
LIF

Laboratoire d’Informatique Fondamentale
de Marseille

Unité Mixte de Recherche 6166
CNRS – Université de Provence – Université de la Méditerranée

A Partial Order Semantics Approach

to the Clock Explosion Problem

of Timed Automata

D. Lugiez, P. Niebert, S. Zennou

Rapport/Report 16-2003

December 19, 2003

Les rapports du laboratoire sont téléchargeables à l’adresse suivante

Reports are downloadable at the following address

http://www.lif.univ-mrs.fr

A Partial Order Semantics Approach

to the Clock Explosion Problem

of Timed Automata

D. Lugiez, P. Niebert, S. Zennou

LIF – Laboratoire d’Informatique Fondamentale de Marseille

UMR 6166

CNRS – Université de Provence – Université de la Méditerranée

Laboratoire d’Informatique Fondamentale (LIF) de Marseille
Université de Provence – CMI

39, rue Joliot-Curie, F-13453 Marseille Cedex 13

[lugiez,niebert,zennou]@cmi.univ-mrs.fr

Abstract/Résumé

We propose a new approach for the symbolic exploration of timed automata that solves
a particular aspect of the combinatory explosion occurring in the widely used clock zone
automata (e.g. Kronos, UppAal). The latter approach suffers from splitting of symbolic
states depending on the order of transition occurrences, even if these transitions con-
cern unrelated components in a parallel system. Our goal is to preserve independence
(commutation of transitions) from the original timed automaton to the symbolic level.
We achieve this goal in three steps:

(1) we lift the theory of Mazurkiewicz traces to timed words and symbolic state ex-
ploration, generalising previous work;

(2) we propose a language theoretic setting for the study of the problem of symbolic
state exploration, explaining difficulties of previous approaches to partial order
reductions of timed automata and providing a roadmap for

(3) new data structures and an algorithm for symbolic reachability in timed automata.

It has to be underlined that our algorithm solves the same problem as the classical
clock zone algorithms, but in a different manner and that we preserve the worst case
estimations of the classical algorithms without restricting the systems considered. We
have implemented our algorithm in a new state explorer and demonstrate potential
savings resulting from our approach.

Keywords: verification, timed automata, partial order.

Nous proposons une nouvelle approche pour les méthodes symboliques d’exploration
des états accessibles pour les automates temporisés qui résoud un problème d’explosion
combinatoire apparaissant avec les automates de zones qui sont largement utilisés dans
les outils (c.f. Kronos, UppAal). Cette dernière approche souffre de la décomposition
des états symboliques liée à l’ordre des occurrences de transition, même si celles-ci

3

concernent des composants indépendants d’un système parallèle. Notre objectif est de
préserver l’indépendance (i.e. la commutation des transitions) des automates tempo-
risés au niveau symbolique, ce que nous obtenons en trois étapes:

(1) nous adaptons la théorie des traces de Mazurkiewicz aux mots temporisés et à
l’exploration des états symboliques, généralisant ainsi des travaux précédents,

(2) nous proposons un cadre langage formel pour l’étude du problème de l’exploration
symbolique, qui permet d’expliquer les difficultés des approches précédentes util-
isant les réductions d’ordre partiel, ce qui fournit aussi un cadre pour

(3) de nouvelles structures de données et un algorithme pour décider l’accessibilité
symbolique pour les automates temporisés.

Il faut insister sur le fait que notre algorithme résoud le même problème que les
automates de zones classiques mais avec une approche différente et que nous avons la
même estimation de coût que pour les algorithmes classiques, sans faire d’hypothèse
restrictive sur les systèmes utilisés. Notre algorithme de recherche d’états accessibles a
été implémenté et les premières expérimentations montrent que l’approche est promet-
teuse.

Mots-clés : verification, automates temporisés, ordres partiels.

Relecteurs/Reviewers: Remi Morin.

Notes: This work was supported by the IST project AMETIST (Advanced
Methods in Timed Systems, contract IST-2001-35304, http://ametist.cs.utwente.nl).

4

1 Introduction

Timed automata [AD94] are a powerful tool for the modeling and the analysis of
timed systems. They extend classical automata by clocks, continuous variables
“measuring” the flow of time. A state of a timed automaton is a combination
of its discrete control location and the clock values taken from the real domain.
While the resulting state space is infinite, clock constraints have been introduced
to reduce the state spaces to a finite set of equivalence classes, thus yielding a
finite (although often huge) symbolic state graph on which reachability and some
other verification problems can be resolved.

While the theory, algorithms and tools [NSY92,LPY95] for timed automata
represent a considerable achievement (and indeed impressive industrial appli-
cations have been treated), the combinatory explosion particular to this kind
of modelling and analysis – sometimes referred to as “clock explosions” (at the
same time similar to and different from classical “state explosion”) – remains a
challenge for research and practice. Despite the theoretical limits (for a PSPACE
complete problem), great effort been invested into the optimisation of represen-
tations of clock constraints, see e.g. [DY96,BLP+99]. Another line of research is
devoted to the overall reduction of reachability to logic constraint solving, e.g.
[NMA+02].

Among the attempts to improve the efficiency of analysis algorithms, one
line of research has tried to transfer “partial order reduction methods”, a set
of techniques known to give good reductions (and thus allowing to handle big-
ger problems) for discrete systems [Val89,Pel93,God96,NHZL01], to the timed
setting. Partial order methods basically try to avoid redundant research by ex-
ploiting knowledge about the structure of the reachability graph, in particular
independence of pairs of transitions of losely related parts of a complex system.
Such pairs a and b commute, i.e. a state s allowing a sequence ab of transitions
to state s′ also allows ba and this sequence also leads to the same state s′.

However, this kind of commutation is easily lost in classical symbolic analysis
algorithms for timed automata, which represent sets of possible clock values
by symbolic states: Consider two “independent” transitions a resetting clock
X := 0, and b resetting clock Y := 0. Executing a first and then b means that
afterwards (time may have elapsed) X ≥ Y whereas executing b first and then a
implies that afterwards X ≤ Y . The result of this is that in the algorithms used
in tools like Uppaal and Kronos, ab and ba lead to different, in fact incomparable
states.

Previous works trying to transfer partial order methods to the timed au-
tomata setting [YS97,DGKK98,BJLY98,Min99] have considered this problem as
an obstacle to overcome in order to be able to apply the reductions known from
discrete systems. E.g. [BJLY98,Min99] reestablish independence of the above
transitions a and b by introducing the notion of local time semantics. The idea
is that each component in a network has its own independent time progress,
only when synchronisation occurs between two components, time is synchro-
nised. The price is that clock differences in that model arbitrarily diverge, and
that in general, this reestablished commutation leads to an unavoidably infinite

5

state space (where the aim was reduction!), see Proposition 8 for more details.
[BJLY98,Min99] answer by restricting the class of automata in order to allow fi-
nite bounds on the state space. However, practically almost always the resulting
state spaces are considerably bigger than with the classical approach and the
benefit of partial order reduction is anihilated by this explosion.

The present work takes a completely new viewpoint on the problem of non-
commutation of symbolic transitions: First of all, we clean up the theory of
timed Mazurkiewicz traces. Where a path in a timed automaton must satisfy
timing constraints, we relax a crucial assumption that transitions occur in in
the same order sequentially and temporally: We restrict this requirement to
dependent transitions. Our formalisation generalises “local time semantics” and
also the partial formalisation given in [DT98]. We believe that this formalisation
is a valuable contribution as such. To us, it was the necessary precondition for
what follows:

The second important step is a language theoretic view on the verification
problem of timed automata. Rather than considering immediately the problem
of “symbolic states”, typically representing sets of clock values, we look at the
problem of possible paths through the timed automaton and the implied Nerode
right congruence (as well as a correspondingpreorder notion), which is known to
be equivalent to minimal automata in classical language theory. Our understand-
ing is that all previous automata based approaches to the reachability problem
in timed automata is related to this Nerode congruence, and attempts to avoid
incomparable states (by better abstractions, etc.) aim to get closer to the actual
Nerode congruence.

For the framework with commutation, the Nerode congruence is typically of
infinite index (see Proposition 8), whereas the classical interleaving approaches
prove its finiteness for the interleaving case. So is it better to avoid commutation?

In the third part of our contribution, the semantical basis of a new
search algorithm, we manage to get “the best of both worlds”: We compute
symbolic states with respect to the infinite index Nerode congruence for the
trace semantics (but avoiding state splitting for independent transitions), but we
compare states with the finite index preorder (to cut branches in the search tree),
“catchup preorder”, which is a right congruence for the classical interleaving
semantics but obviously not for the relaxed semantics. It is closely related to
zone inclusion in the classical setting and preserves paths in the interleaving
semantics. We thus preserve the worst case bounds from classical clock zone
algorithms and a good number of heuristic improvements that have been applied
to improve those bounds carry over to our setting.

The miracle, that this approach is actually correct (i.e. yields exactly the
same set of reachable control locations of the timed automaton as the stan-
dard semantics and as clock zone automata for that matter) relies on our timed
Mazurkiewicz theory, which gives us for each timed word with relaxed con-
straints on the temporal order an equivalent path that does respect the stronger
interleaving constraints.

6

Moreover, it is interesting to observe that the equivalence class of a timed
trace with respect to catchup preorder corresponds to the “convex hull” of the
clock zones reached by its representatives in the classical semantics. This obser-
vation gives an idea of the relation of the state spaces explored by our method
and clock zone automata.

We have build our algorithm into a prototype tool, which allows both classical
and partial order semantics for a fair comparison (we have not yet included all
heuristic improvements published in the literature). In no example considered,
our semantics gave more states than the classical semantics (although this seems
possible for very pathological cases). On examples which are tightly coupled like
Fischer’s protocol with very little independence, a little reduction can be ob-
served. On more loosely coupled systems such as the dining philosophers, the
reduction turns out to be impressing. We also give an artificial series of examples
where our method exposes polynomial growth and the classical approach is ex-
ponential. Concluding, the first tests show that our approach has a considerable
potential. And this without partial order reduction!

In the future, we intend to add urgency to the framework and we want to
investigate the question whether some limited form of partial order reduction is
compatible with our framework.

The paper is structured as follows: In Section 2, we introduce the formal
framework of clocked and timed words and the standard semantics of timed au-
tomata. In Section 3, we introduce the theory of Clocked and Timed Mazurkiewicz
traces. In Section 4, we set up a plan of the subsequent construction in language
theory terms and define equivalence relations of interest. In Section 5, we de-
velop event zones as representation of the right congruence for realisable traces.
In Section 6, we define the finite index catchup preorder and combine it with the
event zone automaton of Section 5 for our reachability algorithm. In Section 7,
we give some experimental results, which demonstrate the potential impact of
our approach.

2 Basics

In this section, we introduce basic notions of words, languages, automata, as
well as their timed counterparts.

Words and Automata. Given an alphabet Σ of actions denoted by a, b, c . . .,
Σ∗ denotes the set of words on Σ with ε the empty word. Words are denoted by
u, v, w . . . and a non-empty word is some finite sequence a1 . . . an. The length of a
word w is denoted by |w|. As usual a Σ-automaton A is a quadruple (S, s0,→, F)
where S is a set of states, s0 ∈ S is the initial state, F ⊆ S is the set of final
states and → ⊆ Q × Σ × Q is a set of transitions. The set L(A) is the set of
words accepted by A. The automaton is deterministic if for each state s and
action a there is a at most one s′ ∈ S such that s

a
→ s′.

7

Timed words. In real time systems, we associate to each position i of a sequence
of actions w = a1 . . . an a time stamp which indicates when the corresponding
action takes place. More precisely, a timed word is a pair (w, t) with w ∈ Σ∗

and t is a function assigning to each position of w an element of R
+, the set of

non-negative reals. For convenience, we set t(0) = 0 to be an additional time
stamp for the beginning. In the literature, timed words are often represented as
(a1, t1), (a2, t2) . . . i.e. t(i) is replaced by ti. A timed word is normal if t(i) ≤ t(j)
for i ≤ j like in (a, 3.2)(c, 4.5)(b, 6.3) but not in (a, 3.2)(c, 2.5)(b, 6.3). Normal
timed words represent temporally ordered sequences of events and serve as stan-
dard semantics of timed automata in the literature [AD94]. Concatenation of
normal words is only a partial function and the set of normal words is thus a
partial monoid only.

Clocked words. In a timed system, events can occur only if some time con-
straints are satisfied. In timed automata, clocks belong to some finite set C and
are used to express the time constraints between an event that resets a clock and
another event that refers to the clock. This leads to the introduction of clocked
labels which are triples (action, constraints on clocks, set of reset clocks). The
constraints permitted here1 associate to each clock an interval (min, max) which
gives the set of possible values for the clock. The interval can be left-open, right-
open, left-closed, right-closed and the bounds can be finte or infinite −∞, +∞.
The interval] − ∞, +∞[means that no constraint exists and such constraints
will not be written explicitly. To preserve decidability, all finite bounds are as-
sumed to be integers (or syntactically more general: rational numbers). We are
interested in finite subsets ∆ of the infinite set of clocked labels, called clocked
alphabets. A clocked word over ∆, usually denoted by ω, is simply a word in ∆∗.

Normal realisations of clocked words. In a clocked word ω = (a1, c1, r1)
(a2, c2, r2) · · · (an, cn, rn) let lastC(ω) denote the last position m where the clock
C is reset, i.e. s.t. C ∈ rm (for (1 ≤ m ≤ n)). By definition we set lastC(ω) = 0
if no such position exists (therefore we assume that all clocks are reset at time
t0 = 0).

Definition 1. A timed word (w, t) is a normal realisation of a clocked word
ω = α1 . . . αm with αi = (ai, ci, ri), iff

(i) they have the same length (|w| = m) and the same action sequence w(i) = ai

for i ∈ {1, . . . , m},
(ii) (w, t) is normal,

(iii) and for all prefixes α1 . . . αk−1 and all clocks C with l = lastC(α1 . . . αk−1),
t(k)− t(l) ∈ ck(C), i.e. the time elapsed since the last reset of clock C before
position k meets the interval constraint at position k.

1 In some works, differences of clocks are also permitted, but this is problematic, as
pointed out by [Bou02].

8

For instance the timed word w = (a, 3.2)(c, 4)(b, 6.2) is a normal realisation of
ω = αγβ (as defined in Figure 1). A clocked word is realisable iff it has a normal
realisation. We say that α is a realisable extension of ω if ωα is realisable. The
set of realisable clocked words over some clocked alphabet is closed under the
prefix relation.

A timed automaton is a ∆-automaton for some clocked alphabet ∆, as in
Figure 1 (where all states are final). The language of a timed automaton A is
denoted by L(A), and the timed language LT (A) of A is the set {(w, t) | (w, t)
is a normal realisation of some ω ∈ L(A)}. On the level of clocked words, let
LN be the language of realisable clocked words accepted by A. For instance
(a, 3.2)(c, 4)(b, 6.2) ∈ LT (A) is a normal realisation of αγβ ∈ LN(A).

β = (b, C1 ∈ [3, 4], C1 := 0)

β

β

γ = (c, C2 ∈ [4, 5[, C2 := 0)

δ = (d, C2 ∈ [3,∞[, ∅)

α

α = (a, C1 ∈ [3, 4], C1 := 0)

γ

δ

α

ε = (e,
C1 ∈ [0, 1]
C2 ∈ [0, 4]

, ∅)

s0 s1

s2

s4 s5

s3

s6

Fig. 1. A timed automaton

3 Clocked and Timed Mazurkiewicz Traces

As a representation of concurrency, we introduce an independence relation and
generalise the theory of Mazurkiewicz traces to the timed setting. We first recall
the basics of Mazurkiewicz trace theory in the untimed case. For an exhaustive
treatment see [DR95].

Independence Relation and Traces. For an alphabet Σ, an independence
relation is a symmetric and irreflexive relation IΣ⊆ Σ × Σ. We call (Σ, IΣ)
a partially commutative alphabet. For convenience, we also use the dependence
relation DΣ= Σ × Σ− IΣ , which is reflexive and symmetric. As a representa-
tion of parallel systems we assume without loss of generality that Σ =

⋃l
i=1 Σi

9

where a DΣ b iff a, b ∈ Σi for some i ∈ {1, . . . , l}. We call (Σ1, . . . , Σl) a dis-
tributed alphabet of (Σ, IΣ) and Σi a component. For convenience, we call the set
{1, . . . , l} “Comp” (for components). For instance (Σ1 = {a, b, e}, Σ2 = {c, d, e})
is a distributed alphabet corresponding to Σ = {a, b, c, d, e} and an independence
relation IΣ= {(a, c), (c, a), (b, c), (c, b), (a, d), (d, a), (b, d), (d, b)}. It is well known
that every partially commutative alphabet corresponds to a distributed alphabet
and conversely. Intuitively, IΣ represents concurrency between actions, whereas
the distributed alphabet proposes as explanation of concurrency occurrence on
distinct processes in a distributed system. In order to reference actions or lo-
cations depending on an action we define dep(a) = {b ∈ Σ | a DΣ b} and
loc(a) = {i | a ∈ Σi}. It is obvious that dep(a) =

⋃

i∈loc(a) Σi. In analogy to last

occurrences of clock resets, we define lasti(a1 . . . an), the last occurrence of an ac-
tion of the component Σi, as the maximal k such that ak ∈ Σi, if such a k exists,
otherwise lasti(a1 . . . an) = 0. For instance, last1(acb) = 3 and last2(acb) = 2
for (Σ1 = {a, b, e}, Σ2 = {c, d, e}).

The Mazurkiewicz trace equivalence associated to the partially commutative
alphabet (Σ, IΣ) is the least congruence 'M over Σ? such that ab 'M ba for
any pair of independent actions a IΣ b. A trace [u] is the congruence class of a
word u ∈ Σ?. We denote by M(Σ, IΣ) the set of all traces w.r.t. (Σ, IΣ).

Before adapting these notions to the timed setting, we give the connection
between independence relations and automata as a condition on transition rela-
tions:

Definition 2 (asynchronous automaton). An asynchronous automaton over
(Σ, IΣ) is a deterministic Σ-automaton such that the following two properties
hold for any two letters a, b ∈ Σ with a IΣ b:

ID: s
a
→ s1

b
→ s2 implies s

b
→ s′1

a
→ s2 for some state s′1 [Independent Diamond]

FD: s
a
→ s1 and s

b
→ s′1 implies s1

b
→ s2 for some state s2 [Forward Diamond]

It is important to note that the languages of asynchronous automata are
closed with respect to equivalent words. The theoretical foundation of many
partial order reduction approaches is based on this fact. For instance, reductions
that preserve at least one representative for each equivalence class do preserve
non-emptiness of the language of an automaton.

Intuitively, two words are equivalent with respect to 'M iff they can be
obtained from each other by exchanging adjacent independent letters. In other
words, this permutation of letters between two equivalent words lets the relative
order of dependent letters unchanged. This property is formally stated in the
following lemma.

Lemma 3. Let (Σ, IΣ) be a partially commutative alphabet and a1 . . . an 'M

b1 . . . bn be two equivalent words. There exists a uniquely determined permutation
π : {1, . . . , n} → {1, . . . , n}, such that ai = bπ(i) and for ai DΣ aj we have i < j
iff π(i) < π(j).

10

Conversely, let a1 . . . an be a word and π : {1, . . . , n} → {1, . . . , n} be a
permutation of indices such that for each pair i, j ai DΣ aj we have i < j iff
π(i) < π(j). Then aπ(1) . . . aπ(n) 'M a1 . . . an.

For convenience, we assume π to be defined on 0 with π(0) = 0.

Proof. First direction. By definition, 'M is the reflexive, symmetric, transitive
closure of the binary relation ∼ defined by: uabv ∼ ubav for u, v ∈ Σ∗ iff a IΣ b.
Hence, a1 . . . an 'M b1 . . . bn iff there exists a word sequence w0, . . . wk such that
w0 = a1 . . . an, wk = b1 . . . bn and wi−1 ∼ wi for all i ∈ 1, . . . , k.

Let mi be the position in wi−1, wi such that wi−1 and wi differ only from the
exchange of wi(mi) and wi(mi + 1). Moreover, let πi : {1, . . . , n} → {1, . . . , n}
be the permutation of indices from wi−1 to wi. Hence, πi is defined by: For
all l ∈ {1, . . . , mi − 1} ∪ {mi + 2, . . . , n} πi(l) = l and πi(mi) = mi + 1 and
πi(mi + 1) = mi. The required permutation π is the composition of these πi. It
remains to show that π is unique, and that each πi satisfies the required property
and that this property is closed under composition:

π is unique. Suppose there exists π′ 6= π permutation of indices which satis-
fies the required property. There must exists at least two occurrences k1, k2

of an action a, i.e. a1 = a2, such that π(k1) < π(k2) and π′(k1) > π′(k2)
or the reverse. As 'M is reflexive, ak1

DΣ ak2
and hence because of the

permutaion property, k1 < k2 iff π(k1) < π(k2) and π′(k1) < π′(k2), which
contradicts the hypothesis.
πi satisfies the property. Let p 6= q be indices such that wi−1(p)DΣwi−1(q).
By definition of ∼, either mi 6= p or mi 6= q. So p < q iff πi(p) < πi(q) as:
If p 6= mi and q 6= mi+1 then πi(p) = p and πi(q) = q. Obviously, p < q iff
πi(p) < πi(q).
If p = mi and q 6= mi+1 then πi(p) = mi+1 and πi(q) = q. If p < q then
q > mi+1 and hence πi(p) < πi(q). If πi(p) < πi(q) then πi(q) > mi+1, i.e.
q > mi+1 which implies that p = mi < mi+1 < q.
If p 6= mi and q = mi+1 then πi(p) = p and πi(q) = mi. If p < q then p < mi

and hence πi(p) < πi(q). If πi(p) < πi(q) then πi(p) < mi, i.e. p < mi which
implies that p < mi < mi+1 = q.
the property is closed under composition. Let a1 . . . an 'M b1 . . . bn, b1 . . . bn 'M

c1 . . . cn and π, π′ their respective permutations with the desired property.
Let aiDΣaj . From the construction of π, we deduce bπ(i)DΣbπ(j) and hence
by hypothesis on π′, we get π(i) < π(j) iff π′(π(i)) < π′(π(j)). By hypothesis
on π, we have i < j iff π(i) < π(j). Finally, from the two equivalences, we
obtain the desired result: For aiDΣaj , we have i < j iff π′(π(i)) < π′(π(j)).

The proof of the second property is by induction on the number of inversions,
that is pairs of positions i < j such that π(i) > π(j).

The basic case – no inversion – is immediate: π is the identity and a1 . . . an 'M

aπ(1) . . . aπ(n) as 'M is reflexive.
For the inductive case, suppose that π is not the identity. Hence, there must

exist at least one index k such that π(k) > π(k + 1) which implies ak IΣ ak+1

(by construction of π.)

11

Let π1 be the index permutation which permutes the indices k and k+1 (and
let the other ones unchanged). By definition of 'M , we have a1 . . . akak+1 . . . an 'M

a1 . . . ak+1ak . . . an = aπ1(1) . . . aπ1(n) as ak IΣ ak+1.
Let π2 be the index permutation such that π = π2◦π1. Note that if π satisfies

for ai DΣ aj i < j iff π(i) < π(j) on the word a1 . . . an then so π2 does on the
word aπ1(1) . . . aπ1(n). Moreover the number of inversions in the permutation π2

is equal to the inversion number in π minus one (for this one of π1).
Applying the induction hypothesis on π2 (because of the two above argu-

ments), we get aπ1(1) . . . aπ1(n) 'M aπ2(π1(1)) . . . aπ2(π1(n)). Finally, it comes from
the transitivity of 'M that a1 . . . an 'M aπ2(π1(1)) . . . aπ2(π1(n)) = aπ(1) . . . aπ(n).
�

Generalisation to Clocked Words.

Timed traces. The independence relation IΣ immediately carries over to (non
normal) timed words. The resulting congruence classes are called timed traces.
Here, the exchange of two independent actions also exchanges their time stamps,
e.g. (a, 3.2)(b, 3.5)(c, 6.3) 'M (a, 3.2)(c, 6.3)(b, 3.5) where b IΣ c, which means
that normality (temporal order of actions) is not preserved under commutation.
Therefore we introduce a weaker notion of normality: a timed word (w, t) is IΣ-
normal iff for any two letters a = w(i), b = w(j) with i ≤ j and additionally
a DΣ b we have t(i) ≤ t(j). This relaxed normality condition is preserved under
Mazurkiewicz equivalence, allowing to define normality on the level of traces:
We call a timed trace [(w, t)] IΣ-normal iff (w, t) is IΣ-normal.

Proposition 4. Every IΣ-normal timed word (w, t) is equivalent to a normal
timed word (w′, t′).

Proof. Let us write (w, t) as a sequence of pairs (α1, t(1)), . . . , (αn, t(n)) where
αi = (ai, ci, ri). We define a total ordering on these pairs as follows:
(αi, t(i)) < (αj , t(j)) iff

– either i < j and there is some k such that i ≤ k ≤ j and ai DΣ ak and
ak DΣ aj ,

– or there is no such k but t(i) < t(j),
– or none of the previous cases occurs but i < j.

The last condition yields totality by using the index to order pairs which
are uncomparable with respect to dependent actions or time stamps. A straight-
forward sorting algorithm is obtained by repeatedly using the exchange rule
. . . (αi, t(i))(αj , t(j)) . . . → . . . (αj , t(j))(αi, t(i)) . . . if (αi, t(i)) > (αj , t(j)). Since
(w, t) is IΣ-normal and the exchange preserves this property, the process ends
with a sorted word (w′, t′) which is IΣ-normal. By definition of <, this yields
that (w′, t′) is normal.

Using a more efficient algorithm, we can compute (w′, t′) in O(|w|log(|w|)) if
we already know that (w, t) is IΣ-normal, otherwise we use a bubble-like sorting
algorithm which costs quadratic time. �

12

Independence for clocked words. To extend the independence relation IΣ to
clocked words, we define I∆⊆ ∆ × ∆ based on IΣ as follows: (a1, c1, r1) I∆

(a2, c2, r2) iff (i) a IΣ b, (ii) r1 ∩ r2 = ∅ and (iii) For all C ∈ r1 we have
c2(C) =] −∞,∞[and conversely for all C ∈ r2 we have c1(C) =] −∞,∞[.

Intuitively, conditions (ii) and (iii) arise from the view of clocks as shared
variables in concurrent programming: An action resetting a clock is writing it
whereas an action with a non-trivial condition on a clock is reading it. The
restriction states that two actions are dependent if both are writing the same
variable or one is writing a variable the other one is reading it.

We call the (∆, I∆) constructed in this way a partially commutative clocked
alphabet and say that I∆ respects IΣ . The notion of traces and equivalence 'M

are defined as for IΣ .
For the rest of the paper, we will silently assume some partially commutative

clocked alphabet (∆, I∆). If clear from the context, we write I instead of I∆.
Relaxing the notion of normal realisations, the following definition establishes

the relation between clocked words and I-normal timed words.

Definition 5 (I∆-normal realisation). Let ω = α1 . . . αn with αj = (aj , cj , rj)
be a clocked word over a partially commutative clocked alphabet (∆, I∆). A
timed word (w, t) I∆-realises ω iff

(i) (same length) |ω| = |w|, (same actions) for j = 1, . . . , |w| we have w(j) = aj ,
(ii) (normality) (w, t) is IΣ-normal,
(iii) (satisfaction of constraints) for all prefixes α1 . . . αk−1 and all clocks C with

l = lastC(α1 . . . αk−1) t(k)− t(l) ∈ ck(C). In that case, we also say that ω is
I∆-realisable and by extension that [(w, t)] is a I∆-realisation of ω.

For instance, the timed word (c, 4)(a, 3.2)(b, 6.2) I∆-realises the clocked word
γαβ (for the automaton in Figure 1, assuming α I∆ γ).

The main result of this section establishes the tight link between clocked and
timed traces, in particular it shows that I-realisability is invariant under trace
equivalence, allowing in principle the exploration of realisable clocked words on
representatives.

Theorem 6. Let α1 . . . αn 'M β1 . . . βn be two equivalent clocked words over
(∆, I∆) and π be the permutation as defined in Lemma 3. Then (b1, t1) . . . (bn, tn)
is an I-normal realisation of β1 . . . βn iff (bπ(1), tπ(1)) . . . (bπ(n), tπ(n)) is an I-
normal realisation of α1 . . . αn.

Proof. First implication.
Let (b1, t1) . . . (bn, tn) be a I-normal realisation of β1 . . . βn with βj = (bj , cj , rj)

for j ∈ {1, . . . , n}.
(bπ(1), tπ(1)) . . . (bπ(n), tπ(n)) is a I-normal realisation of α1 . . . αn as the three

conditions in the definition 5 are satisfied:

(i) Obviously, |bπ(1) . . . bπ(n)| = |α1 . . . αn|. Moreover, by definition αj = βπ(j)

is equal to (bπ(j), cπ(j), rπ(j)).

13

(ii) Let π(i) < π(j) be indices such that bπ(i) DΣ bπ(j). Hence, tπ(i) ≤ tπ(j) as
(b1, t1) . . . (bn, tn) IΣ-realises β1 . . . βn (condition ii in Definition 5).

(iii) Let απ(1) . . . απ(k−1) be a prefix and C be a clock with π(l) = lastC(απ(1) . . . απ(k−1)).
The proof that tπ(k) − tπ(l) ∈ cπ(k) depends on the value of cπ(k). If cπ(k)

is] − ∞, +∞[, then the constraint is trivially satisfied. In the other case,
by definition of I∆ (condition ii), as απ(k) and απ(l) are two labels which
respectively refers to a clock C and resets it, their actions have to be de-
pendent, i.e. aπ(k) DΣ aπ(l). Hence and as π(k) > π(l), by Lemma 3, we
deduce that l < k, i.e. l is an index in b1 . . . bk−1. Also, by Lemma 3, we con-
clude that l is the greatest index in b1 . . . bk−1 of a label which resets C, i.e.
l = lastC(b1 . . . bk−1): Otherwise, assume that there exists i < k such that
i = lastC(b1 . . . bk−1) and i > l. As αi and αl reset the same clock, their ac-
tions ai and al are dependent which implies by Lemma 3 that π(i) > π(l) and
contradicts that π(l) = lastC(απ(1) . . . απ(k−1)). Finally, tπ(k) − tπ(l) ∈ cπ(k)

as π(l) = lastC(απ(1) . . . απ(k−1)) and (b1, t1) . . . (bn, tn) I-realises β1 . . . βn

(condition iii in Definition 5)

Second implication. Symmetric to the first one: Exchange α1 . . . αn and β1 . . . βn

together with their I-realisations. The indices like i and π(i) are also exchanged.
�

Applications to the verification problem. In analogy to the definition of
LN (A) let LI(A) denote the set of I-realisable clocked words accepted by A. It
is straight forward by definition that LT (A) = ∅ iff LN(A) = ∅ iff LI(A) = ∅, so
that we can check this emptiness problem equivalently for either language. The
important aspect of LI(A) is that it is closed under equivalence as expressed in
the following corollary of Theorem 6:

Corollary 7. Let ω 'M ω′ be equivalent clocked words, then ω is I-realisable
iff ω′ is I-realisable and ω ∈ LI(A) iff ω′ ∈ LI(A).

If ω ∈ LI(A) then there exists ω′ 'M ω such that ω′ ∈ LN (A).

Proof. For the first claim, suppose ω to be I-realisable and apply Theorem 6 on
realising I-normal timed word to find a witness of the I-realisability of ω′.

For the second part, assume an I-normal timed word (w, t) realising ω and its
normal counterpart (w′, t′) according to Proposition 4. Then the permutation of
indices linking (w, t) and (w′, t′) applied to ω yields the realisable ω′ as desired.
�

This observation gives rise to the hope that partial order reduction techniques
could be applied when checking for emptiness of LI(A). However, as explained
in the following sections, this language cannot always be represented by a finite
automaton and more sophisticated methods are needed to actually solve this
emptiness problem.

14

4 A language theoretic view

Our primary goal is to build a finite automaton for the language LI(A) =
{ω | ω I-realisable and ω ∈ L(A)}, which yields an immediate way to decide
the emptiness of the language. For any language, the classical way to build
an automaton is to consider the Myhill-Nerode right-congruence which yields
the minimal automaton accepting the language (the states are the equivalence
classes of the congruence)2. In our case the relevant congruence would be 3

ω1 'I ω2 iff ω1 .I ω2 and ω2 .I ω1 where ω1 .I ω2 iff ∀ω, ω1ω I-realisable im-
plies ω2ω I-realisable. By definition 'M⊆.I , which justifies to write [ω1] .I [ω2].
Unfortunately, this congruence is not of finite index:

Proposition 8. There exist finite ∆ for which .I and 'I are of infinite index.

Proof. Let α = (a, X ∈ [1, 1], X := 0), β = (b, Y ∈ [1, 1], Y := 0), γ = (c, X ∈
[1, 1], Y ∈ [1, 1], Y := 0) with αIβ. Then for i 6= j we have that αi 6.I αj ,
because the extension ω = βiγ makes αiβiγ I-realisable whereas αjβiγ is not
I-realisable. �

This ruins our primary goal explains the problems with partial order reduc-
tions known from the literature. The solution chosen by [BJLY98,Min99] is to
restrict the class of systems so that the languages remain finite state. But even
under these somewhat severe restrictions, the index of 'I is often significantly
bigger than what would be obtained 'N , questioning the endeavor of partial
order reductions for timed automata on the whole.

Our approach is to use an indirect and complex approach to decide LI(A)
?
=

∅. Keeping the Myhill-Nerode congruence idea in mind, we define several re-
lations which help understanding the problems and that provide constructions
similar to zones for timed automata while preserving properties of realizable
traces. Again the resulting automaton is infinite but we define a relation on
zones which has a finite index and allows to decide the emptiness of LI(A) in a
finite amount of time.

Given some language L, a right-precongruence is a relation .L such that
u .L v iff ∀w, if uw ∈ L implies vw ∈ L. The obvious link with 'L is 'L= (.L

∩ &L). The index of a preorder . is by definition the index of the equivalence
. ∩ &. We describe now all the relations that we use, apart .I and 'I that are
already defined.

Definition 9 (.N ,'N , .IN , 'IN). For clocked words ω1, ω2, let

– ω1 .N ω2 iff ∀ω, if ω1ω has a normal realisation then ω2ω has a normal
realisation. In general 'M 6⊆.N , so .N cannot be lifted to traces and is
given for comparisons only.

2 but this automaton is finite for regular languages only!
3 for simplicity we forget momentarily the finite automaton A

15

– ω1 .IN ω2 iff ∀ω if there exists ω′
1 'M ω1 such that ω′

1ω has a normal
realisation, then there exists ω′

2 'M ω2 such that ω′
2ω has a normal realisa-

tion. We define ω1 'IN ω2 by ω1 .IN ω2 and ω2 .IN ω1. This relation still
concerns normal realization, but weakens .N by forgetting the interleaving
of the past.

– .EZ (defined in section 5) is defined in terms of difference constraints sets
generated by clock constraints and can be seen as an implementation of .I

since .EZ⊆.I .

– .C is defined from .EZ and can be seen as an implementation of .IN since
.C⊆.IN .

The relations .I , .EZ are precongruences that are used to define automata, but
they may have infinite index while .IN , .C have finite index but may not be
precongruences. Their properties are summarized in Figure 2

finite index
not (pre)congruence

(pre)congruence
not finite index .I

.IN

⊆.EZ'M ⊆

⊆

.C ⊆

⊆

Fig. 2. Right preorders for clocked traces

The proof of Proposition 8 supports the claim that .IN is not a precon-
gruence: αα 'IN ααα, but ααβ 6'IN αααβ. However, the relation .IN is a

crucial tool for solving LI(A)
?
= ∅ because (i) the inclusion .I⊆.IN holds (see

Proposition 22) provided some slight assumptions on the alphabet ∆, (ii) it is
of finite index, (iii) it preserves the non-emptiness of LI(A) (in a weak sense).
The relations .EZ , .C represent the computational aspects of our approach and
give an effective way to approximate the relations .I and .IN .

A similar approach underlies the theory of timed automata: the language
of the realisable clocked words LN (A) of an automaton A is represented by a
zone automaton and the constructions given in the litterature can be understood
as computating precongruences .ZA⊆.LN(A). These precongruences may have
(many) more states than the ideal .LN(A) and works for improving timed au-
tomata constructions can often be seen as tentatives to get closer to .LN(A).
But whatever the finite size of these zone automata, they prove that .LN (A)

is of finite index. The reader should notice that the bound that we get for the
index of .C in Proposition 25 is remarquably close to the bound for the number
of clock zones of classical timed automata.

16

5 Event zones for the representation of .I

This section is devoted to the construction of .EZ and 'EZ with event zones.
The aim is to obtain a right precongruence reasonably close to .I that allows
efficient data structures and algorithms for the representation of congruence
classes and for testing .EZ .

Difference constraint sets provide the tool needed to achieve this goal, leading
to the construction of an event zone automaton, which specifies the set of I-
realisable traces. This automaton may still be infinite and section 6.3 will show
how to decide emptiness of the accepted language.

Difference Constraint Sets

Difference constraint sets and their relation to the all pairs shortest path prob-
lem are well known, see e.g. [CLR90]. We briefly introduce them here for the
convenience of the reader.

Difference constraint sets are set of inequations of the form x − y ≤ c or
x − y < c where x and y are real valued variables and c is a numerical constant
(a rational number or an integer). A classical representation of such constraints
is to use a graph where the vertices are labelled by the variables, and there is an
edge from xi and xj labelled by c,≤ (resp. c, <) iff xi−xj ≤ c (resp. xi−xj < c)
is one of the constraints (when several constraints relate the same variables,
we choose the stricter one). The graph is completed by adding the constraints
x − x ≤ 0 for every x and xi − xj < +∞ when no constraints xi − xj ≤ c (or
xi − xj < c) exist.

As an example constraint set, let us consider the clocked word αβ of the
timed automaton of Figure 1. Any I-normal realisation is some timed word
(a, x1)(b, x2) where the time stamps x0 (the initial time stamp), x1, x2 must
satisfy the constraints:

3 ≤ x1 − x0 ≤ 4
3 ≤ x2 − x1 ≤ 4
x1 ≤ x2

or equivalently x0 − x1 ≤ −3, x1 − x0 ≤ 4
x1 − x2 ≤ −3, x2 − x1 ≤ 4
x1 − x2 ≤ 0

The representation of the previous set is given in Figure 3 (left part).
Formally, a difference constraint set S over a finite set of variables V =

{x1, . . . , xn} is a set of inequalities xi−xj ≺ c where ≺ is ≤ or <, c ∈ Z∪{+∞}.
To define the associated constraint graph, we introduce the minimum operator
on pairs (inequality sign, constant) as follows:

min{(c1,≺1), (c2,≺2)}=

{

(c1,≺1) if c1 < c2 or c1 = c2 and ≺1=<,
(c2,≺2) otherwise

For technical convenience, we introduce also operators <,≤, >,≥ over couples
(c,≺) as usual derived from the min operator.

A difference constraint set S is represented by the directed complete labeled
graph (V, E) such that an edge between x and y is labeled by E(x, y) = min{(c,≺
) | x − y ≺ c ∈ S} for x 6= y. If no inequality x − y ≺ c occurs in S, the value is

17

∞,≤

0,≤0,≤ ∞,≤

4,≤4,≤

x2

x1

−3,≤ −3,≤

0,≤

x0

0,≤ 8,≤

−6,≤

0,≤

4,≤4,≤

x2

x1

−3,≤ −3,≤

0,≤

x0

Fig. 3. A difference constraint set (left) and its closure (right).

(+∞, <), and E(x, x) = (0,≤). There is a one to one correspondence between
difference constraint sets and graphs when there is a unique constraint x−y ≺ c
for the ordered pair x, y (which is always the case for the constraints that we
consider thereafter) and we shall identify a difference constraint graph and the
corresponding set.

A solution of a difference constraint set is a valuation v : V →R such that
all inequations of S are satisfied, i.e. for E(x, y) = (c,≺) it must hold that
v(xi)− v(xj) ≺ c. A solution v : V →R is said positive iff for all x ∈ V v(x) ≥ 0.
A difference constraint set with at least one solution is consistent, otherwise it
is inconsistent.

Proposition 10. A difference constraint set is consistent iff it has a positive
solution.

As the time stamps in the timed words are positive, we only consider positive
solutions in the sequel.

Operations on difference constraint sets For our applications, we recall
two important operations on difference constraint sets: closure, and projection.

Closure of difference constraint sets. First, we define ⊕ on pairs (c,≺) by
(c1,≺1) ⊕ (c2,≺2) = (c1 + c2,≺1) if ≺1=≺2 and (c1 + c2, <) otherwise. With
respect to solutions, we see that if v(x) − v(y) ≺1 c1 and v(y)− v(z) ≺2 c2 then
this implies that also v(x) − v(z) ≺3 c3 where (c3,≺3) = (c1,≺1) ⊕ (c2,≺2).
The closure Cl(V, E) of (V, E) combines all these implicit constraints: Cl(V, E)
is the difference constraint set (V, E ′) where E′(x, y) = min{E(x1, x2) ⊕ . . . ⊕
E(xp−1, xp) | x = x1, . . . , xp = y ∈ V }, i.e. the length of the shortest path
from x to y if it exists, −∞, < otherwise. The closure of the previous difference
constraint graph is given in Figure 3 (left part).

Proposition 11. A difference constraint set is consistent iff its closure is con-
sistent.

18

Actually, there are only three possible cases concerning Cl(E, V) = (E ′, V ′):

– E′(x, x′) = (+∞, <) and there is no path of finite length in (E, V) joining
x and x′,

– E′(x, x′) = (−∞, <) and there is a path of finite length in (E, V) joining x
and x′ which contains a cycle of negative length,

– E′(x, x′) is the length of a simple path (a variable may occur at most most)
joining x and x′ in (E, V).

The closure can be efficiently computed using an all pairs shortest path algorithm
such as Floyd-Warshall [CLR90]. All pairs shortest path algorithms either return
the shortest paths between all pairs if they exist, otherwise they detect a failure
as a negative cycle in the constraint graph, i.e. a cycle with the sum of labels
yielding (c,≺) with c < 0 or c = 0 and ≺=<, (the label of a path is the sum of
all edge labels with respect to the operator ⊕.)

0,≤

x0

0,≤

8,≤ −6,≤

x2

Projection of difference constraint sets. Given V ′ ⊆ V , the projec-
tion ΠV ′ of (V, E) on V ′ is the difference constraint set (V ′, E′)
such that E′(x, y) = E(x, y) for x, y ∈ V ′. The figure at right gives
the projection on {x0, x2} of the closure of the difference constraint
graph of Figure 3. Projection is normally only a sensible opera-
tion on closed constraint sets. Then indeed Cl(ΠV ′(CL(V, E))) =
ΠV ′(CL(V, E)), but in general Cl(ΠV ′(V, E)) is not always equal
to Cl(ΠV ′(CL(V, E))).

Event Zones and the .EZ Relation

In this subsection, the link between clocked words and difference constraint sets is
done in the context of I-normality via event zones. Then the right precongruence
.EZ is defined and some properties of Figure 2 are proved.

Let I be an independence relation which respects IΣ , the independence rela-
tion for some distributed alphabet Σ = (Σ1, . . . , Σl). Let ω = α1 . . . αn be some
fixed clocked word with αi = (ai, ci, ri). For each position i of ω we associate
an event variable xi which corresponds to a time stamp, plus an additional x0

for the initial stamp. Since the edge labels in difference constraint graphs are
couples (constant, sign), we need functions extracting from the clock constraint
intervals the upper and lower (actually its opposite) bounds together with their
sign:

upper((c1, c2[) = (c2, <) and upper((c1, c2]) = (c2,≤)
lower(]c1, c2)) = (−c1, <) and upper([c1, c2)) = (−c1,≤) (note the − sign)

Then the difference constraint set Sω = (Vω , Eω) associated to ω to check for
its I-realisability is defined over Vω = {x0, x1, . . . , x|ω|} and Eω such that for all
xi, xj ∈ V Eω(xi, xj) = min{(m,≺) | xi − xj ≺ m ∈ Aω} with Aω the following
set of constraints:

19

respect clock constraints: for k, l with l = lastC(α1 . . . αk−1) for some C ∈ C
xk − xl ≺ m ∈ Aω and (m,≺) = upper(ck(C))
xl − xk ≺ m ∈ Aω and (m,≺) = lower(ck(C))

IΣ-normality: for k, l with l = lasti(a1 . . . ak−1) for some i ∈ loc(ak) xl −xk ≤
0 ∈ Aω

totality: xi − xi ≤ 0 ∈ Aω and xi − xj < +∞ ∈ Aω.

The difference constraint set Sαβ of Figure 3 is the difference constraint set
associated to the clocked word αβ of the timed automaton of Figure 1.

The difference constraint set Sω does not convey enough information about
the link between variables and clocks or components, since it gives no way to
know which variable corresponds to the last occurrences of clock reset or of
some action of Σi. For this purpose, we define the function Last which given
a clock or a component returns its last variable occurrence, i.e. its last reset or
participation. As an example, the Last function of Sαβ of Figure 3 is such that
Lastαβ(C1) = x2 and Lastαβ(2) = x0 for (Σ1 = {a, b, e}, Σ2 = {c, d, e}). Ac-
tually, the Last function is built from the two functions lastC and lasti which
return the last positions in clocked words of last reset or component partici-
pation. For instance, 1 = lastC1

(αβ) implies Lastαβ(C1) = x1. A difference
constraint set enriched by its Last function is called event zone:

Definition 12 (event zone). The event zone for ω is a triple Zω = (Vω , Eω, Lastω)
where Vω = {x0, x1, . . . , x|ω|}, Lastω : C ∪ Comp→Vω is the function which
gives the last event variable occurrence of a clock C or an action of Σi i.e.
Lastω(C) = xi such that i = lastC(ω) and Lastω(i) = xj such that j = lasti(ω),
and (Vω , Eω) = Sω is the difference constraint set associated to ω.

The closure of the event zone Zω = (Vω , Eω, Lastω) is simply Cl(Zω) =
(Cl(Vω , Eω), Lastω) and the projection is ΠV ′(Zω) = (ΠV ′(Vω, Eω), Lastω).

Proposition 13. An event zone Zω is consistent iff its associated difference
constraint set Sω is consistent.

Proof. Starihtforward by Definition 12. �

By construction an event zone Zω is consistent iff ω is I-realisable (see Defi-
nition 5.) In the sequel, for a word ω let us denote its associated event zone
by Zω = (Vω, Eω , Lastω) and the corresponding closure by ZCl(ω) = Cl(Zω) =
(Vω , ECl(ω), Lastω).

On the level of consistent event zones, a sufficient criterion for a relation
Zω1

.EZ Zω2
to be a right precongruence is that the difference constraints be-

tween variables representing last occurrences in ZCl(ω1) (i.e. in the codomain of
Lastω1

) are tighter than the constraints between the corresponding last occur-
rences in ZCl(ω2)(i.e. in the codomain of Lastω2

.)4. In other words, the variables
not refering the last reset or component participation in a clocked word are
useless for the I-realisability of its extension. The following event zone precon-
gruence is built in this sense:

4 This criterion can be seen as the zone inclusion in classical timed automata.

20

Definition 14 (event zone precongruence). Let ω1, ω2 be two clocked words
over ∆. The event zone precongruence is defined in the following way: Zω1

.EZ

Zω2
iff Zω1

and Zω2
are both inconsistent or Zω1

is inconsistent and Zω2
is

consistent or else there are both consistent and for all ξ1, ξ2 ∈ C ∪ Comp,
ECl(ω1)(Lastω1

(ξ1), Lastω1
(ξ2)) ≤ ECl(ω2)(Lastω2

(ξ1), Lastω2
(ξ2)).

By extension, we say that ω1 .EZ ω2 iff Zω1
.EZ Zω2

. and we get the following
properties (see Figure 2):

Proposition 15. Let ω1, ω2 be two clocked words. Then (i) ω1 'M ω2 implies
ω1 .EZ ω2, (ii) .EZ is a right precongruence, (iii) ω1 .EZ ω2 implies ω1 .I ω2.

Proof.

(i) Assume ω1 = α1 . . . αn 'M ω2. Then let π be the permutation such that
ω2 = απ(1) . . . απ(n) as defined in Lemma 3. Let x1, x2, . . . and y1, y2, . . . be
the variables of the event zones Zω1

and Zω2
respectively where xi, yi corre-

spond to αi. By definition ECl(ω1)(xi, xj) = ECl(ω2)(yπ(i), yπ(j)). Therefore
the event zones and their closure are isomorphic yielding that ω1 .EZ ω2.

(ii) Assume that ω1 .EZ ω2 and let α ∈ ∆. If ω1 and ω2 are inconsistent then
ω1α and ω2α are also inconsistent and we are done. The same situation
occurs if ω1α is not consistent and ω2α is consistent.
Let us assume that ω1 and ω2 are consistent. Let ξ, ξ′ ∈ C ∪Comp. We have
to compare

ECl(ω1α)(LastCl(ω1α)(ξ), LastCl(ω1α)(ξ
′))

and
ECl(ω2α)(LastCl(ω2α)(ξ), LastCl(ω2α)(ξ

′))

Let Vω1
= {x1, . . . , xn} and xα be the new variable introduced for α. Similary

we define Vω2
= {y1, . . . , ym} and yα.

Let us consider Zω1
, Zω2

together with Zω1α, Zω2α as constraint graphes.
In this view, let ECl(ω2α)(Lastω2α(ξ), Lastω2α(ξ′)) be the length of a path
joining y = Lastω2α(ξ) and y′ = Lastω2α(ξ′) that is such that y 6= yα

and y′ 6= yα. We want to show that there exists a path in Zω1α from x =
Lastω1α(ξ) to x′ = Lastω1α(ξ′) which is less weighted. The proof is based
on an induction on the occurrence number of yα in the path from y to y′:
• There is no occurrence: The path goes only through vertices of Zω2

and
is weigthed by ECl(ω2)(Lastω2α(ξ), Lastω2α(ξ′)) which is tighter than
ECl(ω1)(Lastω1α(ξ), Lastω1α(ξ)) as ω1 .EZ ω2

• The path from y to y′ passes through yα.
Let us decompose the path from y to y′ into a path from y to yk then
an edge from yk = Lastω2

(ξi) to yα = Lastω2α(ξi), followed by an edge
from yα = Lastω2

(ξj) to yp = Lastω2α(ξj), and finally a path from yp to
y′. The paths from y to yk and this from yp to y′ contain less occurrence
of yα than the path from y to y′, and by induction hypothesis we have
that ECl(ω2α)(y, yk) ≤ ECl(ω1α)(x, Lastω1

(ξi)) (1) and ECl(ω2α)(yp, y
′) ≤

ECl(ω1α)(Lastω1
(ξj), x

′) (2). Moreover, ECl(ω2α)(yk, yα) is a constraint

21

of the form lower(cα(ξi)) if ξi is a clock or (0,≤) if it is a component.
Finally, ECl(ω1α)(Lastω1α(ξi), xα) is the minimal value of lower(ξ′′) or
(0,≤) such that Lastω1

(ξ′′) = Lastω1
(ξ) and

Lastω1α(ξ′′) = xα. In particular
ECl(ω1α)(Lastω1α(ξi), xα) ≤ ECl(ω2α)(yk, yα) (3). The same reasoning
holds for ξj –with only the case that ECl(ω2α)(yα, yp) is of the form
upper(cα(ξj))– leading to ECl(ω1α)(xα, Lastω1α(ξj)) ≤ ECl(ω2α)(yα, yp)
(4). Finally, additioning the four inequalities leads to the required prop-
erty.

(iii) Assume that ω1 .EZ ω2. For all ω such that ω1ω is I-realisable, we have
that Zω1ω is consistent (by proposition 13) and since .EZ is a congruence
(as proved above), we have that ω1ω .EZ ω2ω. Therefore ω2ω is I-realisable
i.e. ω1 .I ω2.

�

The Event Zone Automaton

This subsection is devoted to the construction of an asynchronous automaton
implementing .EZ with a finite number of variables, those corresponding to last
occurrences of reset or component participation.

The first step is to construct event zones in an incremental manner. Infor-
mally, if Zω is an event zone and α is a clocked label then getting Zωα turns
out to add a fresh variable for α position in ω to Zω and some non trivial dif-
ference constraints Aω�α between the new variable and these of last resets and
component participations. This extension operation on Zω is denoted Zω � α.

Definition 16. An extension of an event zone Zω = (V = {x0, . . . , xn}, E, Last)
of ω by α = (a, c, r) ∈ ∆, denoted Zω �α, is the triple (V ′, E′, Last′) such that:
(i) The difference constraint set is extended: V ′ = V ∪ {xn+1} and E′ is
defined by: E′(xi, xj) = E(xi, xj) for all xi, xj 6= xn+1,

E′(xn+1, xi) = min{(m,≺) | xn+1 − xi ≺ m ∈ Aω�α}
E′(xi, xn+1) = min{(m,≺) | xi − xn+1 ≺ m ∈ Aω�α}

with Aω�α the following set of difference constraints:

clock constraint condition: For all xl = Last(C) with C a clock,
xn+1 − xl ≺ m ∈ Aω�α and (m,≺) = upper(c(C))
xl − xn+1 ≺ m ∈ Aω�α and (m,≺) = lower(c(C))

IΣ-normality: For all xl = Last(i) with i ∈ loc(a) xl − xn+1 ≤ 0 ∈ Aω�α

totality: for all xi ∈ V , xi − xn+1 < +∞, xn+1 − xi < +∞ ∈ Aω�α,
and xn+1 − xn+1 ≤ 0 ∈ Aω�α .

(ii) Last occurrences are updated: if i ∈ loc(a) then Last′(i) = xn+1, if
C ∈ r then Last′(C) = xn+1, otherwise Last′(ξ) = Last(ξ) for ξ ∈ C ∪ Comp.

By definition, we get Zω � α 'EZ Zωα which justifies the use of Zω � α instead
of Zωα to check for I-realisability.

22

In the sequel, as the event zones are now incrementaly built, the ω subscript
is omitted in the event zone notation. The second step is to justify the practical
use of .EZ , that is to find a data structure with a bounded number of variables
to represent the I-realisations of all the clocked words (currently this number is
equal to the clocked word length). The next proposition aims at proving that if
an event zone Z is closed and consistent then it is sufficient to consider difference
constraints between variables of last occurrences (i.e. in the codomain of its Last
function) to check if Z can be extended. Formally, let last(Zω) denote the pro-
jection of the closed zone Cl(Zω) = Cl(Vω, Eω , Lastω) on Vlast, the codomain of
Lastω. That is last(Zω) = ΠVlast

(Cl(Vω , Eω), Lastω). As an example, last(Zαβ)
(Zαβ is depicted on the left part of Figure 3) is the projection of the closure
Cl(Zαβ) (right part of Figure 3) on the set Vlast = {x0, x2} (Figure below the
Figure 3). The abstraction last(Z) from Z limits the number of relevant vari-
ables in event zones to |C|+ |Comp|. Moreover, this projection behaves well with
respect to extension and .EZ :

Proposition 17. Let Z be a consistent event zone and α be a clocked label.
Then last(Z � α)) 'EZ last(last(Z)� α).

Proof. We recall that the function last(Z) computes the closure of Z before
projecting on the set of last event variables. For S a zone being any of Z, Z �
α, Cl(Z), . . ., we denote by ES(x, y) the value of the function E and we write x ∈
VZ for x ∈ Z. By definition of the closure and extension of zones, last(Z�α) and
last(last(Z)�α)) have the same set of variables which contains xα the variable
corresponding to α. By definition the value of ECl(S)(x, y) is the minimum of
the length of paths of S starting from x and ending in y.

Let us consider a minimal weighted path in Z � α starting from x ending in
y (it can be the case that x = xα or y = xα), such that x, y ∈ last(Z �α). Note
first that the case where the path does not goes through xα is obvious. Moreover
among all the minimal path there exists once going only once through xα as in
a consistent event zone is consistent every cycle (containing xα for instance) is
of positive weight. Such a path is depicted in Figure 4.

xα

x1x y1
y

Fig. 4. a path in Z � α

If x1 or y1 is not in last(Z), by definition E(xα, y1) or E(x1, xα) is (+∞, <),
therefore the length of the path is (+∞, <). Therefore either ECl(Z�α)(x, y) =
(+∞, <) and the same holds for ECl(Cl(Z)�α)(x, y) or it is finite. In the later case,

23

we can restrict ourselves to the paths of length different from (+∞, <), hence we
can assume that x1, y1 ∈ last(Z). By minimality of subpaths of an optimal path
and because of the previous remark on the occurrence number of xα, we have that
the length of the path joining x to x1 is ECl(Z)(x, x1) and that the length of the
path joining y1 to y is ECl(Z)(y1, y). Since ECl(Z)�α(x1, xα) ≥ ECl(Z)�α(x1, xα)
and ECl(Z)�α(xα, x1) ≥ ECl(Z)�α(xα, y1), we get that

ECl(Z�α)(x, y)) ≥ ECl(Cl(Z)�α)(x, y)

Conversely, a minimal path in Cl(last(Z)�α) is depicted in Figure 5 where

xα

x1x

ECl(Z)(x, x1)

y1
y

ECl(Z)(y1, y)

Fig. 5. a path in Cl(Z) � α

ECl(Z)(x, x1) is the length of a minimal path joining x to x1 in Z (and sim-
ilary for ECl(Z)(y1, y)). Moreover ECl(Z)�α(x1, xα) is greater than or equal to
ECl(Z�α)(x1, xα) and similarly ECl(Z)�α(xα, y1) ≥ ECl(Z�α)(xα, y1). Therefore,
the length of all minimal paths is greater than or equal to ECl(Z�α)(x, y)) yield-
ing:

ECl(Cl(Z)�α)(x, y) ≥ ECl(Z�α)(x, y))

�

This justifies the use of last(Z) to define the event automaton in the following
construction where Z denotes the set of event zones over ∆ and Zε is the special
event zone (Vε, Eε, Lastε) associated to the empty word such that Vε = {x0} (the
initial time stamp), E(x0, x0) = (0,≤) and Last(ξ) = x0 for all ξ ∈ C ∪ Comp
(everything is reset).

Definition 18 (event zone automaton). The event zone automaton A′ =
(S′, s′0,→

′, F ′) associated to an asynchronous timed automaton A = (S, s0,→
, F) is such that S′ = S × Z/'EZ

, couples of discrete states and (quotients
of) event zones, the initial state is s′0 = (s0, [Zε]), the set of final states is
F ′ = {(s, Z) | s ∈ F} and the transition relation →′: S′ ×∆ ↪→ S′, is defined by

(s, [Z])
α
→ (s1, [Z1]) iff s

α
→ s1 is in A and Z1 = last(Z � α) is consistent.

Proposition 19. The event zone automaton for an asynchronous timed au-
tomaton is an asynchronous timed automaton accepting exactly the clocked words
having an I-realisation.

24

Proof. A straightforward structural induction on ω shows that if s′0.ω = (s, Z)
then Zω is consistent (use proposition 17) hence ω is I-realisable.

Similarly a structural induction on ω proves that if ω is I-realisable, then
s′0.ω = (s, Z) with Z = last(Zω) (use propositions 13, 15 and 17).

By theorem 6, Zω1
and Zω2

are isomorphic if ω1 'M ω2. Combined with the
properties ID and FD of asynchronous automata, this ensures that s′0.ω = s′0.ω2

�

6 Catchup preorder for language emptiness checking

In this section, we introduce the finite index catchup preorder and show how
it can be used to obtain a bounded complexity algorithm for non-emptiness of
timed automata languages.

6.1 A useful tool, the separator action $

For the rest of this section, we introduce a useful tool, a separator:

Definition 20 (separator $). Any clocked alphabet ∆ with dependence rela-
tion I can be trivially extended to Γ with ∆∪{$} (possibly $ ∈ ∆), $ = (a, c, r)
called separator, such that c is trivial (no conditions on any clocks), r = ∅ (no
resets), and for all α ∈ ∆ it holds that α 6I∆ $.

The separator $, being dependent of all actions but being trivial on the clocks,
does not modify (except for shifting by one position) the clock constraints in
α1 . . . αn$β1 . . . βm compared to α1 . . . αnβ1 . . . βm, but its dependency on every
other clocked label imposes that every αi must happen before every βj . It sep-
arates in a clocked word temporal past and future. Lemma 21 shows the use of
the separator respect to .IN :

Lemma 21. For all ω1, ω2 ∈ Γ ∗, ω2 = α1 . . . αn it holds that there exists ω′
1 ∈

[ω1] with ω′
1ω2 is realisable iff ω1$α1$α2$. . . $αn is I-realisable.

Proof. The $ = (a, c, r) we require is such that c is trivial (no conditions on any
clocks), r = ∅ (no resets), and for all α ∈ ∆ it holds that α DΣ γ. Either such a
$ already exists in ∆ =: Γ or we take a fresh a /∈ Σ and set Γ := ∆ ∪ {$} and
extend IΣ accordingly.

Now suppose that there exists ω′
1 ∈ [ω1] such that ω′

1ω2 has a normal re-
alisation. Then ω′

1$α1$α2$. . . $αn also has a normal realisation by letting the
$ before αi occur at the same time as αi. Then according to Theorem 6 and
Corrollary 7, the equivalent ω1$α1$α2$. . . $αn is I-realisable.

Conversely, if ω1$α1$α2$. . . $αn is I-realisable, then according to Proposition
4, there exists ω′ ∈ [ω1$α1$α2$. . . $αn] having a normal realisation. Since $ is de-
pendent of every other label, this word must be of the form ω′ = ω′

1$α1$. . . $αn,
where ω′

1 'M ω1. Projecting away the additional occurrences of $, ω′
1ω2 has a

normal realisation. �

25

From now on, we will assume that ∆ already contains such a $ as described
in Lemma 21. Note that in all previous arguments, the presence or absense of
such a $ plays no rôle whatsoever. But in what follows, it is a useful tool in some
situations. In particular, it gives us:

Proposition 22. If ∆ contains a separator $, then ω1 .I ω2 implies ω1 .IN

ω2.

Proof. We assume ω1 .I ω2. Now choose an arbitrary ω = α1α2 . . . αn such that
ω′

1ω has a normal realisation for some ω′
1 ∈ [ω1]. By Lemma 21, ω1$α1$α2 . . . $αn

is I-realisable. By ω1 .I ω2 and the right precongruence property of .I , also
ω2$α1$α2 . . . $αn is I-realisable. Again by Lemma 21, there exist ω′

2 ∈ [ω2] such
that ω′

2ω is realisable. Since the choice of ω was arbitrary, we have indeed shown
that ω1 .IN ω2. �

6.2 Catchup equivalence

In the previous section we have developed a representation of .I . The repre-
sentation uses event zones which are matrices of bounded dimension, but with
unbounded entries. Hence, there may be an infinity of such zones, which is un-
avoidable, because .I itself is of infinite index. In terms of right congruences,
we understand zones as representations of equivalence classes 'EZ .

At this point, we have that .EZ⊆.I⊆.IN . However, we neither know how
to test .I nor .IN and we have no information about the index of .IN . Next,
we abstract/relax .EZ in a manner to still respect .IN . More precisely, we
give a sufficient criterion for two traces [ω1], [ω2] with [ω1] .EZ [ω2] also to
satisfy [ω1] .IN [ω2]. As explained before, constraints in the event zones for
a pair of variables/events are pairs (c, <) or (c,≤) where c ∈ Z ∪ {+∞}. Our
aim is to abstract constraints where c is finite and above or below a certain
threshold. Such abstractions are known for classical timed automata, i.e. for the
right precongruence .N . The abstraction we use here is very closely related to
the ones known for .N .

Definition 23 (catchup simulation of event zones). Let ω1, ω2

be two clocked words and let Zω1$ = (V1, E1, Last1) and Zω2$ = (V2, E2, Last2)
the event zones for ω1$, ω2$ respectively, where $ is a separator. Moreover, for
all pairs ξ1 ∈ C, ξ2 ∈ C ∪ {1} (1 ∈ Comp5):

– E(Last(ξ1), Last(ξ2)) ≤ E′(Last′(ξ1), Last′(ξ2));
– or E(Last(ξ1), Last(1)), E′(Last′(ξ1), Last′(1)) (constraint between clock re-

set events and the separator) are both strictly smaller than (−c,≺) for the
greatest non-trivial upper bound (c,≺) for ξ1 in ∆ (upper catchup);

– or both E(Last(ξ1), Last(ξ2)), E′(Last′(ξ1), Last′(ξ2)) greater or equal to
the biggest lower bound for ξ2 in ∆ (lower catchup).

5 This choice is arbitrary, the last action for any component is $

26

Then we write that ω1 .C ω2 (and say that ω2 catchup simulates ω1. Moreover
ω1 'C ω2 (catchup equivalent) iff ω1 .C ω2 and ω2 .C ω1.

The intuition behind the naming catchup is that the definition, in particular
in the second and third rule, abstracts from event zones extensions that occur in
the past of already present event (e.g. events that would have occur before the
separator in the second rule). We consider such events as “late” and catching
up. The second rule addresses resulting bounds of relevance to upper bounds of
clocks (upper catchup), the third with respect to lower bounds (lower catchup).

Theorem 24. ω1 .C ω2 implies ω1 .IN ω2.

Proof. Let ω1 .C ω2, Zω1$ = (V1, E1, Last1) and Zω2$ = (V2, E2, Last2) the
corresponding zones of ω1$ and ω2$. To show ω1 .IN ω2, let ω = α1 . . . αn such
that there exists ω′

1 ∈ [w1] and ω′
1ω has a normal realisation. We have to show

that also there exists ω′
2 ∈ [ω2] and ω′

2ω a normal realisation.

According to Lemma 21, we have that ω1$α1$α2 . . . $αn is I-realisable. We
show that ω2$α1$α2 . . . $αn is I-realisable as well. Assuming the contrary, there
exists a negative cycle in the event zone corresponding to ω2$α1$α2 . . . $αn that
must pass through both the variables corresponding to ω2$ and the variables
corresponding to α1$α2 . . . $αn (otherwise either Zω2$ is already inconsistent or
there is a negative cycle within α1$α2 . . . $αn, which contradicts the assumption
that ω1$α1$α2 . . . $αn is I-realisable). Let X be the set of variables corresponding
to ω2$ and Y be the set of variables corresponding to α1$α2 . . . $αn. A negative
cycle constituated by an alternation

y1
1y

1
2 ...y

1
m1

x1
1x

1
2...x

1
n1

y2
1 ...y

2
m2

x2
1...x

2
n2

...yk
1 ...yk

mk
xk

1 ...xk
nk

y1
1

where xj
i ∈ X , yj

i ∈ Y , mi, ni > 0, and k ≥ 1, and the sum of the edges on the
cycle is negative. Let us assume k minimal. Our aim is to find a negative cycle for
ω1$α1$α2...$αn also. Let Z be the set of variables corresponding to ω1$. The idea
is to replace parts of the path xl

nl
yl+1
1 ...yl+1

ml+1
xl+1

1 by parts xl
nl

zl+1
1 ...zl+1

ol+1
xl+1

1

(or in one case xl
nl

zl+1
1 ...zl+1

ol+1
xl+1
−pl+1

...xl+1
0 xl+1

1 with some additional variables
from X at the end) with a smaller sum of the edges. Then, we obtain a cycle for
ω1$α1$α2...$αn with a total sum of edges smaller than the total sum of edges
for ω2$α1$α2...$αn, hence a negative cycle contradicting realisability.

Let the edge xl
nl

yl+1
1 result from a constraint C ≤ c for the label α corre-

sponding to xl
nl

for some clock C such that Last2(C) = yl+1
1 in Z1. Likewise

let the edge yl+1
ml+1

xl+1
1 result from a constraint D ≥ d (or from a causality con-

straint) with Last2(D) = yl+1
ml+1

. We do a case analysis, following the definition
of .C :

– E1(Last1(C), Last1(D)) ≤ E2(Last2(C), Last2(D)); by definition of E2, the
actual length of path zl+1

1 ...zl+1
ol+1

with Last1(C) = zl+1
1 and Last2(D) = zl+1

ol+1

is of length E1(Last1(C), Last1(D)). Combining it with the edges xl
nl

zl+1
1

27

and zl+1
ol+1

xl+1
1 that have the same lengths as xl

nl
yl+1
1 and yl+1

ml+1
xl+1

1 respec-

tively, we obtain that xl
nl

zl+1
1 ...zl+1

ol+1
xl+1

1 is shorter than xl
nl

yl+1
1 ...yl+1

ml+1
xl+1

1 ,
as desired.

– There exist ξ1, ξ2 such that
E1(Last1(C), Last1(ξ1)), E2(Last2(C), Last2(ξ2)) < (−c,≤). Then we di-
recty find a negative cycle for ω1$α1$α2...$αn as follows: Here, we exploit
the fact that $ depends on every other label, because, the resulting causality
constraints give us a path of length (0,≤) from any vertex in Z to any vertex
in X , in particular from Last1(ξ1) to xl

nl
. From xl

nl
to Last1(C) we have the

edge (c,≤) and from Last1(C) to Last1(ξ1) we have a path strictly shorter
than (−c,≤). This gives us a negative cycle contradicting the assumption
that ω1$α1$α2...$αn has a realisation respecting IΣ .

– Both E1(Last1(C), Last1(D)) and E2(Last2(C), Last2(D)) are bigger than
(d,≤). Then the length of the path yl+1

1 ...yl+1
ml+1

xl+1
1 (without the initial edge

xl
nl

yl+1
1 is greater than (0,≤). As in the previous case, there exists a path of

length (0,≤) from Last1(C) to xl+1
1 , due to a causality chain. For easier un-

derstanding, let us add that this path is of the form zl+1
1 ...zl+1

ol+1
xl+1
−pl+1

...xl+1
0 xl+1

1

where zl+1
1 = Last1(C), i.e. the causality chain inducing zero weight edges

has a part in Z followed by a part in X). Concluding, we obtain
xl

nl
zl+1
1 ...zl+1

ol+1
xl+1
−pl+1

...xl+1
0 xl+1

1 shorter than xl
nl

yl+1
1 ...yl+1

ml+1
xl+1

1 .

On the whole, we thus obtain a cycle of shorter, hence negative, length for
ω1$α1$α2...$αn, contradicting the assumption of a realisation respecting IΣ .
Therefore the assumption that ω2$α1$α2...$αn has no realisation respecting IΣ

leads to a contradiction. Therefore it is realizable and by Lemma 21, there exists
ω′

2 ∈ [ω2] so that ω′
2ω has a normal realisation, which proves that ω1 .IN ω2. �

Proposition 25. The index of 'C is finite. If n is the number of clocks and K
is the biggest constant mentioned in constraints, then it is smaller than (4K +
3)n(n+1).

Proof. Two traces ω1, ω2 are distinguished by 'C iff for the corresponding zones
Zω1$, Zω2$ of Definition 23 there exist ξ, ξ′ such that one can distinguish the
entries E1(Last1(ξ), Last1(ξ

′)) and E2(Last2(ξ), Last2(ξ
′)). These entries are

not distinguished, if both entries are strictly smaller than (−c,≺) where (c,≺)
is the greatest non-trivial upper bound for ξ or both are greater or equal to the
greatest lower bound for ξ′ or if they are in between and have the same value.
For a finite ∆, this gives a finite number of separations per pair ξ, ξ ′.

Since $ belongs to each ∆i, the dimension of the event zones in Definition 23
is bounded to n+1 (n for the clock resets, 1 for the lasti all pointing to the same
event corresponding to $). Let K be the overall greatest constant mentioned in
the timed automaton, this gives the upper bound of 4K + 3 ((±d,≺), special
cases (0, <), (0,≤), (+∞, <)) distinguished entries per pair between Cl and Cu,
hence on the whole the index of 'C is limited by (4K + 3)n(n+1). �

Of course, the bound is an upper bound which simply gives an idea of the
order of magnitude.

28

6.3 An algorithm for emptiness of LI(A)

Now we are set to give an algorithm for emptiness or reachability analysis. The
basis of the algorithm is the (infinite) event zone automaton.

With the help of .C , we can obtain a correct and terminating algorithm for
emptiness of the event zone automaton. We do this rather abstractly with the
generic exploration Algorithm 1 without imposing unneccessesary detail6. Note,
that for readability, we formulate the algorithm with clocked traces as states, but
that we could equally have taken states of the event zone automaton (because
'M⊆.EZ), which is a good way of implementing the algorithm. Also note that
the “red” set in the algorithm is there for the sake of the presentation of the proof
(for nice invariants) and that it is not actually needed in an implementation.
Some more remarks on implementation will be given in the next section.

The basic idea of the algorithm is to consider a partition of the set of traces
in four colours: White traces are those we have not visited yet, gray traces are
awaiting exploration, black traces have been explored, in particular concerning
successors, and red traces have been rejected because of catchup equivalence.
Whereas similar descriptions of depth first search (see e.g. [CLR90]) lead to an
exhaustive exploration of finite graphs (with all vertices black in the end), our
algorithm is intentionally unexhaustive and leaves some nodes red and an infinity
of nodes white, unexplored.

Algorithm 1 is generic with respect to the choice of the element of Gray at
the beginning of the while loop. For instance, organising Gray as a stack would
result in a DFS-like algorithm, organising Gray as a queue would result in a
BFS-like algorithm. Instead of fixing on a strategy here, we show the correctness
of the generic algorithm, allowing the use of any kind of heuristic in this choice.
Note however, that the strategy applied in this choice may result in a completely
different fragment of the event zone automaton to be explored.

Theorem 26. For an asynchronous timed automaton A, Algorithm 1 termi-
nates and yields a witness ω ∈ LI(A) iff LI(A) 6= ∅ otherwise returns “empty”.

Proof. The proof is based on the following claims:

(Invariant 1) At the beginning of the while-loop, for any two [ω1], [ω2] ∈
Black ∪ Gray either ω1 'M ω2 or sω1

6= sω2
or ω1 6'C ω2.

(Termination) The number of while-iterations is limited by the product of |S|
(number of states of the timed automaton) and the index of 'C (number of
catchup incomparable zones).
The iterations of the for-loops inside the while loop is limited by the branch-
ing degree of → (number of successors of states in the timed automaton).

(Invariant 2) At the beginning of the while loop, all I-realisable successors [ωα]
(with a run in the timed automaton) of a black [ω] are coloured (black,gray
or red).

6 Special thanks go to Walter Vogler for suggesting this presentation of the generic
algorithm and of the correctness proof!

29

Algorithm 1 Generic exploration algorithm

Gray← {[ε]}
Black← ∅
Red← ∅
while Gray 6= ∅ do

Choose [ω] ∈ Gray

Gray← Gray \ {[ω]}
Black← Black ∪ {ω}
for all ω′ = ωα with (sω, α, sωα) ∈ → and Zωα consistent do

if ∃[ω′′] ∈ Black ∪ Gray.sω′ = sω′′ and ω′ .C ω′′ /* or weaker 'C */ then
Red← Red ∪ {[ω′]}

else
/* Gray optimisation */
if ∃[ω′′] ∈ Gray.sω′ = sω′′ and ω′′ .C ω′ then

Gray← Gray \ {[ω′′]}
Red← Red ∪ {[ω′′]}

end if
/* end Gray optimisation */
Gray← Gray ∪ {[ω′]}

if sω′ ∈ F then
return “witness(ω′)”

end if
end if

end for
end while
return “empty”

30

(Invariant 3) All coloured traces are I-realisable.
(Invariant 4) For each red [ω] there exists a gray or black [ω′] with ω .C ω′.
(Witness) A returned witness really belongs to LI(A) (because it is I-realisable

and leads to a final state).
(No witness) If no witness is returned then LI(A) = ∅.

The claimed invariants, (Termination) and (Witness) are easy to check. The
interesting and more difficult to prove claim is (No witness).

Let us assume that indeed LI(A) 6= ∅, but the algorithm terminates with
“empty”. Then we know also that LN (A) 6= ∅. Let ω ∈ LN (A) and ω = ω1ω2

such that [ω1] black and |ω2| minimal.
Either ω2 = ε, but then [ω] is black and was added to the gray set at some

point, where the algorithm should have returned it as witness.
Or ω2 = αω′

2. Since [ω1] is black, its successor [ω1α] must be coloured. At
termination, there are no gray traces left, so [ω1α] is black or red. But [ω1α]
black would contradict the choice of ω and ω1, ω2 (minimality of |ω2|). Hence
[ω1α] must be red.

Then there must exist a gray (excluded at termination) or black [ω′] with
ωα .C ω′ and sωα = sω′ . By definition of .C and Proposition 4 this implies
that for some ω′′ 'M ω′, ω′′ω′

2 ∈ LN(A) with [ω′′] black, again contradicting
the assumed minimality of |ω2|. �

The exploration algorithm is just the central component of the verification
system. If a witness ω is actually returned, an I-normal timed word (w, t) should
actually be computed, “sorted” to an equivalent normal timed word (w′, t′) ∈
LT (A) according to Proposition 4, which is the actual diagnostic trace to be
handed to the user, who need not be aware of the Mazurkiewicz trace approach
in the computation of this witness at all.

Algorithmic issues Algorithm 1 is a way to explore a sufficient fragment of
the event zone automaton in order to detect emptiness.

In the search we propose, the stopping criterion is not whether a certain
vertex has been visited, but a vertex state that is in relation 'C or .C with
the current vertex. Hence, it has to be pointed out that we need not hash/store
actual couples (sω , Zω) or traces [ω] but only a sufficient abstraction abs(sω, Zω)
of the latter allowing a test for (sω1

, Zω1
) .C (sω2

, Zω2
) based on7 (sω1

, Zω1
)

and abs(sω2
, Zω2

).
There are two possible applications:

– Rather than checking for .C , we only check for 'C . In this case, we can
hash the state s and the zone Zω$ where we replace in the matrix entries
concerned by the second and third rule of Definition 23 by special values
for representing the abstraction. Then, the test for (s′, Z ′) 'C (s, Z) is
equivalent to the test abs(s′, Z ′) = abs(s, Z).

7 The asymmetric definition is intentional: We have to store permanently
abs(sω2

, Zω2
), so we want it to occupy as little memory as possible.

31

Under this assumption, all kinds of hashing techniques can be applied for a
compact representation of visited states up to 'C .

– In analogy to clock zone inclusion tests known from classical timed automata,
we actually want to test .C , hoping that this will result in a smaller graph.
In this case, either a more sophisticated data structure than a hash table
must be used or the following compromise can be applied: Search for a pair
of abstraction functions abs1, abs2 and a function test such that (s, Z) .C

(s′, Z ′) iff abs1(s, Z) = abs1(s
′, Z ′) and test((s, Z), abs2(s

′, Z ′)) where we
intend abs1 to be as discriminating as possible, abs2 as little as , e.g. abs2

will not depend on s, etc.. Then, a hash table indexed with abs1 carrying for
each value a list of values from abs2 can be used.
This is a somewhat abstract description of implementations with zone lists
for discrete states.

7 Comparison with classical zone automata

Several propositions have been done to consider partial order reductions for
timed automata but the results were usually disappointing, yielding the feeling
that this research direction was a dead-end. In section 8, we give some figures
that validate our approach, and in the present section we give some theoretical
grounds to support our claim that the approach is worthwhile.

Firstly, we consider the case without independence and we show that our
algorithm computes an object similar to the simulation graph of a timed au-
tomaton.

Secondly, we show how the fact that commutation does not lead to incom-
parable zones is related to the “convex hull overapproximation” in tools like
UppAal.

The case of I = ∅ For the purpose of comparison with classical timed au-
tomata constructions, we consider here a fully dependent alphabet.

Proposition 27. Let I = ∅. Then .N=.IN=.I .

This fact is obvious and illustrates the generalisation arising from moving from
the fully dependent case to the asynchronous case. An immediate consequence
is:

Corollary 28. .N is of finite index.

Proof. .N is preserved under modifications of the independence relation, in
particular also for the case I = ∅. Then we find that .C⊆.IN=.N . Hence, .N

has an index limited by the index of .C . �

However, a much stronger property is true:

Theorem 29. Let I = ∅. Then Algorithm 1 can be modified to yield a finite
deterministic automaton for LN (A).

32

Proof. We just give a sketch: Instead of using .C in Algorithm 1, use 'C for
the red colouring. The modified construction will insert a transition from a black
state to each of its children. Each time, a state is coloured red, redirect all ingoing
transitions to the gray or black state that caused the recolouring. Accepting
states of A become accepting states of the constructed automaton.

The red and the gray/black state causing its recolouring, are catchup equiv-
alent, and hence equivalent with respect to L(A) and 'IN='N , which means
that they are equivalent with respect to 'LN (A). The induces right congruence
of the constructed automaton is then easily seen to refine 'LN(A). �

In fact, it seems that .C itself becomes a right precongruence for the case
of I = ∅. However, the algebraic argument shows that we do not really need
this property to construct an automaton for LN (A). It is sufficient that we have
.EZ⊆.C.N , where .EZ and .N are right precongruences and .C is a preorder
of finite index! States are still constructed using the infinite index 'EZ , yet 'C

is used to have a bounded number of representatives of the classes of 'N only.

Relation of .IN and the “convex hull overapproximation” UppAal has
an option to join incomparable clock zones into a “convex hull8 In terms of
.N , this is similar to finding for two incomparable zones Z1, Z2 a zone Z such
that Z1 .N Z and Z2 .N Z, where of course we would want to be Z as small
as possible with respect to .N . This “convex hull” is then used to replace the
two states (s, Z1), (s, Z2) by (s, Z) in the black set of a zone automaton. This
operation results in an overapproximation, i.e. a path to an accepting state need
not be realisable. But if the aim is to prove language emptiness, this need not
disturb: if the automaton with convex hull overapproximation has an empty
language, then so has the original automaton.

We will now indicate, in which way our approach is related to the convex
hull overapproximation:

Proposition 30. ω1$ω2 .EZ ω1ω2

Proof. Since .EZ is a precongruence, it is sufficient to prove that ω1$.EZ ω1.
For the two event zones Zω1$ = (V1, E1, Last1) and Zω1

= (V2, E2, Last2), as-
sume that V1 = V2 ∪ {x$} where x$ is the variable for the occurrence time of
$ and that E1 restricted to V2 coincides with V2. The only additional nontriv-
ial constraints in E1 are some E(y, x$) between some y ∈ V2 and x$, notably
E(x$, y) = (+∞, <) for all y ∈ V2.

Then for pairs of clocks C, D it holds that Last1(C) = Last2(C) ∈ V2

and Last1(D) = Last2(D) ∈ V2 and consequently E1(Last1(C), Last1(D)) =
E2(Last2(C), Last2(D)). But for pairs of a clock C and some component i ∈
Comp, it holds that

8 Not convex in the geometric sense, but rather the smallest difference constraint set
including two incomparable difference constraint sets.

33

E1(Last1(C), Last1(i)) = E1(Last1(C), x$) ≤ E1(L2(C), L2(i)) ⊕ E1(L2(i), x$)
= E1(L2(C), L2(i)) ⊕ (0,≤)
= E1(L2(C), L2(i))

�

Corollary 31. For every α1 . . . αn ∈ [ω] it holds for ω′ = α1$α2$. . . $αn that
ω′ .C ω, ω′ .I ω, ω′ .IN ω.

Interpreted in terms of “convex hulls”, consider Zα1$α2$...$αn
as a classical

zone and observe that for each interleaving of a trace we obtain that the classical
zone is “included” in the event zone with respect to .EZ : Zα1$α2$...$αn

.EZ Zω.
This means that the “convex hull” of the classical zones of all interleavings is
included in the event zone, and of course that this inclusion also holds on the
level of .C and .IN .

We can conclude that the convex hull closure is exact (and not an overap-
proximation) when applied to zones reached by trace equivalent interleavings
only. However, in the event zone automaton, a single interleaving already yields
this convex hull! It is therefore to be expected that our construction will work
well where the convex hull overapproximation works well, but without possible
error.

8 Experiments

For practical evaluation, we have built a tool, ELSE, which is currently in proto-
type status. It allows both classical semantics (corresponding to clock zones) and
event zones, implementing Algorithm 1. We measure reductions in terms of num-
ber of states (where feasable for the prototype) and did not compare execution
times. Also, since we do not include static analysis improvements for less clock
zones, comparison with state numbers obtained by the last version of for exam-
ple UppAal is not meaningful. We chose to compare the two modi of the same
base implementation. Where there are gains, they should be complementary to
gains by better static analysis.

a0 a1 a2 an

a0 a1 a2 an

b0 b1 b2 bn

X1 := 0 X2 := 0 Xn := 0

Y1 := 0 Y2 := 0 Yn := 0

X1 ≤ 1, Y1 ≥ 1 X2 ≤ 1, Y2 ≥ 1 Xn ≤ 1, Yn ≥ 1

Fig. 6. The diamond example with 2n clocks

34

We consider three examples The first – artificial – example is the diamond
example of Figure 6: Two automata just reset clocks in a fixed order and when
both are done, an observer tests some properties of the interleavings. The clock
zone automaton has just one maximal run (trace), with a quadratic number of
prefixes. Clock zone automata however have to distinguish all possible shuffles of
the resets of clocks Xi and Yj . So this artificial example gives polynomial against
exponential growth.

More realistic, the second example is a timed version of the dining philoso-
phers, which yield forks taken if they do not obtain the second fork before a
timeout (in order to avoid deadlocks). While both the event zone approach and
the clock zone approach yield exponential blowups, the difference between the
two is impressing and encouraging for applications with some distribution.

The third example, popular Fischer’s protocol [AL94] is a very unfavourable
example, since there is hardly any independence in the models. Still, we report
it to show that even in such cases, event zones yield a reduction, even if just a
modest one.

The experimental results are summarized in Figure 7, where “EZC” stands
for exploration with event zone automata and catchup preorder whereas “CZ”
stands for clock zone automata. Each case concerns scalable examples with a
parameter m (number of clock of each process in the diamond example, number
of philosophers, number of processes Fischer protocol).

process number 2 3 4 5 6 7 8 9 10 100

Diamond, EZC 19 29 41 55 71 89 109 131 155 3571

Diamond, CZ 198 711 2596 9607 35923 135407 – – – –

Philosophers, EZC 13 48 153 478 1507 4791 15369 49662 161393 –

Philosophers, CZ 66 393 2772 23103 223052 – – – – –

Fischer, EZC 48 887 17672 380632 – – – – – –

Fischer, CZ 49 919 18751 417249 – – – – – –

Fig. 7. Experimental results

9 Conclusions and Future Work

We have established a novel formal framework for partial order reductions of
timed automata and developed a new kind of finite symbolic state automata
based on event zones.

A particular difficulty in the partial order setting is to obtain a finite automa-
ton. Technically different from zone widening approaches which exploit bisimula-
tion properties of individual states, we use an equivalence and preorder relation
on symbolic states without applying any widening. The event zones are thus

35

always exact, but we chop certain states of the event zone automaton without
loss of reachable states, but resulting in a finite sub automaton.

We have implemented this approach in a prototype, the ELSE tool. While we
have not yet been able to do experiments allowing a conclusive evaluation, we
have designed academic examples in which our approach results in exponential
savings compared to standard timed automata approaches.

On the theoretical side we are working on the integration of urgency into our
framework, which will make it applicable to arbitrary Alur-Dill automata.

Acknowledgements

We thank Victor Braberman, Sergio Yovine, Stavros Tripakis, Oded Maler, Eu-
gene Asarin, Yasmina Abdeddaim, Bengt Johnsson and Rom Langerak for dis-
cussions about the challenging topic. Many thanks go to Walter Vogler for his
helpful constructive critique.

References

[AD94] R. Alur and D. Dill, A theory of timed automata, Theoretical Computer
Science 126(2) (1994), 183–235.

[AL94] Mart́ın Abadi and Leslie Lamport, An old-fashioned recipe for real time,
ACM Transactions on Programming Languages and Systems 16 (1994),
no. 5, 1543–1571.

[BJLY98] J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi, Partial order reductions for
timed systems, Proceedings, Ninth International Conference on Concurrency
Theory, Lecture Notes in Computer Science, vol. 1466, Springer-Verlag,
1998, pp. 485–500.

[BLP+99] G. Behrmann, K. Larsen, J. Pearson, C. Weise, W. Yi, and J. Lind-Nielsen,
Efficient timed reachability analysis using clock difference diagrams, Inter-
national Conference on Computer Aided Verification (CAV), Lecture Notes
in Computer Science, vol. 1633, 1999, pp. 341–353.

[Bou02] P. Bouyer, Timed automata may cause some troubles, Tech. report, LSV,
July 2002.

[CLR90] Th. Cormen, Ch. Leiserson, and R. Rivest, Introduction to algorithms, MIT
Press, 1990.

[DGKK98] D. Dams, R. Gerth, B. Knaack, and R. Kuiper, Partial-order reduction
techniques for real-time model checking, Formal Methods for Industrial Crit-
ical Systems (Amsterdam), no. 10, May 1998, pp. 469–482.

[DR95] V. Diekert and G. Rozenberg (eds.), The book of traces, World Scientific,
1995.

[DT98] D. D’Souza and P.S. Thiagarajan, Distributed interval automata: A subclass
of timed automata, 1998, Internal Report TCS-98-3.

[DY96] C. Daws and S. Yovine, Reducing the number of clock variables of timed
automata, IEE Real-Time Systems Symposium, December 1996, pp. 73–81.

[God96] P. Godefroid, Partial-order methods for the verification of concurrent sys-
tems: an approach to the state-explosion problem, Lecture Notes in Com-
puter Science, vol. 1032, Springer-Verlag Inc., New York, NY, USA, 1996.

36

[LPY95] K. Larsen, P. Pettersson, and W. Yi, Model-checking for real-time systems,
Fundamentals of Computation Theory, Lecture Notes in Computer Science,
August 1995, Invited talk, pp. 62–88.

[Min99] Marius Minea, Partial order reduction for verification of timed systems,
Ph.D. thesis, Carnegie Mellon University, 1999.

[NHZL01] P. Niebert, M. Huhn, S. Zennou, and D. Lugiez, Local first search – a new
paradigm in partial order reductions, International Conference on Concur-
rency Theory (CONCUR), LNCS, no. 2154, 2001, pp. 396–410.

[NMA+02] P. Niebert, M. Mahfoudh, E. Asarin, M. Bozga, N. Jain, and O. Maler,
Verification of timed automata via satisfiability checking, Formal Techniques
in Real-Time and Fault-Tolerant Systems, LNCS, vol. 2469, 2002, pp. 225–
244.

[NSY92] X. Nicollin, J. Sifakis, and S. Yovine, Compiling real-time specifications
into extended automata, IEE Transactions on Software Engineering, vol. 18,
September 1992, pp. 794–804.

[Pel93] D. Peled, All from one, one for all: On model checking using representatives,
International Conference on Computer Aided Verification (CAV), Lecture
Notes in Computer Science, vol. 697, 1993, pp. 409–423.

[Val89] A. Valmari, Stubborn sets for reduced state space generation, 10th Interna-
tional Conference on Application and Theory of Petri Nets, vol. 2, 1989,
pp. 1–22.

[YS97] Tomohiro Yoneda and Bernd-Holger Schlingloff, Efficient verification of par-
allel real-time systems, Formal Methods in System Design 11 (1997), no. 2,
197–215.

