

Proof. (1) We take d as the largest additive coefficient d′ occurring in the interpretation
Σi=1,...,nxi + d′ of a constructor of positive arity n. Then the assertion is proven by induction
on the structure of the value v.

(2) First we note that for all expressions e with Var(e) = {x1, . . . , xn} and for all substitutions
σ over Var(e) the following identity holds:

qσe = qe(qσ(x1), . . . , qσ(xn)) . (2)

Then we proceed by induction on the definition of the evaluation relation 7→. Let us consider
the case where the last rule applied is (fun). By inductive hypothesis, qej

≥ qvj
for j =

1, . . . , n. Hence by the monotonicity property (2.2) of an assignment

qf (qe1 , . . . , qen) ≥ qf (qv1 , . . . , qvn) . (3)

6

Since q is a quasi-interpretation, we know that

qf(p1,...,pn) ≥ qe . (4)

Thus we obtain

qf(e1,...,en) ≥ qf(v1,...,vn) by (3)

= qσ(f(p1,...,pn)) by definition of rule (fun)

≥ qσe by (4) and (2)
≥ qv by inductive hypothesis. 2

We remark that quasi-interpretations by themselves already provide a bound on the complexity
of the program.

Theorem 6 (complexity bound) Suppose q is a quasi-interpretation for a given program.
Then there is an evaluation strategy that given a function symbol f with arguments v1, . . . , vn

returns the value v iff f(v1, . . . , vn) 7→ v and a special symbol ⊥ otherwise. The procedure
runs in time 2O(qf(v1,...,vn)).

Proof. The proof proceeds by presenting an evaluator that can be run on a bounded auxiliary
push-down machine (APDA) (the bound depending on the quasi-interpretation). By a well-
known result of S. Cook [Coo71], a bounded APDA can be simulated by a Turing Machine
in exponential time using a ‘table’ to store intermediate results.

By property (2.1) of assignments, we note that if e′ is a subexpression of the expression e
then qe ≥ qe′ . Let B = qf(v1,...,vn). It follows from the remark above and (1) that any value
v′ obtained in the course of the computation of f(v1, . . . , vn) is such that |v′| ≤ B. Note that
both the number of constructors in the program and the arity of a function are bound by
a constant. It follows that the number of values to which a function can be applied in the
course of the computation is in 2O(B).

A call-by-value evaluation context E is defined as follows:

E ::= [] || c(v1, . . . , vi−1, E, ei+1, . . . , en) || g(v1, . . . , vi−1, E, ei+1, . . . , en) .

It is easy to verify that any closed expression e which is not a value admits a unique de-
composition in an evaluation context E and a function application g(v1, . . . , vn) so that
e ≡ E[g(v1, . . . , vn)].

We define an evaluation function Eval that performs an innermost leftmost evaluation of
an expression.

Eval(e′) = case

e′ value : e′

e′ ≡ E[f(v1, . . . , vn)], f(p1, . . . , pn) ⇒ e,
and ∃σ (σ(pj) = vj , j = 1, . . . , n) : let v′ = Eval(σ(e)) in

Eval(E[v′])
else : Return ⊥

where we assume that invoking Return⊥ stops the computation returning ⊥ as result. Let k
be the maximum number of function symbols that occur in an expression on the right hand
side of ⇒ in a function definition. We note that the evaluation function initially applied to

7

the expression f(v1, . . . , vn) maintains the invariant that the number of function symbols in
an argument e is bound by k. It is easy to see that the size of an expression e such that
qe ≤ B and containing at most k function symbols has size in O(B). It follows that both
the expressions and the values involved in the evaluation have size in O(B). Hence a stack
frame for Eval has size in O(B) and Eval can be implemented on an auxiliary deterministic
pushdown automata with auxiliary memory which is in O(B). Then by a well-known result
by S. Cook [Coo71], the function can also be implemented to run on a Turing Machine in
time 2O(B).

Classically, this transformation relies on a technique called memoization that saves com-
puted results and thus avoids recomputing several times a function with the same arguments.
A simple description of this idea is given by the evaluator below Eval m that relies on a global
table T which is initially empty and is accessed with two procedures Insert and Update:

Evalm(e′) = case

e′ value : e′

e′ ≡ E[f(v1, . . . , vn)], f(p1, . . . , pn) ⇒ e,
and ∃σ (σ(pj) = vj, j = 1, . . . , n) :

(new , v′′) := Insert(f(v1, ..., vn));
case

new : let v′ = Evalm(σ(e)) in (1)
Update(f(v1, ..., vn), v′);
Evalm(E[v′])

¬new , v′′ 6= ⊥ : Evalm(E[v′′]) (2)
else : Return ⊥

else : Return ⊥ .

The Insert and Return procedures are defined as follows:

Insert(f(v1, . . . , vn)) = case

(f(v1, . . . , vn), v) ∈ T : (false, v)
else : T := T ∪ {(f(v1, . . . , vn),⊥)}; (true,⊥)

Update(f(v1, . . . , vn), v) = T := T\{(f(v1, . . . , vn),⊥)} ∪ {(f(v1, . . . , vn), v)} .

The table can be implemented so that these procedures run in time in O(B). Since the table
T can contain at most 2O(B) entries, branch (1) can be taken at most 2O(B) times. On the
other hand, branch (2) decreases by one the number of function symbols in the evaluated
expression. This number being bound by a constant, we can take branch (2) only a constant
number of times before running again branch (1). We conclude that the evaluation strategy
runs in time 2O(B). 2

In the following, we will consider polynomial max-plus quasi-interpretations. For these
interpretations, qf(x1,...,xn) ≤ k(Σi=1,...,nxi) + c for some constants k, c. Hence qf (v1, . . . , vn)
is in O(Σi=1,...,n|vi|), and it follows from theorem 6, that a program admitting a polynomial
max-plus interpretation can be evaluated in time 2O(n) on data of size n. In the quoted work,
Cook also shows how to simulate an exponential time machine with a polynomially bounded
auxiliary push down automaton. This idea has been adapted by [Hof00] to show that ‘non-size
increasing’ recursive programs can simulate Turing machines (TM) running in time 2O(n).

8

Quasi-interpretations can be combined with various methods enforcing program termin-
ation. In particular, in [BMM01] it is shown that a program terminating by (a suitable
version of the) lexicographic path-order (lpo4) and admitting a polynomially bounded quasi-
interpretation (polynomial in the usual sense) can be evaluated in Pspace. For a lower bound,
we refer to the encoding of quantified boolean formulas (qbf) in appendix A that terminates
by lpo and admits a (multi-linear) max-plus quasi-interpretation. By imposing further con-
ditions on the termination method (product path-order) it is also possible to characterize
Ptime [Mar00].

3.2 Max-plus polynomials

We consider the set Q+ ∪ {−∞} equipped with two internal composition laws max and plus
(denoted +) where it is understood that:

max (−∞, x) = max (x,−∞) = x −∞ + x = x + (−∞) = −∞ .

We briefly refer to this structure as Q+
max . We note that Q+

max is a commutative and idem-
potent monoid for max with neutral element −∞ and a commutative monoid for plus with
neutral element 0. Moreover, plus distributes over max : x + max (y, z) = max (x + y, x + z).
In the max-plus literature one regards max as an addition and plus as a multiplication and
therefore the following notation is adopted: x⊕y = max (x, y), x⊗y = x+y. Exponentiation
xα with α ≥ 0 stands for x ⊗ · · · ⊗ x α times and thus corresponds to the product αx in
the usual mathematical notation. Note in particular that x0 = 0. In the following we will
just use quite elementary properties of max-plus algebras and so we find it more convenient
to stick to the usual mathematical notation using max (x, y), x + y, and αx for ‘addition’,
‘multiplication’, and ‘exponentiation’ in the max-plus algebra.

A monomial with additive coefficient a ∈ Q+
max and indeterminates x1, . . . , xn can be

written as
α1x1 + · · · + αnxn + a (5)

where αi ∈ N. We say that a monomial m has degree deg(m) = d if αi ≤ d for i = 1, . . . , n.5

A polynomial is in normal form if is presented as max i∈Imi where mi are monomials of the
type specified above. We say that a polynomial (in normal form) has degree d if all monomials
mi have degree d. A polynomial of degree d with n indeterminates can be represented as

max I:{1,...,n}→{0,...,d}(I(1)x1 + · · · + I(n)xn + aI) (6)

and it is therefore specified by the (d + 1)n coefficients {aI | I : {1, . . . , n} → {0, . . . , d}}.
Then an assignment (cf. definition 2) of max-plus polynomials of degree d is determined as
follows:

(1) For every constructor c with positive arity a coefficient ac subject to the constraint ac ≥ 1.

(2) For every function symbol f with n ≥ 1 arguments a set of coefficients {af
I | I :

{1, . . . , n} → {0, . . . , k}} subject to the constraints for i = 1, . . . , n

max{af
I | I(i) ≥ 1} ≥ 0 (7)

4A popular termination method that can be synthesized in non-deterministic polynomial time; see, e.g.,
[BN98].

5This is a slightly improper terminology; we should say that the monomial restricted to any of its inde-
terminates has degree at most d.

9

This last constraint is necessary and sufficient for the condition (2.1) qf (n1, . . . , nk) ≥ ni

of definition 2 to hold. We note that the following monotonicity condition (2.2) is always
satisfied. Sometimes, it is convenient to specify a polynomial as a function:

max i∈I(Σj=1,...,nαi,jxj + ai) (8)

where αi,j ∈ N and ai ∈ Q+. In this case, we we refer to αi,j, respectively ai, as the multi-
plicative, respectively additive, coefficients. We also say that the polynomial is homogeneous
if ∀ i ∈ I ai = 0.

Definition 7 (synthesis problem) Given a program, the synthesis problem amounts to de-
termine whether there is a polynomial max-plus quasi-interpretation.

If the program includes l constructors of positive arity, and m functional symbols of
arity at most n, an assignment of polynomials of degree at most d is determined by at most
l+m(d+1)n coefficients. The assignment is a quasi-interpretation iff it satisfies the constraints
above and those induced by the condition (1).

Some simple instances of max-plus polynomial quasi-interpretations are given in appendix
A. Of course, the rule of the game is to get quasi-interpretations as small as possible and in
this respect the max operator is quite useful. Moreover, in many examples where a variable
occurs several times on the right-hand side, it is simply not possible to find a (max-plus)
quasi-interpretation that does not rely on max. We note that in general the existence of a
polynomial max-plus interpretation of a given degree can be reduced to the validity of an ∃∀
formula in Pressburger arithmetic over Q+

max .

4 Lower bounds

We study the complexity of the synthesis of max-plus quasi-interpretations. First, we present
some methods to force specific interpretations.

Proposition 8 (forcing interpretations) With any function symbol f with n arguments
we can associate rules of bounded size and in number polynomial in n so that a max-plus
polynomial assignment q satisfies one or both of:

(1) qf = max (x1, . . . , xn), where ar (f) = n.

(2) qf is a homogeneous polynomial.

Moreover we can force the interpretation of an arbitrary number of constructors to have the
same additive coefficient.

Proof. Let P be the max-plus polynomial assigned to a function f . We recall that the
polynomial can be written as P = max i∈I(Σj=1,...,nαi,jxj + ai) where αi,j ∈ N and ai ≥ 0.
We assume to have some constructors c, d, 0, . . . available.

(1) Consider the following rule:

e ≡ f(0, . . . , 0, d(x), 0, . . . , 0) ⇒ f(0, . . . , 0, f(0, . . . , 0, d(x), 0, . . . , 0), 0, . . . , 0) ≡ e ′ (9)

where the expression d(x) occurs as the j th argument. We claim that if the assignment satisfies
this rule then αi,j ∈ {0, 1} for all i ∈ I. Suppose αk,j = max{αi,j | i ∈ I}. By the condition

10

on assignment it must be that αk,j ≥ 1. We may assume that k is chosen so that αk,j = αk′,j

implies ak ≥ ak′ .
For x large enough, qe = αk,j(x + ad) + ak where ad ≥ 1 is the coefficient associated

with the constructor. On the other hand, qe′ = αk,j(qe) + ak. The inequality qe ≥ qe′ forces
αk,j = 1. Thus now for x large enough the condition simplifies into x+ad +ak ≥ x+ad +2ak

which forces ak = 0. Hence, by introducing rules of type (9) for every argument, we can show
that: (i) αi,j ∈ {0, 1} and (ii) αi,j = 1 implies ai = 0.

• Next we want to force the property that P = max (a, x1, . . . , xn) for some a. To this end
we add the rule

e1 ≡ f(c(x1), . . . , c(xn)) ⇒ f(f(c(x1), . . . , c(xn)), . . . , f(c(x1), . . . , c(xn))) ≡ e2 (10)

for some fresh constructor c. Clearly, if qe1 ≥ qe2 then P cannot add two arguments.

• Then, to force a = 0 we consider the following rule:

f(e(0, x), 0, . . . , 0) ⇒ e(f(0, . . . , 0), f(0, . . . , 0)) . (11)

This requires max (a, x + ae) ≥ ae + 2a. For x = 0 this means max (a, ae) ≥ ae + 2a. Since
a ≥ ae ≥ 1 this forces ae ≥ a and ae ≥ ae + 2a. And the latter implies a = 0.

(2) Let mn denote a function symbol for which we force the interpretation max (x1, . . . , xn)
using the technique in (1). Consider the rule:

m1(c(x1, x2, . . . , xn)) ⇒ c(f(0, . . . , 0), 0, . . . , 0)

Then
ac + Σi=1,...,nxi ≥ ac + qf(0,...,0)

= ac + max i∈Iai

Thus ai = 0 for all i ∈ I.

• Finally, to force the equality of the additive coefficients in the interpretation of constructors,
we can introduce rules of the shape:

m1(c(x, 0, . . . , 0)) ⇒ d(x, 0, . . . , 0) (12)

2

Then, as a lower bound on the complexity of the synthesis problem, we can state the
following theorem.

Theorem 9 (np-hardness) The synthesis problem is np-hard and it remains so if any com-
bination of the following restrictions is considered:

(1) Rules of bounded size (for a small bound).

(2) Max-plus polynomials of bounded degree d ≥ 1.

(3) Uniform choice of the coefficients of the constructors: ac = ac′ for all constructors c, c′

of positive arity.

11

Proof. We present a polynomial reduction from 3-sat. We carry on the encoding assuming
that the additive coefficient associated with the constructors of positive arity employed in the
encoding is k ≥ 1. As we have seen in proposition 8, we can always force this condition.
Also, as in the previous proof, we use mn as a function symbol whose interpretation is
max (x1, . . . , xn). In the proof, we will always rely on the same constructor symbols c and
0. In case the patterns superpose, it is intended that the constructor symbols are suitably
renamed. Let us assume first that we can force the interpretation qu of a binary function
symbol u to satisfy the following conditions:

qu = max (a1 + x1, a2 + x2), (a1 = k ∧ a2 = 2k) ∨ (a1 = 2k ∧ a2 = k) . (13)

Also assume that the interpretation qd of a ternary function symbol d satisfies the following
conditions:

qd = max (b0, b1 + x1, b2 + x2, b3 + x3), 2k ≥ b0 ≥ bi ≥ k, for i = 1, . . . , 3 . (14)

Then, given a formula φ in 3-cnf, for every propositional variable u we introduce a binary
function symbol u subject to condition (13). The idea here is to represent a boolean variable
with the additive coefficients a1, a2 of u so that the variable evaluates to 1 iff a1 = 2k. For
every 3-disjunction d in the formula φ we introduce a ternary function symbol d subject to
condition (14). If the first literal of the disjunction d is the propositional variable u then we
want to force b1 = a1. This can be done with the rules:

d(c(c(x1)), 0, 0) ⇒ u(c(c(x1)), 0) u(c(c(x1)), 0) ⇒ d(c(c(x1)), 0, 0) . (15)

On the other hand, if the first literal of the disjunction is u then we want to force b1 = a2.
Thus we write:

d(c(c(x)), 0, 0) ⇒ u(0, c(c(x))) u(0, c(c(x))) ⇒ d(c(c(x)), 0, 0) . (16)

We add this type of rules for every disjunction d and for every argument of the associated
function symbol.

To express the fact that every disjunction d evaluates to 1 we require that at least one
of the coefficients of the associated ternary function evaluates to 2k. This is expressed as
follows:

d(c(c(x1)), c(c(x2)), c(c(x3))) ⇒ c(c(c(c(0)))) . (17)

Then satisfying boolean assignments and quasi-interpretations can be related along the lines
of what has been discussed above.

• It remains to show how to enforce conditions (13-14). Suppose f is a function symbol of
arity n and consider the rule:

m1(c(c(x))) ⇒ f(x, . . . , x) . (18)

If qf = max i∈I(Σj=1,...,nαi,jxj + ai) is a max-plus polynomial (where αi,j ∈ N and ai ≥ 0)
then the rule (18) forces the following conditions:

∀ i ∈ I 1 ≥ Σj=1,...,nαi,j and 2k ≥ ai . (19)

12

Thus qf must be a multi-linear polynomial of the shape:

qf = max (a0, a1 + x1, . . . , an + xn) , (20)

and we can assume 2k ≥ a0 ≥ ai ≥ 0, for i = 1, . . . , n.

• Next add rules of the following shape for the same function symbol f :

f(0, . . . , 0, c(x), 0, . . . , 0) ⇒ c(c(x)) . (21)

If c(x) occurs as the jth argument then we require max (a0, . . . , aj−1, x+k+aj, aj+1, . . . , an) ≥
2k + x which forces aj ≥ k. By varying the position of c(x) between the first and the last
argument of f we obtain the condition

ai ≥ k for i = 1, . . . , n . (22)

We note that conditions (19,22) force condition (14).

• Now add a rule of the following shape for the same function symbol f :

f(c(c(x1)), . . . , c(c(xn))) ⇒ c(c(c(c(0)))) . (23)

This requires max (a0, 2k + a1 + x1, . . . , 2k + an + xn) ≥ 4k. Since by condition (19) a0 ≤ 2k,
this is equivalent to

a0 = max (a1, . . . , an) = 2k . (24)

• For a function symbol f of arity 2 we add a rule of the following shape:

m2(c(c(c(x))), c(c(c(c(0))))) ⇒ f(f(0, x), 0) . (25)

This requires max (x+3k, 4k) ≥ max (x+a1+a2, a0, a2, a1+a0, 2a1) and since 2k ≥ a0 ≥ a1, a2

this is equivalent to 3k ≥ a1 + a2 which coupled with condition (24) can be expressed as:

(a1 = k ∧ a2 = 2k) ∨ (a1 = 2k ∧ a2 = k) . (26)

Thus we have also shown how to enforce condition (13). 2

Note that in the previous encoding we just assign to function symbols (multi-linear)
functions of the shape max (a0, x1 + a1, . . . , xn + an). One could think that the difficulty
of the problem comes from the max and/or from the discrete nature of the multiplicative
coefficients. Thus suppose we restrict the interpretations of function symbols to polynomials
of the shape:

Σj=1,...,nαjxj + a (27)

Proposition 10 (more np-hardness) The synthesis problem restricted to assignments of
the type (27) is np-hard and it remains so if any combination of the following restrictions is
considered:6

(1) Rules of bounded size (for a small bound).

(2) Polynomials of bounded degree d ≥ 2.7

(3) Uniform choice of the coefficients of the constructors: ac = ac′ for all constructors c, c′

of positive arity.

6This is based on a remark by E. Leviel.
7For d = 1, the problem can be solved in polynomial time (cf. proposition 26).

13

Proof. We show that for a binary function symbol f one can force either the interpretation
x1 + 2x2 or 2x1 + x2 and that this entails another encoding of 3-sat. By proposition 8(1),
we can assume m1 such that qm1(x) = x. By proposition 8(2), we can force a function to be
homogeneous, so that qf = α1x1+α2x2, with α1, α2 ≥ 1. Incidentally, the fact that α1, α2 are
natural numbers follows from the constraints. Suppose moreover that qc = x + k with k ≥ 1.
For a function symbol sn of arity n we can also force qsn = y1 + · · · + yn, by introducing n
rules of the shape m1(c(x)) ⇒ c(sn(0, . . . , 0, x, 0, . . . , 0)).

• With the rule:
f(c(x1), c(x2)) ⇒ c3(0)

we require α1(x1 + k) + α2(x2 + k) ≥ 3k which implies

α1 + α2 ≥ 3 (28)

• With the rule:
m1(c

4x) ⇒ c(f(c(0), 0), f(c(0), 0))

we require 4k + x ≥ k + α1k + α2k which implies

3 ≥ α1 + α2 (29)

• With the rule:
m1(c

2x) ⇒ f(f(0, c(0)), 0)

we require 2k + x ≥ α1α2k which implies

2 ≥ α1α2 (30)

By (28-29), α2 = 3−α1. Replacing in (30), we obtain 2 ≥ α1(3−α1) that is α2
1 −3α1 +2 ≥ 0

which holds for α1 ≤ 1 or α1 ≥ 2. Actually, we know that α1, α2 = 3 − α1 ≥ 1 thus either
α1 = 1 or α1 = 2.

• Suppose given a formula φ in 3-cnf with variables x1, . . . , xn. With every variable we
associate a binary function symbol fi, i = 1, . . . , n subject to the constraints above. We note
that:

qfi
coefficients argument resulting interpretation

(1, 2) (c(0), 0) k
(1, 2) (0, c(0)) 2k
(2, 1) (c(0), 0) k
(2, 1) (0, c(0)) 2k

We want to force the following encoding:

truth value coefficients resulting value

true (1, 2) k
false (2, 1) 2k

Now suppose qs3 = y1 + y2 + y3. With every disjunction D over the variables xi, xj , xk, we
associate a rule:

m1(c
5(x)) ⇒ s3(fiarg(xi, D), fjarg(xj , D), fkarg(xk, D)) (31)

14

where:

arg(x,D) =

{

(c(0), 0) if x occurs in D
(0, c(0)) if x occurs in D

Note that qfarg(x,D) equals k (2k) if either qf corresponds to true (false) and x occurs positively
(negatively) in D or qf corresponds to false (true) and x occurs negatively (positively) in D.
Thus rule (31) requires that at most two literals evaluate to false and therefore the disjunction
D is satisfied. 2

5 Synthesis of multi-linear quasi-interpretations

We consider the synthesis problem when the degree is 1. We start by pointing out some
specific properties of this case (section 5.1), then we give effective methods to compute and
compare quasi-interpretations (section 5.2), and finally we show how the generated conditions
can be reduced to linear programming (section 5.3).

5.1 Multi-linear assignments

Following a rather standard terminology, we will refer to monomials (polynomials) of degree
1 as multi-linear monomials (polynomials). We note that a multi-linear polynomial in n
indeterminates is specified by 2n coefficients {aI | I ⊆ {1, . . . , n}} and can be written as
follows:

max I⊆{1,...,n}(Σi∈Ixi + aI) . (32)

Equivalently, if the multi-linear polynomial depends on the variables x1, . . . , xn we will also
write:

maxV ⊆{x1,...,xn}(Σv∈V v + aV) . (33)

Proposition 11 (normal form) For every multi-linear polynomial P (x1, . . . , xn) there is
an equivalent multi-linear polynomial P ′(x1, . . . , xn) with coefficients {a′

I | I ⊆ {1, . . . , n}}
satisfying the condition

J ⊆ K ⊆ {1, . . . , n} ⇒ a′
J ≥ a′K . (34)

Proof. We define a′
I = max{aJ | I ⊆ J}. Clearly P ≤ P ′ and P ′ satisfies the condition (34).

It remains to prove P ≥ P ′. It is enough to show that for K ⊆ {1, . . . , n}, P (x1, . . . , xn) ≥
Σi∈Kxi+a′K . But a′K = aJo for some Jo ⊇ K and P (x1, . . . , xn) ≥ Σi∈Joxi+a′Jo

≥Σi∈Kxi+a′K .
2

In the following we assume that a program has been fixed and that c1, . . . , cl are the
constructors of positive arity occurring in the program. We say that a multi-linear polynomial
is in normal form if its coefficients satisfy condition (34). For such polynomials condition (7)

on assignments can be reformulated as af

{i} ≥ 0 for every function f with ar(f) = n and
i = 1, . . . , n. Given a multi-linear assignment we will show that qf(p1,...,pn) is always a multi-
linear polynomial; a property that may fail for a general expression e.

Proposition 12 Let P1 be a multi-linear polynomial and P2 be a polynomial over x1, . . . , xn.
If P1 ≥ P2 then P2 must be multi-linear.

Proof. If P2 is not multi-linear then there is an argument xi such that on entry Xi ≡
(0, . . . , 0, xi, 0 . . . , 0), P2(Xi) ≥ 2xi. On the other hand P1(Xi) = xi + n for some n ∈ Q+

max .
Clearly P1(Xi) ≥ P2(Xi) fails for sufficiently large xi. 2

15

(x, ∅)

(ei, Ci), i = 1, . . . , n Var(ei) ∩ Var(ej) = ∅ for all i 6= j
(c(e1, . . . , en),

⋃

i=1,...,n Ci)

(ei, Ci), i = 1, . . . , n Var(ei) ∩ Var(ej) 6= ∅ for some i 6= j
(c(e1, . . . , en),

⋃

i=1,...,n Ci ∪ {⊥})

(ei, Ci), i = 1, . . . , n

(f(e1, . . . , en), {af

{i,j} = −∞ | i 6= j,Var(ei) ∩ Var(ej) 6= ∅} ∪
⋃

i=1,...,n Ci)

Table 1: Constraints enforcing multi-linearity of qe

5.2 Computing multi-linear quasi-interpretations

We explicitly compute the shape of the different polynomials arising from a multi-linear
assignment. The proofs require some involved notation but just rely on elementary arithmetic
considerations and are delayed to appendix B.

Proposition 13 (left-hand-side) (1) Suppose q is a multi-linear assignment and p is a
pattern in a function definition then qp is a multi-linear polynomial of the shape

qp = Σv∈Var(p)v + Σj=1,...,lαja
cj (35)

for some αj ∈ N.

(2) Suppose q is a multi-linear assignment and the program contains the rule f(p1, . . . , pn) ⇒
e. Then qf(p1,...,pn) is always a multi-linear function and assuming qpi

= Σv∈Var(pi)v +
Σj=1,...,lαi,ja

cj then the coefficient bV for V ⊆
⋃

i=1,...,n Var(pi) is given by

bV = af
KV

+ Σj=1,...,l(Σk∈KV
αk,j)a

cj (36)

where KV = {k ∈ {1, . . . , n} | V ∩ Var(pk) 6= ∅}.

We now turn to the polynomial qe. This polynomial is obtained by arbitrary composition
of multi-linear polynomials and may fail to be multi-linear. However, in this case we know
from propositions 12 and 13(2) that the inequality qf(p1,...,pn) ≥ qe cannot hold. So our next
task is to generate constraints that are necessary and sufficient to guarantee that qe is multi-
linear. To this end, we introduce in table 1 a little formal system with judgements of the
shape (e, C) where e is an expression and C is a set of constraints on the coefficients of the
functions occurring in e. As usual we introduce a special constraint ⊥ with the hypothesis
that no assignment can satisfy it.

Example 14 For the expression e ≡ f(c(x, y), g(x)) we obtain ` (e, {af

{1,2} = −∞}). On the

other hand, for the expression e ≡ c(x, x) we obtain ` (e, {⊥}).

Proposition 15 (right-hand-side) Suppose q is a multi-linear assignment in normal form.

(1) If qei
= maxUi⊆Vi

(Σv∈Ui
v + ai

Ui
), i = 1, . . . , n, are multi-linear polynomials where Vi =

Var(ei) and V =
⋃

i=1,...,n Vi. Then:

16

(1.1) qc(e1,...,en) is a multi-linear polynomial iff i 6= j implies Vi ∩ Vj = ∅, and in this case the
coefficients bU for U ⊆ V are determined by:

bU = Σi=1,...,nai
U∩Vi

+ ac (37)

(1.2) Whenever qf(e1,...,en) is a multi-linear polynomial the coefficients bU for U ⊆ V are
determined by:

bU = max I⊆{1,...,n},↓I,U⊆
⋃

i∈I Vi
(Σi∈Ia

i
U∩Vi

+ af
I) (38)

where by definition ↓ I if i, j ∈ I and i 6= j implies Vi ∩ Vj = ∅.

(2) If ` (e, C). Then qe is multi-linear iff q satisfies C.

Thus given a rule f(p1, . . . , pn) ⇒ e and a generic multi-linear assignment q we determine
the conditions under which qe is multi-linear and then formally compute its coefficients. Next,
we have to find necessary and sufficient conditions on the coefficients to compare multi-linear
polynomials.

Example 16 Consider again the expression e ≡ f(c(x, y), g(x)). First of all we note the
following constraints on the coefficients:

af

∅ ≥ af

{1}, a
f

{2} ≥ 0 af

{1,2} = −∞

ag

∅ ≥ ag

{1} ≥ 0 ac ≥ 1

Then we compute qe as follows:

qc(x,y) = ac + x + y

qg(x) = max (ag

∅, a
g

{1} + x)

qf(x1,x2) = max (af

∅ , a
f

{1} + x1, a
f

{2} + x2)

qe = max (af

∅ , a
f

{1} + ac + x + y, af

{2} + max (ag

∅, a
g

{1} + x))

= max (af

∅ , a
g

∅ + af

{2}, a
g

{1} + af

{2} + x, af

{1} + ac + x + y) .

Proposition 17 (comparison) Suppose P1 and P2 are multi-linear polynomials with n in-
determinates and coefficients {aI | I ⊆ {1, . . . , n}} and {bI | I ⊆ {1, . . . , n}}, respectively.
Then

(1) P1 ≥ P2 iff the following condition holds:

max{aK | K ⊇ J} ≥ bJ for all J ⊆ {1, . . . , n} . (39)

(2) If moreover, P1 is in normal form then the condition (39) is equivalent to aJ ≥ bJ for
all J ⊆ {1, . . . , n}.

Remark 18 For max-plus polynomials of degree higher than 1 this simple comparison cri-
teria fails. For instance, max (2x, 2y) ≥ x + y. The equational theory of homogeneous max-
plus polynomials is thoroughly studied in [AEI03]. In this particular case, deciding whether
max (m1, . . . ,mn) ≥ m reduces to check whether the multiplicative coefficients of m are smal-
ler or equal than a convex combination of the multiplicative coefficients of m1, . . . ,mn. The
latter problem can be solved by linear programming. Unfortunately, we are not aware of a
generalization of this result to the non-homogeneous case.

To summarize, we have shown how to generate a system S of inequality constraints on the
coefficients of multi-linear polynomials so that the constraints can be satisfied in Q+

max iff the
corresponding polynomials determine a multi-linear assignment and a quasi-interpretation.

17

5.3 Reduction to linear programming

For programs with rules of bounded size we show that the synthesis problem can be solved in
non-deterministic polynomial time thus matching the lower bound given by theorem 9.

The comparison criteria (39) introduces inequalities of the shape max (A1, . . . , Am) ≥ B,
where Ai are coefficients of the type specified by proposition 13(2) not containing the max
operation. We remove the max by non-deterministically guessing the maximum Ai among
A1, . . . , Am and transforming the inequality into Ai ≥ B. We show next that the resulting
system can be solved in deterministic polynomial time. Thus the quest of synthesis problems
with (deterministic) polynomial time complexity seems to depend crucially on the possibility
of removing the max operation on the left-hand side of the inequalities generated by the
comparison criteria. Some interesting cases where this is actually possible are discussed in
propositions 24 and 26.

We reserve x1, . . . , xn for the variables corresponding to the coefficients af
I or for auxiliary

variables, and y1, . . . , yl for the variables corresponding to the coefficients acj which are all
subject to the constraint y ≥ 1. Let S(~x, ~y) be the system of inequalities over Q+

max that we
have derived for the synthesis problem over multi-linear polynomials after elimination of the
max on the left-hand side.

Proposition 19 (right max-elimination) The system S(~x, ~y) can be transformed in poly-
nomial time into a system S1(~x, ~x′, ~y) over Q+

max with additional auxiliary variables ~x′ such
that:

(1) The inequalities in S1 have one of the following 3 shapes assuming ~x, ~x′ ≡ x1, . . . , xn and
~y ≡ y1, . . . , yl.

(a) x = −∞ provided x ∈ {~x} (b) y ≥ 1 for all y ∈ {~y}

(c) x + Σj=1,...,lαjyj ≥ Σj=1,...,nβjxj + Σj=1,...,lγjyj where: αj , βj , γj ∈ N, x ∈ {~x, ~x′} .

(2) An assignment ρ satisfies S iff for some ~w, ρ[~w/~x′] satisfies S1.

Proof hint. An inequality A ≥ max i∈I(Σj∈Ji
Bi,j + C) can be transformed into

A ≥ x′ x′ ≥ Σj∈Ji
x′

i,j + C for i ∈ I x′
i,j ≥ Bi,j for i ∈ I, j ∈ Ji

where x′, x′
i,j are fresh variables. It can be easily verified that the derived system is satisfiable

iff the initial one is. If Bi,j contains again the max operator then we apply recursively the
transformation to the inequality x′

i,j ≥ Bi,j . 2

Proposition 20 (−∞-elimination) The system S1(~x, ~x′, ~y) over Q+
max obtained in propos-

ition 19 can be transformed in polynomial time into a system S2(~x′′, ~y) over Q+ where (i)
{ ~x′′} ⊂ {~x, ~x′}, (ii) the constraints have the shape (b) and (c) in proposition 19, and assuming
{~z} = {~x, ~x′}\{ ~x′′} an assignment ρ satisfies S1 iff ρ[~−∞/~z] satisfies S2.

Proof hint. We describe the proof strategy in a simplified case. Consider the conjunction
of boolean formulae of the shape

∨

j∈J xj or x ⇒
∨

j∈J xj. Its satisfiability can be decided by
applying the following rules:

S, x, (x ⇒
∨

j∈J xj) → S, x,
∨

j∈J xj

S, x, x ∨
∨

j∈J xj → S, x if J 6= ∅

S, (x ⇒ ⊥), x ∨
∨

j∈J xj → S, (x ⇒ ⊥),
∨

j∈J xj if J 6= ∅

S, x′, (x ⇒ (x′ ∨
∨

j∈J xj)) → S, x′

S, (x′ ⇒ ⊥), (x ⇒ (x′ ∨
∨

j∈J xj)) → S, (x′ ⇒ ⊥), (x ⇒
∨

j∈J xj)

18

where as usual ⊥ stands for the empty disjunction, disjunction is treated as an associative and
commutative operator, and ‘,’ stands for conjunction. These simplification rules obviously
terminate in a system S ′ that is satisfiable iff the original one is. Moreover, if ⊥ /∈ S ′ then
the boolean variables X can be partitioned in three sets X1, X0, X2 where X1 = {x | s ∈ S′}
and X0 = {x | (x ⇒ ⊥) ∈ S ′}. Then a satisfying assignment is obtained by taking ρ(x) = 1
if x ∈ X1 ∪ X2 and ρ(x) = 0 if x ∈ X0. This proof strategy is repeated for the system over
Q+

max where the constraint x = −∞ corresponds to x and the constraint x ≥ 0 to (x ⇒ ⊥).
A proper generalization of the rules above is presented in appendix B.4. 2

Remark 21 (optimality and integer solutions) (1) Once the problem is reduced to lin-
ear programming we may look for a solution which is optimal with respect to a given linear
cost function. For instance, we may minimize the function Σ

x∈{ ~x′′}
x + Σj=1,...,lyj.

(2) The transformations we have presented apply equally well to multi-linear polynomials over
Nmax . It is interesting to note that at the final step we can still rely on linear programming.
Indeed, if the system of inequalities over Q+ admits a solution s = (n1/d1, . . . , nk/dk) then
multiplying s by the least common denominator we obtain a solution in N because of the
particular shape (b) and (c) of the constraints generated by −∞-elimination. As usual, the
rational solutions may provide a better upper bound than the integer ones.

We summarize our analysis for programs whose rules have bounded size. The proof given
below also shows that the complexity of the method is exponential in the size of the rule.
This is not surprising since the number of coefficients we have to determine is exponential in
the number of variables in a rule.

Theorem 22 (np-completeness) The synthesis problem over multi-linear polynomials for
programs with rules of bounded size is np-complete.

Proof. np-hardness follows from proposition 9. To establish that the problem can be solved
in non-deterministic polynomial time we provide a rough upper bound to the size of the
system of inequalities as a function of the size of the program. The size of a pattern pi or
of an expression e is defined as for values (definition 1). Let m be the size of the greatest
pattern or expression. Let n be the maximum number of arguments of a function. Then
d = (n + 1)m is an upper bound to the size of a rule. Note that by the hypothesis that the
rules in the program have bounded size, d is bounded by some constant. Still, we will take d
into account in the following to see how it affects the complexity.

Let r be the number of rules that compose a program and f be the number of functions
in the program. Then f ≤ r and the size of the program is bound by rd. Let c be the number
of constructors of positive arity. Clearly c ≤ rd.

In the related synthesis problem, we have to determine at most c+f2n coefficients subject
to a certain number of inequalities where we count the size of an inequality u ≥ v as the size
of u plus the size of v. We have c inequalities of the form ac ≥ 1, at most fn inequalities of
the form af

i ≥ 0, at most f22n inequalities of the shape af
I ≥ af

J , and at most f2n inequalities

of the shape af
I = −∞. Hence the resulting system has a size in O(f22n).

It remains to determine the size of the system induced by the conditions qf(p1,...,pn) ≥ qe.

The number of variables in the patterns is at most nm. Hence we have at most r2nm = r2d

inequalities of the shape max{bV | V ⊇ U} ≥ b′U .

19

For each such inequality, we select non-deterministically the maximum on the left-hand
side, say bV ′ . Then we we have to bound the size of the coefficients bV ′U and b′U . The
coefficient bV is determined in proposition 13(2). We note that the multiplicative coefficient
Σk∈KV

αk,j is bound by nm and therefore it has size in O(log(nm)) = O(log(d)). It follows that
the size of the coefficient bV ′ is in O(c log(d)). The form of the coefficient b′U is determined in
proposition 15. Let zi denote an upper bound on the size of a coefficient b′U for an expression
of height i. Then zi+1 ≤ 2nnzi. An expression e has size and hence height at most m, thus
the size of b′U is bound by (2nn)m = 2nmnm ≤ 22nm. Assuming c log(d) ≤ 22nm, we conclude
that the size of the system is in O(r23d). We expect the factor 3 to be reducible but note
that the mere fact that we try to determine a multi-linear polynomial with d indeterminates
forces the resulting system to be exponential in d.

The last two steps presented in propositions 19 and 20 output a system whose size is
polynomial in the size of the one in input and since the final system is composed of linear
inequalities over Q+ it can be solved in polynomial time. 2

6 Some polynomial strategies

We present within our framework a ‘no cons’ syntactic restriction and a ‘type system for
in-place update’ that have been proposed in the literature to control the time and space
complexity. Then we provide a polynomial time algorithm to synthesize homogeneous quasi-
interpretations of bounded degree and show how to extend the algorithm to synthesize (general)
quasi-interpretations. In particular, the resulting algorithm generalizes the first two cases.

6.1 No cons syntactic condition

Jones’ syntactic condition [Jon97] concerns first-order functional programs defined over the
type of booleans bool = tt || ff and the type of lists of booleans blist = nil || cons of bool , blist .
The syntactic restriction requires that in every rule f(p1, . . . , pn) ⇒ e, the cons constructor
does not appear in the expressions e on the right-hand side of pattern matching. The following
can be easily checked.

Proposition 23 (interpretation for no cons) A program conforming to Jones’ restriction
admits the following multi-linear quasi-interpretation assuming ar (c) = ar (f) = n ≥ 1:

qc = 1 + Σi=1,...,nxi qf = max (x1, . . . , xn) .

Proof. We have qf(p1,...,pn) = max i=1,...,n(Σv∈Var(pi)v + di) for some di ≥ 0. On the other
hand, if no cons can occur in the expression e then qe = max{v | v ∈ Var(e)} and by definition
of rule, Var(e) ⊆

⋃

i=1,...,n Var (pi). 2

We consider a restricted class of multi-linear quasi-interpretations where:

qc = a + Σi=1,...,nxi, a ≥ 1 qf = max (x1 + af , . . . , xn + af), af ≥ 0, (40)

for ar (f) = ar (c) = n ≥ 1. We note that (i) all constructors have the same coefficient a,
(ii) every function is determined by exactly one coefficient af , and (iii) the interpretation in
proposition 23 falls in this family. We refer to this class of quasi-interpretations as max-multi-
linear.

20

Proposition 24 (synthesis for max-multi-linear) The synthesis problem over max-multi-
linear interpretations can be solved in polynomial time.

Proof. It is enough to note that under the conditions (40) the max operation is not needed on
the left-hand side of an inequality. First we note that for a pattern pi, qpi

= αia+Σv∈Var(pi)v
for some αi ∈ N. Thus

qf(p1,...,pn) = max i=1,...,n(af + αia + Σv∈Var(pi)v) .

Now let V ⊆
⋃

i=1,...,n Var(pi).

• If V = ∅ then the comparison condition (39) on the coefficients is expressed as:

max i=1,...,n(af + αia) = af + a(max i=1,...,n(αi)) ≥ b∅

noting that αi are natural numbers and that their maximum can be easily determined.

• If ∅ 6= V ⊆ Var(pi) then by the linearity of the patterns i is unique and the comparison
condition (39) on the coefficients is expressed as: af + αia ≥ bV .

• Finally, if V 6⊆ Var(pi) for all i then it must be that −∞ = bV . 2

6.2 Type system for in-place update

Hofmann [Hof00] proposes a first-order functional language that can be compiled into code not
requiring dynamic heap memory allocation. This is achieved by means of an empty ‘resource
type’ 3 and ‘affine’ typing rules. Elements of resource type have to be understood as memory
cells. Constructors of inductive types require an argument of resource type. Also functions
may take as arguments elements of resource type. We look at a little fragment of this type
system8 composed of programs over the types:

3 = (empty resource type)
W = ε || 0 of 3,W || 1 of 3,W (binary words).

For every function f we assume Σ(f) has the shape (3, . . . ,3,W, . . . ,W) → W and let
r(f) < ar(f) be the number of arguments of resource type. As usual patterns and expressions
in functions’ definitions have to be well typed (cf. section 2.3). This means that assuming
Σ(f) = (t1, . . . , tn) → W , for every rule f(p1, . . . , pn) ⇒ e, there is a context Γ such that:

Γ `Σ pj : tj for j = 1, . . . , n Γ `Σ e : W . (41)

Without loss of generality, we may assume that Γ contains only the variables occurring in the
patterns pj. Now we say that the typing is affine if in the typing of e the hypotheses in the
context Γ are used at most once. Note that the typing of the patterns is always affine since
we deal with linear patterns.

Resource arguments can be regarded as annotations for the compiler but no real com-
putation is performed on them. Indeed, it is not even possible to create (closed) values of
resource type. However, there is an obvious way to erase resource arguments and obtain
the ‘intended’ program. In our simple case, the resulting program will operate over the type
w = ε : w || 0 of w || 1 of w. The erasure function er is defined as follows over expressions:

er(x) = x er(ε) = ε er(0(x, e)) = 0(er(e)) er(1(x, e)) = 1(er(e))
er(f(e1, . . . , en)) = f(er(er(f)+1), . . . , er(en)) .

8In particular, we neglect enumerated, product, and higher-order types.

21

Proposition 25 (interpretation for affine typing) If a program has an affine typing then
its erasure admits the following multi-linear quasi-interpretation:

q0 = q1 = x + 1, qf = Σi=1,...,nxi + r(f) .

Proof hint. We define a function R on expressions that counts the number of arguments
of resource type:

R(x) = R(ε) = 0, R(0(x, e)) = R(1(x, e)) = 1 + R(e),
R(f(e1, . . . , en)) = r(f) + Σi=1,...,nR(ei) .

The only expressions of resource type that can occur in an expression e on the right hand side
of a rule are the variables of resource type that we find in the pattern. These are the formal
parameters of resource type of the function, say f , plus the variables of resource type arising
in the patterns using the constructors 0 and 1. Thus r(f) + Σi=r(f)+1,...,nR(pi) if ar(f) = n.
Note that this is precisely the coefficient of the polynomial P = qer(f(p1,...,pn)). On the other
hand, let R(Γ) =]{x | x : 3 ∈ Γ} be the number of variables of resource type in a context

Γ. Suppose Γ `af
Σ e is an affine typing of the expression e. Then it can be easily checked by

induction on the typing that qer(e) ≤ d+Σv∈Var (er(e))v for some d ≤ R(Γ). Then the assertion
follows since the context Γ selected in (41) satisfies R(Γ) = r(f) + Σi=r(f)+1,...,nR(pi). 2

We consider a restricted class of multi-linear quasi-interpretations where:

qf = af + Σi=1,...,nxi af ≥ 0 (42)

for ar (f) = n ≥ 1. We note that (i) constructors are subject to the general conditions of
assignments, (ii) every function is determined by exactly one coefficient af , and (iii) the inter-
pretation in proposition 25 falls in this family. We refer to this class of quasi-interpretations
as sum-multi-linear.

Proposition 26 (synthesis for sum-multi-linear) The synthesis problem over sum-multi-
linear interpretations can be solved in polynomial time.

Proof. The proof strategy is the same as in proposition 24. Now

qf(p1,...,pn) = af + Σj=1,...,l(Σi=1,...,nαi,j)a
cj + Σv∈

⋃

i=1,...,n Var(pi)v

and if V ⊆
⋃

i=1,...,n Var (pi) the comparison condition is simply af+Σj=1,...,l(Σi=1,...,nαi,j)a
cj ≥

bV . 2

6.3 A strategy based on homogeneous quasi-interpretations

The strategy amounts to determine first the multiplicative coefficients and then to see whether
compatible additive coefficients can be found. We will operate over max-plus polynomials of
the shape (8), and write m v P if the monomial m occurs in the normal form of the polynomial
P (this is stronger than m ≤ P).

Definition 27 (homogeneous assignment) A homogeneous assignment (quasi-interpretation)
is an assignment (quasi-interpretation) where we take all additive coefficients equal to 0.

22

procedure H(b, qo)
Init : ∀c qc := x1 + · · · + xar(c)

∀f qf := qo
f

repeat ∀f do q′f := qf od

∀f f(p1, . . . , pn) ⇒ e do

∀m ≡ Σj=1,...,nΣx∈Var(pj)αxx v qe do

let βi = max{αx | x ∈ Var(pi)}, 1 ≤ i ≤ n
and m1 = Σi=1,...,nβiyi in

if deg(m1) > b then Fail
if m1 6v qf then q′f := max (q′f ,m1)

od

od

until ∀f q′f = qf

return q

Table 2: Iterative search of a homogeneous quasi-interpretation of bounded degree

Note that a homogeneous assignment (quasi-interpretation) is not an assignment (quasi-
interpretation) because it violates the condition ac ≥ 1 on the additive coefficients of the
constructors.

For a given program, table 2 defines an iterative procedure H(b, qo) that takes a bound b,
a homogeneous assignment qo and searches a homogeneous quasi-interpretation q larger than
qo and of degree b.

Proposition 28 (synthesis in the homogeneous case) (1) If H(b) returns an assign-
ment q, then q is a homogeneous quasi-interpretation of degree b such that for all the rules
f(p1, . . . , pn) ⇒ e, if m v qe then there is a least m′ v f(p1, . . . , pn) such that m ≤ m′.

(2) If there is a homogeneous quasi-interpretation q ′′ of degree b and larger or equal than qo

then H(b, qo) returns a quasi-interpretation q smaller or equal than q ′′.

(3) If the rules have bounded size then the iterative search terminates in time polynomial in
the size of the program.

Proof. (1) At every iteration the algorithm maintains the invariant that qf is a homogeneous
max-plus polynomial of degree at most b. Suppose we reach an iteration where no monomial
is added. This means that for all rules f(p1, . . . , pn) ⇒ e, for all monomials m v qe, the
derived monomial m1 is such that m1 v qf . Then

qf(p1,...,pn) = qf (Σx∈Var(p1)x, . . . ,Σx∈Var(pn)x)

≥ m1(Σx∈Var(p1)x, . . . ,Σx∈Var(pn)x) since m1 v qf

≥ m by definition of m1 .

On the other hand, if m′′ v qf(p1,...,pn) and m ≤ m′′ then there are β ′
j such that m′′ ≡

Σj=1,...,nβ′
j(Σx∈Var(pj)x) and Σj=1,...,nβ′

jyj v qf . But this requires β ′
j ≥ max{αx | x ∈

Var(pj)}.

23

(2) Suppose there is a homogeneous quasi-interpretation q ′′ of degree b and such that for all
function symbols qo

f ≤ q′′f . We show that for each iteration qf ≤ q′′f . Initially, this is true
because q = qo and qo ≤ q′′. At each iteration, if m v qe then we know:

m v qe ≤ q′′e ≤ q′′f(p1,...,pn)

and this forces q′′f ≥ m1.

(3) There are at most (b + 1)n distinct homogeneous monomials that can occur in the max-
plus polynomial of degree b associated with a function of arity n. And we regard both b and
n as constants. 2

Suppose H(b, qo) terminates successfully with a homogeneous quasi-interpretation q. Then
we look for a quasi-interpretation that inherits the multiplicative coefficients of q. This means
that we have to determine an additive coefficient ac ≥ 1, for every constructor c, and an
additive coefficient am,f ≥ 0, for every function symbol f and every monomial m v qf .

If e is an expression then let qe(~0) be the associated quasi-interpretation with the inde-
terminates set to 0. We assume that the additive coefficients to be determined are enumerated
as a1, . . . , al. Then we generate a system S of linear constraints on them as follows:

Init S := ∅
∀f f(p1, . . . , pn) ⇒ e

∀m ≡ Σj=1,...,nΣx∈Var(pj)αxx + Σj=1,...,lα
′
jaj

let βi = max{αx | x ∈ Var(pi)}, 1 ≤ i ≤ n
and m1 = Σi=1,...,nβiyi in

S := S ∪ {Σi=1,...,nβiqpi(~0) + am1,f ≥ Σj=1,...,lα
′
jaj}

Proposition 29 (soundness of the strategy) (1) If the linear system S has a solution
then the corresponding assignment is a quasi-interpretation.

(2) If the rules have bounded size then the size of the system S is linear in the size of the
program.

Proof. (1) We note that:

qf(p1,...,pn) ≥ Σi=1,...,nβiqpi
+ am1,f

= Σi=1,...,nβi(Σx∈Var(pi)x) + Σi=1,...,nβiqpi(~0)
+ am1,f .

By construction Σi=1,...,nβi(Σx∈Var(pi)x) ≥ Σj=1,...,nΣx∈Var(pj)αxx, and by the constraints S,

Σi=1,...,nβiqpi(~0) + am1,f ≥ Σj=1,...,lα
′
jaj .

(2) The number of monomials associated with each function symbol is bound by a constant. 2

Note that this strategy is sensitive to the choice of the initial homogeneous assignment.
For instance, consider the rule: f(c(x1), c(x2)) ⇒ c(c(f(x1, x2)). Setting qo

f = max (x1, x2)
the strategy fails, whereas setting qo

f = x1 + x2 it succeeds.

7 Conclusion

Polynomial interpretations are a classical topic. We have taken a fresh look at them focusing
on space rather than on time bounds and shifting from the (+,×) algebra to the (max ,+) one.

24

We have shown that a program admitting a quasi-interpretations can only compute functions
of a certain bounded complexity, that the synthesis of max-plus quasi-interpretations is quite
robustly a np-hard problem and in np in the multi-linear case. Finally, we have presented
some strategies to synthesize max-plus quasi-interpretations in polynomial time.

References

[AEI03] L. Aceto, Z. Ésik, and A. Ingólfsdóttir. The max-plus algebra of the natural numbers has no finite
equational basis. Theoretical Computer Science 293(1):169–188, 3 February 2003.

[Ama02] R. Amadio. Max-plus quasi-interpretations. In Proc. Typed Lambda Calculi and Applications
(TLCA) 2003, Valencia, Springer Lecture Notes in Computer Science 2701. Also Research Report
10-2002 Laboratoire d’Informatique Fondamentale de Marseille, December 2002.

[BC92] S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the poly-time functions.
Computational Complexity, 2:97–110, 1992.

[BCOQ92] F. Baccelli, G. Cohen, G. Olsder, and J.-P. Quadrat. Synchronization and linearity. Wiley, 1992.

[BMM01] G. Bonfante, J.-Y. Marion, and J.-Y. Moyen. On termination methods with space bound certific-
ations. In Andrei Ershov Fourth International Conference ”Perspectives of System Informatics”,
Lecture Notes in Computer Science. Springer, 2001.

[BN98] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University Press, 1998.

[Cas97] V. Caseiro. Equations for defining polytime functions. PhD thesis, University of Oslo, 1997.

[Cob65] A. Cobham. The intrinsic computational difficulty of functions. In Proc. Logic, Methodology, and
Philosophy of Science II, North Holland, 1965.

[Coo71] S. Cook. Characterizations of pushdown machines in terms of time-bounded computers. Journal
of the ACM, 18(1):4–18, 1971.

[Gra96] B. Gramlich. On proving termination by innermost termination. In Proc. 7th Int. Conf. on Rewrit-
ing Techniques and Applications (RTA’96), volume 1103 of Lecture Notes in Computer Science,
pages 93–107. Springer-Verlag, 1996.

[Hof00] M. Hofmann. A type system for bounded space and functional in-place update. Nordic Journal of
Computing, 7(4):258–289, 2000.

[Hof02] M. Hofmann. The strength of non size-increasing computation. In Proc. ACM POPL, 2002.

[Jon97] N. Jones. Computability and complexity, from a programming perspective. MIT-Press, 1997.

[Lei94] D. Leivant. Predicative recurrence and computational complexity i: word recurrence and poly-time.
Feasible mathematics II, Clote and Remmel (eds.), Birkhäuser:320–343, 1994.

[Mar00] J.-Y. Marion. Complexité implicite des calculs, de la théorie à la pratique. PhD thesis, Universitè
Nancy, 2000. Habilitation à diriger des recherches.

[MM00] J.-Y. Marion and J.-Y. Moyen. Efficient first order functional program interpreter with time bound
certifications. In LPAR, volume 1955 of Lecture Notes in Computer Science, pages 25–42. Springer,
Nov 2000.

[Moy01] J.-Y. Moyen. System Presentation: An Analyser of Rewriting Systems Complexity. In Electronic
Notes in Theoretical Computer Science, 59(4), 2001.

A Examples of programs and quasi-interpretations

We provide a few examples of programs that can be defined in the language specified in
section 2. Both the insertion sort and the common subsequence algorithms are considered
in the literature [Mar00, Hof00] as situations where the constraints induced by ramification
lead to unnatural programming. Qbf is a Pspace-complete problem admitting a multi-linear
quasi-interpretation.9

9Qbf is known to be solvable in linear space.

25

Example 30 (insertion sort) We define a program that sorts lists of tally numbers. We
assume the types bool , tnat , and tnatlist as in section 2.1. Then we define the following
system of recursive functions:

sort(l) =
l = nil ⇒ nil

l = cons(x, l′) ⇒ insert(x, sort(l′))

insert(x, l) =
l = nil ⇒ cons(x, nil)
l = cons(y, l′) ⇒ if (lesseq(x, y), cons(x, cons(y, l′)), cons(y, insert(x, l′)))

if (x, y, z) =
x = tt ⇒ y
x = ff ⇒ z

lesseq(x, y) =
x = 0 ⇒ tt

x = s(x′), y = 0 ⇒ ff

x = s(x′), y = s(y′) ⇒ lesseq(x′, y′) .

The program admits the following quasi-interpretation:

qs = x + 1, qcons = x + l + 1, qsort = l,
qinsert = x + l + 1, qif = max (x, y, z), qlesseq = max (x, y) .

Example 31 (common subsequence) We define a program that computes the length of a
longest common subsequence of two binary words. The length is represented by a tally natural
number and the words by lists of booleans. The definition of the if function is borrowed from
the previous example.

lcs(x, y) =
x = nil ⇒ 0

x = cons(x′, l), y = nil ⇒ 0

x = cons(x′, l), y = cons(y′, l′) ⇒ if (eq(x′, y′), s(lcs(l, l′)),
max (lcs(cons(x′, l), l′), lcs(l, cons(y′, l′))))

eq(x, y) = max (x, y) =
x = tt, y = tt ⇒ tt x = 0 ⇒ y
x = ff, y = ff ⇒ tt x = s(x′), y = 0 ⇒ s(x′)
x = tt, y = ff ⇒ ff x = s(x′), y = s(y′) ⇒ s(max (x′, y′)) .
x = ff, y = tt ⇒ ff

The program admits the following quasi-interpretation:

qs = x + 1, qcons = x + l + 1, qlcs = max (x, y),
qif = max (x, y, z), qeq = max (x, y), qmax = max (x, y) .

Example 32 (qbf) We define a program that verifies the validity of a closed quantified
boolean formula (qbf). Truth values are represented by the type bool. Names of variables
are coded as tally natural numbers and we use a list of tally natural numbers to represent the
variables that are assigned the truth value tt. Finally, qbf formulas are elements of the type

form = v of tnat || n of form ||
a of form , form || o of form , form ||
all of tnat , form || ex of tnat , form .

26

We leave to the reader the definition of the boolean functions and, or , not, and of the test
for equality of tally numbers eq. We also need a function that checks for membership of an
element in a list

mem(x, l) =
l = nil ⇒ ff

l = cons(y, l′) ⇒ or(eq(x, y),mem(x, l′)) .

The main program checks a formula with respect to a list of variables that have been affected
the value tt.

qbf (φ) = check(φ,nil)

check (φ, l) =
φ = v(x) ⇒ mem(x, l)
φ = n(φ′) ⇒ not(check (φ′, l))
φ = a(φ′, φ′′) ⇒ and(check (φ′, l), check(φ′′, l))
φ = o(φ′, φ′′) ⇒ or(check (φ′, l), check (φ′′, l))
φ = all(x, φ′) ⇒ and(check (φ′, cons(x, l)), check (φ′, l))
φ = ex(x, φ′) ⇒ or(check (φ′, cons(x, l)), check (φ′, l)) .

The program admits the following quasi-interpretation:

qv = qn = x + 1, qa = qo = qall = qex = x + y + 1,
qnot = qqbf = x, qand = qor = qeq = qmem = max (x, y),
qcheck = φ + l, qmax = max (x, y) .

B Proofs

B.1 Proof of proposition 13

(1) By induction on the structure of p.

p ≡ c Then qc = 0 and we take αj = 0 for j = 1, . . . , l.

p ≡ x Then qx = x and we take as in the previous case αj = 0 for j = 1, . . . , l.

p ≡ ck(p1, . . . , pn) By hypothesis on the shape of patterns in function definitions we know that
Var(pi) ∩ Var (pj) = ∅ if i 6= j. By inductive hypothesis, qpi

= Σv∈Var(pi)v + Σj=1,...,lαi,ja
cj

for some αi,j ∈ N. Then

qp = qp1 + · · · qpn + ack

= Σv∈Var(p1)v + · · · + Σv∈Var(pn)v + Σj=1,...,lα1,ja
cj + · · · + Σj=1,...,lαn,ja

cj + ack

= Σv∈Var(p)v + Σj=1,...,lα
′
ja

cj

where α′
j =

{

Σi=1,...,nαi,j if j 6= k
Σi=1,...,nαi,k + 1 if j = k .

(2) We start by computing:

qf(p1,...,pn) = max I⊆{1,...,n}(a
f
I + Σi∈I(Σv∈Var(pi)v + Σj=1,...,lαi,ja

cj))

= max I⊆{1,...,n}(Σv∈
⋃

i∈I Var(pi)v + af
I + Σj=1,...,l(Σi∈Iαi,j)a

cj)

Now, let P be the multi-linear polynomial determined by the coefficients bV . We show that
qf(p1,...,pn) = P .

27

qf(p1,...,pn) ≤ P. Fix I ⊆ {1, . . . , n} and take V =
⋃

i∈I Var(pi). Then KV = {k | V ∩
Var(pk) 6= ∅} ⊆ I, as by the conditions on patterns, Var (pi) ∩ Var(pk) 6= ∅ implies i = k.

It follows, by the normalization constraint that af
KV

≥ af
I . We also note that if i ∈ I\KV

then Var(pi) = ∅ and therefore αi,j = 0 for j = 1, . . . , l. Hence

Σi∈Iαi,j = Σi∈KV
αi,j + Σi∈I\KV

αi,j = Σi∈KV
αi,j .

P ≤ qf(p1,...,pn). Given V and the related set KV we set I = KV . Then af
I = af

KV
, V ⊆

⋃

i∈I Var(pi), and Σk∈KV
αk,j = Σi∈Iαi,j. 2

B.2 Proof of proposition 15

(1) We note that in general, qei
≥ v if v ∈ Vi. Thus qei

+qej
is multi-linear only if Vi∩Vj = ∅.

(1.1) Since ac ≥ 1, to compute qc(e1,...,en) we have to assume that

Vi ∩ Vj = ∅ if i 6= j . (43)

Otherwise the resulting polynomial is not multi-linear. Then

qc(e1,...,en) = maxUi⊆Vi,i=1,...,n(Σv∈
⋃

i=1,...,n Ui
v + Σi=1,...,nai

Ui
+ ac) .

Let U ⊆ V . To determine the coefficient bU of qc(e1,...,en) we have to consider all families
U1, . . . , Un such that Ui ⊆ Vi for i = 1, . . . , n and

⋃

i=1,...,n Ui = U . This forces Ui = U ∩ Vi.
Thus

bU = Σi=1,...,nai
U∩Vi

+ ac . (44)

Therefore condition (43) is also sufficient to preserve multi-linearity.

(1.2) To compute qf(e1,...,en) suppose moreover that qf is determined by the coefficients

{af
I | I ⊆ {1, . . . , n}}. It is necessary to assume that af

I = −∞ whenever 6↓ I. Since we
require that qf is in normal form we may equivalently express this condition by stating that

af

{i,j} = −∞ whenever i 6= j and Vi ∩ Vj 6= ∅ . (45)

Otherwise, the resulting polynomial is not multi-linear. Then

qf(e1,...,en) = max I⊆{1,...,n},↓I(Σi∈I(maxUi⊆Vi
(Σv∈Ui

v + ai
Ui

+ af
I)))

= max I⊆{1,...,n},↓I,Ui⊆Vi
(Σv∈

⋃

i∈I Ui
v + Σi∈Ia

i
Ui

+ af
I) .

Let U ⊆ V . To determine the coefficient bU of qf(e1,...,en) we have to consider all the I ⊆
{1, . . . , n} such that (i) ↓ I and (ii) for Ui ⊆ Vi, i ∈ I, we have U =

⋃

i∈I Ui. By (i), (ii) is
actually equivalent to U ⊆

⋃

i∈I Vi taking Ui = U ∩ Vi. Thus

bU = max I⊆{1,...,n},↓I,U⊆
⋃

i∈I Vi
(Σi∈Ia

i
U∩Vi

+ af
I) . (46)

Therefore condition (45) is also sufficient to preserve multi-linearity.

(2) Following the analysis above, we prove the assertion by induction on the proof of (e, C).

e ≡ x. Then qe ≡ x is multi-linear, C = ∅, and q satisfies C.

e ≡ c(e1, . . . , en). Suppose ` (ei, Ci) for i = 1, . . . , n. We distinguish two cases.

28

Var(ei) ∩ Var(ej) = ∅ if i 6= j. Then ` (c(e1, . . . , en),
⋃

i=1,...,n Ci). If qe is multi-linear then
qei

must be multi-linear since qc(e1,...,en) ≥ qei
. Thus by inductive hypothesis, q satisfies Ci

for i = 1, . . . , n, that is q satisfies
⋃

i=1,...,n Ci. Vice versa, if q satisfies
⋃

i=1,...,n Ci then by
inductive hypothesis, qei

is multi-linear and by the computation above qe is also multi-linear.

Var(ei) ∩ Var(ej) 6= ∅ for i 6= j. Then ` (c(e1, . . . , en), {⊥} ∪
⋃

i=1,...,n Ci). Hence qc(e1,...,en)

cannot be multi-linear and q cannot satisfy {⊥} ∪
⋃

i=1,...,n Ci.

e ≡ f(e1, . . . , en). Suppose ` (ei, Ci) for i = 1, . . . , n. Again if qe is multi-linear then qei

is multi-linear and by inductive hypothesis q satisfies Ci for i = 1, . . . , n. Moreover, since
q is multi-linear it must also satisfy condition (45). Vice versa, if q satisfies the constraints

{af
i,j = −∞ | i 6= j,Var (ei) ∩ Var (ej) 6= ∅} ∪

⋃

i=1,...,n Ci then by inductive hypothesis qei
is

multi-linear for i = 1, . . . , n and qe is also multi-linear by the computation above. 2

B.3 Proof of proposition 17

(1) Clearly, if the condition (39) holds then P1 ≥ P2. Vice versa suppose P1 ≥ P2 and
consider a monomial Σi∈Jxi + bJ in P2 and the vector XJ whose components are specified by:

(XJ)i =

{

x if i ∈ J
0 otherwise

Then P1(XJ) ≥ P2(XJ) ≥ (]J)x+bJ . For sufficiently large x this means that there is a K ⊇ J
such that P1(XJ) = (]J)x+aK ≥ (]J)x+bJ . Which implies that max{aI | I ⊇ J} ≥ aK ≥ bJ .

(2) If P1 is in normal form then max{aI | I ⊇ J} = aJ and the argument in (1) applies. 2

B.4 Proof of proposition 20

Initially, the constraints have the shapes (a–c) specified in proposition 19. We also allow
constraints of the shape Σj∈Jxj = −∞. It will be convenient to add to the system the
constraints y ≥ 0 whenever y ≥ 1 and write a sum Σj=1,...,kαjuj where αj ∈ N as Σj∈Jxj for
a suitable j. Using this notation, we introduce in table 3 six simplification rules. To enforce
a (quick) termination, rules (0) and (5) should be applied only if the constraint x ≥ 0 is not
already in the hypothesis and rule (3) should be applied by taking the factor α as large as
possible. Let S ′

1 be the system resulting from the application of the rules above. Clearly an
assignment satisfies the initial system iff it satisfies S ′

1. Let X1 = {x | x = −∞ occurs in S ′
1}

and X0 = {x | x ≥ 0 occurs in S ′
1}. If X1 ∩ X0 6= ∅ then 0 = ∞ occurs in S ′

1 and the initial
system is not satisfiable.

Otherwise, let X2 be composed of the variables that are neither in X1 nor in X0. The
constraints in S ′

1 have one of the following forms:

(a) y ≥ 1, y ≥ 0 (b) x ≥ 0 (c) (x = ∞) (d) (Σj∈Jxj = −∞) for]J ≥ 2

(e) x + Σj∈J1yj ≥ Σj∈J2xj + Σj∈J3yj .

We note that in the constraint (d) it must be the case that xj ∈ X2 for all j ∈ J (rules (2) and
(3)), and that in the constraint (e) x, xj /∈ X1 for all j ∈ J2 (rules (1) and (4)). Now suppose
the assignment ρ satisfies S ′

1 then we claim that ρ′ defined by ρ′(x) = ρ(x) if x ∈ X1 ∪ X0

and ρ′(x) = −∞ otherwise satisfies S ′
1. Indeed ρ′ may behave differently from ρ only in the

constraints of the shape (d) and (e).

29

(0)
S, x + Σj∈J1

yj ≥ Σj∈J2
yj

S, x ≥ 0, x + Σj∈J1
yj ≥ Σj∈J2

yj

(1)
S, (x = −∞), x + Σj∈J1

yj ≥ Σj∈J2
xj + Σj∈J3

yj

S, (x = −∞), Σj∈J2
xj = −∞

(2)
S, (x = −∞), (x + Σj∈Jxj = −∞)

S, (x = −∞)

(3)
S, x ≥ 0, α ≥ 1, (αx + Σj∈Jxj = −∞)

S, x ≥ 0, (Σj∈Jxj = −∞)

(4)
S, (x′ = −∞), x + Σj∈J1

yj ≥ x′ + Σj∈J2
xj + Σj∈J3

yj

S, (x′ = −∞)

(5)
S, x′

k ≥ 0 (for all k ∈ K) x + Σj∈Jyj ≥ Σk∈Kx′
k + Σj∈J′yj

S, x′
k ≥ 0 (for all k ∈ K), x ≥ 0, x + Σj∈Jyj ≥ Σk∈Kx′

k + Σj∈J′yj
.

Table 3: Simplification rules

Since all the variables in the constraint (d) are in X2, ρ′ obviously satisfies this constraint.
As for the constraint (e): if ∃ j ∈ J2 (xj ∈ X2) then ρ′ satisfies the constraints. Otherwise, it
must be that ∀j ∈ J2(xj ∈ X0) and then by rule (5) we know that x ∈ X0 so that ρ′ behaves
as ρ on this constraint.

Thus the system S2(~x′′) in the statement of the proposition can be obtained by restricting
the system S ′

1 to the constraints that involve only the variables in X0. 2

30

