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Abstract/Résumé

The integer programming models known as set packing and set covering have a wide range of ap-

plications, many of which arise in the context of graph theory. Sometimes, because of the special

structure of the constraint matrix, the natural linear programming relaxation yields an optimal

solution that is integral, thus solving the problem. Sometimes, both the linear programming re-

laxation and its dual have integer optimal solutions. Under which conditions do such integrality

properties hold? This question is of both theoretical and practical interest. Min-max theorems,

polyhedral combinatorics and graph theory all come together in this rich area of discrete math-

ematics. In addition to min-max and polyhedral results, some of the deepest results in this area

come in two flavors: “excluded structure” characterizations and “decomposition” results. These

notes provide an introduction to this area. In particular, they survey the celebrated Strong Per-

fect Graph Conjecture and its recent solution by Chudnovsky, Robertson, Seymour and Thomas,

and Lehman’s characterization of ideal clutters. The monograph “Combinatorial Optimization:

Packing and Covering” by Cornuéjols, CBMS 74, SIAM (2001) provides background material.

Keywords: combinatorial optimization, packing, covering, ideal clutter, perfect graph.

Les problèmes de recouvrement et d’empaquetage ont de nombreuses applications, en particulier

en théorie des graphes. Parfois, en raison de la structure particulière de la matrice des contraintes,

la relaxation naturelle de ces problèmes sous forme d’un programme linéaire produit une solution

optimale entière, ce qui résoud donc le problème initial. Sous quelle conditions a-t-on cette pro-

priété d’intégralité? Cette question a un intérêt à la fois théorique et pratique. Les théorèmes

Min-Max, la combinatoire polyèdrale et la théorie des graphes se retrouvent dans ce domaine riche

des mathématiques discrètes. A côté des théorèmes polyèdraux et Min-Max qui sont souvent très

élégants, les résultats les plus profonds dans ce domaine ont tendance à se présenter sous deux

formes: caractérisation par “structures exclues” et théorèmes de “décomposition”. Ces notes

présentent une introduction à ce domaine. En particulier elles survolent la célèbre conjecture des

graphes parfaits et sa solution récente par Chudnovsky, Robertson, Seymour and Thomas, et la

caractérisation de Lehman des hypergraphes idéaux.

Mots-clés : optimisation combinatoire, empaquetage, recouvrement, hypergraphe, idéal, graphe

parfait.
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1. Clutters

A clutter C is a family E(C) of subsets of a finite ground set V (C) with the
property that S1 6⊆ S2 for all distinct S1, S2 ∈ E(C). V (C) is called the set of
vertices and E(C) the set of edges of C. Clutters are also called Sperner families in
the literature. A clutter is trivial if it has no edge or if it has the empty set as the
only edge.

For example, a simple graph (no multiple edges or loops) is a clutter where every
edge has cardinality two. We refer the reader to West [56] for a basic reference in
graph theory. In these notes, all graphs are assumed to be finite and simple.

In a clutter, a matching is a set of pairwise disjoint edges. A transversal is a set
of vertices that intersects all the edges. A clutter is said to pack if the maximum
cardinality of a matching equals the minimum cardinality of a transversal. This
terminology is due to Seymour [54]. Many min-max theorems in graph theory can
be rephrased by saying that a clutter packs. We give three examples. The first is
König’s theorem (for a proof, see Theorem 3.1.11 in West [56]).

Theorem 1.1. (König [37]) In a bipartite graph, the maximum cardinality of

a matching equals the minimum cardinality of a transversal.

As a second example, consider the edge version of Menger’s theorem (for a
proof, see Theorem 4.2.18 in West [56]).

Theorem 1.2. (Menger [44]) Let s and t be distinct nodes of a graph G. The

maximum number of pairwise edge-disjoint st-paths in G equals the minimum num-

ber of edges in an st-cut.

Let C1 be the clutter whose vertices are the edges of G and whose edges are
the st-paths of G (Following West’s terminology [56], paths and cycles have no
repeated nodes). We call C1 the clutter of st-paths. Its transversals are the st-cuts.
Thus, rephrased in terms of clutters, Menger’s theorem states that the clutter of
st-paths packs.

Interestingly, some famous results and difficult conjectures can be rephrased by
saying that certain clutters pack. In a graph G, a set of edges is called a postman

set if it induces an acyclic graph whose odd degree nodes coincide with the odd
degree nodes of G.

Conjecture 1.3. (Conforti and Johnson [19]) The clutter of postman sets

packs in planar graphs.

It turns out that, if true, this conjecture implies the four color theorem [1]
stating that every planar graph is 4-colorable, i.e. the nodes of a planar graph can
be colored with four colors so that no edge has its endnodes colored with the same
color (see [20] for details). This indicates that a full understanding of the clutters
that pack must be extremely difficult. More restricted notions are amenable to
beautiful theories, while still containing rich classes of examples. We introduce
several such concepts in the following section.

1.1. The Max Flow Min Cut Property and Idealness. Given a nontriv-
ial clutter C, we define M(C) to be a 0,1 matrix whose columns are indexed by
V (C), whose rows are indexed by E(C) and where mij = 1 if and only if the vertex
corresponding to column j belongs to the edge corresponding to row i. In other
words, the rows of M(C) are the characteristic vectors of the sets in E(C). Note
that the definition of M(C) is unique up to permutation of rows and permutation
of columns. Furthermore, M(C) contains no dominating row, since C is a clutter
(A vector r ∈ F is said to be dominating if there exists v ∈ F distinct from r
such that r ≥ v). A 0,1 matrix containing no dominating rows is called a clutter
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matrix. Given any 0,1 clutter matrix M , let C(M) denote the clutter such that
M(C(M)) = M .

Let M 6= 0 be a 0,1 clutter matrix and consider the following pair of dual linear
programs, where x and y denote the vectors of unknowns.

min{wx : x ≥ 0, Mx ≥ 1}(1.1)

= max{y1 : y ≥ 0, yM ≤ w}(1.2)

Here x and 1 are column vectors while w and y are row vectors. 1 denotes a vector
all of whose components are equal to 1. Equality holds between (1.1) and (1.2) as a
consequence of the duality theorem of linear programming (see for example Section
7.4 in Schrijver [52]).

We say that a vector is integral if all its components are integers. In these notes,
our interest will focus on integral solutions to (1.1) or (1.2). First, we reformulate
the definition of a clutter that packs.

Definition 1.4. Clutter C(M) packs if both (1.1) and (1.2) have optimal so-
lution vectors x and y that are integral when w = 1.

This corresponds to the earlier definition because, when w = 1, if (1.1) and
(1.2) have integral optimal solutions, they also have 0,1 optimal solutions x and y.
Furthermore, x is the characteristic vector of a transversal of C(M) and y is the
characteristic vector of a matching.

Definition 1.5. Clutter C(M) has the packing property if both (1.1) and (1.2)
have optimal solution vectors x and y that are integral for all vectors w with
components equal to 0, 1 or +∞. (Note: When wj = 0, it is optimal to set xj = 1
and when wj = +∞, it is optimal to set xj = 0. By convention, we consider that
wjxj = 0 in this case.)

Definition 1.6. Clutter C(M) has the Max Flow Min Cut property (or MFMC
property) if both (1.1) and (1.2) have optimal solution vectors x and y that are
integral for all nonnegative integral vectors w.

Clearly, the MFMC property for a clutter implies the packing property which
itself implies that the clutter packs. Conforti and Cornuéjols [15] conjectured that,
in fact, the MFMC property and the packing property are identical. This conjecture
is still open.

Conjecture 1.7. A clutter has the MFMC property if and only if it has the

packing property.

Definition 1.8. Clutter C(M) is ideal if (1.1) has an optimal solution vector
x that is integral for all w ≥ 0.

It is easy to show that the MFMC property implies idealness. Indeed, if (1.1)
has an optimal solution vector x for all nonnegative integral vectors w, then (1.1)
has an optimal solution x for all nonnegative rational vectors w. In fact, the packing
property implies idealness.

Theorem 1.9. If a clutter has the packing property, then it is ideal.

This follows from a result of Lehman [39] (see Theorem 3.19 presented later).
Figure 1 shows inclusion relationships between the classes of clutters introduced

above. The following clutter matrices show that some of these inclusions are strict:

Q6 =









1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1
0 0 0 1 1 1









, C2
3 =





1 1 0
0 1 1
1 0 1



, C2
4 =









1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1









, Q+
6
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CLUTTERS THAT PACK

PACKING PROPERTY

MAX FLOW MIN CUT PROPERTY
Q6

Q6
+

C 3
2

IDEAL

C 3
2+

C 2
 4

Figure 1. Classes of clutters.

and C2+
3 : For an m×n 0,1 matrix M , we use M+ to denote the m× (n+1) matrix

obtained from M by appending the column vector 1. The reader is encouraged to
verify that these five clutters satisfy the properties suggested in Figure 1.

A subset P of R
n is called a polyhedron if it is the intersection of finitely many

affine half-spaces, i.e. P = {x : Ax ≤ b} for some matrix A and vector b. Observe
that C(M) is ideal if and only if the polyhedron P = {x ≥ 0 : Mx ≥ 1} is an integral

polyhedron, that is, all the extreme points of P have only integer coordinates (an
extreme point of P is a point x that cannot be written as a convex combination of
x1, x2 ∈ P where x1 6= x and x2 6= x). Equivalently, C is ideal if and only if

x(S) ≥ 1 for all S ∈ E(C)

x ≥ 0

is an integral polyhedron, where x(S) denotes
∑

i∈S xi.

A linear system Ax ≥ b is Totally Dual Integral (TDI) if the linear program
min{wx : Ax ≥ b} has an integral optimal dual solution y for every integral w for
which this linear program has a finite optimum. Edmonds and Giles [27] showed
that, if Ax ≥ b is TDI and b is integral, then P = {x : Ax ≥ b} is an integral
polyhedron. The interested reader can find the proof of the Edmonds-Giles theorem
in Schrijver [52] pages 310–311, or Nemhauser and Wolsey [45] pages 536–537. It
follows that C(M) has the MFMC property if and only if (1.2) has an optimal
integral solution y for all nonnegative integral vectors w.

For convenience, we say that trivial clutters have all the above properties:
MFMC, idealness, etc.

1.2. Perfection. The min-max equation (1.1)=(1.2) has a close max-min rel-
ative

max{wx : x ≥ 0, Mx ≤ 1}(1.3)

= min{y1 : y ≥ 0, yM ≥ w}(1.4)

The clutter C(M) covers if both (1.3) and (1.4) have optimal solution vectors
x and y that are integral when w = 1. This is the analog of a clutter that packs.
Like for clutters that pack, a full understanding of the clutters that cover appears
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to be extremely difficult. Thus like for the min-max equation (1.1)=(1.2) where
we introduced the notions of packing property, MFMC property and idealness,
it makes sense to introduce three analogous definitions for the max-min equation
(1.3)=(1.4). Surprisingly, these three notions turn out to be identical.

Definition 1.10. A perfect matrix M is a 0, 1 matrix with no column of 0’s
such that P = {x ≥ 0 : Mx ≤ 1} is an integral polyhedron.

When M is a perfect matrix, the linear program max{wx : x ≥ 0, Mx ≤ 1}
has an integral optimal solution x for all w, and therefore the set packing problem

max{wx : Mx ≤ 1, x ∈ {0, 1}n} can be solved in polynomial time as a linear
program. By contrast, for a general 0,1 matrix M , the set packing problem is
NP-hard [32].

As we mentioned already, Edmonds and Giles [27] observed that, when a linear
system Ax ≤ b, x ≥ 0 is TDI and b is integral, the polyhedron {x : Ax ≤ b, x ≥ 0}
is integral. The converse is not true in general (recall Q6 in Figure 1 for the linear
system −Q6x ≤ −1, x ≥ 0). But it is true when A is a 0,1 matrix and b = 1.

Theorem 1.11. (Lovász [40], Fulkerson [31], Chvátal [10]) For a 0,1 matrix

M with no column of 0’s, the following statements are equivalent:

(i) the linear system Mx ≤ 1, x ≥ 0 is TDI,

(ii) the matrix M is perfect,

(iii) max {wx : Mx ≤ 1, x ≥ 0} has an integral optimal solution x for all

w ∈ {0, 1}n.

Clearly (i) implies (ii) implies (iii), where the first implication is the Edmonds-
Giles property and the second follows from the definition of perfection. What is
surprising is that (iii) implies (i) and, in fact, that (ii) implies (i). We will prove
this theorem in the next section. It is convenient to present this material in terms
of graphs.

The concept of perfect graph (to be defined in the next section) was introduced
by Berge [2] at a workshop in 1960. In a graph, a clique is a set of pairwise adjacent
nodes. The clique-node matrix of a graph is a 0,1 matrix M with columns indexed
by the nodes of G where the rows of M are the characteristic vectors of the maximal
cliques of G. Thus entry mij of M is 1 if and only if node j belongs to maximal
clique i. Chvátal [10] established the following connection between perfect graphs
and perfect matrices: A 0,1 clutter matrix with no column of 0’s is perfect if and
only if it is the clique-node matrix of a perfect graph. Therefore we may reason in
terms of graphs rather than 0,1 matrices.

2. Perfect Graphs

The node set of graph G is denoted by V (G) and its edge set by E(G). A
stable set is a set of nodes no two of which are adjacent. A clique is a set of nodes
every pair of which are adjacent. The cardinality of a largest clique in graph G is
denoted by ω(G). The cardinality of a largest stable set is denoted by α(G). A
k-coloring is a partition of the nodes into k stable sets (these stable sets are called
color classes). The chromatic number χ(G) is the smallest value of k for which
there exists a k-coloring. Obviously, ω(G) ≤ χ(G) since the nodes of a clique must
be in distinct color classes of a k-coloring. An induced subgraph of G is a graph with
node set S ⊆ V (G) and edge set comprising all the edges of G with both ends in S.
It is denoted by G(S). The graph G(V (G)− S) is denoted by G \ S. A graph G is
perfect if ω(H) = χ(H) for every induced subgraph H of G. A graph is minimally

imperfect if it is not perfect but all its proper induced subgraphs are.
A hole is a graph induced by a cycle of length at least 4. A hole is odd if it

contains an odd number of nodes. Odd holes are not perfect since their chromatic
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number is 3 whereas the size of their largest clique is 2. It is easy to check that odd
holes are minimally imperfect. The complement of a graph G is the graph Ḡ with
the same node set as G, and uv is an edge of Ḡ if and only if it is not an edge of G. It
is easy to check that complements of odd holes are also minimally imperfect. In the
early sixties Berge [2] proposed the Strong Perfect Graph Conjecture: The odd holes
and their complements are the only minimally imperfect graphs. This conjecture
attracted much attention over the next forty years. It was proved in May 2002
by Chudnovsky, Robertson, Seymour and Thomas [7] in a very impressive paper.
Claude Berge passed away in June 2002 knowing that his famous conjecture is true.

Theorem 2.1. (Strong Perfect Graph Theorem) (Chudnovsky, Robert-
son, Seymour and Thomas [7]) The only minimally imperfect graphs are the odd

holes and their complements.

In this section, we survey key aspects of the proof of the Strong Perfect Graph
Theorem. A Berge graph is a graph that does not contain an odd hole or its
complement as an induced subgraph. Clearly, every perfect graph is a Berge graph.
The Strong Perfect Graph Theorem states that the converse is also true: Every
Berge graph is perfect. The idea of the proof is to show that every Berge graph
either falls into one of four basic classes of perfect graphs, or that it has a kind
of separation that cannot occur in a minimally imperfect graph. This implies that
there exists no minimally imperfect Berge graph, and therefore every Berge graph
is perfect.

In [2], Berge also made a weaker conjecture, which states that a graph G is
perfect if and only if its complement Ḡ is perfect. This conjecture was proved
by Lovász [40] in 1972. We give a short elegant proof due to Gasparyan [33] by
proving first the following stronger result.

Theorem 2.2. (Lovász [41]) A graph G is perfect if and only if, for every

induced subgraph H, the number of nodes of H is at most α(H)ω(H).

Proof. First assume that G is perfect. Then, for every induced subgraph H ,
ω(H) = χ(H). Since the number of nodes of H is at most α(H)χ(H), the inequality
follows.

We give a proof of the converse due to Gasparyan [33]. Assume that G is not
perfect. Let H be a minimally imperfect subgraph of G and let n be the number
of nodes of H . Let α = α(H) and ω = ω(H). Then H satisfies

ω = χ(H\v) for every node v ∈ V (H)

and ω = ω(H\S) for every stable set S ⊆ V (H).

Let A0 be a stable set of size α in H . Fix an ω-coloring of each of the α graphs
H\s for s ∈ A0, let A1, . . . , Aαω be the stable sets occuring as a color class in one of
these colorings and let A := {A0, A1, . . . , Aαω}. Let A be the corresponding stable
set versus node incidence matrix. Define B := {B0, B1, . . . , Bαω} where Bi is a
clique of size ω in H\Ai. Let B be the corresponding clique versus node incidence
matrix.

Claim: Every clique of size ω in H intersects all but one of the stables sets in
A.

Proof: Let S1, . . . , Sω be any ω-coloring of H \ v. Since any clique C of size ω
in H has at most one node in each Si, C intersects all Si’s if v 6∈ C and all but one
if v ∈ C. Since C has at most one node in A0, the claim follows.

In particular, it follows that ABT = J − I where J is the matrix filled with
ones and I the identity. Since J − I is nonsingular, A and B have at least as many
columns as rows, that is n ≥ αω + 1. �
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Corollary 2.3. (Perfect Graph Theorem) (Lovász [40]) Graph G is per-

fect if and only if graph Ḡ is perfect.

Proof. Since, for any graph H , α(H) = ω(H̄) and ω(H) = α(H̄), Theorem 2.2
implies Corollary 2.3.

�

2.1. Four Basic Classes of Perfect Graphs. Bipartite graphs are perfect
since, for any induced subgraph H , the bipartition implies that χ(H) ≤ 2 and
therefore ω(H) = χ(H).

Figure 2. A bipartite graph and its line graph.

A graph L is the line graph of a graph G if V (L) = E(G) and two nodes of L
are adjacent if and only if the corresponding edges of G share a vertex. See Figure 2
for an example.

Proposition 2.4. Line graphs of bipartite graphs are perfect.

Proof. If G is bipartite, χ′(G) = ∆(G) by a theorem of König [37], where χ′

denotes the edge-chromatic number and ∆ the largest node degree.
If L is the line graph of a bipartite graph G, then χ(L) = χ′(G) and ω(L) =

∆(G). Therefore χ(L) = ω(L). Since induced subgraphs of L are also line graphs
of bipartite graphs, the result follows. �

Since bipartite graphs and line graphs of bipartite graphs are perfect, it follows
from Lovász’s perfect graph theorem (Corollary 2.3) that the complements of bi-
partite graphs and of line graphs of bipartite graphs are perfect. This can also be
verified directly, without using the perfect graph theorem. To summarize, in this
section we have introduced four classes of perfect graphs:

• bipartite graphs and their complements, and
• line graphs of bipartite graphs and their complements.

These graphs are called basic.

2.2. 2-Join, Homogeneous Pair and Skew Partition. The proof of the
Strong Perfect Graph Theorem by Chudnovsky, Robertson, Seymour and Thomas
is based on a decomposition theorem for Berge graphs: Every Berge graph is basic
as defined above, or it can be decomposed using a 2-join, a homogeneous pair or a
skew partition. We define these three decompositions in this section.

2-Join
A graph G has a 2-join if its nodes can be partitioned into sets V1 and V2,

each of cardinality at least three, with nonempty disjoint subsets A1, B1 ⊆ V1

and A2, B2 ⊆ V2, such that all the nodes of A1 are adjacent to all the nodes of
A2, all the nodes of B1 are adjacent to all the nodes of B2 and these are the only
adjacencies between V1 and V2. See Figure 3. 2-joins were introduced by Cornuéjols
and Cunningham [21] in 1985. They gave an O(|V (G)|2|E(G)|2) algorithm to find
whether a graph G has a 2-join.
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2−join homogeneous pair skew partition

V1

A1 A2

A2

B2

A1

B

A

C

B

B1

D

V2

Figure 3. Decompositions.

When G contains a 2-join, we can decompose G into two blocks G1 and G2

defined as follows.

Definition 2.5. If A2 and B2 are in different connected components of G(V2),
define block G1 to be G(V1∪{p1, q1}), where p1 ∈ A2 and q1 ∈ B2. Otherwise, let P1

be a shortest path from A2 to B2 in G(V2) and define block G1 to be G(V1∪V (P1)).
Block G2 is defined similarly.

Theorem 2.6. (2-Join Decomposition Theorem) (Cornuéjols and Cun-
ningham [21], see also [20]) Graph G is perfect if and only if its blocks G1 and G2

are perfect.

Corollary 2.7. If a minimally imperfect graph G has a 2-join, then G is an

odd hole.

Proof. Since G is not perfect, Theorem 2.6 implies that block G1 or G2 is
not perfect, say G1. Since G1 is an induced subgraph of G and G is minimally
imperfect, it follows that G = G1. Thus, since |V2| ≥ 3, V2 induces a chordless path
P1. Therefore G is a minimally imperfect graph with a node of degree 2. It is well
known that such a graph G is an odd hole [47]. �

Homogeneous Pair
The notion of homogeneous pair was introduced by Chvátal and Sbihi [13]. A

graph G has a homogeneous pair if V (G) can be partitioned into subsets A1, A2

and B, such that:

• |A1| + |A2| ≥ 3 and |B| ≥ 2.
• If a node of B is adjacent to a node of Ai then it is adjacent to all the

nodes of Ai, for i ∈ {1, 2}.

Theorem 2.8. (Homogeneous Pair Theorem) (Chvátal and Sbihi [13])
No minimally imperfect graph has a homogeneous pair.

Skew Partition
A graph G has a skew partition if its nodes can be partitioned into four

nonempty sets A, B, C, D such that there are all the possible edges between A
and B and no edges from C to D. Chvátal [11] introduced skew partitions in 1985
and he conjectured that no minimally imperfect graph has a skew partition. He
observed that the conjecture holds for a star cutset, defined to be a skew partition
where |A| = 1.

Lemma 2.9. (Star Cutset Lemma) (Chvátal [11]) No minimally imperfect

graph has a star cutset.
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Proof. Assume that G is minimally imperfect and has a star cutset. Let G1

be the graph induced by A ∪ B ∪C and G2 the graph induced by A ∪ B ∪ D. The
graphs G1 and G2 are perfect. Let Si be the color class of an ω(G)-coloring of Gi

that contains the unique node of A, for i ∈ {1, 2}. Then Si meets all the cliques of
size ω(G) in Gi, i.e. ω(G \ (S1 ∪ S2)) < ω(G). It follows that G \ (S1 ∪ S2) can be
colored with fewer than ω(G) colors, since it is perfect. Since S1 ∪ S2 is a stable
set, G can be colored with ω(G) colors, a contradiction. �

Noteworthy contributions towards the skew partition conjecture were made by
Hoàng [36] and Roussel and Rubio [51]. The conjecture was settled by Chudnovsky,
Robertson, Seymour and Thomas [7]. They obtained it as a consequence of the
Strong Perfect Graph Theorem.

Theorem 2.10. (Skew Partition Theorem) (Chudnovsky, Robertson, Sey-
mour and Thomas [7]) No minimally imperfect graph has a skew partition.

In order to prove the Strong Perfect Graph Theorem, Chudnovsky, Robertson,
Seymour and Thomas first proved the following weaker result.

A skew partition is balanced if
(i) every induced path of length at least 2 in G with ends in A∪B and interior

in C ∪ D is even, and
(ii) every induced path of length at least 2 in Ḡ with ends in C ∪D and interior

in A ∪ B is even.

Theorem 2.11. (Chudnovsky, Robertson, Seymour and Thomas [6]) A mini-

mally imperfect Berge graph with smallest number of nodes cannot have a balanced

skew partition.

We give the proof of Theorem 2.11. It uses Lovász’s Replication Lemma [40]
which we discuss next. Incidentally, the Replication Lemma was the step that
Fulkerson missed in his attempt to prove the Perfect Graph Theorem. Because
Fulkerson had convinced himself that the Replication Lemma was likely to be false,
he had not tried very hard to prove it. Fulkerson [31] says: “In the Spring of 1971,
I received a postcard from Berge saying that he had just heard that Lovász had
a proof of the perfect graph conjecture. This immediately rekindled my interest,
naturally, and so I sat down at my desk and thought again about the replication
lemma. Some four or five hours later, I saw a simple proof of it.”

Lemma 2.12. (Replication Lemma) (Lovász [40]) Let G be a perfect graph

and v ∈ V (G). Create a new node v′ and join it to v and to all the neighbors of v.
Then the resulting graph G′ is perfect.

Proof. It suffices to show χ(G′) = ω(G′) since, for induced subgraphs, the
proof follows similarly. We distinguish two cases.

Case 1: Node v is contained in some clique of size ω(G) in G. Then ω(G′) =
ω(G) + 1. This implies χ(G′) ≤ ω(G′), since at most one new color is
needed in G′. Clearly χ(G′) = ω(G′) follows.

Case 2: Node v is not contained in any clique of size ω(G) in G. Consider
any ω(G)-coloring of G and let S be the color class containing v. Then
ω(G \ (S − {v})) = ω(G) − 1, since every clique of size ω(G) in G meets
S−{v}. By the perfection of G, the graph G\(S−{v}) can be colored with
ω(G)−1 colors. Using one additional color for the nodes (S−{v})∪{v′},
we obtain a ω(G)-coloring of G′.

�
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Proof of Theorem 2.11: Let G be a minimally imperfect Berge graph with smallest
number of nodes. Suppose that G has a balanced skew partition A, B, C, D. Note
that each of C, D has cardinality at least two since, otherwise, the minimally
imperfect graph Ḡ has a star cutset, contradicting Lemma 2.9. Let G′ be the graph
obtained from G by adding a node v adjacent to all the nodes of A and to no other
node of G. If G′ contains an odd hole, then G has an odd path contradicting (i) in
the definition of a balanced skew partition. Similarly, if Ḡ′ contains an odd hole,
(ii) is contradicted. Therefore G′ is a Berge graph. Now consider G1 = G′ \D and
G2 = G′ \C. For i ∈ {1, 2}, the graph Gi is perfect since it is Berge and has fewer
nodes than G. Replicate node v in Gi so that v belongs to a clique of size ω(G).
By the Replication Lemma 2.12, the resulting graph Ri is perfect. Consider ω(G)-
colorings of R1 and R2 respectively. Both colorings have the same number of colors
in A and assume w.l.o.g. that these colors are 1, 2, . . . , k. Let K be the subgraph
of G induced by the nodes with colors 1, 2, . . . , k and let H be the subgraph of G
induced by the nodes with other colors. Since every clique of size ω(G) in G is in
G \ D or G \ C, the largest clique in K has size k and the largest clique in H has
size ω(G) − k. The graphs H and K are perfect since they are proper subgraphs
of G. Color K with k colors and H with ω(G) − k colors. Now G is colored with
ω(G) colors, a contradiction to the assumption that G is minimally imperfect. �

Theorem 2.11 was presented in September 2001 at a workshop in Princeton.
As the next step towards Theorem 2.10, Chudnovsky and Seymour obtained the
following theorem in January 2002. Its proof is much more difficult than that of
Theorem 2.11.

Theorem 2.13. (Chudnovsky and Seymour [8]) A minimally imperfect Berge

graph with smallest number of nodes cannot have a skew partition.

2.3. Decomposition of Berge Graphs. Conforti, Cornuéjols and Vušković
proposed the following approach to solving the Strong Perfect Graph Conjecture.

Conjecture 2.14. (Conforti, Cornuéjols and Vušković (2001)) (Decompo-
sition Conjecture) Every Berge graph G is basic or has a skew partition, or one

of G or Ḡ has a 2-join.

Chudnovsky, Robertson, Seymour and Thomas proved the following variation
of this conjecture.

Theorem 2.15. (Chudnovsky, Robertson, Seymour and Thomas [7]) (Decom-
position Theorem) Every Berge graph G is basic or has a skew partition or a

homogeneous pair, or one of G or Ḡ has a 2-join.

This theorem implies the Strong Perfect Graph Theorem. Indeed, suppose
that the Decomposition Theorem holds and that there exists a minimally imperfect
graph G distinct from an odd hole or its complement. Choose G with the smallest
number of nodes. G cannot have a skew partition by Theorem 2.13. G cannot
have a homogeneous pair by Theorem 2.8. Neither G nor Ḡ can have a 2-join by
Corollary 2.7. Since G is a Berge graph, G must be basic by the Decomposition
Theorem. Therefore G is perfect, a contradiction.

Theorem 2.15 was already known to hold in several special cases. For example,
in 1984 Burlet and Fonlupt [4] worked out the case when G is a Meyniel graph (A
graph is Meyniel if all its odd cycles have at least two chords). For a given graph X ,
a graph G is X-free if G does not contain X as an induced subgraph. Theorem 2.15
was known to hold for several classes of X-free graphs (see Figure 4). For example,
it was known when G is claw-free (Chvatal and Sbihi [14] in 1988 and Maffray and
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claw diamond bull dart square

Figure 4. Small graphs.

Reed [43] in 1999), diamond-free (Fonlupt and Zemirline [29] in 1987), bull-free
(Chvátal and Sbihi [13] in 1987), or dart-free (Chvátal, Fonlupt, Sun and Zemirline
[12] in 2000). All these results involve special types of skew partitions (such as star
cutsets) and, in some cases, homogeneous pairs [13]. A special case of 2-join called
augmentation of a flat edge appears in [43]. In 1999, Conforti and Cornuéjols [16]
used more general 2-joins to prove Conjecture 2.14 for WP-free Berge graphs, a
class of graphs that contains all bipartite graphs and all line graphs of bipartite
graphs. [16] was the precursor of a sequence of decomposition results involving
2-joins. The following result was obtained in February 2001. A square is a hole of
length four.

Theorem 2.16. (Conforti, Cornuéjols and Vušković [17]) A square-free Berge

graph is bipartite, the line graph of a bipartite graph, or has a 2-join or a star cutset.

A breakthrough occured in September 2001 when Chudnovsky, Robertson, Sey-
mour and Thomas announced that they could prove the Decomposition Conjecture
in the following important special case.

Theorem 2.17. (Chudnovsky, Robertson, Seymour and Thomas [6]) If G is a

Berge graph that contains the line graph of a bipartite subdivision of a 3-connected

graph, then G has a balanced skew partition, or one of G or Ḡ has a 2-join or is

the line graph of a bipartite graph.

Eight months later, Chudnovsky, Robertson, Seymour and Thomas completed
the proof of Theorem 2.15 and therefore of the Strong Perfect Graph Theorem.
These results are contained in a monumental paper [7].

Conforti, Cornuéjols and Vušković [18] proved a weaker version of the Decom-
position Conjecture where “skew partition” is replaced by “double star cutset”. A
double star is a node set S that contains two adjacent nodes u, v and a subset of
the neighbors of u or v. Clearly, if G has a skew partition, then G has a double star
cutset: Take S = A ∪ B, u ∈ A and v ∈ B. Although the decomposition result in
[18] is weaker than Conjecture 2.14 for Berge graphs, it holds for a larger class of
graphs than Berge graphs: By changing the decomposition from “skew partition” to
“double star cutset”, the result can be obtained for all odd-hole-free graphs instead
of just Berge graphs.

Theorem 2.18. (Conforti, Cornuéjols and Vušković [18]) If G is an odd-hole-

free graph, then G is a bipartite graph or the line graph of a bipartite graph or the

complement of the line graph of a bipartite graph, or G has a double star cutset or

a 2-join.

Decomposition Theorem 2.18 was used by Cornuéjols, Liu and Vušković [22]
to construct a polynomial time recognition algorithm for perfect graphs. Indepen-
dently, Chudnovsky and Seymour [9] found an algorithm for perfect graph recog-
nition which does not use decomposition. Both algorithms [9], [22] build on the
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companion paper [5] which performs a certain “cleaning” step in polynomial time.
A key step in the cleaning procedure [5] is due to Chudnovsky and Seymour.

2.4. Proof of Theorem 1.11. It suffices to prove that (iii) implies (i). As-
sume that M is a 0,1 matrix with no column of 0’s such that

(iii) max {wx : Mx ≤ 1, x ≥ 0} has an integral optimal solution x for all
w ∈ {0, 1}n.

We can assume w.l.o.g. that M is a clutter matrix. Let G(M) be the graph
having a node for each column of M and an edge between nodes j and k if M has
a row i with mij = mik = 1.

Claim 1: M is the clique-node matrix of graph G(M).
Proof: Suppose not. Then there exists a clique K of size at least 3 in G(M)

such that, for every row i, K 6⊆ Ni := {j : mij = 1}. Choose K to be minimal
with this property. Then, for each j ∈ K there exists a distinct row ij such that
K ∩ Nij

= K \ {j}.

Let wj = 1 for j ∈ K and 0 otherwise. Consider the solution xj = 1
|K|−1

for j ∈ K and 0 otherwise. It satisfies the constraints Mx ≤ 1, x ≥ 0 and

it has objective value wx = |K|
|K|−1 > 1, contradicting the assumption that max

{wx : Mx ≤ 1, x ≥ 0} has an integral optimal solution (an integral solution has
objective value at most 1 since xj = 1 for at most one node of K). This proves
Claim 1.

Claim 2: G(M) is a perfect graph.
Proof: In the 70’s, this claim was proved using Lovász’s characterization of

minimally imperfect graphs [41] or Padberg’s theorem [47]. Since we now have
the Strong Perfect Graph Theorem at our disposal, let us use it. Thus, supposing
that G(M) is not perfect, G(M) has a node set H that induces an odd hole or the
complement of an odd hole. Let wj = 1 for j ∈ H and 0 otherwise.

If H induces an odd hole, consider the solution xj = 1
2 for j ∈ H and 0

otherwise. It satisfies the constraints Mx ≤ 1, x ≥ 0 and it has objective value

wx = |H|
2 , contradicting the assumption that max {wx : Mx ≤ 1, x ≥ 0} has an

integral optimal solution (an integral solution is the characteristic vector of a stable

set and thus it has objective value at most |H|−1
2 since a stable set intersects H in

at most |H|−1
2 nodes).

If H induces the complement of an odd hole, consider the solution xj = 2
|H|−1

for j ∈ H and 0 otherwise. It satisfies the constraints Mx ≤ 1, x ≥ 0 and

it has objective value wx = 2|H|
|H|−1 > 2, contradicting the assumption that max

{wx : Mx ≤ 1, x ≥ 0} has an integral optimal solution (a stable set intersects H
in at most 2 nodes). This proves Claim 2.

Since G(M) is perfect, the complement graph Ḡ(M) is also perfect by the
Perfect Graph Theorem. Let w be a nonnegative integral vector. If wi = 0,
delete node i from Ḡ(M) (and remove all the edges incident with node i). If
wi ≥ 2, replicate node i of Ḡ(M) so that the resulting graph has wi copies of node
i (including node i itself), pairwise connected. By the Replication Lemma, the
resulting graph W̄ (M) is perfect. Thus the maximum cardinality of a clique in
W̄ (M) equals the chromatic number of W̄ (M), i.e. a minimum cover of the nodes
of W̄ (M) by stable sets. In terms of the matrix M , this max-min equation is

max wx
Mx ≤ 1
x ∈ {0, 1}n

= min
∑

i yi

yM ≥ w
y ∈ Zm

+ .
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Therefore the linear program max {wx : Mx ≤ 1, x ≥ 0} has an integral
optimal dual solution y. In other words,

(i) the linear system Mx ≤ 1, x ≥ 0 is TDI. �

3. Ideal Clutters

3.1. Blockers. A transversal of a clutter C is a set of vertices that intersects
all the edges. The blocker b(C) of a clutter C is the clutter with V (C) as vertex
set and the minimal transversals of C as edge set. That is, E

(

b(C)
)

consists of the
minimal members of {B ⊆ V (C) : |B ∩ A| ≥ 1 for all A ∈ E(C)}. In other words,
the rows of M

(

b(C)
)

are the minimal 0,1 vectors xT such that x belongs to the
polyhedron P (C) = {x ≥ 0 : M(C)x ≥ 1}.

Example 3.1. Let G be a graph and s, t be distinct nodes of G. If C is the
clutter of st-paths, then b(C) is the clutter of minimal st-cuts.

Edmonds and Fulkerson [26] observed that b(b(C)) = C. Before proving this
property, we make the following remark.

Remark 3.2. Let H and K be two clutters defined on the same vertex set. If
(i) every edge of H contains an edge of K and
(ii) every edge of K contains an edge of H,

then H = K.

Theorem 3.3. If C is a clutter, then b(b(C)) = C.

Proof. Let A be an edge of C. The definition of b(C) implies that |A∩B| ≥ 1,
for every edge B of b(C). So A is a transversal of b(C), i.e. A contains an edge of
b(b(C)).

Now let A be an edge of b(b(C)). We claim that A contains an edge of C.
Suppose otherwise. Then V (C) − A is a transversal of C and therefore it contains
an edge B of b(C). But then A ∩ B = ∅ contradicts the fact that A is an edge of
b(b(C)). So the claim holds.

Now the theorem follows from Remark 3.2. �

Two 0,1 matrices of the form M(C) and M(b(C)) are said to form a blocking

pair. The next theorem is an important result due to Lehman [38]. It states that,
for a blocking pair A, B of 0,1 matrices, the polyhedron P defined by

Ax ≥ 1(3.1)

x ≥ 0(3.2)

is integral if and only if the polyhedron Q defined by

Bx ≥ 1(3.3)

x ≥ 0(3.4)

is integral. The proof of this result uses the following remark.

Remark 3.4.
(i) The rows of B are exactly the 0,1 extreme points of P .
(ii) If an extreme point x of P satisfies xT ≥ λT B where λi ≥ 0 and

∑

λi = 1,
then x is a 0,1 extreme point of P .

Proof. (i) follows from the fact that the rows of B are the minimal 0,1 vectors
in P .

To prove (ii), note that x is an extreme point of PI = {χ : χT ≥ λT B where λi ≥
0 and

∑

λi = 1} for otherwise x would be a convex combination of distinct x1, x2 ∈
PI and, since PI ⊆ P , this would contradict the assumption that x is an extreme
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point of P . Now (ii) follows by observing that the extreme points of PI are exactly
the rows of B. �

Theorem 3.5. (Lehman [38]) A clutter is ideal if and only if its blocker is.

Proof. By Theorem 3.3, it suffices to show that if P defined by (3.1)-(3.2) is
integral, then Q defined by (3.3)-(3.4) is also integral.

Let a be an arbitrary extreme point of Q. By (3.3), Ba ≥ 1, i.e. aT x ≥ 1 is
satisfied by every x such that xT is a row of B. Since P is an integral polyhedron,
it follows from Remark 3.4(i) that aT x ≥ 1 is satisfied by all the extreme points of
P . By (3.4), a ≥ 0. Therefore aT x ≥ 1 is satisfied by all points in P . Furthermore,
aT x = 1 for some x ∈ P . Now, by linear programming duality, we have

1 = min{aT x : x ∈ P} = max{λT 1 : λT A ≤ aT , λ ≥ 0}.

Therefore, by Remark 3.4(ii), a is a 0,1 extreme point of Q. �

3.2. Deletion, Contraction and Minors. Let C be a clutter. For j ∈ V (C),
the contraction C/j and deletion C \ j are clutters defined as follows: Both have
V (C) − {j} as vertex set, E(C/j) is the set of minimal members in {S − {j} : S ∈
E(C)} and E(C \ j) = {S : j 6∈ S ∈ E(C)}.

Example 3.6. Let C be the clutter of st-paths in a graph G where s, t are
distinct nodes of G, and let j be an edge of G. Then C/j is the clutter of st-paths
in the graph obtained from G by contracting edge j in the graph theoretical sense
(West [56] page 65) and C \ j is the clutter of st-paths in the graph obtained from
G by deleting the edge j in the graphical sense. See Figure 5 for an example.

deletioncontraction

j

G

t t ts s s

Figure 5. Examples of contraction and deletion in a graph.

Let C be a clutter and let M be the corresponding clutter matrix. Contracting
j ∈ V (C) corresponds to removing column j from matrix M as well as the resulting
dominating rows. In the set covering constraints Mx ≥ 1 of (1.1), this corresponds
to setting xj = 0. Deleting j corresponds to removing column j from M as well as
all the rows with a 1 in column j. This corresponds to setting xj = 1 in Mx ≥ 1.

Example 3.7. For the graphs of Figure 5, the clutters of st-paths have the
following clutter matrices, where j corresponds to the last column of matrix M .

M =

























1 0 0 0 0 1 0 1
1 0 0 0 1 0 1 1
0 1 1 0 0 1 0 1
0 1 1 0 1 0 1 1
0 1 0 1 0 0 1 0
0 1 0 1 1 1 0 0
1 0 1 1 0 0 1 0
1 0 1 1 1 1 0 0

























,
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M/j =





















1 0 0 0 0 1 0
1 0 0 0 1 0 1
0 1 1 0 0 1 0
0 1 1 0 1 0 1
0 1 0 1 0 0 1
0 1 0 1 1 1 0
1 0 1 1 0 0 1





















, M \ j =









0 1 0 1 0 0 1
0 1 0 1 1 1 0
1 0 1 1 0 0 1
1 0 1 1 1 1 0









.

Contractions and deletions of distinct vertices can be performed sequentially,
and it is easy to show that the result does not depend on the order.

Proposition 3.8. For a clutter C and distinct vertices j1, j2,

(i) (C\j1)\j2 = (C\j2)\j1
(ii) (C/j1)/j2 = (C/j2)/j1
(iii) (C\j1)/j2 = (C/j2)\j1

Proof. Use the definitions of contraction and deletion. �

Definition 3.9. A clutter D obtained from C by a sequence of deletions and
contractions is a minor of C.

If V1 and V2 are disjoint subsets of V (C), we let C/V1\V2 be the minor obtained
from C by contracting all vertices of V1 and deleting all vertices of V2. If V1 6= ∅ or
V2 6= ∅, the minor is proper.

Proposition 3.10. For a clutter C and U ⊂ V (C),

(i) b(C\U) = b(C)/U
(ii) b(C/U) = b(C)\U

Proof. Use the definitions of contraction, deletion and blocker. �

We leave it as an exercise to prove the following result.

Proposition 3.11. If a clutter is ideal, then so are all its minors.

Corollary 3.12. Let M be a 0,1 matrix. The following are equivalent.

(i) The polyhedron {x ≥ 0, Mx ≥ 1} is integral.

(ii) The bounded polyhedron {0 ≤ x ≤ 1, Mx ≥ 1} is integral.

3.3. st-cuts and st-paths. Consider a graph G and distinct nodes s, t ∈
V (G). Let C be the clutter where V (C) = E(G) and E(C) is the family of st-paths
of G.

Theorem 3.13. (Ford and Fulkerson [30]) The clutter C of st-paths has the

MFMC property.

This theorem is a restatement of the famous Max Flow Min Cut theorem of
Ford-Fulkerson: For any vector w ∈ Z

E(G)
+ of capacities, the minimum capacity of

an st-cut equals the maximum number of st-paths such that every edge e ∈ E(G)
belongs to at most we of the paths. Indeed, the Ford-Fulkerson theorem states that
both (1.1) and (1.2) have optimal solutions that are integral whenever the capacity
vector w is integral.

Theorem 3.13 implies that C is ideal and therefore

{x ∈ R
E(G)
+ : x(P ) ≥ 1 for all st-paths P}

is an integral polyhedron. Its extreme points are the minimal st-cuts. It will be
convenient to refer to minimal st-cuts simply as st-cuts.

As a consequence of Lehman’s theorem (Theorem 3.5), the clutter of st-cuts is
also ideal. So

{x ∈ R
E(G)
+ : x(C) ≥ 1 for all st-cuts C}
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is an integral polyhedron. In fact, it is easy to show that the clutter of st-cuts has
the MFMC property.

3.4. T -cuts and T -joins. Consider a connected graph G with nonnegative
edge weights we, for e ∈ E(G). The Chinese Postman Problem consists in finding
a minimum weight closed walk going through each edge at least once (the edges
of the graph represent roads where mail must be delivered and we is the length
of the road). Equivalently, the postman must find a minimum weight set of edges
J ⊆ E(G) such that J ∪ E(G) induces an Eulerian graph, i.e. J induces a graph
whose odd degree nodes coincide with the odd degree nodes of G. Since w ≥ 0, we
can assume w.l.o.g. that J is acyclic. Such an edge set J is called a postman set.

The problem is generalized as follows. Let G be a graph and T a node set of
G of even cardinality. An edge set J of G is called a T -join if it induces an acyclic
graph the odd degree nodes of which coincide with T . For disjoint node sets S1, S2,
let (S1, S2) denote the set of edges with one endnode in S1 and the other in S2. A
T -cut is a minimal edge set of the form (S, V (G)−S) where S is a set of nodes with
|T ∩ S| odd. Clearly every T -cut intersects every T -join. Note that when |T | = 2,
say T = {s, t}, T -joins and T -cuts are nothing but st-paths and st-cuts. Therefore
the theory of T -joins and T -cuts is a generalization of Ford and Fulkerson’s network
flow theory. In this section, we will show that the clutters of T -joins and T -cuts
are ideal.

Edmonds and Johnson [28] considered the problem of finding a minimum
weight T -join. One way to solve this problem is to reduce it to the perfect match-
ing problem in a complete graph Kp, where p = |T |. Namely, compute the lengths
of shortest paths in G between all pairs of nodes in T , use these values as edge
weights in Kp and find a minimum weight perfect matching in Kp. The union of
the corresponding paths in G is a minimum weight T -join. Edmonds and Johnson
developed a direct primal-dual algorithm for the minimum weight T -join problem
and, as a by-product, obtained that the clutter of T -cuts is ideal.

Theorem 3.14. (Edmonds and Johnson [28]) The polyhedron

x(C) ≥ 1 for all T -cuts C(3.5)

xe ≥ 0 for all e ∈ E(G).(3.6)

is an integral polyhedron.

In the next section, we give a non-algorithmic proof of this theorem suggested
by Pulleyblank [49].

The Edmonds-Johnson theorem together with the fact that the blocker of an
ideal clutter is ideal (Theorem 3.3 of Lehman) implies that the clutter of T -joins is
also ideal. That is

x(J) ≥ 1 for all T -joins J

xe ≥ 0 for all e ∈ E(G).

is an integral polyhedron.
The clutter of T -cuts does not pack, nor does the clutter of T -joins. The reader

is encouraged to find examples showing this.

Proof of the Edmonds-Johnson Theorem
First, we prove the following lemma. For v ∈ V (G), let δ(v) denote the set of

edges incident with v. A star is a tree where one node is adjacent to all the other
nodes.
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Lemma 3.15. Let x̃ be an extreme point of the polyhedron

x(δ(v)) ≥ 1 for all v ∈ T(3.7)

xe ≥ 0 for all e ∈ E(G).(3.8)

The connected components of the graph G̃ induced by the edges such that x̃e > 0
are either

(i) odd cycles with nodes in T and edges x̃e = 1/2, or

(ii) stars with nodes in T , except possibly the center, and edges x̃e = 1.

Proof. Every connected component C of G̃ is either a tree or contains a unique
cycle, since the number of edges in C is at most the number of inequalities (3.7)
that hold with equality.

Assume first that C contains a unique cycle. Then (3.7) holds with equality
for all nodes of C, which are therefore in T . Now C is a cycle since, otherwise, C
has a pendant edge e with x̃e = 1 and therefore C is disconnected, a contradiction.
If C is an even cycle, then by alternately increasing and decreasing x̃ around the
cycle by a small ε (−ε respectively), x̃ can be written as a convex combination of
two points satisfying (3.7) and (3.8). So (i) must hold.

Assume now that C is a tree. Then (3.7) holds with equality for at least
|V (C)| − 1 nodes of C. In particular, it holds with equality for at least one node of
degree one. Since C is connected, this implies that C is a star and (ii) holds. �

Proof of Theorem 3.14: In order to prove the theorem, it suffices to show that
every extreme point x̃ of the polyhedron (3.5)–(3.6) is the characteristic vector of
a T -join. We proceed by induction on the number of nodes of G.

Suppose first that x̃ is an extreme point of the polyhedron (3.7)–(3.8). Consider

a connected component of the graph G̃ induced by the edges such that x̃e > 0 and
let S be its node set. Since x̃(S, V (G)−S) = 0, it follows from (3.5) that S contains

an even number of nodes of T . By Lemma 3.15, G̃ contains no odd cycle, showing
that x̃ is an integral vector. Furthermore, x̃ is the characteristic vector of a T -join
since, by Lemma 3.15 again, the component of G̃ induced by S is a star and |S ∩T |
even implies that the center is in T if and only if the star has an odd number of
edges.

Assume now that x̃ is not an extreme point of the polyhedron (3.7)–(3.8). Then
there is some T -cut C = (V1, V2) with |V1| ≥ 2 and |V2| ≥ 2 such that

x̃(C) = 1.

Let G1 = (V1 ∪ {v2}, E1) be the graph obtained from G by contracting V2 to a
single node v2. Similarly, G2 = (V2 ∪ {v1}, E2) is the graph obtained from G by
contracting V1 to a single node v1. The new nodes v1, v2 belong to T . For i = 1, 2,
let x̃i be the restriction of x̃ to Ei. Since every T -cut of Gi is also a T -cut of G,
it follows by induction that x̃i is greater than or equal to a convex combination of
characteristic vectors of T -joins of Gi. Let Ti be this set of T -joins. Each T -join in
Ti has exactly one edge incident with vi. Since x̃1 and x̃2 coincide on the edges of
C, it follows that the T -joins of T1 can be combined with those of T2 to form T -joins
of G and that x̃ is greater than or equal to a convex combination of characteristic
vectors of T -joins of G. Since x̃ is an extreme point, it is the characteristic vector
of a T -join. �

We have just proved that the clutter of T -cuts is ideal. It does not have
the MFMC property in general graphs. However Seymour proved that it does in
bipartite graphs. Seymour also showed that, in a general graph, if the edge weights
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we are integral and their sum is even in every cycle, then the dual variables y in
(1.2) can be chosen to be integral in an optimum solution.

3.5. Odd Cycles in Graphs. In this section, we consider the clutter OG of
odd cycles in a graph G, namely V (OG) = E(G) and E(OG) is the family of edge
sets of the odd cycles in G.

Example 3.16. For the complete graph K4 on four nodes, the clutter of odd
cycles has six vertices (the six edges of K4) and four edges (the four triangles of
K4). The reader can check that its clutter matrix is Q6. Recall that Q6 is ideal
but does not have the MFMC property.

For the complete graph K5 on five nodes, the clutter of odd cycles has ten
vertices (the ten edges of K5) and its edges comprise all the triangles (there are
ten) and all the pentagons (there are twelve). Note that xj = 1

3 for j = 1, . . . , 10

is an extreme point of the polyhedron {x ∈ R
10
+ : OK5

x ≥ 1} and it is obviously
nonintegral. Therefore OK5

is not ideal.

Seymour [54] characterized exactly the graphs G for which OG has the MFMC
property and Guenin [35] characterized exactly when OG is ideal.

Theorem 3.17. (Seymour [54]) The clutter of odd cycles in a graph G has the

MFMC property if and only if it contains no Q6 minor.

Theorem 3.18. (Guenin [35]) The clutter of odd cycles in a graph G is ideal

if and only if it contains no OK5
minor.

A proof of these theorems can be found in Chapter 75 of Schrijver’s book on
Combinatorial Optimization [53].

3.6. Minimally Nonideal Matrices. Lehman (Theorem 3.5) showed that
ideal 0,1 matrices always come in pairs (if M is ideal, so is its blocker b(M)). An-
other important result of Lehman about ideal 0,1 matrices is the following theorem,
which is reminiscent of Theorem 1.11 on perfect matrices.

Theorem 3.19. (Lehman [39]) For a 0,1 matrix A, the following statements

are equivalent:

(i) the matrix A is ideal,

(ii) min {cx : Ax ≥ 1, x ≥ 0} has an integral optimal solution x for all

c ∈ {0, 1, +∞}n.

The fact that (i) implies (ii) is an immediate consequence of the definition of
idealness. The difficult part of Lehman’s theorem is that (ii) implies (i). The main
purpose of this section is to prove this result. This is done by studying properties
of minimally nonideal matrices.

Lehman’s Characterization
A 0,1 matrix A is minimally nonideal (mni) if

(i) A is a clutter matrix,
(ii) Q(A) = {x ≥ 0 : Ax ≥ 1} is not an integral polyhedron,
(iii) For every i = 1, . . . , n, both Q(A)∩{x : xi = 0} and Q(A)∩{x : xi = 1}

are integral polyhedra.

If A is mni, the clutter C(A) is also called mni. Equivalently, a clutter C is
mni if it is not ideal but all its proper minors are ideal.

For t ≥ 2 integer, let Jt denote the clutter with t + 1 vertices and edges
corresponding, respectively, to the points and lines of the finite degenerate pro-
jective plane. Namely, V (Jt) = {0, . . . , t}, and E(Jt) = {{1, . . . , t}, {0, 1}, {0, 2},
. . . , {0, t}}.
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A matrix A is isomorphic to a matrix B if B can be obtained from A by a
permutation of rows and a permutation of columns.

Let J denote a square matrix all of whose entries are 1’s, and let I be the
identity matrix. Given a mni matrix A, let x̄ be a nonintegral extreme point of the
polyhedron Q(A) = {x ≥ 0 : Ax ≥ 1}, that is, at least one component x̄j of x̄ is
fractional. The maximum row submatrix Ā of A such that Āx̄ = 1 is called a core

of A. So A has a core for each nonintegral extreme point of Q(A).

Theorem 3.20. (Lehman [39]) Let A be a mni matrix and B = b(A). Then

(i) A has a unique core Ā and B has a unique core B̄;

(ii) Ā and B̄ are square matrices;

(iii) Either A is isomorphic to M(Jt), t ≥ 2, or the rows of Ā and B̄ can be

permuted so that

ĀB̄T = J + dI

for some positive integer d.

Lehman’s proof of this theorem is rather terse. Seymour [55], Padberg [48]
and Gasparyan, Preissmann and Sebö [34] give more accessible presentations of
Lehman’s proof. In the next section, we present a proof of Lehman’s theorem
following Padberg’s polyhedral point of view. Before proving Theorem 3.20, we
present some of its consequences.

Bridges and Ryser [3] studied square matrices Y , Z that satisfy the matrix
equation Y Z = J + dI .

Theorem 3.21. (Bridges and Ryser [3]) Let Y and Z be n × n 0,1 matrices

such that Y Z = J + dI for some positive integer d. Then

(i) each row and column of Y has the same number r of ones, each row and

column of Z has the same number s of ones with rs = n + d,
(ii) Y Z = ZY ,

Proof. It is straightforward to check that (J + dI)−1 = 1
d
I − 1

d(n+d)J . Hence

Y Z = J + dI ⇒ Y Z(
1

d
I −

1

d(n + d)
J) = I ⇒ Z(

1

d
I −

1

d(n + d)
J)Y = I

i.e. ZY =
1

n + d
ZJY + dI =

1

n + d
srT + dI

where s = Z1 and r = Y T 1.
It follows that, for each i and j, n + d divides risj . On the other hand, the

trace of the matrix ZY is equal to the trace of Y Z, which is n(d + 1). This implies
1

n+d
(
∑n

1 siri) = n and, since si > 0 and ri > 0, we have risi = n+d. Now consider
distinct i, j. Since risi = rjsj = n + d and n + d divides risj and rjsi, it follows
that ri = rj and si = sj . Therefore, all columns of Z have the same sum s and all
rows of Y have the same sum r. Furthermore, ZY = J + dI and, by symmetry, all
columns of Y have the same sum and all rows of Z have the same sum. �

Theorems 3.20 and 3.21 have the following consequence.

Corollary 3.22. Let A be a mni matrix nonisomorphic to M(Jt). Then it

has a non-singular row submatrix Ā with exactly r ones in every row and column.

Moreover, rows of A not in Ā have at least r + 1 ones.

This implies the next result, which is a restatement of Theorem 3.19.

Corollary 3.23. Let A be a 0, 1 matrix. Q(A) = {x ∈ Rn
+ : Ax ≥ 1} is

an integral polyhedron if and only if min{wx : x ∈ Q(A)} has an integral optimal

solution for all w ∈ {0, 1,∞}n.
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Note that Theorem 1.9 mentioned in the introduction follows from Corollary 3.23.

Proof of Lehman’s Theorem
Let A be an m×n mni matrix, x̄ a nonintegral extreme point of Q(A) = {x ∈

Rn
+ : Ax ≥ 1} and Ā a core of A. That is, Ā is the maximal row submatrix of A

such that Āx̄ = 1. For simplicity of notation, assume that Ā corresponds to the
first p rows of A, i.e. the entries of Ā are aij for i = 1, . . . , p and j = 1, . . . , n. Since
A is mni, every component of x̄ is nonzero. Therefore p ≥ n and Ā has no row or
column containing only 0’s or only 1’s.

The following easy result will be applied to the bipartite representation G of
the 0,1 matrix J − Ā where J denotes the p × n matrix of all 1’s, namely ij is an
edge of G if and only if aij = 0, for 1 ≤ i ≤ p and 1 ≤ j ≤ n. Let d(u) denote the
degree of node u.

Lemma 3.24. (de Bruijn and Erdös [24]) Let (I ∪ J, E) be a bipartite graph

with no isolated node. If |I | ≥ |J | and d(i) ≥ d(j) for all i ∈ I, j ∈ J such that

ij ∈ E, then |I | = |J | and d(i) = d(j) for all i ∈ I, j ∈ J such that ij ∈ E.

Proof. |I | =
∑

i∈I(
∑

j∈N(i)
1

d(i)) ≤
∑

i∈I

∑

j∈N(i)
1

d(j) =
∑

j∈J

∑

i∈N(j)
1

d(j) =

|J |. Now the hypothesis |I | ≥ |J | implies that equality holds throughout. So
|I | = |J | and d(i) = d(j) for all i ∈ I , j ∈ J such that ij ∈ E. �

The key to proving Lehman’s theorem is the following lemma. We refer the
reader to Sections 8.1 to 8.5 in Chapter 8 of Schrijver [52] for any undefined term
related to polyhedra.

Lemma 3.25. p = n and, if aij = 0 for 1 ≤ i, j ≤ n, then row i and column j
of Ā have the same number of ones.

Proof. Let xj be defined by

xj
k =

{

x̄k if k 6= j
1 if k = j

and let Fj be the face of Q(A) ∩ {xj = 1} of smallest dimension that contains xj .
Since A is mni, Fj is an integral polyhedron. The proof of the lemma will follow
unexpectedly from computing the dimension of Fj .

The point xj lies at the intersection of the hyperplanes in Āx = 1 such that
akj = 0 (at least n−

∑p

k=1 akj such hyperplanes are independent since Ā has rank
n) and of the hyperplane xj = 1 (independent of the previous hyperplanes). It
follows that

dim(Fj) ≤ n − (n −

p
∑

k=1

akj + 1) =

p
∑

k=1

akj − 1

Choose a row ai of Ā such that aij = 0. Since xj ∈ Fj , it is greater than

or equal to a convex combination of extreme points b` of Fj , say xj ≥
∑t

`=1 γ`b
`,

where γ > 0 and
∑

γ` = 1.

(3.9) 1 = aixj ≥
t

∑

`=1

γ`a
ib` ≥ 1

Therefore, equality must hold throughout. In particular aib` = 1 for ` = 1, . . . , t.
Since b` is a 0,1 vector, it has exactly one nonzero entry in the set of columns k
where aik = 1. Another consequence of the fact that equality holds in (3.9) is that
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xj
k =

∑t

`=1 γ`b
`
k for every k where aik = 1. Now, since xj

k > 0 for all k, it follows

that Fj contains at least
∑n

k=1 aik linearly independent points b`, i.e.

dim(Fj) ≥
n

∑

k=1

aik − 1.

Therefore,
∑n

k=1 aik ≤
∑p

k=1 akj for all i, j such that aij = 0.

Now Lemma 3.24 applied to the bipartite representation of J − Ā implies that
p = n and

n
∑

k=1

aik =

n
∑

k=1

akj for all i, j such that aij = 0.

�

Lemma 3.26. x̄ has exactly n adjacent extreme points in Q(A), all with 0,1

coordinates.

Proof. By Lemma 3.25, exactly n inequalities of Ax̄ ≥ 1 hold with equality,
namely Āx̄ = 1. In the polyhedron Q(A), an edge adjacent to x̄ is defined by n− 1
of the n equalities in Āx = 1. Moving along such an edge from x̄, at least one of the
coordinates decreases. Since Q(A) ∈ Rn

+, this implies that x̄ has exactly n adjacent
extreme points on Q(A). Suppose x̄ has a nonintegral adjacent extreme point x̄′.
Since A is mni, 0 < x̄′

j < 1 for all j. Let Ā′ be the n × n nonsingular submatrix

of A such that Ā′x̄′ = 1. Since x̄ and x̄′ are adjacent on Q(A), Ā and Ā′ differ in
only one row. W.l.o.g. assume that Ā′ corresponds to rows 2 to n + 1. Since A
contains no dominating row, there exists j such that a1j = 0 and an+1,j = 1. Since
Ā′ cannot contain a column with only 1’s, aij = 0 for some 2 ≤ i ≤ n. But now,
Lemma 3.24 is contradicted with row i and column j in either Ā or Ā′. �

Lemma 3.26 has the following implication. Let B̄ denote the n × n 0,1 matrix
whose rows are the extreme points of Q(A) adjacent to x̄. By Remark 3.4(i), B̄ is
a submatrix of B. By Lemma 3.26, B̄ satisfies the matrix equation

ĀB̄T = J + D

where J is the matrix of all 1’s and D is a diagonal matrix with positive diagonal
entries d1, . . . , dn.

Lemma 3.27. Either

(i) Ā = B̄ are isomorphic to M(Jt), for t ≥ 2, or

(ii) D = dI, where d is a positive integer.

Proof. Consider the bipartite representation G of the 0,1 matrix J − Ā.

Case 1: G is connected.
Then it follows from Lemma 3.25 that

(3.10)
∑

k

aik =
∑

k

akj for all i, j.

Let α denote this common row and column sum.

(n + d1, . . . , n + dn) = 1T (J + D) = 1T ĀB̄T = (1T Ā)B̄T = α1T B̄T

Since there is at most one d, 1 ≤ d < α, such that n + d is a multiple of α, all di

must be equal to d, i.e. D = dI .

Case 2: G is disconnected.
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Let q ≥ 2 denote the number of connected components in G and let

Ā =





K1 1
. . .

1 Kq





where Kt are 0,1 matrices, for t = 1, . . . , q. It follows from Lemma 3.25 that the
matrices Kt are square and

∑

k aik =
∑

k akj = αt in each Kt.
Suppose first that Ā has no row with n − 1 ones. Then every Kt has at least

two rows and columns. We claim that, for every j, k, there exist i, l such that
aij = aik = alj = alk = 1. The claim is true if q ≥ 3 or if q = 2 and j, k are in
the same component (simply take two rows i, l from a different component). So
suppose q = 2, column j is in K1 and column k is in K2. Since no two rows are
identical, we must have α1 ≥ 1, i.e. aij = 1 for some row i of K1. Similarly, alk = 1
for some row l of K2. The claim follows.

For each row b of B̄, the vector ĀbT has an entry greater than or equal to 2, so
there exist two columns j, k such that bj = bk = 1. By the claim, there exist rows
ai and al of Ā such that aib

T ≥ 2 and alb
T ≥ 2, contradicting the fact that ĀbT

has exactly one entry greater than 1.
Therefore Ā has a row with n − 1 ones. Now it is routine to check that Ā is

isomorphic to M(Jt), for t ≥ 2. �

To complete the proof of Theorem 3.20, it only remains to show that the core
Ā is unique and that B̄ is a core of B and is unique.

If Ā = M(Jt) for some t ≥ 2, then the fact that A has no dominated rows
implies that A = Ā. Thus B = B̄ = M(Jt). So, the theorem holds in this case.

If ĀB̄T = J +dI for some positive integer d, then, by Theorem 3.21, all rows of
Ā contain r ones. Therefore, x̄j = 1

r
, for j = 1, . . . , n. The feasibility of x̄ implies

that all rows of A have at least r ones, and Lemma 3.25 implies that exactly n rows
of A have r ones. Now Q(A) cannot have a nonintegral extreme point x̄′ distinct
from x̄, since the above argument applies to x̄′ as well. Therefore A has a unique
core Ā. Since x̄ has exactly n neighbors in Q(A) and they all have s components
equal to one, the inequality

∑n

1 xi ≥ s is valid for the 0,1 points in Q(A). This
shows that every row of B has at least s ones and exactly n rows of B have s ones.
Since B is mni, B̄ is the unique core of B. �

Examples of mni Clutters
Let Zn = {0, . . . , n − 1}. We define addition of elements in Zn to be addition

modulo n. Let k ≤ n − 1 be a positive integer. For each i ∈ Zn, let Ci denote the
subset {i, i + 1, . . . , i + k− 1} of Zn. Define the circulant clutter Ck

n by V (Ck
n) = Zn

and E(Ck
n) = {C0, . . . , Cn−1}.

Lehman [38] gave three infinite classes of minimally nonideal clutters: C2
n, n ≥ 3

odd, their blockers, and the degenerate projective planes Jn, n ≥ 2.

Conjecture 3.28. (Cornuéjols and Novick [23]) There exists n0 such that,

for n ≥ n0, all mni matrices have a core isomorphic to C2
n, C

n+1

2
n for n ≥ 3 odd, or

Jn, for n ≥ 2.

However, there exist several known “small” mni matrices that do not belong
to any of the above classes. For example, Lehman [38] noted that F7 is mni. F7

is the clutter with 7 vertices and 7 edges corresponding to points and lines of the
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Fano plane (finite projective geometry on 7 points):

M(F7) =





















1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1





















Let K5 denote the complete graph on five nodes and let OK5
denote the clutter

whose vertices are the edges of K5 and whose edges are the odd cycles of K5 (the
triangles and the pentagons). Seymour [54] noted that OK5

, b(OK5
), and C2

9 with
the extra edge {3, 6, 9} are mni.

Ding [25] found the following mni clutter: V (D8) = {1, . . . , 8} and

E(D8) = {{1, 2, 6}, {2, 3, 5}, {3, 4, 8}, {4, 5, 7}, {2, 5, 6}, {1, 6, 7}, {4, 7, 8}, {1, 3, 8}}.

Cornuéjols and Novick [23] characterized the mni circulant clutters Ck
n. They

showed that the following ten clutters are the only mni Ck
n for k ≥ 3:

C3
5 , C3

8 , C3
11, C3

14, C3
17, C4

7 , C4
11, C5

9 , C6
11, C7

13.

Independently, Qi [50] discovered C5
9 and C6

11 and Ding [25] discovered C3
8 .

Let TK5
denote the clutter whose vertices are the edges of K5 and whose edges

are the triangles of K5 (interestingly, M(TK5
) is also the node-node adjacency

matrix of the Petersen graph). It can be shown that TK5
, core(b(TK5

)) and their
blockers are mni. Often, when a mni clutter H has the property that core(H) and
core(b(H)) are also mni, many more mni clutters can be constructed from H and
from b(H), see [23]. For example, Cornuéjols and Novick [23] have constructed
more than one thousand mni clutters from TK5

. More results can be found in [46].
Lütolf and Margot [42] designed a computer program that enumerates possible

cores of minimally nonideal matrices. It first enumerates the square 0,1 matrices
Y , Z that satisfy the matrix equation Y Z = J + dI , and then checks that the
covering polyhedron has a unique nonintegral extreme point. Lütolf and Margot
[42] enumerated all square mni matrices of dimension at most 12 × 12 and found
20 such matrices (previously, only 15 were known); they found 13 new square mni
matrices of dimensions 14× 14 and 17× 17; and they found 38 new nonsquare mni
matrices with 11, 14 and 17 columns with nonisomorphic cores. The overwhelming
majority of these examples have d = 1: Only three cores with d = 2 are known
(namely F7, TK5

and the core of its blocker) and none with d ≥ 3.

4. Conclusion

In these notes we considered the min-max equation (1.1)=(1.2) and the max-
min equation (1.3)=(1.4). We focused on the cases where the polyhedra in (1.1)
and (1.3) are integral. When this occurs, the matrix A is called ideal and perfect
respectively. There are striking similarities between perfect and ideal matrices,
such as Theorems 1.11 and 3.19. But there are also important differences. For in-
stance, if A is perfect then (1.4) has an integral optimal solution for every integral
w, whereas if A is ideal it is not true that (1.3) has an integral optimal solution for
every integral w (e.g. A = Q6 and w = 1). The Strong Perfect Graph Theorem of
Chudnovsky, Robertson, Seymour and Thomas together with Chvátal’s connection
between perfect graphs and perfect matrices imply an explicit characterization of all
minimally imperfect matrices whereas the situation for minimally nonideal matri-
ces looks more complex, due to the existence of numerous individual examples (see
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Section 3.6). For perfect matrices, there is a beautiful polyhedral theorem (Theo-
rem 1.11), an “excluded structure” theorem (the Strong Perfect Graph Theorem)
and a decomposition theorem (Theorem 2.15). For ideal matrices, no decomposi-
tion theorem is known and there is no excluded structure theorem that provides
an explicit list of minimally nonideal matrices, although Theorem 3.20 provides
a partial answer. Finally, there is a nice polyhedral theorem for ideal matrices
(Theorem 3.19). The counterpart of this polyhedral theorem for matrices with the
MFMC property is still open (Conjecture 1.7).
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[21] G. Cornuéjols and W.H. Cunningham, Composition for perfect graphs, Discrete Mathematics

55 (1985) 245-254.
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