
LIF

Laboratoire d’Informatique Fondamentale
de Marseille

Unité Mixte de Recherche 6166
CNRS – Université de Provence – Université de la Méditerranée

Coherent systems

Karl Schlechta

Rapport/Report 14-2003

November 22, 2003 (new version of March 27, 04)

Les rapports du laboratoire sont téléchargeables à l’adresse suivante

Reports are downloadable at the following address

http://www.lif.univ-mrs.fr

Coherent systems

Karl Schlechta

LIF – Laboratoire d’Informatique Fondamentale de Marseille

UMR 6166

CNRS – Université de Provence – Université de la Méditerranée

CMI, 39 rue Joliot Curie, F-13453 Marseille Cedex 13

schlechta@free.fr, ks@cmi.univ-mrs.fr, ks1ab@web.de

Abstract/Résumé

We discuss several types of common sense reasoning, reduce them to a small number of basic semantical concepts, and show several

(in-)completeness results for such logics. An extensive Summary is inside the package.

Keywords: common sense reasoning, nonmonotonic logic, argumentation, counterfactuals, modal logic, theory revision, theory up-

date, plausibility logic, completeness, incompleteness, preferential structures, distance based structures, size based structures.

Nous discutons quelques types de raisonnement, nous les réduisons a un petit nombre de concepts sémantiques de base, et démontrons

quelques résultats de (in-)complétude pour ces logiques. Un résumé détaillé est dans le carton, voir ”Summary”.

Mots-clés : raisonnement ”du sens commun”, logiques non-monotones, argumentation, contrefactuels, logique modale, révision,

mise-à-jour, logique de plausibilité, complétude, incomplétude, structures préférentielles, structures basées sur distance, structures

basées sur taille.

Table of Chapters

Summary

Acknowledgements

Chapter 1 Introduction

Chapter 2 Concepts

Chapter 3 Preferences

Chapter 4 Distances

Chapter 5 Definability preservation

Chapter 6 Sums

Chapter 7 Size

Chapter 8 Integration

Chapter 9 Conclusion and outlook

References

3

4

Contents

Summary . 11

Acknowledgements . 13

1 Introduction 15

1.1 The main topics of the book . 15

1.1.1 Conceptual analysis . 15

1.1.2 Generalized modal logic and integration . 16

1.1.3 Formal results . 18

1.1.4 Various remarks . 20

1.2 Historical remarks . 21

1.3 Organisation of the book . 23

1.4 Overview of the chapters . 23

1.4.1 The conceptual part (Chapter 2) . 23

1.4.2 The formal part (Chapters 3-7) . 23

1.4.3 Integration (Chapter 8) . 26

1.4.4 Problems, ideas and techniques . 26

1.5 Specific remarks on propositional logic . 28

1.6 Basic definitions . 29

1.6.1 The algebraic part . 29

1.6.2 The logical part . 30

1.6.2.1 Results on the absence of representation . 33

2 Concepts 37

2.1 Introduction . 37

2.2 Reasoning types . 38

2.2.1 Traditional non-monotonic logics . 38

2.2.1.1 Normal, important, or interesting cases . 39

2.2.1.2 The majority of cases . 41

2.2.1.3 As many as possible (Reiter defaults) . 42

2.2.2 Prototypical and ideal cases . 43

5

6 CONTENTS

2.2.3 Extreme cases and interpolation . 44

2.2.4 Clustering . 44

2.2.5 Certainty . 45

2.2.6 Quality of an answer, approximation, and complexity . 46

2.2.7 Useful reasoning . 47

2.2.8 Inheritance and argumentation . 48

2.2.9 Dynamic systems . 50

2.2.10 Theory revision . 51

2.2.10.1 General discussion . 51

2.2.10.2 The AGM approach . 53

2.2.11 Update . 55

2.2.12 Counterfactual conditionals . 56

2.3 Basic semantical concepts . 56

2.3.1 Preference . 57

2.3.2 Distance . 62

2.3.3 Size . 63

2.3.3.1 Sums and products . 66

2.4 Coherence . 68

3 Preferences 73

3.1 Introduction . 73

3.1.1 General discussion . 73

3.1.2 The basic definitions and results . 78

3.2 General preferential structures . 79

3.2.1 General minimal preferential structures . 80

3.2.2 Transitive minimal preferential structures . 82

3.2.3 One copy version . 85

3.2.4 A (very) short remark on X-logics . 86

3.3 Smooth minimal preferential structures . 87

3.3.1 Smooth minimal preferential structures with arbitrarily many copies 87

3.3.2 Smooth and transitive minimal preferential structures . 92

3.4 The logical characterization of general and smooth preferential models 95

3.4.1 Simplifications of the general transitive limit case . 97

3.5 A counterexample to the KLM-system . 100

3.5.1 The formal results . 102

3.6 A non-smooth model of cumulativity . 103

3.6.1 The formal results . 104

3.6.1.1 A non-smooth injective structure validating P, (WD), −(NR) 105

3.7 Plausibility logic - problems without closure under finite union . 107

CONTENTS 7

3.7.1 Introduction . 107

3.7.2 Completeness and incompleteness results for plausibility logic 110

3.7.2.1 (PlI)+(PlRM)+(PlCC) is complete (and sound) for preferential models 110

3.7.2.2 Incompleteness of full plausibility logic for smooth structures 113

3.7.2.3 Discussion and remedy . 114

3.8 The role of copies in preferential structures . 118

3.9 A new approach to preferential structures . 120

3.9.1 Introduction . 120

3.9.1.1 Main concepts and results . 120

3.9.1.2 Motivation and overview . 120

3.9.1.3 Basic definitions and facts . 121

3.9.1.4 Outline of our representation results and technique 122

3.9.2 Validity in traditional and in our preferential structures . 122

3.9.3 The disjoint union of models and the problem of multiple copies 124

3.9.3.1 Disjoint unions and preservation of validity in disjoint unions 124

3.9.3.2 Multiple copies . 126

3.9.4 Representation in the finite case . 126

3.10 Ranked preferential structures . 129

3.10.1 Introduction . 129

3.10.1.1 Detailed discussion of this section . 129

3.10.1.2 Introductory facts and definitions . 131

3.10.2 The minimal variant . 134

3.10.2.1 Some introductory results . 134

3.10.2.2 Characterizations . 138

3.10.3 The limit variant without copies . 141

3.10.3.1 Representation . 141

3.10.3.2 Partial equivalence of limit and minimal ranked structures 145

4 Distances 149

4.1 Introduction . 149

4.1.1 Theory Revision . 150

4.1.2 Counterfactuals . 153

4.1.3 Summary . 154

4.2 Revision by symmetrical and not necessarily symmetric distance 154

4.2.1 Introduction . 154

4.2.2 The algebraic results . 155

4.2.2.1 Introduction and pseudo-distances . 155

4.2.2.2 The representation results for the symmetric case 157

4.2.2.3 The representation result for the finite not necessarily symmetric case 160

8 CONTENTS

4.2.3 The logical results . 164

4.2.3.1 Introduction . 164

4.2.3.2 The symmetric case . 165

4.2.3.3 The finite not necessarily symmetric case . 167

4.2.4 There is no finite characterization . 168

4.2.5 The limit case . 171

4.2.5.1 Introduction . 171

4.2.5.2 Remarks on the logics of the revision limit case . 171

4.2.5.3 Equivalence of the minimal and the limit case for formulas 172

4.3 Local and global metrics for the semantics of counterfactuals . 172

4.3.1 Introduction . 172

4.3.1.1 Basic definitions . 173

4.3.2 The results . 174

4.3.2.1 Outline of the construction for Proposition 4.3.1 174

4.3.2.2 Detailed proof of Proposition 4.3.1 . 175

4.3.2.3 The limit variant . 177

5 Definability preservation 179

5.1 Introduction . 179

5.1.1 The problem . 179

5.1.2 The remedy . 181

5.1.2.1 Preferential structures . 182

5.1.2.2 Theory revision . 183

5.1.2.3 Summary . 183

5.1.3 Basic definitions and results . 183

5.1.3.1 General part . 183

5.1.3.2 Discussion of the technical development . 184

5.1.4 A remark on definability preservation and modal logic . 185

5.2 Preferential structures . 187

5.2.1 The algebraic results . 187

5.2.1.1 The conditions . 187

5.2.1.2 The general case . 188

5.2.1.3 The smooth case . 190

5.2.2 The logical results . 193

5.2.3 The general case and the limit version cannot be characterized 196

5.3 Revision . 204

5.3.1 The algebraic result . 205

5.3.2 The logical result . 206

CONTENTS 9

6 Sums 209

6.1 Introduction . 209

6.1.1 The general situation and the Farkas algorithm . 209

6.1.2 Update by minimal sums . 210

6.1.3 Comments on ”Belief revision with unreliable observations” 212

6.1.4 ”Between” and ”behind” . 213

6.1.5 Summary . 213

6.2 The Farkas algorithm . 214

6.3 A representation result for update by minimal sums . 215

6.3.1 Introduction . 215

6.3.2 An abstract result . 216

6.3.3 Representation . 219

6.3.3.1 Introduction . 219

6.3.3.2 The result . 220

6.3.4 There is no finite representation for our type of update possible 223

6.3.4.1 Outline . 223

6.3.4.2 The details . 223

6.4 Comments on ”Belief revision with unreliable observations” . 228

6.4.1 Introduction . 228

6.4.1.1 The situation . 228

6.4.1.2 Basic definitions and results . 228

6.4.2 A characterization of Markov systems (in the finite case) . 231

6.4.2.1 Outline and introduction . 231

6.4.2.2 The representation result for the finite case . 234

6.4.3 There is no finite representation possible . 234

6.5 ”Between” and ”Behind” . 235

6.5.1 There is no finite representation for ”between” and ”behind” 235

7 Size 239

7.1 Introduction . 239

7.1.1 The details . 240

7.2 Generalized quantifiers . 242

7.2.1 Introduction . 242

7.2.2 Results . 243

7.3 Comparison of three abstract coherent systems based on size . 247

7.3.1 Introduction . 247

7.3.2 Presentation of the three systems . 248

7.3.2.1 The system of Ben-David/Ben-Eliyahu . 248

7.3.2.2 The system of the author . 250

10 CONTENTS

7.3.2.3 The system of Friedman/Halpern . 250

7.3.3 Comparison of the systems of Ben-David/Ben-Eliyahu and the author 251

7.3.3.1 Equivalence of both systems . 253

7.3.4 Comparison of the systems of Ben-David/Ben-Eliyahu and of Friedman/Halpern 254

7.4 Theory revision based on model size . 258

7.4.1 Introduction . 258

7.4.2 Results . 258

7.4.2.1 Pre-EE relations and epistemic entrenchment relations 258

7.4.2.2 Stable sets . 260

7.4.2.3 Revision based on model size . 262

8 Integration 267

8.1 Introduction . 267

8.1.1 Rules or object language? . 268

8.1.2 Various levels of reasoning . 268

8.2 Reasoning types and concepts . 270

8.3 Formal aspects . 273

8.3.1 Classical modal logic . 273

8.3.2 Classical propositional operators have no unique interpretation 274

8.3.3 Combining individual completeness results . 278

9 Conclusion and outlook 281

References . 283

Summary

All logic can be based on very few general principles.

Procrustes of Attika,
around 800 BC

This book has three distinct, but strongly connected, directions:

First, we base several types of human reasoning on a small number of basic semantical notions. This is a back and
forth procedure, as we take simple common sense notions like ”size” or ”distance” to clarify human reasoning, and,
in turn vary these notions to obtain different forms of reasoning. This is a more philosophical enterprise.

Second, we show a number of representation theorems for such reasoning, showing how properties of the basic
semantical notions reflect to the logical properties. This is a logical, or even algebraic, enterprise. In more abstract
terms, the basic semantical notions result in coherence conditions in corresponding model choice functions, which
carry over (often almost one-to-one) to logical properties.

Third, we sketch a unified treatment of several such types of reasoning in a uniform modal framework, with several
layers of abstraction, which, we hope, gives some of the richness and variability of human reasoning. This is almost
an engineering effort, and intended as an approach to a flexible system of argumentation. We will only indicate
problems and solutions in this part in rough outline.

The second part formalizes the first, it establishes a 1-1 correspondence between semantics and reasoning based on
it. Without the ideas in the first part (at least in rough outline), there would not have been anything in the second
part.

The first and the third parts are related, as we do not only obtain a principled way of reasoning and arguing, but
as we also can refine our arguments by going down to the basic notions themselves.

Finally, the second part gives the necessary technical rigour to construct a sound system of argumentation. Con-
versely, the third part gave motivation for some of the results in the second part.

In the second and main part (completeness and incompleteness constructions), we have three main directions of
thrust. First, we want to show that, for preferential and related structures, a basic (and provably almost most
general) idea can be used and modified to give a number of results for semantics with various strengths. Second, we
insist to stress the role of domain closure conditions, which seem to have been mostly neglected so far. In particular,
we will show that some results depend on such seemingly innocent closure conditions. But, we will also show how
to avoid such nice closure conditions, and what is the price to pay for it (more complicated conditions elsewhere).
Third, we will show that several, at first sight very simple, semantics do not allow a finite characterization, or even
no characterization at all by usual means. Again, the third and the second point are related, as finite representation

11

12 CONTENTS

can be possible, provided the domain is sufficiently rich.

We will usually decompose representation problems into two steps: as we work with model sets, the basic semantical
notions, like a relation between models, give rise to functions on model sets. Thus separating the algebraic from the
logical problem brings them better to light, makes their solution easier, and we can re-use results for the (usually
more difficult) algebraic part in various logical contexts.

Finally, reformulating the logics as ”generalized modal logics”, expressing the core concepts in the object language
has many advantages, like increased flexibility and expressivity, and also results in increased ”quality” of the logic,
permitting e.g. contraposition.

Acknowledgements

Scientifically - and beyond -, I owe very much to my co-authors D. Lehmann, M. Magidor, D. Makinson. Others
have contributed more indirectly, through discussions, or, even just by some remarks, which have left traces that
widened over time.

A number of the formal results presented in this text had been developed over the years, but I needed time to take
a step back and put things into perspective - and attack new problems.

The French CNRS has financed a two years stay at the Institut des Sciences Cognitives at Lyon, where I was
free to think in whatever direction I choose. M. Jeannerod, its director, has given me a very warm and generous
welcome, and provided the ample but inspiring framework I needed. Without CNRS’s financial support and M.
Jeannerod’s patience and generosity, I would probably not have been able to take the step back and write these
pages. I hope that both will not regret having made this possible.

I would also like to thank my co-authors for their permission to use joint results in this book, and the editors of
various journals for their permission to include here material published in their journals.

Two referees have helped to transform this text with their comments from a pile of notes to something hopefully
more readable. Their comments were very valuable.

13

14 CONTENTS

Chapter 1

Introduction

1.1 The main topics of the book

The book is organized into the following Chapters:

1. Introduction

2. Concepts

3. Preferences

4. Distances

5. Definability preservation

6. Sums

7. Size

8. Integration

9. Conclusion and outlook

Chapter 1 contains - apart from the general introduction - some basic definitions and results.

Chapter 2 presents and analyzes the concepts we use.

Chapters 3 to 7 contain most of the technical results. They are the hard core of the book.

Chapter 8 shows a way to integrate the different formalisms we have discussed previously.

Chapter 9 summarizes in very abstract terms what we consider the main ideas of the book, those discussed or used,
but also those which need much further elaboration in future research.

1.1.1 Conceptual analysis

We argue that an important number of common sense reasoning logics can be based on a small number of semantical
notions, which, in some cases, are interdefinable. These semantical concepts express in some qualitative way (un)
certainty, using notions of preference, distance, or size. They motivate or even impose coherence conditions on the
semantics, and thus on the logics.

15

16 CHAPTER 1. INTRODUCTION

For instance, nonmonotonic logics can be based on preference, we consider only those cases preferred by their
normality, or be based on size, we neglect ”small” or ”unimportant” sets of exceptions. Theory Revision can be
based on distance, we revise one theory with another by considering only those models of the second one, which
are closest to the models of the first, thus coding minimal change into closeness. Counterfactual conditionals also
have a distance based semantics, given by Lewis and Stalnaker.

We will look at various such concepts, and with various strengths, i.e. a relation of preference might be an arbitrary
binary relation, it might be transitive, free from cycles, ranked, etc. Such additional properties ususally result in
additional properties of the resulting logics, or, on a still more elementary, algebraic, level, of the resulting model
choice functions. E.g. a distance generates in the Theory Revision approach a function f, which associates to two
(model) sets X and Y, a subset of Y, i.e. those elements of Y, which are closest to X. The examination of the
properties of such model choice functions will be at the core of our formal completeness and incompleteness results.

Conversely, interesting logical and algebraic properties of the model choice functions can motivate powerful new
concepts for the semantical structures. For instance, cumulativity has motivated the concept of smoothness for
relations.

In some cases, we can transform in a natural way one concept (e.g. size) to another one (e.g. ranking of sets).
Thus, we will not only look at these concepts individiually, but also at their interplay.

We will examine the concepts in Chapter 2, which has a somewhat more philosophical character. We will not
and cannot discuss the questions whether such reductions are cognitively adequate, in the sense that people really
reason this way. This is a question which has to be examined by cognitive psychologists.

The reader will not find a ready made receipt here, but should be prepared to accept a multitude of alternative
suggestions. The author thinks that this is due to the subject, and not to his inability to come to a decision.
Common sense reasoning has to be adequate to its subject, and there are many subjects, so we should not expect
to find very few approaches. The systematisation is in the common basic notions, not in the way they are used. In
the formal part, we will follow some, but not all, of these alternatives, and leave the rest for the interested reader,
giving him, we hope, some useful techniques to tackle the problems.

Common to all logics we consider is that they work with somehow defined sets of classical models. This leads to
the concept of a generalized modal logic, preparing at the same time an integrating framework within which we
can construct a system incorporating several common sense reasoning mechanisms. We present this now in outline.

1.1.2 Generalized modal logic and integration

When we look at logics like modal logic, the logic of counterfactual conditionals, preferential reasoning etc., but
also the classical operators ∧, ∨, ¬ etc., we see a common point: all work with sets of models, e.g. in preferential
reasoning: α ∼| β iff β holds in the set of preferred models of α, M(φ ∧ ψ) = M(φ) ∩M(ψ) for classical ∧ etc.,
where M(φ) is the set of models of φ.

It is therefore natural to take a more general look at logics defined via some set or sets of models chosen one way
or the other. So, in a first abstraction, we have some choice function f for model sets, and the logic is defined via
f, i.e. by T ∼| φ iff f(M(T)) |= φ, where |= is classical validity. In a more complicated case, we have perhaps a
family of Mi, and f chooses again some family (f{Mi : i ∈ I})j - Theory Revision is a case of several Mi.

Of course, such choice should be made in some principled way, we should choose a ”good” set in some sense,
perhaps guessing a little bit, but not too much by some standard, giving a reasonable approximation. The present
book is, if you like, an essay on such ”good” choice.

We will see that this framework will also allow to interpret notions like ”certainty” (via some kind of neighbourhood
relation), and more. So, we can and will, go beyond the aim of presenting a unified framework for several logics.

Studying a notion of this generality is usually not very interesting. It will become more so when we base the
choice functions on some underlying structure - as already hinted at above -, like distance (e.g. for choosing
a neighbourhood), size (of sets or of elements, choosing a ”big” subset), relations between elements (preference
or reachability). Of course, there has to be some intuitive connection between the notion motivating the choice

1.1. THE MAIN TOPICS OF THE BOOK 17

function, like nonmonotonic reasoning, and the notion we try to base it on (e.g. preference) - this is a philosophical
problem.

But we also face, sometimes not very trivial, mathematical problems like:

• How are structures based on different notions (e.g. size and preference) related?

• Can we sometimes transform one notion into the other?

• What are properties common to all choice functions generated by a fixed structure with certain properties
(like choice functions of modal logics for reflexive relations etc.)?

Once we see this general framework, we can try to put many things into the object language, which are otherwise
often left outside the language, e.g. in the form of operators like ∼| for nonmonotonic logics, or ∗ and ` for theory
revision. As this transformation will be largely obvious, we will do it in most cases only implicitly. E.g., α ∼| β will
become N(α)→ β - in the normal cases of α, β always (classical implication) holds. This has several advantages:
Normality, in our example, has now become much more powerful, as we can negate it, and speak e.g. about
the abnormal α−case (α ∧ ¬N(α)). We also have contraposition, ¬β → ¬N(α), for α ∼| β, and this is perfectly
reasonable. The fact that ”classical” nonmonotonic logics do not have contraposition is due to the fact that we
have hidden the complexity in the formalism: α ∼| β and ¬β means: either α does not hold, or some of the stuff
we put into ∼| is not true - i.e. we are not in a normal α−case. But in our approach, it is explicit, and we can
reason about it, this is much better! Everytime we have to backtrack, we have a case of contraposition, and the
author thinks these things should be expressed clearly.

Thus, we see that the strategy of putting as many notions as possible into the object language has many advantages:

• the formalism itself becomes obviously more expressive, we can reason about the notions concerned, not only
with them

– this usually results in a notion of consistency,

– this can give contraposition, and thus an increased quality of the logic, as argued above,

– we have nestedness, boolean combinations, etc.,

– we have relativization in the following sense: Sometimes, we might not be sure about the normal cases of
φ, but, we know that if x a normal φ−case, then it will be a normal ψ−case - this can now be expressed,
and used e.g. in an argument or in dynamic reasoning.

• the ”grammatical” role or abstract framework of a notion has to be made explicit:

– is it an operator like ∧ etc?

– is it a relation, and if so, between which notions?

– or is it something more complicated?

– does it impose conditions on other operators?

– which are its arguments, which its results?

• the approach is more flexible:

– detailed properties may be neglected for the moment, and added later directly to the object language

– sometimes, it seems difficult or even impossible to describe the details for all possible situations (we
have not a constant, but a variable), again the details can be added ”on the fly” in the object language

• we have a clear separation between the general (grammatical) role of the notion, and its perhaps complicated
details, and can pursue the often very useful strategy of ”divide and conquer”

• the cooperation with other notions has to be made explicit

18 CHAPTER 1. INTRODUCTION

If we put not only notions like ”normal” into object language, but also the generating semantical concept, like
preference, distance, size, etc., we can (and have to) bind the two concepts together by an object language analogue
of a soundness and completeness theorem. The important point is that we win this way multi level description and
reasoning, where unnecessary complexity can be hidden from upper levels (here, from normality), and is visible only
in the lower levels (here e.g. preference of one situation over another), whenever this is necessary. For instance, we
can know that in all minimal α−models β holds, without knowing exactly the relation of normality. Often, this be
sufficient, but there might be situations where we need the more precise information, e.g. to convince an opponent
in argumentation. If we go further and put uncertainty directly into the language, as object, as the amount of
cases we neglected, we can speak about arguments: they are paths or graphs, where the ”gaps” are annotated by
the size of the set of the neglected cases. We can say e.g. to our opponent in argumentation: Look, your gaps are
much bigger than mine, so your argument is weaker. Thus, we can put a suitable theory of argumentation in the
language, and reason with and about it.

The price we have to pay is not very high, as we have big and small sets (N(X) are the big sets, X −N(X) the
small ones) etc. already in our object language. We can now put e.g. also the relation into the language, add
sufficient axioms to make it work, and give reasons why one set is big, and the other is not. This is somewhat
elaborated in Chapter 8.

Limitations of our approach

Leaving for the moment aside the more complicated case of n-ary choice functions, we consider logics which we will
call ”generalized modal logics”, (GML for short), defined via a model choice function: T ∼| φ iff for some function
f on sets of models f(M(T)) |= φ. Nonmonotonic logics or usual modal logics are an example, whereas AGM style
theory revision falls into the more complicated class. (We use ”AGM” as abbreviation for the article [AGM85], its
authors, and their approach.)

Representing reasoning this way is certainly an idealization, as human reasoners (and computers) can not always
calculate all consequences - not even up to classical propositional equivalence. But it is a reasonable approximation.

On the other hand, it is evident that some reasoning will never fall into this category. All reasoning about aims,
actions, desires, intentions is outside: If my aim is to become a rich man, then it is in all but pathological cases not
true that I want to become a rich man or to commit suicide, or that I want truth (in the logical sense) to hold.
These notions are incompatible with deductive closure, at least in such a primitive way. This is plausible, as they
speak about states of the world where something holds which does not hold already, but e.g. truth will already
hold. It is another question whether they can be caught by something like D := Th(X)−Th(Y), where X is some
desired state, and Y some actual state.

There is a difference between big sets in the first order and in the propositional case, which, however, diminishes
when we put the notions into object language. In the first case, a big set corresponds to a generalized quantifier
over the given universe (see Section 7.2), in the second, it is a set of classical models. If we introduce a new modal
operator N into the language, we have, however, again a kind of quantifier, and are not restricted to working with
it (e.g. in some form of inference relation ∼|).

1.1.3 Formal results

Coherence properties

A central subject, implicit and explicit, in our discussion will be ”coherence properties”. They describe answers to
the following question: Given f(M(T)), can we still choose freely f(M(T ′)), or is there some coherence between
f(X) and f(Y) (given some relation connecting X and Y)? For instance, in preferential structures, if X ⊆ Y, then
f(Y)∩X ⊆ f(X) will always hold. Our uniform approach via GML’s will help to bring such properties to light in
various logics, and, as a matter of fact, we can consider such ”algebraic” properties of the choice functions f as the
core properties to describe in completeness results. In other terms, if we work in the GML framework, (almost)
all that is left are coherence properties. We will see that there are often natural ways to generate f by underlying
structures, like preference or reachability relations, or distances between models, and that such structures determine

1.1. THE MAIN TOPICS OF THE BOOK 19

sometimes very strong coherence properties.

Such properties are all the more interesting as the logics considered might be quite ”wild” and any property taming
them is very welcome. So coherence is not just a purely academic subject, but an eminently practical one. At
least if the algebraic properties are themselves generated by an underlying structure, these logical properties can
be considered a ”byproduct”. But, in some situations, they are at the very core of considerations, this is the case
e.g. in analogical or inductive reasoning. Analogy says that T is in some way similar to T ′, and induction says
that the big set behaves as does a small subset. Here, coherence is the hypothesis, a fact about the world, and not
the byproduct of a logic (more precisely, of the semantics), and we should not expect one case of coherence to be
very similar to the other.

As said in the summary, we will usually decompose representation problems into two steps: the basic semantical
notions, like a relation between models, give rise to functions on model sets. We thus can separate the algebraic
from the logical problem. This brings them better to light, makes their solution easier, and we can re-use results
for the (usually more difficult) algebraic part in various logical contexts - as we see e.g. for Plausibility logic in
Section 3.7.

We will consider in detail representation results based on preference, distance, size, and sums.

Preference:

Our results on preference are the most developed ones. We apply there very general techniques (suitable choice
functions to code our ignorance, trees to code transitivity, ”hulls” to keep away from certain sets) to various
situations. Particular emphasis is made on domain closure properties (see e.g. again the Section on Plausibility
logic 3.7), which seem to have been quite neglected so far, and definability preservation. We will also show that
important classes of the limit variant are equivalent to the conceptually and technically much simpler minimal
variant. In all cases, we describe problems which can arise when these conditions are not satisfied, but sketch also
solutions which circumvent them. We also show that topological constructions can give interesting counterexamples,
but also open new ways to achieve properties like cumulativity. Often, and not only for preferential structures,
such counterexamples can be obtained by using in the structure implicitly a topology different from, better even:
against, the natural topology of propositional logic. We also examine the ranked case in more detail, giving also
not only a representation result for the limit case, but demonstrate again its equivalence with the usual minimal
case in an important class of problems. The question of copies finds an answer in a different approach, by total
orders instead of partial orders, and we can show a corresponding representation result in the finite case.

Section 3.9 stands a little apart. On the one hand, it is motivated by philosophical considerations about complete-
ness proofs and the role of copies. On the other hand, it has its natural place in the formal part, as it gives a
formal answer to these philosophical questions.

Distance:

We then turn to distance based formalisms, in particular to theory revision and counterfactual conditionals. We
prove several completeness results for the first, but also demonstrate that finite characterization is impossible,
unless the domain is sufficiently rich. In an application of a similar idea we show that counterfactuals based on
one single metric is essentially the same as counterfactuals based on several metrics. The argument is, just as for
the lack of finite characterizations for revision, that close elements can hide those farther away.

Definability preservation:

The model set operators are usually assumed to preserve definability, i.e. f(M(T)) is supposed to be exactly
M(T ′) for some other theory T ′. Many results (not only of the author) hold only under this assumption. We
show a uniform technique to avoid this assumption (approximation), but show also that, at least in one case, but
probably more often, there is no characterization in the usual form possible, as we have to admit arbitrary big
(in cardinality) sets of exceptions, which we cannot describe by usual logical means. This negative result will also
apply to the general limit version of preferential structures.

20 CHAPTER 1. INTRODUCTION

Sums:

Formalisms based on sums, like update or other types of reasoning about sequences, have a uniform representation
criterion, the possibility to solve certain systems of inequalities. In these cases, we are interested in those sequences,
which are minimal by some criterion. As minimality is calculated component-wise, we are interested in minimal
sums, and have therefore to determine whether systems of inequalities between sums have a solution. This can be
verified by an old algorithm, due to Farkas. Often again, we can show that essentially simpler, finite, characterizing
conditions are impossible.

Size:

We then incorporate abstract size into a first order framework, in the form of a generalized quantifier, expressing
”almost all”. This is done in an isolated fashion, and with very weak conditions, to be able to extend it in any
direction desired. We also show how to base theory revision on model size, revealing a general technique which we
consider interesting. Finally, we compare several coherent systems of size.

1.1.4 Various remarks

The different contents will be reflected by different styles of exposition. Whereas the first part, discussing concepts,
will mostly be a more informal discussion, commentaries in the second part, showing completeness and incomplete-
ness, will mostly be restricted to an explanation of the formal development, with motivation given already in the
first part. Finally, the third part will largely be a partial summary and use of the first two parts, with indications
how to fuse the various concepts together.

Naturally, part 1 is addressed more to the more philosophically interested reader. Part 2 is more for the reader
with formal interests, and a certain mathematical maturity is perhaps sometimes needed to follow the arguments
in detail. There is, of course, no harm (at least in a first reading) to skip proofs and lemmas, and concentrate on
the main definitions and results. The reader who wants to do his own completeness proofs for related cases, will,
we hope, find here ideas and quite general techniques which are useful to his interests. Finally, part 3 is destined
for the ”bricoleur” of reasoning systems, giving him some philosophical ideas and mathematical nuts and bolts to
work with.

Perhaps, we should say a word about completeness (or representation) results in general, as they occupy a large
part in this text. First, from an academic point of view, they show the equivalence of two different constructions:
an axiomatisation of the syntactic side, and a semantics. Such equivalences are per se interesting. But, there is
an, we think, much stronger argument: It seems very difficult to find good axiomatisations without having (at
least implicitly) a semantics. The history of logic is full of systems which were found incoherent after much work
had gone into them, as one did not have a clear semantics. Axiomatisations seem too difficult to understand for
the human mind. Working first with a semantics splits the problem of constructing a suitable logic in two parts:
a more philosophical part, which discusses the adequacy of the formalisation (does the formal semantics really
capture the essence of what we want to speak about in our logic?), and a purely mathematical part which shows
that the logic corresponds one-to-one to the semantics we found. We can doubt the adequacy of the semantics,
this is a philosophical or even practical problem, without doubting the correctness of the representation result, and
vice versa. A logic is, of course, necessary, if we want to do some formal reasoning about the aspects of the world
that interest us. Thus, we need both, but the right strategy seems to start with the semantics.

Sometimes, however, a problem of reduction has a philosophical and a mathematical side. E.g., we show (see
Section 4.3) by mathematical analysis, playing with copies of models, that, in some cases and in some sense, a real
distance on a set is equivalent to a set of distances from fixed points, whereas conceptually, they are very different
things.

1.2. HISTORICAL REMARKS 21

1.2 Historical remarks

Theory Revision as presented in Section 2.2.11 is, of course due to Alchourron, Ga̋rdenfors, and Makinson. The
approach to update in Section 6.4 is due to Boutilier, Friedman, and Halpern (BFH for short). For shorter
presentations of other people’s results, we have given references locally.

In the sequel, ”new” will abbreviate ”new to the author’s knowledge”.

The basic results on preferential structures (Sections 3.2 and 3.3) were published in [Sch92], [Sch96-1], [Sch00-1].
The basic results on plausibility logic (Section 3.7) were published in [Sch96-3], the representation result presented
here is new. The counterexample to the KLM result (Section 3.5) was published in [Sch92], the non-smooth model
of cumulativity (Section 3.6) appeared in [Sch99]. The approach to preferential structures via total orders (Section
3.9) was published in [SGMRT00]. Some basic material on ranked structures (Section 3.10) was published in
[Sch96-1], the examples and representation results given here are new (though some are close to the ones given in
[LM92]), as well as the discussion of the limit variant.

Section 4.2 on theory revision (with the exception of Sections 4.2.4 and 4.2.5) was written with D.Lehmann and
M.Magidor, and was published in [LMS01] and [SLM96]. The other results are essentially my own work. The
results on the limit variant for revision (i.e. without closest elements, Section 4.2.5) are new. Section 4.3 on
counterfactuals was written with D.Makinson, and is published in [SM94].

The lack of finite characterizations for theory revision (Section 4.2.4), for update by minimal sums (Section 6.3.4),
for Markov developments (Section 6.4.3), and for ”between” and ”behind” (Section 6.5) are new. The other results
on BFH style update were written down in [SFBMS00], but never published.

Some of the results on representation without definability preservation (part of Section 5.2) were published in
[Sch00-2].

Update by minimal sums (Section 6.3) were published in [DS99] and [SD01].

Weak filters (Section 7.2) were introduced in [Sch95-1], see also [Sch96-2]. The filter and order systems (Section
7.3) were compared in [Sch97-4]. The approach to theory revision by model size (Section 7.4) was published in
[Sch91-1] and [Sch91-3].

The rest of the material is unpublished.

In summary, and to help the reader to orient himself, the following results and approaches are new to the author’s
knowledge, and not published before:

On the more conceptual side:

1. A systematic reduction of a certain number of reasoning mechanisms to a small number of basic semantical
concepts (Chapter 2).

• The principled generation of a robust ranking from model size (Section 7.4.2.2).

2. The unification of several logics of common sense reasoning into one system of generalized modal logic
(Chapters 2 and 8).

• The analysis of a problem of this fusion and its (somewhat brutal) solution.

• The resulting system of argumentation based on clear semantical principles, and with different levels of
abstraction.

More on the formal side:

1. The systematic treatment of problems of domain closure and definability preservation for representation
problems (at various places).

2. The detailed analysis of ranked preferential structures (Section 3.10).

22 CHAPTER 1. INTRODUCTION

3. The representation result for smooth preferential structures without closure of the domain under finite union
(Section 3.7.2.3).

4. Representation results without definability preservation for

• Smooth preferential structures (Section 5.2).

• Distance based theory revision (Section 5.3).

5. The reduction of the limit variant of preferential and distance based structures to the much simpler minimal
variant in many important cases.

• For general preferential structures (Section 3.4.1).

• For ranked structures (Section 3.10.3).

• For distance based theory revision and update (Section 4.2.5).

6. The impossibility of representation

• By finite descriptions for

– Theory revision based on distances (Section 4.2.4).

– Theory update based on minimal sums (Section 6.3.4).

– Theory update for Markov developments (Section 6.4.3).

– ”Behind” and ”between” (Section 6.5).

• By any description for preferential structures without definability preservation and the general limit
variant, in the general case, the ranked case, and for distance based theory revision (Section 5.2.3).

7. The characterization of update by Markov developments (Section 6.4.2.2).

8. The short analysis of X-logics (Section 3.2.4).

Personal appreciation of the results published here for the first time

Of the formal part, I like the results on the limit versions, on the lack of (finite or even infinite) representations,
and on the not definability preserving cases best. Conceptually, but still formally, the investigation of domain
closure properties for representation results was very interesting for me, as I had encountered the problem before,
but just seen it as a nuisance, not worth while a more detailed discussion. Of the more analytical part, it was
interesting to see how much can be done with so few basic concepts. It was at least as intertesting to go from
single bits of reasoning to a uniform framework of generalized modal logics, and beyond, to meta-reasoning (and
argumentation), with much increased flexibility as a result. This also gave sense to the extremely fruitful idea
(e.g. in computer network architecture) of complexity hiding in the context of logic. (In computer networks,
different levels of communication have clearly separated tasks, the lower levels work with details the upper levels
need not and should not see. For instance, when you send an email, you need not know which path the message
takes. Intermediate levels will find a path for you automatically, but might not know whether the message goes
via optical fiber, or wire, but low level procedures will have to know that.)

The parts on basic concepts are, of course, addressed in first place at more philosophically minded people. People
working on completeness problems might be most interested in the parts which treat lack of finite characterization,
and domain closure problems. They might also like to find reductions of the more difficult limit case to the simpler
minimal one, and might find the negative results about impossibility of characterization useful. We also hope that
persons interested in applications and building systems, perhaps of argumentation, might find the remarks on multi
layered systems, and with several operators combined, stimulating. Those parts contain, of course, also remarks
for the more conceptually oriented people. Finally, a combination of more philosophically oriented reflection with
”hard” formal results are to be found in Section 3.9.

1.3. ORGANISATION OF THE BOOK 23

1.3 Organisation of the book

The basic concepts like size and distance, as well as their connections are discussed in Chapter 2.

Chapters 3 - 7 contain most of the formal results: Preferential structures in Chapter 3, distance based approaches in
theory revision and counterfactuals in Chapter 4, sums in Chapter 6, and size in Chapter 7, definability preservation
problems and their solution in Chapter 5. Absence of finite representation is dicussed in various places in Sections
4.2.4, 6.3.4, 6.4.3, 6.5. Absence of any usual characterization is discussed in Section 5.2.3. Problems with domain
closure are discussed in Sections 3.4, 3.5, 3.7, 3.10.3, 4.2.4, 4.2.5, 5, 6.3.3. A somewhat analogous problem is to be
found in Section 8.3.3.

In Chapter 8, we address the uniform object language, and indicate very briefly how to put the various pieces
together.

1.4 Overview of the chapters

The author is aware that the present Section 1.4 is probably difficult to understand before knowing the results
of the book. It is not really intended as an introduction, rather as a companion, while reading the formal parts,
helping the reader to orient himself or herself. It might be a good idea to read it first superficially, trying to guess
more than to understand, and come back from time to time while reading the formal parts seriously.

1.4.1 The conceptual part (Chapter 2)

This Chapter contains a, mostly informal, analysis of several forms of common sense reasoning, and bases them to
a large extent on a few semantical notions, size, preference, and distance. We do not argue that this reduction is
totally exhaustive, only that it seems to capture astonishingly many aspects of common sense reasoning with less
than a handful of concepts. We think that such concepts like distance and size are given in a naive way, but feel
free to change their properties as seems necessary and helpful. We shall also see that the different types of common
sense reasoning are interdependent. E.g. a notion of certainty can be used to define nonmonotonic reasoning or
theory revision, and conversely, given e.g. a theory revision operator, we can recover a notion of certainty - this is
the well known equivalence of AGM theory revision with epistemic entrenchment. Preference can also be seen as
distance from a fixed ideal point, and we shall see how to generate in a natural and robust way a ranking of sets
from a notion of size of elements.

In particular, it is very desirable to base as many reasoning types as possible on a few basic semantical notions,
when we try to create integrated systems of common sense logics and reasoning. (In Chapter 8, we will sketch such
an enterprise in rough outline.)

We can perhaps summarize: the basic concepts are few, it is the way they are used and combined, which generates
the richness of common sense reasoning.

This Chapter has partly an introductory character. On the other hand, it also serves to illustrate that approaches
to common sense reasoning usually discussed in the literature are by no means the only possible ones. So, the
(poor) reader will be presented a multitude of alternative suggestions, but, will also see that they can often again be
based on our basic semantical notions, so multitude is partly a superficial phenomenon. The alternatives presented
can also be seen as suggested research programs, which, we think, should often be quite straightforward, using the
machinery developed in subsequent chapters.

1.4.2 The formal part (Chapters 3-7)

First, an overview by subjects treated.

In the Sections on formal results, we will treat various representation results for

24 CHAPTER 1. INTRODUCTION

• preferential structures

• distance based revision and distance based counterfactuals

• concepts based on minimal sums (update, ′′between′′/′′behind′′, revision sequences)

• abstract size.

(Chapter 5 is discussed in the paragraphs on preference and distance.)

Preference

More precisely, we show rather general representation results for the minimal version of definability preserving

• general preferential structures,

• general transitive preferential structures (the transitive and the not necessarily transitive case satisfy the
same conditions),

• smooth preferential structures,

• smooth and transitive preferential structures, (again, the transitive and the not necessarily transitive case
satisfy the same conditions),

• two systems of plausibility logic, for one we also prove a negative result, due to lack of domain closure,

• ranked preferential structures,

• ranked and smooth preferential structures.

We also show representation results for the limit version of ranked structures, in particular, we show equivalence
of the limit and the minimal version in important classes of problems. This is an interesting result, reducing the
limit version in many cases to the conceptually and technically much simpler minimal variant.

Roughly: The limit version does not ”degenerate” when we have no minimal elements: In the minimal version, we
are interested in the formulas φ that hold in the minimal models of T. In the limit version, we are interested in
those formulas φ, which finally hold in the T-models, when we are sufficiently low. In the ranked case, this amounts
to the following: there is a level of T-models, below which φ holds in all T-models. This is a natural extension of
the minimal version to the case where we have not necessarily minimal models.

Finally, we treat the non-definability preserving cases for the general, general transitive, the smooth and the smooth
transitive versions of preferential structures. A, we think, important negative result is that a characterization in
the usual form is impossible in the general case.

The investigation of total orders as basic entities of preferential reasoning stands a little apart in this series. It gives
an answer to the problem of copies of models, and discusses the difference between various types of completeness
results. It is more in the spirit of classical logic, where models have maximal information. A completeness result
for the finite case is given. The use of copies of models, or non-injective labelling functions in a different, but
equivalent terminology, has probably historical origins in modal logic. We give here a different justification via
disjoint unions of total orders. For details, the reader is referred to Section 3.9.

In all cases, we show first purely algebraic characterizations of the associated choice functions, which we translate
then into logical properties. This translation is trivial under the caveat of definability preservation, we use classical
soundness and completeness.

1.4. OVERVIEW OF THE CHAPTERS 25

Distance

We show representation results for two minimal versions of distance based definability preserving revision (for
symmetric and not necessarily symmetric revision), again first the purely algebraic, then the logics version.

We show again representation results for the limit version of distance based revision. In particular, we show again
equivalence of the limit and the minimal version in an important class of problems. Recall that the limit version of
distance defined revision is the analogue of the limit version of prferential structures. T ∗ φ will be the set of those
formulas, which hold in all those φ−models which are sufficiently close to the T-models. So, even if there are no
φ−models closest to the set of T-models, this definition does not collaps, as does the minimal variant.

Again, we treat the non-definability preserving case of distance based revision, which uses the same ideas and
techniques as the analogous case for preferential structures.

We also prove that distance based revision has no finite characterizations, roughly, by presenting arbitrarily complex
positive and negative examples. This result is again related to domain closure problems, as a sufficently rich
domain would sometimes make it possible to summarize much information into just one piece of information, and
the problem with arbitrary amounts of information would not be there.

To give one example: In revision, the problem is with transitivity, as we cannot always ”see” the intermediary steps,
they are literally hidden. So we cannot argue a ≤ b ≤ c ≤ d, so a ≤ d, because, roughly, we do not necessarily see
a ≤ c, but only the result. More precisely, we may be able to observe that a ≤ b ≤ c ≤ d holds, but not necessarily
that e.g. a ≤ c holds, as there might be closer elements in the way. So we cannot summarize a ≤ b ≤ c to a ≤ c,
but need all three bits of information. The trick for the formal proof is then to construct arbitrarily complicated
situations, where changing just one element of information transforms a bad case to a good one. As we cannot
summarize the bad case in a small amount of information, there is no way to have a finite description distinguishing
the good from the bad cases.

We then show a converse, that we can fuse many different local metrics to one global metric in the counterfactual
semantics.

Sums

We show a general technique for representation results for semantics based on sums, an old algorithm, due to
Farkas, to determine whether systems of inequalities have a solution. We also show in all cases discussed that no
finite characterization is possible, again by presenting arbitrarily complex positive and negative examples.

Size

We first interpret ”normal” or ”almost all” as a generalized quantifier in FOL. The semantics is a weak filter, and
we give a sound and complete axiomatisation. This is really a bare bones system, and we intend it as such: this
way, it is easy to make extensions in whatever direction we choose. In particular, we give no coherence whatever,
this can be added in trivial ways by just writing down the corresponding conditions for semantics and proof theory.

We then discuss various abstract coherent systems based on size, due to Ben-David/Ben-Eliyahu, Fried-
man/Halpern, and the author. The first and the third are based on filter systems, the second is a relation
comparing sizes. All three are roughly equivalent, and reveal that essentially the same intuition is made concrete
in various forms.

Finally in this Section, we show how to base revision on model size. In hindsight, this was done by a general
principle, which gives a robust and intuitive way to construct a ranking of sets from size of elements. This ranking
is essentially stable under intersections - which is its robustness, and makes it compatible with other operations,
like revision.

26 CHAPTER 1. INTRODUCTION

1.4.3 Integration (Chapter 8)

In this Section, we first discuss what we see as important advantages of putting concepts rather into object language
than into rules. We see the main advantages in increased expressiveness, clarification of the role of the operators,
and a better ”quality” of the logic, which shows e.g. in contraposition, which is some form of revision: If α ∼| β
fails, as we see α and ¬β, we do not know what to do. If we put normality into the language, we will have
N(α)→ β, α, and ¬β, and this is perfectly reasonable, we can revise the assumption N(α) to α ∧ ¬N(α).

We then discuss the several levels of reasoning, the usual level, the level below, where the underlying structure is,
and where notions like preference or size can be represented, and the higher level, where we can reason about our
own arguments. We argue that a rich system should allow all levels, to be able to fall back on reasons, and assess
qualities of arguments.

We then present almost in table form the types of common sense reasoning and their basic concepts we have found
in this book. This is intended as an overview and reference.

Finally, we discuss formal problems and questions when integrating several formalisms into one system. We will
first present in anecdotical fashion some problems of classical and classical modal logic. We then discuss a subtle
problem, very similar to that of definability preservation, when putting several formalisms and their semantics
together. Finally, we show that, under some caveats, putting things together is trivial.

We turn to an overview of the main problems, ideas and techniques

1.4.4 Problems, ideas and techniques

We hope that these chapters are not only interesting for their results, but also for their problems, ideas and
techniques. Therefore, we will now enumerate those discovered and used in these Sections.

We see ”isolated” and ”recurrent” problems (and their solutions, if any). Isolated problems are specific represen-
tation issues, recurrent ones those which present themselves at several moments in our discussion. Among these
are definability preservation, domain closure, and finite or even more general representation questions.

Before we discuss these, we turn to the isolated problems.

In most cases, we split the representation problem into a purely algebraic and a purely logical part. This has several
advantages. First, we can recycle algebraic results in other contexts, as we have done several times (preferential
logics, plausibility logic, preferences among developments). Second, we see more clearly the different problems, e.g.
with sets logically definable on the logics side, properties of the basic choice functions on the algebraic side.

The first such problem is to code our ignorance about minimization in general preferential structures - we do not
know which elements minimize some given element. We solve this problem by making copies for all choice functions
in a suitable cartesian product. This is the best possible solution, the relation defined will, however, be the worst
possible solution, again justified by our ignorance (Section 3.2.1).

The next problem is to make this construction transitive. We see that indexing by the trees of successors is again
the right and most general technique to obtain full control about successors (Section 3.2.2). (In the simple, most
general case, we can do with a much simpler technique, see Proposition 3.2.8.)

We then turn to smooth structures. Our construction will be a successive repair process of all smoothness we might
have destroyed in previous steps. Some form of hull H(U) around U to avoid U sufficiently generously seems to be
the thing to do (Section 3.3.1).

For smooth and transitive structures, we essentially combine the ideas from the general transitive and the smooth
case.

The author has been asked if it were not possible to use complete theories for the construction of representation
results, as is done usually for modal logics. This might well be possible, but, we think, the constructions presented
here are the natural ones. Modifying and adapting them to other constructions would only blur the picture, we
think.

1.4. OVERVIEW OF THE CHAPTERS 27

We then show that important classes of the limit version (transitive structures with either cofinally many definable
closed minimizing subsets, or considering only formulas on the left of ∼| for the resulting logic) are equivalent to
the much simpler minimal variant (Section 3.4.1).

The techniques for ranked structures are quite different, due to the strength of the rankedness condition. In
particular, the question of copies has a simple answer - mostly, one copy suffices (Lemma 3.10.4). On the other
hand, there is a multitude of natural and quite similar conditions, which, however, might differ in somewhat exotic
cases. We discuss these, and obtain several completeness results (Section 3.10.2).

We then discuss the limit version of ranked structures, obtain a general technique to treat the limit version (also
applied for distance based revision), and show that for an important class of problems, the minimal and the limit
version are equivalent (Section 3.10.3). This is due to domain closure properties, and has again its analogue in
distance based revision. The main idea is to show that the systems of closed minimizing sets have (after some
modification, and essentially) the properties of the minimal variant.

In many examples for ranked structures we use essentially topological considerations to show negative results. Such
techniques are also used to obtain cumulativity in the absence of smoothness (Section 3.6).

Domain closure properties are also used to show a counterexample to an extension of the original KLM character-
ization (Section 3.5).

We can apply our techniques and results immediately to plausibility logic in Section 3.7 to obtain a representation
result by general preferential logic. The cumulative version proved much more interesting. A counterexample
(Section 3.7.1) shows that the lack of closure of the domain under finite union can be a serious problem for the
smooth case. This was the first time we saw the real importance of such closure conditions of the domain. We
now present the main building block of a solution also for the smooth case, but with more complicated conditions
(Section 3.7.2.3).

For distance based revision, we again give first an algebraic characterization, using an arbitrarily big, but finite,
loop condition (Section 4.2.2, in particular Proposition 4.2.2). An at first sight innocent example (Example 4.2.1)
about lack of information (closer elements hide more distant ones) turns out to give the crucial idea later (Section
4.2.4) on to show that there is no finite characterization possible. To this purpose, we construct arbitrarily big
positive and negative examples, which differ only by one bit of information we can obtain.

For distance based revision, too, we discuss the limit variant (Section 4.2.5), getting rid of the necessity of closest
elements, and, in particular, show that both versions are equivalent in an important class of problems (Section
4.2.5.3).

We then drop the definability preservation condition, by admitting ”small” sets of exceptions to our conditions
(Chapter 5). The ideas and techniques are the same for preferential structures and distance based revision. The
reader should keep in mind that we see a problem similar to definability preservation in the last Section 8.3.3,
where we put together several semantical structures. There again, we have to be careful, when, on a finer level,
elements are missing, which are not visible on a coarser level. In the same Chapter, Section 5.2.3, we show that
such general preferential structures cannot be characterized in the usual way. The same applies to general ranked
structures and to distance based theory revision - see again Section 5.2.3.

The fact that closer elements hide elements farther away is used in a positive way for counterfactuals (Section
4.3). We can construct in essentially independent ways the neighbourhoods of all worlds, arranging the recurrent
distances in a way that the unwanted neighbourhoods are hidden by closer ones. This technique might prove useful
in other situations, too.

Representation problems for situations defined by minimal sums have a uniform solution via a suitable algorithm,
due to Farkas, see Section 6.2, determining whether systems of inequalities have a solution. It depends on the
richness of the domain whether we can let the algorithm work directly on the domain and its information, or
whether it has to turn outside as a black box. This is essentially the same problem as the one which causes
absence of finite representation, and, as a matter of fact, we show that all cases considered will not have a finite
representation (Sections 6.3.4, 6.4.3, 6.5.1).

The, in the author’s opinion, most important ”recurrent” problems we have treated or begun to treat are perhaps:

28 CHAPTER 1. INTRODUCTION

• domain closure problems and their relation to possible characterization, e.g. the existence or absence of finite
characterizations,

• the importance of definability preservation, and approximation as a solution, and analogous problems (see
Section 8.3.3).

These subjects should be treated in a more systematic way in future research. We have only scratched the surface
here.

Despite all these shortcomings and problems left open, there are some techniques the author thinks are useful, and
merit attention. Among these are:

• to split representation into an algebraic and a logics part,

• to use choice functions for preferential structures, and trees to encode transitivity, to use suitable hulls H(U)
- sets to be to be avoided - in the construction of smooth structures (e.g. Sections 3.2.1, 3.2.2, 3.3.1),

• to use topological constructions to obtain positive and negative results for preferential (and similar) structures
(e.g. Sections 3.10.2, 3.10.3),

• to use approximations to solve definability preservation problems (Chapter 5),

• to reduce the more complicated limit version to the much more simple minimal version (Sections 3.4.1, 3.10.3,
4.2.5, but also 5.2.3),

• to use incompleteness of information about behaviour to show lack of certain representations (Sections 4.2.4,
6.3.4, 6.4.3, 6.5.1).

1.5 Specific remarks on propositional logic

A natural distance between (finite) propositional models

In many cases we will do as if the set of models were an arbitrary set and work with additional information or
structure, like a relation, a distance etc. But sometimes it is very useful to consider the natural structure of the
set of models - especially if this is all we have - and, thus (partially) answer the question where such additional
information comes from. At the same time, this will give us a concrete example to refer to.

We will concentrate here on the finite propositional case, but some tranfer is e.g. possible to the first order case: we
can work in a fixed countable universe, giving each element a name to fix things, and introducing a new predicate
to describe the limits of the universe if it is finite.

First, there is a natural distance between models, the Hamming distance defined by: d(m,m′) := the number of
propositional variables for which they differ.

E.g., if the language consists of p,q,r and m |= p∧ q ∧¬r, m′ |= p∧¬q ∧ r, then d(m,m′) = 2. In the FOL case, we
would count for all elements all the differences (predicates, values of functions etc.).

Second, each formula has a natural decomposition into a disjunction of conjunctions (which need not be unique,
consider the example p∧q, p∧¬q, ¬p∧q, but we can take the decompositions into a minimal number of conjunctions).

Decomposition and Hamming distance cooperate:

Define a set X convex wrt. to distance d, iff for all x, x′ ∈ X and all x′′ d(x, x′′) + d(x′′, x′) = d(x, x′) implies
x′′ ∈ X. (If we have no addition, we can define ”between x and y′′ by d(z, x) ≤ d(x, y) ∧ d(z, y) ≤ d(x, y).)

If X is a model set described by a pure conjunction, then it is convex wrt. the Hamming distance: Let A be the
set of propositional variables not determined in X, then X is everything between the model deciding positively on
A (and outside as X dictates) and the model deciding negatively on A.

1.6. BASIC DEFINITIONS 29

Conversely, each set X convex wrt. the Hamming distance can be described by a pure conjunction: Let A be the
set of propositional variables s.t. for a ∈ A there are x, x′ ∈ X and x decides a positively, x′ negatively. Suppose

there is A′
⊂

6= A maximal s.t. there is x ∈ X with x decides all a ∈ A′ negatively. If a′ ∈ A − A′, then there is
x′ ∈ X which decides a′ negatively. Now, x′′, which is like x, but decides a′ negatively, is between x and x′, so in
X, contradiction. In the same way, there is y deciding all a ∈ A positively, and X is the convex set between x and
y. So X can be described by the conjunction of all y 6∈ A, or their negation, on which all x ∈ X agree.

All kinds of modifications of the Hamming distance are possible, we can give different weights to different variables,
work with formulas instead of variables, consider only subsets of all variables, etc. The reader is referred to [Sch95-2]
for a more detailed discussion of various distances.

Natural model sets

Given any distance, e.g. above Hamming distance, convex model sets are particularly simple and natural ones.

Given a finite theory, or a formula, if we write it as a disjunction of conjunctions, these conjunctions define a
granularity. If φ = (p∧ q)∨ (p∧ s), and the language has also the variable t, then we do not see down to t, as t and
¬t will always be treated together. Thus, φ is coarser than e.g. p∧ q ∧ s∧ t. We can either say that the granularity
is p ∧ q ∧ s, or p ∧ q and p ∧ s - the case at hand will tell us which is the better solution. It can now be reasonable
(e.g. in theory revision) not to go below the granularity given by the theory, e.g. either we choose all of p ∧ q ∧ s
to be part of the result, or not, but will not put p ∧ q ∧ s ∧ t in, and p ∧ q ∧ s ∧ ¬t out.

Note that some of the ideas of R.Parikh and his co-authors are in the same spirit - see e.g. Chopra/Parikh [CP00].

Propositional formulas as approximations A propositional formula can be seen as a conjunction of disjunc-
tions, and thus as an approximation from above (to its set of models), or as a disjunction of conjunctions, and thus
as an approximation from below.

In particular, if e.g. φ = φ′ ∧ φ′′, and m 6|= φ, we may nonetheless say that φ holds ”almost” in m, if it holds in
many of the disjunctions making up the formula, here in at least one of φ′ or φ′′. Conversely, if φ = φ′ ∨ φ′′, and
m |= φ, we may say that φ strongly holds in m iff many of the conjunctions making up φ have m as a model, here,
iff m |= φ′ ∧ φ′′.

Thus, in some cases, we have already a natural notion of graded validity of a formula in a model.

1.6 Basic definitions

1.6.1 The algebraic part

We make ample and tacit use of the Axiom of Choice.

Definition 1.6.1

We use P to denote the power set operator, Π{Xi : i ∈ I} := {g : g : I →
⋃
{Xi : i ∈ I}, ∀i ∈ I.g(i) ∈ Xi} is the

general cartesian product, card(X) shall denote the cardinality of X, and V the set-theoretic universe we work in
- the class of all sets. Given a set of pairs X , and a set X, we denote by XdX := {< x, i >∈ X : x ∈ X}.

Given some fixed set U we work in, and X ⊆ U, then C(X) := U−X.

≺∗ will denote the transitive closure of the relation ≺ .

A child (or successor) of an element x in a tree t will be a direct child in t. A child of a child etc. will be called an
indirect child. Trees will be supposed to grow downwards, so the root is the top element.

A subsequence σi : i ∈ I ⊆ µ of a sequence σi : i ∈ µ is called cofinal, iff for all i ∈ µ there is i′ ∈ I i ≤ i′.

30 CHAPTER 1. INTRODUCTION

Given two sequences σi and τi of the same length, then their Hamming distance is the quantity of i where they
differ.

We recall or introduce the definitions of a filter, weak filter, ideal, weak ideal. Intuitively, a filter, (dually an ideal),
describes the ”big” (′′small′′) subsets of a set X. What is in the filter, is big, just as in your coffee machine, what
is in the ideal, is small. In both definitions, the first two conditions should hold if the notions should have anything
to do with usual intuition, and there are reasons to consider only the weaker, less idealistic, version of the third.

Definition 1.6.2

Fix a base set X.

A (weak) filter on or over X is a set F ⊆ P(X), s.t. (F1)− (F3) ((F1), (F2), (F3′) respectively) hold:

(F1) X ∈ F

(F2) A ⊆ B ⊆ X, A ∈ F imply B ∈ F

(F3) A,B ∈ F imply A ∩ B ∈ F

(F3′) A,B ∈ F imply A ∩ B 6= ∅.

So a weak filter satisfies (F3′) instead of (F3).

A filter is called a principal filter iff there is X ′ ⊆ X s.t. F = {A : X ′ ⊆ A ⊆ X}.

An (weak) ideal on or over X is a set I ⊆ P(X), s.t. (I1)− (I3) ((I1), (I2), (I3′) respectively) hold: (I1) ∅ ∈ I

(I2) A ⊆ B ⊆ X, B ∈ I imply A ∈ I

(I3) A,B ∈ I imply A ∪ B ∈ I

(I3′) A,B ∈ I imply A ∪ B 6= X.

So a weak ideal satisfies (I3′) instead of (I3).

A filter is an abstract notion of size, elements of a filter on X are called big subsets of X, their complements are
called small, and the rest have medium size. The dual applies to ideals, this is justified by the following trivial fact:

Fact 1.6.1

If F is a (weak) filter on X, then I := {X −A : A ∈ F} is a (weak) ideal on X, if I is a (weak) ideal on X, then
F := {X −A : A ∈ F} is a (weak) filter on X.

Definition 1.6.3

(1) We use the usual interval notation for subsets of the reals: (a, b) := {x ∈ < : a < x < b}, (a,∞) := {x ∈ < :
a < x}, [a, b) := (a, b) ∪ {a} etc.

(2) For two functions f : X → Y, g : Y → Z, let g©f : X → Z be defined by (g©f)(x) := g(f(x)). For f : X → Y,
A ⊆ X, let f [A] := {f(x) : x ∈ A}, and ran(f) := range(f) := f [X].

1.6.2 The logical part

Unless said otherwise, we always work in propositional logic. A notable exception is Section 7.2.

Notation 1.6.1

We use sometimes FOL as abbreviation for first order logic, and NML for non-monotonic logic.

Definition 1.6.4

If L is a propositional language, v(L) will be the set of its variables, ML the set of its classical models, φ etc. shall
denote formulas, T etc. theories in L, and M(T) or MT ⊆ML the models of T, likewise for φ.

1.6. BASIC DEFINITIONS 31

(A theory will just be an arbitrary set of formulas, without any closure conditions.)

For any classical model m, let Th(m) be the set of formulas valid in m, likewise Th(M) := {φ : m |= φ for all
m ∈ M}, if M is a set of classical models. |= is the sign of classical validity. For two theories T and T ′, let
T ∨ T ′ := {φ ∨ ψ : φ ∈ T, ψ ∈ T ′}. ⊥ stands for falsity, and T for truth.

T ⊆ L will denote the closure of T under classical logic, and ` the classical consequence relation, thus T := {φ : T `

φ}. Given some other logic ∼| , T will denote the set of consequences of T under that logic, i.e. T := {φ : T ∼| φ}.

Con(T) will say that T is classically consistent, likewise Con(φ) etc.

Note that the double bar notation does not really conflict with the single bar notation: closing twice under classical
logic makes no sense from a pragmatic point of view, as the classical consequence operator is idempotent.

DL ⊆ P(ML) shall be the set of definable subsets of ML, i.e. A ∈DL iff there is some T ⊆ L s.t. A = MT . If the
context is clear, we omit the subscript L from DL.

ForX ⊆ P(ML), a function µ : X → P(ML) will be called definability preserving, iff µ(Y) ∈ DL for all Y ∈ DL∩X .
If DL ⊆ X, then µ : X → P(ML) defines a logic T 7→ T µ, T µ := µ(T) on L by T µ := {φ: ∀m ∈ µ(MT).m |= φ} =
Th(µ(MT)).

Note that µ(MT) ⊆ MTµ always holds, but not necessarily µ(MT) = MTµ , the latter only iff f is definability
preserving, as MTµ = M(Th(µ(MT))), and X ⊆ M(Th(X)) will always hold, but not always the converse, as we
see in the following Fact.

We recall

Fact 1.6.2

1. ∅, ML ∈ DL.

2. DL contains all singletons, is closed under arbitrary intersections and finite unions.

3. If v(L) is infinite, and m any model for L, then M := ML − {m} is not definable by any theory T. (Proof:
Suppose it were, and let φ hold in M ′, but not in m, so in m ¬φ holds, but as φ is finite, there is a model m′ in
M ′ which coincides on all propositional variables of φ with m, so in m′ ¬φ holds, too, a contradiction.)

4. If v(L) is infinite, then DL 6= P(ML).

2

We recollect and note:

Fact 1.6.3

Let L be a fixed propositional language, DL ⊆ X, µ : X → P(ML), for a L−theory T T := Th(µ(MT)), let T, T ′

be arbitrary theories, then:

(1) µ(MT) ⊆M
T
,

(2) MT ∪MT ′ = MT∨T ′ and MT∪T ′ = MT ∩MT ′ ,

(3) µ(MT) = ∅ ↔ ⊥ ∈ T .

If µ is definability preserving or µ(MT) is finite, then the following also hold:

(4) µ(MT) = M
T
,

(5) T ′ ` T ↔ MT ′ ⊆ µ(MT),

(6) µ(MT) = MT ′ ↔ T ′ = T . 2

32 CHAPTER 1. INTRODUCTION

We add the following example, useful for some cases:

Example 1.6.1

(A theory with countably many models)

We give here the example of a theory in a language with countably many propositional variables, which has
countably many models.

We code a tree of height ω, with ω many cofinal branches, where we ”open” a new branch at every level. At level 0,
we fix p0. At level 1, we branch for p1, i.e. we permit p1 and ¬p1. At level 2, we will continue just one branch in two
ways. Thus, we continue the branch < p0, p1 > just by p2, but we continue the branch < p0,¬p1 > both ways, i.e.
by p2 and by ¬p2. At level 3, we have already 3 branches < p0, p1, p2 >, < p0,¬p1, p2 >, < p0,¬p1,¬p2 >, which
we continue as follows: < p0, p1, p2, p3 >, < p0,¬p1, p2, p3 >, < p0,¬p1,¬p2, p3 >, < p0,¬p1,¬p2,¬p3 >, branching
just for ¬p2. Coding this into logic, we have φ0 := p0, φ1 := p1 ∨ ¬p1, φ2 := p2 ∨ ¬p1, φ3 := p3 ∨ (¬p1 ∧ ¬p2), etc.

All models of T will make p0 true. Starting at p1, once they make any pi, 1 ≤ i true, they will have to make all pj ,
i < j true. Making all pi false is also a model. So T has the models {mi : 0 < i < ω} ∪ {mω}, where mi |= p0, and
for 1 ≤ j < ω mi |= ¬pj iff 1 ≤ j ≤ i, and mω |= ¬pi for all i ∈ ω. 2

We also note en passant:

Fact 1.6.4

Let T, T ′ be s.t. M(T) ∪M(T) = ML, and M(T) ∩M(T ′) = ∅. Then T and T ′ are equivalent to single formulas
φ and φ′.

Proof:

By M(T) ∩M(T ′) = ∅, ¬Con(T, T ′), so there are finite subsets T0 ⊆ T, T ′
0 ⊆ T ′ s.t. ¬Con(T0, T

′
0). But then

M(T) ⊆ M(T0), M(T0) ∩M(T ′) ⊆ M(T0) ∩M(T ′
0) = ∅, so M(T) = M(T0), likewise M(T ′) = M(T ′

0). Take now
φ :=

∧
T0, etc. 2

We collect now some conditions on logics and choice functions we will often see in the course of development. It
seems better to collect them in one place for easier reference. We will, however, repeat the conditions in the main
results, to make reading easier. The main definitions for preferential structures are in Section 2.3.1, and for theory
revision in Section 2.2.10.2.

We show, wherever adequate, in parallel the versions for a formula on the left of ∼| in the left column, a full theory
on the left of ∼| in the middle column, and the semantical or algebraical counterpart in the right column. The
algebraic counterpart gives conditions for a function f : Y → P(U), where U is some set, and Y ⊆ P(U).

Definition 1.6.5

1.6. BASIC DEFINITIONS 33

(AND) (AND)
φ ∼| ψ, φ ∼| ψ′ ⇒ φ ∼| ψ ∧ ψ′ T ∼| ψ, T ∼| ψ′ ⇒ T ∼| ψ ∧ ψ′

(OR) (OR) (µ ∪ w) - w for weak
φ ∼| ψ, φ′ ∼| ψ ⇒ φ ∨ φ′ ∼| ψ T ∼| ψ, T ′ ∼| ψ ⇒ T ∨ T ′ ∼| ψ f(A ∪ B) ⊆ f(A) ∪ f(B)

(LLE) or (LLE)
Left Logical Equivalence

` φ↔ φ′, φ ∼| ψ ⇒ φ′ ∼| ψ T = T ′ ⇒ T = T ′

(RW) or Right Weakening (RW)
φ ∼| ψ, ` ψ → ψ′ ⇒ φ ∼| ψ′ T ∼| ψ, ` ψ → ψ′ ⇒ T ∼| ψ′

(CCL) or classical closure

T is classically closed -
(SC) or Supraclassicality (SC) (µ ⊆)

φ ` ψ ⇒ φ ∼| ψ T ⊆ T f(X) ⊆ X
(CP) or (CP) (µ∅)

Consistency Preservation
φ ∼| ⊥ ⇒ φ ` ⊥ T ∼| ⊥ ⇒ T ` ⊥ f(X) = ∅ ⇒ X = ∅

(RM) or Rational Monotony (RM) (µ =)
φ ∼| ψ, φ 6∼| ψ′ ⇒ φ ∧ ψ′ ∼| ψ T ∼| ψ, T 6∼| ψ′ ⇒ T ∪ {ψ′} ∼| ψ X ⊆ Y, Y ∩ f(X) 6= ∅ ⇒

f(X) = f(Y) ∩X
(CM) or Cautious Monotony (CM)

φ ∼| ψ, φ ∼| ψ′ ⇒ φ ∧ ψ ∼| ψ′ T ⊆ T ′ ⊆ T ⇒ T ⊆ T ′ f(X) ⊆ Y ⊆ X ⇒ f(Y) ⊆ f(X)
(CUM) or Cumulativity (CUM) (µCUM)

φ ∼| ψ ⇒ (φ ∼| ψ′ ⇔ φ ∧ ψ ∼| ψ′) T ⊆ T ′ ⊆ T ⇒ T = T ′ f(X) ⊆ Y ⊆ X ⇒ f(Y) = f(X)
(PR) (µPR)

φ ∧ φ′ ⊆ φ ∪ {φ′} T ∪ T ′ ⊆ T ∪ T ′ X ⊆ Y ⇒ f(Y) ∩X ⊆ f(X)

(PR) is also called infinite conditionalization - we choose the name for its central role for preferential structures
(PR) or (µPR). Note that in the presence of (µ ⊆), and if Y is closed under finite intersections, (µPR) is equivalent
to

(µPR′) f(X) ∩ Y ⊆ f(X ∩ Y).

The system of rules (AND) (OR) (LLE) (RW) (SC) (CP) (CM) (CUM) is also called system P (for preferential),
adding (RM) gives the system R (for rationality or rankedness).

We will see that limit preferential structures separate the finitary from the infinitary versions of (CUM) and (PR),
see Section 3.4.1.

1.6.2.1 Results on the absence of representation

We will show in this book a number of negative representation results, i.e. that (finite or even infinite) representation
is not possible. It is important to make the problem precise, and, for this purpose, we have to look at what we
consider possible descriptions for a representation. Therefore, this might be the adequate place to discuss the
general framework of negative representation results.

The logical rules and conditions of above table are all composed of T , T , φ, φ, with perhaps some constants like
⊥, ∅, T etc., where the T’s and φ′s etc. can be combined by the usual logical operators, sets of formulas can be
combined with the usual set operators like ∪, ∩, set difference, etc., expressions are formed with ⊆ and = etc., and

we can combine expressions again with boolean connectives like T = T ′ ⇒ T = T ′, etc.

These expressions are implicitly universally quantified.

In different contexts, the expressions will be formed somewhat differently, e.g. for Theory Revision, we will have
binary operators on formulas or model sets, for ”between” we will work with triples like < a, b, c >, expressing that

34 CHAPTER 1. INTRODUCTION

b is between a and c, but the principle stays the same.

In particular, we will not allow to introduce new, arbitrary predicates, as this would allow cheating: we could
then introduce a new predicate, which expresses exactly the property we examine, and if it holds, the system is
representable by the type of structure we look at, if not, this is not the case. Such ”dirty tricks” are certainly not
intended.

We leave, however, sometimes open the possibility to form infinite expressions up to a certain length which we
make precise beforehand, going beyond the expressive power of standard logic.

To summarize: the conditions we admit have the form ∀x1, . . . , ∀xκ(φ(x1, . . . , xκ)), where the xi can range over
formulas, theories, elements, sets, or whatever the context allows, and φ is quantifier free, but perhaps infinite,
though bounded by some fixed infinite cardinal α.

We have now two classes of situations, M and M′, with M ⊆ M′, where M is the subclass of those situations,
which can be generated by some structure. For instance, M′ is the class of all consequence relations, and M the
class of those consequence relations, which can be generated by a preferential structure.

A characterization is now a formula φ (or a set of formulas Φ) in the meta-language used to formulate the logical
properties, which separates M from M′ −M, i.e. φ holds in all M ∈ M, but fails in all M ′ ∈ M′ −M (or,
respectively, all φ ∈ Φ hold in all M ∈ M, but for all M ′ ∈ M′ −M, there is at least one φ ∈ Φ which fails
in M ′). In the cases we consider, we can always assume that we have one single formula, either we look at finite
characterizations, or we admit infinitary conjunctions.

As φ is universally quantified, any possible instance of φ has to hold in all M ∈ M, but at least one instance has
to fail in any M ′ ∈M′ −M.

We call such characterizations normal ones.

We will show in our negative results that we just cannot use enough information to separate the positive cases (in
M) from the negative ones (inM′−M). Take for instance finite characterization. If there is one, it has some fixed
length, say n. So, it cannot speak about more than n instantiations, e.g. only about T1, . . . , Tn. We consider now
a negative case M ′, where we need n+ 1 bits of information to see that it is really a negative one. More precisely,
we show that for all sets S of n bits of information, there is a positive case MS ∈ M, which agrees exactly with M ′

on S. If there were a characterization of length n, which holds in all instances in all positive cases M, but fails in
all negative cases M ′ in at least one instance, we have a contradiction: For one set S of size n, it has to fail in M ′,
but it has to hold in MS, yet all elements from S (and thus all expressions using only elements from S) evaluate to
the same truth value in MS and M ′.

A simple example may help to illustrate the problem and the solution. Suppose we want to discern centipedes
from millipeds. Both species have a head and tail segment, and in between 50 or 500 leg segments. If we have
information of size at most 50, we cannot tell the difference. We see e.g. a head segment, a tail segment, and 48
leg segments. This can be a centipede or a milliped. If we have information of size 51, we can tell, because we
might see 51 leg segments, and this cannot be a centipede. But, suppose that there is for every 10 leg segments
one control center to coordinate leg movements, then information of size 6 will suffice to distinguish, as seeing 6
control centers allows to conclude for a milliped. This is exactly what may or may not happen with the transitivity
problems described below: transitivity allows to bundle much information into one piece of information (a control
center in above picture), but we have to be able to see it, and this is not always possible, if the domain is not
sufficiently rich. Of course, we have to prevent cheating. It will not be allowed to glue a label with ”m” on the
back of millipeds, and a ”c” on the back of centipedes, allowing information of size one to distinguish - we will not
be permitted to add arbitrary new predicates to the language.

In more abstract terms, to prove our results, we will construct logics which are locally (up to size 50 in above
picture, finitely or up to size κ in our results) compatibel with logics generated by a structure under examination,
but not globally. So we have to take the structures, and model them closely on the local level with a new logic,
which we will make globally incompatibel with the structures. ”Globally” may mean in the infinite case, or for a
bigger infinite cardinal.

We consider briefly some examples.

1.6. BASIC DEFINITIONS 35

(1) In Section 4.2.4, we show that there is no finite characterization of distance definable revision. The set of all
revision relations (sets of various φ ∗ ψ ∼| σ etc.) is in above notation M′, the subset of those which are distance
definable is M. We construct ”Hamster wheels” of arbitrary size, which contain a loop in the revision results,
and are thus not distance representable. Yet any true subset of information has its counterpart in a distance
definable revision structure, where it has the same truth value as in the negative situation. (The case is a little
more complicated, as we use sets of models, but we see easily that only sets of cardinality 2 are interesting.)

We consider here also possible complications caused by nestedness of the revision operator, of the form (φ ∗ ψ) ∗ σ
etc. Since we have to stay finite, this might, in principle, cause problems. But, as we will see, the picture stays the
same as in the flat case.

(2) In Section 6.5.1, we show that there is no finite characterization of distance definable ”between” and ”behind”.
We use essentially the same technique. We show that there are arbitrarily big situations, tupels of < a, b, c >,
which are not distance definable, but any true subset has the same truth value in a distance definable structure.

(3) In Section 5.2.3, we show (among analogous results for ranked structures and for distance defined revision)
that there is no characterization at all (i.e. not even an infinite one of fixed maximal cardinality) of consequence
relations generated by arbitrary, not necessarily definability preserving, preferential structures. As the general limit
variant gives in some special cases (which we consider here) the same results, we show at the same time that the
general limit variant has no characterization either.

Given any cardinal κ, we construct a consequence relation, which is not generated by a preferential structure (′′but
almost′′). By prerequisite, there has to be a formula of size ≤ κ, one of whose instances fails in this structure. We

can show that there were only ≤ κ model pairs involved in determining the values of all ≤ κ T
′
s etc. (see Section

5.2.3 for details), and that there is a true preferential structure (constructed from just those ≤ κ model pairs),

which produces the same values for all those T
′
s, so the formula fails in the positive case, too, contradicting the

assumption that it holds for all instances in all preferential structures. As a matter of fact, we show more: We not
only show that exactly those ≤ κ T’s give the same results, but that all T ′s, which use only the ≤ κ pairs to define
their consequences give the same results.

Of course, nestedness could appear here, too, e.g. as something like T ∪ T ′, but this will also be up to a certain
depth only, and as we work with arbitrarily big cardinals, we have plenty of room to move, and this will not cause
any problems.

This might seem in contradiction with the representation result in Section 5.2.1 and 5.2.2, but a closer inspection
reveals that we use there arbitrary unions, which are not bounded by any cardinality.

Thus, our negative results concern the finite and the arbitrary case. The finite case, as transitivity concerns
arbitrarily long, but finite chains. The arbitrary case, as logically small sets may have arbitrary size - depending
on the language. We do not know whether there are interesting and natural cases in between. If normality is
defined via e.g. co-countable sets, in a natural way, this might be a candidate to consider. But, for the moment,
this is pure speculation. We can also use the minimal cardinal, if this exists, of a characterization as a measure
of distance of a semantics from logic. The first case above will then have distance 1, and the second one infinite
distance, counting infinite cardinals. As we will see in the discussions, such values are not absolute, as sufficient
domain closure conditions can reduce this measure of distance.

36 CHAPTER 1. INTRODUCTION

Chapter 2

Concepts

2.1 Introduction

In this Chapter, we will first consider a list of different types of common sense reasoning. We will discuss them,
and base them loosely on what we consider basic semantical concepts, like distance, size, etc.

We think that these concepts are present in human thinking, in some form or the other. But we are also prepared
to modify and generalize them, as it suits our purposes. Thus, what we call a distance will not necessarily be the
same concept as the distance from Bachenpfuhl to Eberswutz, or from London to New York. We still feel that our
notions of distance have sufficient in common with usual distance to merit their name. Our approach is a bootstrap
procedure. We begin with a vague and naive concept, and generalize or refine it as it seems necessary. We are not
only guided by the application to logic - e.g. the syntactic property of cumulativity leads naturally to the semantic
notion of a smooth relation - but also by abstract considerations like generalization etc.

We do not pretend to have given all possible or reasonable interpretations of those reasoning types in an exhaustive
study, and are conscious of the essay character of these pages. In a way, it is a stroll through a lush rain forest of
logics and problems, with a lineean project in the back of our mind.

A moment’s reflection will often show that there are many alternative interpretations possible. For instance, when
we consider the notion of center, and base it on distance, we can define ”center” by the distance to other elements of
the set considered, or to those outside the set - see Section 2.2.1.1. It seems impossible to exhaust all possibilities,
so we often just indicate alternatives, to give the reader some suggestions what one can do. What should be
done depends on the concrete case at hand, and cannot be decided beforehand. We strongly insist here that this
multitude of possibilities is not due to an incapacity of the author to decide one way or the other, but is imposed by
the possibilities of reasoning, determined by the adequacy to the problem. The systematisation is in the fact that
we often find the same basic notions, but not how they are used or composed. Yet, finding over and over the same
basic concepts is already very useful for a systematic and formal treatment of several cases. So, the reader should
not feel confused by the multitude of possibilities, but rather see the basic concepts behind, and, use whatever
seems adequate to him for his problem. The multitude of approaches comes from the multitude of situations one
might wish to treat. We will pursue some approaches in great detail, others not as far, or not at all, but hope that
the reader will find in the techniques explained in detail also ideas how to treat the other approaches in more detail.
So, this can be read on different levels. Either as an introduction to what could be done, and how we can analyse
some types of common sense reasoning, or, as headlines whose chapters have been written to various depths, and
incitations to the (advanced) reader to fill in the missing details for the other chapters.

We then describe these basic concepts in more detail, in particular, we show some natural transformations from one
to the other. E.g., we will discuss how a size (with addition) for elements can be transformed in a natural way to
a ranking of sets. We will also re-emphasize the ubiquity of these basic semantical notions in human reasoning by
describing the situation we saw in the first part from above, now as seen from those basic concepts. The fact that

37

38 CHAPTER 2. CONCEPTS

there are some (also formal) connections between these notions should not obscure the fact that basic intuitions
seem to diverge sometimes.

We then turn to another basic concept in reasoning, coherence. Abstractly, this is the ”transfer” of conclusions
from situation T to situation T ′. For instance, in classical, monotonic, logic, we have that T ` φ implies T ′ ` φ, if
T ⊆ T ′. Such transfer operations allow us to do relevant thinking, we can transfer conclusions from one situation to
another one, and need not start anew every time. Such transfer is also possible in nonmonotonic logic, e.g. when
the logic is cumulative. We describe now the situations we have already seen from the perspective of coherence.
For instance, we look at the coherence conditions imposed by a preference relation on the models. We will mostly
investigate here the algebraic side of the picture, e.g. the properties imposed on the model choice functions by a
preference relation, or a distance.

This perspective gives us a unifying view, but we do not go as far as to formulate a theory of possible or reasonable
coherence properties. (We would probably enter there the domain of analogical reasoning in more detail than we
wish to do. For instance, it might be a reasonable assumption that if we transfer φ from T to T ′, and T ′′ is between
T and T ′ (by some measure), then we should also be able to transfer φ from T to T ′′.) Moreover, as coherence is
(usually more than) half of the logic, in particular, coherence properties are often the key to representation results,
this perspective gives us a nice starting point for the more technical sections to come.

It is somewhat difficult to begin our analysis. We will see that most notions we look at reveal themselves as
interdependent, so it is somewhat arbitrary where we enter the mesh-work. Nonmonotonic reasoning can sometimes
be seen as choosing the ”best” elements (and reasoning with them), certainty is sometimes based on the same choice,
counterfactuals (in the Lewis/Stalnaker interpretation) work with closest (or best, seen from our point of view)
elements, likewise theory revision (in a slightly modified approach), etc. We will just begin somewhere.

We conclude with a remark on terminology: D.Makinson, in [Mak03] has made the difference between completeness
and representation results, we just merrily use both in naive terminology, and go even farther: we sometime also
speak about characterization. But in all cases, it will be clear what we mean (at least we hope so).

2.2 Reasoning types

Common to all formalisms we consider is that they (usually) work with model sets other than those of classical
logic. Instead of considering M(T), the set of classical models of T, we work with some other set of models, say M ′.
Nonmonotonic logics consider normal cases, leave exceptions aside, theory revision considers only closest cases,
as do counterfactual conditionals, certainty looks how well one formula is embedded in another etc. Often, we
”forget” in a controlled way some models, or, we ”forget” the exact limits of the model set, and look how far we
can go without running into disaster.

2.2.1 Traditional non-monotonic logics

Being nonmonotonic is a property, not a name for a unique logic. In all likelihood, the following ”logic” is
nonmotonic: φ ∼| ψ iff the last two digits of the Gődel numbers of φ and ψ are the same. And any formal, abstract
approach to reasoning with information of differing quality will be nonmonotonic: better information can override
weaker information.

But traditionally, the term nonmonotonic is used for logics stronger than classical logic in the sense of (SC) -
see Definition 1.6.5. This is due to the motivation behind their introduction: to create a logic able to conjecture
beyond certain knowledge (formalized by classical logic). Non-monotonic logics, NML for short, were designed to
formalize aspects of reasoning about the ”normal”, ”interesting”, ”important” cases, the majority, or the like. This
is underspecified as it corresponds to somewhat different intuitions, and one of the reasons why there is a multitude
of NML′s : after all, if they are adequate, they have to code the intuition somehow into the formalism, so different
intuitions will usually generate different formalisms. Note that such logics will naturally be nonmonotonic, as any
fact e.g. about the normal case need not be plausible any more once we add the information that the case at hand

2.2. REASONING TYPES 39

is not normal. We now discuss some of these intuitions or interpretations.

We follow the tradition, of being stronger than classical logic, so all nonmonotonic logics are represented by a
model choice function f s.t. f(X) ⊆ X, property (µ ⊆) in Definition 1.6.5.

Here are now some reasonable interpretations of a non-monotonic consequence relation α ∼| β :

• 1. in the normal, important or interesting α−cases, β holds, too

• 2. in the prototypical or ideal α−cases, β holds, too (e.g. ”center” of α−cases)

• 3. in the majority of α−cases, β holds, too

• 4. in as many cases where α holds, and where it is consistently possible, β will also hold (Reiter Defaults)

Note that all properties are relative to a base set (here the α− cases), and a priori there is no connection between
those cases singled out for α and those for α′ (except if α↔ α′). Coherence properties describe just such connections.

”Important”, ”interesting”, ”normal”, ”prototypical”, ”useful”, and ”ideal” are properties of individuals (or of
pairs of individuals, where we compare them for importance etc.), whereas ”many”, ”majority” etc. are properties
of sets. ”Important” admits perhaps more substitution than ”normal” in the sense that we can substitute one
important element by three less important ones. But even if this is not your intuition it will not harm to do as if,
and examine such substituitions. ”Prototypical cases” are perhaps rarer than normal ones, and close to ideal ones,
which might not even exist, but be mere idealizations.

Ideal cases may be special normal cases, maximally normal cases, or they may be formulated in a simpler language,
where we forget about irrelevant properties, this would be outside our framework.

2.2.1.1 Normal, important, or interesting cases

We do not distinguish the notions ”normal”, ”important”, and ”interesting”, we treat them together, and, for
brevity, just speak about ”normal” cases.

We work first in propositional logic.

Abstract normality:

First, and in the simplest case, ”normal” is just a predicate, an arbitrary subset X ′ ⊆ X which contains exactly
the normal cases of X. X ′ can be anything. In particular, for different X and Y, we can choose X ′ and Y ′ in a
totally independent manner. In more abstract terminology, there is no coherence in the choices for the different X
and Y. We then reason - unless we have information to the contrary - with X ′ instead of with X. As the choice of
X ′ is independent from the choice of Y ′ for Y, this kind of reasoning will usually be non-monotonic. Obviously, an
AND property holds, i.e., if we conclude from Th(X) that φ is the case - because it holds in all x ∈ X ′ - and that
φ′ holds (for the same reason), then we will also conclude that φ ∧ φ′ holds, by the rules of classical validity for ∧.

Normality defined by a binary relation:

Much more interesting is the situation where normality is defined by a relation, which expresses that x is more
normal than x′, x ≺ x′. (We follow tradition that the more normal elements are ≺ −smaller. Thus, until you are
used to it, better read: less abnormal.) The normal elements of X are then those of maximal normality, i.e. those
x s.t. there is no x′ ∈ X x′ ≺ x. Note that this is relative to X, i.e. there might well be x′ ≺ x, but outside of X.
Now, we have some coherence: the property of being normal is downward absolute. If x is normal in X, Y ⊆ X,
x ∈ Y, then x must also be normal in Y. This is a trivial consequence of the definition. We shall see in Chapter 3
that this is the essential characterizing property of normality defined by a binary relation.

Normality defined by a distance:

Another definition of normality might be given with distance: The normal cases X ′ of X are those elements which
are in the center of X. They are the less marginal cases. Of course, it is not clear how ”center” should be defined,
even given a distance:

40 CHAPTER 2. CONCEPTS

• (1) The center of X might be the set of elements which have maximal mean distance to elements outside of
X.

• (2) It might be the set of elements which have minimal mean distance to the other elements of X. (This is
not the same as variant 1., as easy examples show.)

• (3) It might be the set of those elements of X, whose minimal distance to the elements outside of X is
maximal: x ∈ X ′ iff ∀x′ ∈ X(d(x, U −X) ≥ d(x′, U −X)).

And there may be other reasonable definitions of ”center”.

It is easy to see that the coherence property of normality determined by a binary relation is usually not satisfied:
Take the natural numbers with standard distance, and consider X := {2, 3, 4, 5, 6}, Y := {2, 3, 4}. Then the center
of X will be {4}, but the center of Y will be {3}. On the other hand, the notion might seem so weak that there
are no coherence properties at all. This is not the case, as the following example shows for variant 2 (at least as
long as we work without copies - you will understand the remark once you have read Section 4.3 on counterfactual
conditionals):

Consider X := {a, b, c, d} and a symmetric distance. If, for all 3-element subsets X ′ := {x, y, z} C(X ′) = X ′, then
we have d(x, y) + d(x, z) = d(y, x) + d(y, z) = d(z, x) + d(z, y), so all these three distances inside X ′ are the same,
but then, as it holds for all such X ′, all distances are the same, and C(X) = X has to hold, too.

We can also take a dual approach with a relation or a distance: instead of considering the ”best” - i.e. most normal,
or in the center - elements as done above, we take away only the worst, consider all but the least normal, all but
the most excentric ones, etc.

There are certainly still other ways to determine normality than by arbitrary choice or by a binary relation, or by
a distance. We could, for instance, single out globally the normal elements, say U ′ ⊆ U, if U is the universe, and
then choose X ′ as X ∩U ′ - logically, this would just amount to adding Th(U ′) in classical logic, so this is not very
interesting, but it has strong coherence properties: If X ⊆ Y, then X ′ = Y ′ ∩X.

The approach by a binary normality relation between elements is the most developed one, and we return to it
now. First, one can impose additional properties on the relation. Such properties sometimes have very interesting
repercussions on the resulting logic. For instance, ”smoothness” (see below in Section 2.3.1) results in cumulativity,
”rankedness” (see Section 2.3.1, too) in rational monotony, etc. Second, and on a more basic level, one can work
with ”copies” of models, (in an equivalent language: non-injective labelling functions), as is done in modal logic,
or without copies (or injective labelling functions). An object is then called minimal, iff at least one copy is
minimal. Third, if there are no most normal elements, our definition collapses, as X ′ will be empty, so falsity
will be a consequence. For this situation, we need a different, and more complicated approch: the ”limit” version
of normality. In this variant, φ is a consequence of T iff, ”from a certain degree of normality onward”, φ holds
whenever T holds, i.e. when we approach the limit of normality, φ will finally always hold when T does. For
instance, suppose that the models mi, i ∈ ω, mi |= T, get ever more normal with increasing index, mi � mj for
j > i, then from some n onward, φ will always hold. (The general formal definition is in Section 2.3.1, Definition
2.3.1)

Note that these remarks also apply to distances, in particular, the limit variant is very useful, if we have infinite
approaching chains of elements.

We turn to the first order case.

We have two possibilities for a normality predicate (whether it is an abstract predicate, or generated e.g. by a
binary relation): We can define it on the set of all models, or within each model (or, perhaps, a combination of
both). The latter was not possible in the propositional case. Within one propositional model, a formula holds, or it
does not hold. There is no graduation, there is no approximation. (This can, of course, be different when we have
more than 2 truth values.) Essentially, in the first case (meta-) quantifiers of normality range not over all models,
but only over part of them, in the second case, the object language quantifiers will be restricted to normal cases.
For instance, ”normally φ(x) holds”, will signify in the first case: in all normal models, φ(x) holds everywhere,
i.e. ∀xφ(x) holds in all normal models, and in the second: in all models, φ(x) holds for all normal elements of the

2.2. REASONING TYPES 41

model. We can capture - at least in some cases - the first interpretation by the second: we just choose the ”local”
normality predicate as ∅ for the non-normal models, and as everything for the others.

We do not know whether one interpretation should generally be preferred over the other, the most important is
perhaps that we are aware of the two possibilities. There is, however, a caveat to make about the second variant:
We could, for instance, choose in models where φ(x) fails almost everywhere, normality in such a way that still,
normally φ(x) holds: normal elements are just those very few where φ(x) holds. It is doubtful, whether this has
still much to do with intuition.

There is an important variant of the first interpretation, in which normality of models cooperates with maximal
extensions of certain predicates. This idea seems to correspond rather well to intuition, and we find it also in the
short discussion of Reiter defaults. (We consider for simplicity only formulas with one free variable, which we do
not write down systematically.) We describe this now.

It seems natural to say, that in a structure M (a set of models, with a normality predicate or relation ≺ on the
set), ”normally φ′′ holds, if those models M in M are normal, where φ(x) has maximal extension (perhaps for
a given universe, perhaps restricted by some cases where ¬φ(a) has to hold, etc.). ”Maximal extension” can be
either by set inclusion, or by cardinality. We consider here only maximality by set inclusion.

When we consider a set of such formulas Φ(x), we can distribute in two ways: Either we say Φ(x) holds in such
a structure iff all φ(x) ∈ Φ(x) individually hold normally, or, iff in the normal models, for each φ(x) ∈ Φ(x), we
could increase the extension of φ(x) only at the cost of another φ′(x), i.e. there might be φ−better models, but
they will be φ′−worse for some φ, φ′ ∈ Φ. The two variants are then, using [φ]M for the extension of φ(x) in the
classical FOL model M :

M |=a Φ iff: if M is a ≺ −minimal model in M, then there is no M ′ ∈ M s.t. for some φ ∈ Φ [φ]M ′ ⊃ [φ]M
M |=b Φ iff: if M is a ≺ −minimal model in M, then there is no M ′ ∈ M s.t. for all φ ∈ Φ [φ]M ′ ⊇ [φ]M and for
some φ ∈ Φ [φ]M ′ ⊃ [φ]M

We can then pose the question: What are the rules for the consequence relations Φ |=a ψ and Φ |=b ψ, where this
is defined as follows: Φ |=a ψ iff for allMM |=a Φ implies M |=a Φ ∪ {φ} etc.

For the second variant, suppose that φ and ψ are partially contradictory, i.e. there are elements, where either one
may hold, but not both together. One might want to see here some equilibrium, like, in half of the cases φ holds,
in the other half ψ holds. But this seems difficult to achieve. For instance, if we know that there must be more
φ−cases than ψ−cases, shall we try to follow this proportion also for the contradictory cases?

When we extend the approach to sentences like: ”if, φ(x), then normally ψ(x)′′, something like a default with
prerequisites, we see new questions which need to be answered. As long as we have just this sentence, we will
probably make the same approach as above, only relativized to [φ]M in each classical model M. But, if we also
have ”normally φ(x)′′, then we cannot simply fix [φ]M , but we have to vary it, too. And if we make [φ] bigger, but
let [ψ] constant, we seem to have decreased the validity of ”if, φ(x), then normally ψ(x)′′. Thus, such sentences
merit a more detailed treatment, in the line of the above variant b.

Again, the same considerations (normality defined by a relation, a distance, limit version, etc.) apply as for the
propositional case.

2.2.1.2 The majority of cases

The definition of T ∼| φ is now T ∼| φ iff φ holds in a majority of T-models, or in a big subset of the T-models.

Note that the alternative definition: ”holds in all big subsets of the set of T-models” etc. is degenerate: If majority,
”big” etc. are defined reasonably, the whole set of T-models will be big, so ∼| would be ` .

The first question is how we determine ”majority” and related notions.

There are at least three natural possibilities:

• 1. by counting

42 CHAPTER 2. CONCEPTS

• 2. by an abstract measure in the sense of mathematical measure theory Note that here, size of singletons
does not necessarily determine size of sets, e.g. in the standard measure on the reals, all countable sets have
size 0, but there are sets of arbitrarily big size.

• 3. still more abstractly by a filter, where the filter contains the big subsets, the last variant can be weakened
to a weak filter (see Definition 1.6.2).

It is easy to see that counting results in problems in the finite case: If the only majority is the whole set, then ∼|
is ` . Otherwise, as each x is definable by a formula φx, and each X − {x} is a majority, ¬φx is a consequence for
each x. But the conjunction contradicts T. Thus, ∼| is contradictory, when we admit arbitrary conjunctions (this
applies to weak filters, too).

An interesting approach is to consider sets of size 1 for an abstract probability measure. This system is closed
under countable intersections (by the properties of a measure), and thus even stronger than a filter, which is closed
under finite intersections only. We will, however, concentrate on the main approach taken in the domain, the filter
approach and related notions. (The main reason for its popularity, the author supposes, is, that it cooperates well
with usual logics, which admits arbitrarily long finite formulas, but no infinite ones, so, in particular no infinite∧
.)

By the central filter property (F3) (recall Definition 1.6.2), (AND) holds trivially in true filters (and not necessarily
in weak filters). (RW), right weakening will always hold by (F2).

We have seen above that e.g. normality defined by a binary relation imposes coherence properties. This is not
the case with filters. In principle, we can choose all filters for each subset independently. Yet, there are natural
coherence conditions for such filter systems. The most natural one is probably the analogue to (F2): If A ∈ F(B),
and A ⊆ C ⊆ B, then A ∈ F(C). (Often, intuition is more clearly expressed by considering the dual notion of an
ideal, e.g.: If X is a small subset of Y, and Y ⊆ Z, then X is small in Z. We will change from filters to ideals and
back liberally.) An immediate consequence on the logical side is cautious monotony: If T ∼| φ and T ∼| ψ, then by
(F3) T ∼| φ ∧ ψ, so there is a big subset X ⊆M(T) s.t. X ⊆M(T ∪ {φ, ψ}), but as X ⊆M(T ∪ {φ}) ⊆M(T), X
is big in M(T ∪ {φ}), so T ∪ {φ} ∼| ψ. In the case of weak filters, we will generally only have the weaker property
T ∼| φ ∧ ψ → T ∪ {φ} ∼| ψ.

Note that a principal filter (i.e. if there is A ∈ F s.t. for all B ∈ F A ⊆ B), can be seen as the set of supersets of
the normal cases, with A the set of normal cases.

We can again consider the FOL case, and similar considerations as for normality apply. We can use a filter (or a
system of filters) on the set of models, or inside each model. The latter is investigated in detail in Section 7.2.

2.2.1.3 As many as possible (Reiter defaults)

We will treat defaults only as far as they reveal or contrast some basic ideas we also see in formalisms which we have
treated more in depth. In particular, we will only discuss normal defaults with or without prerequisites here and
in Section 7.2. We will also neglect the problem of consistency of default theories: In our opinion, a default theory
{: φ, : ¬φ} with the meaning: ”if consistent, assume φ′′ and ”if consistent, assume ¬φ′′, is simply inconsistent, and
has no meaning - see Section 7.2 for a more detailed discussion. Our argument is, in essence, pessimistic: there
seems to be no global solution. One can often find implausible special cases of generally plausible rules.

We first look at propositional logic.

In propositional logic, when we say ”by default α′′, we can only exclude ¬α−models as abnormal. This is at first
sight nothing more than normality as already discussed. There is a possible difference, when we consider subsets X
of the universe. As long as there is one α−case in X, i.e. X is consistent with α, Reiter defaults impose the normal
X-cases to be α−cases - no matter how intuitively bizarre X might be. We see the same behaviour in ranked
structures (see Section 2.3.1): one minimal model suffices to ”kill” all the rest. This property may be desirable or
not, it seems to depend on the choice of X.

Consider such examples for X like: A big set of birds, all penguins, emus, etc., and just one sparrow. The default

2.2. REASONING TYPES 43

in its usual use will tell us, that birds in this set normally fly, which goes against (my) intuition.

Human reasoning does not treat arbitrary predicates like φ ∨ ψ ∧ ¬σ, natural kinds like ravens or tables, and
predicates like white or big in the same way, as classical logic does. And if they are not treated the same way, they
must also be different things for any logic that pretends to be close to human reasoning. We should not be blinded
by classical logic, which was created for other purposes.

The idea is then to prevent situations whereX∩[φ] is very small, perhaps even ”artificial”, to force f(X) = X∩[φ] 6=
∅. To address the problem, we may single out ”admissible” predicates, which are meant to be ”independent”,
”irrelevant” for the default. Like a color for birds, etc., assuming that flying is independent from color. This
prevents artificial examples like the one above. Can we say anything about such predicates? We do not think we
should admit arbitrary intersections, as we might well construct counterexamples from reasonable predicates this
way - sets can get arbitrarily small this way, and we want to be closer to simple common sense reasoning than
operations with small sets are. Neither should arbitrary unions be admitted, as we could use the same positive
case (one flying bird) again and again, to obtain a case similar to the one above. But e.g. the following operation
seems possible: If X and X ′ are admissible, and X ∩X ′ = ∅, then X ∪X ′ is admissible, too.

We turn to several defaults. It seems reasonable to make as many conclusions of as many defaults as possible true,
to abbreviate, we just say that we make as many defaults as possible true. It also seems reasonable not to sacrifice
one default to make another true. Thus, model m will be better than model m′ iff all defaults which hold in m′

hold in m, too, but there is at least one default, which does not hold in m′, but holds in m. Alternatively, we
can define a ranking by the number (and not the set) of defaults, which hold. The difference to usual preferential
models is that even subideal cases are still differentiated: without explicit coding, preference says nothing about
α ∧ ¬β−cases, when α ∼| β - here we save as much as possible, and this seems to correspond often better to
intuition. (This is also known as the blond Swede problem: normally, Swedes are tall and blonde. But even not
blonde Swedes should be tall - unless we suspect a common mechanism behind being tall and blonde, then failure
of one makes failure of the second probable. We see that there is no universal solution.) The behaviour for subideal
cases can also be described as ”greediness” of defaults: we make as many cases as possible hold.

We turn to first order logic.

Here, normality can again (as in Section 2.2.1.1) be achieved inside classical models, and/or on the set of classical
models. We can choose a normality predicate inside the models, this corresponds to a Kripke structure of the
propositional case, or we can choose ”outside” suitable models as best (or make a combination of both). In the first
case, we work inside one classical model, and choose there one or several subsets of the universe, whose elements
are to be seen as the normal cases. In the second case, we prefer one (entire) classical model to another one, etc.
In a combination, we have ”best” elements inside classical models, and ”best” models. We discuss the ”outside”
variant. To compare models, we need a measure. It seems reasonable to say that model m satisfies a default φ
better than model m′ does, if the extension [φ]m′ of φ in m′ is a subset of the extension [φ]m of φ in m. This
can be more complicated when the universe changes: we may have added one φ−case, but also many ¬φ−cases
going from m′ to m. So a more careful comparison is necessary - we will not go into details. Of course, the same
considerations for predicates X as above apply, as we may - and perhaps should - choose not only [φ] maximal,
but also [φ]∩X for suitable X. This might be contradictory, if we have such information in the background theory
(which says that more X ∩ [φ]−cases will generate less [φ]−cases globally), and we have to decide what to do then.

Defaults with prerequisites are treated essentially in the same way by restriction to the extension of the prerequisite.
If the prerequisite itself is a default, we have sometimes a competition between the two - this is, in this sense, the
same problem as the one for several defaults without prerequisites.

2.2.2 Prototypical and ideal cases

We mention this case here for completeness’ sake only, but will not, and are not able to, go into detail. In the
author’s opinion, prototypical reasoning is the domain of (experimental) cognitive psychology. The notion had
fallen there into discredit, probably as it was conceived too narrow, and seems to be reviving slowly. The author
is simply incompetent in this domain.

44 CHAPTER 2. CONCEPTS

Reasoning with prototypes is an example of semantical reasoning. If we see prototypical reasoning as a form of
efficient reasoning, it is natural that one class can have several prototypes - depending on the kind of answer we
try to give - this is, as far as we know, confirmed by psychologists. A zoologist will probably work with a different
prototype for a chicken than a chef de cuisine. We also conjecture that prototypes are something dynamical, we
start with a coarse and very simple prototype, and refine if insufficient.

We will thus have several operations on prototypes:

• choice, if there are several candidates

• modifying (revising) prototypes

– correcting

– refining

• combining several prototypes: if we think about chicken in a garden, we will probably not have a ready made
prototype for this situation, but somehow combine a chicken with a garden prototype.

• learning prototypes

We should also be able to measure the quality of a prototype - the natural criterion being the question whether it
does what it should do, and to what degree.

One, but certainly not the only formal interpretation of prototypical elements of a set is to take those ”at the
center” of the set - an operation we saw already above. Often, a prototype will not be a member of the set of cases
considered, but an idealization, which combines the ”salient” properties - even if this combination does not exist
in reality.

2.2.3 Extreme cases and interpolation

Extreme cases are somewhat the opposite to prototypical and normal cases. They may be the worst elements in
some normality order, or excentric elements wrt. some distance. Extreme cases can be very interesting for verifying:
Suppose we do quick reasoning with some prototypical elements, and check the result with extreme cases. The
reason behind is, that reasoning with complete theories, perhaps in a simplified language, is fast, and we think
that results somehow ”respect” the between relation (between extremes). More precisely, if φ holds at a, and at b,
we hope that it will hold at every element between a and b, too. Of course, there are counterexamples: take two
extreme models m, m′, and their defining formulas φ(m), φ(m′) (in the finite case), then φ(m) ∨ φ(m′) will hold
there, and nowhere else. It depends on the kind of question (and distance).

2.2.4 Clustering

Clusters are ”natural” subsets (or sets of subsets) of the domain, where elements from one cluster are supposed to
have more in common with each other than with elements from other clusters.

It seems probable that human reasoning works, for simplification, with such clusters, perhaps choosing one (or
several) prototype(s) for each cluster. We can conjecture that natural kinds form clusters.

If we form clusters inside a small set, we can expect clusters to be finer that when we form them inside a big set:
a,b may be in the same cluster in a big set, but in different ones in a small set. For instance, when we look at all
animals, dogs and cats may form one cluster each, but when looking at domestic animals, we might differentiate
between different kinds of dogs. Abstractly, we would expect clusters in a smaller set to form subsets of those in a
bigger one - borders in the bigger set will be respected.

There are several ways clusters can be formed:

• (a) Via some distance:

2.2. REASONING TYPES 45

– (a1) Given some fixed distance d, all elements connected by paths with step length ≤ d form a cluster.
Adding points can fuse old clusters by adding ”stepping stones” between the old clusters. Fusing clusters
will necessarily contain additional elements.

– (a2) With varying the maximal distance: clusters are formed as in (a1), but d is chosen e.g. as 1/2 the
minimal distance needed to form one big cluster containing everything. If clusters fuse, we need at least
one element more distant than the old elements.

• (b) Via ”simple” sets as discussed briefly in Section 2.2.6. In this case, different clusters may have non-empty
intersections. We may treat the intersection in the way of defeasible inheritance.

• (c) By some other equivalence relation, e.g. by considering the levels of a ranked structure as clusters. In
this case, clusters will be absolute, the size of the set in which we form them is not important. This is done
e.g. in the model size based approach to theory revision.

2.2.5 Certainty

We discuss now something which is perhaps best seen as a re-interpretation of the notion of epistemic entrench-
ment of theory revision: at least when both are defined via distance, certainty corresponds exactly to epistemic
entrenchment: Given information T, with T ` φ, the more M(¬φ) is distant from M(T), the more φ is certain, the
more it is entrenched.

The notion of certainty has a number of more or less different uses.

First, we can firmly believe in some classical information T, but, just in case T is wrong, we can pose the question
which parts of T we still consider most certain. In this case, we go beyond classical logic in certainty: If we weaken
(i.e. increase) X := M(T) to X ′, then T ∼| φ iff X ′ |= φ is more certain than classical logic.

Second, we may know that T is wrong, but would like to ”save” some of T - this is theory revision.

Third, we can doubt information T, and would like to have some degree of certainty we might still give it.

Fourth, when we go beyond classical logic, e.g. to normal cases, we can ask the question how much of certainty we
have lost.

In the first and second case, we have to weaken T to a certain degree, this corresponds to looking for a bigger
(model) set than X. In general, the more we weaken the set, the safer we are - with truth the limit. The problem
is how far to go. The choice can be made by simplicity: we look for a simple set including X. Or, given some
distance, we take an area of diameter S surrounding X, etc. These alternatives are discussed in more detail below.

In the third case, degree of certainty, a good idea might be to first find a weakening of T to some T ′, and
then measure somehow the difference between the two. In the case of weakening by distance, we have a natural
candidate, a simple candidate is also just the set difference (of the model sets) - see also below in the paragraph
on approximation.

In the forth case, we can again measure the loss of certainty by the set difference (the set of cases we have neglected)
between X and µ(X). This, however, will neglect any graduation in importance we may have between the various
elements. In more definite cases (ranked structures of preferential reasoning, see below), we can use the normality
difference of the ranks as a measure - the natural distance between the best and the worst elements of X. Changing
the base set a little may undermine certainty. Thus, coherence properties weaken certainty to some degree, but may
also preserve weaker certainty, as in Cumulativity (in some idealistic approach, i.e. immune to finite operations).

We discuss now in some more detail the second case.

There are various reasons why information can be uncertain. (1) The communication channel can be noisy, the
source of information may be unreliable in various ways, (2) the source may be interested not to tell the truth and
thus distort in a certain direction, (3) the source may have been under the influence of alcoohol, (4) visibility may
have been poor, etc.

46 CHAPTER 2. CONCEPTS

Without details about the coding, it may be difficult to draw any conclusions in the first case. We are not familiar
about drunk witnesses, so we leave this question to the competent.

If we suspect an information source to lie, we will try to determine the direction of its lies, what it may want to
hide, or what it may want to make us believe. We might then - in a first approach - ”shift” the information given
by the source in the opposite direction. The set we might accept will be ”drawn” into one direction, i.e. we will
make the distance to a point or another set smaller.

If visibility was the problem, we cannot be sure about details, but the general picture was perhaps correct. The
car discribed as black might have been blue, but it probably was not a bicycle. We might be willing to ”weaken”
the information to a certain degree, i.e. X ⊆ f(X), where the ”certain degree” might be coded by an area around
X, covering a certain distance from X, i.e. f(X) := {y : d(y,X) ≤ k} for some k - however this may be defined.
We might also think of some ”natural” neighbourhood of X, e.g. the convex hull of X wrt. to some distance d.
The more we consider the information reliable, the less we will weaken it. The more we weaken it, the more we can
be sure about the information, with truth the limiting case. Of course, we can, in a subsequent step or in parallel,
also take ”normality” (and thus perhaps a preference relation) into account.

In some cases, we will not be ready to give a definite boundary until which we are prepared to go, but can still do
relative reasoning: if we are prepared to accept x, then a fortiori we will have to accept y.

Instead of working with distance, we can also work with size, taking bigger supersets of X to be more certain.
There is no universal answer, it depends on the structures we have, and what seems to fit best.

2.2.6 Quality of an answer, approximation, and complexity

Suppose we ask the question φ?, and get as answer ψ. If ψ → φ, or ψ → ¬φ, (and we know it) the question is
answered, even ”over-answered” if the implication is not an equivalence, we have more precision than we wanted.
The interesting case is where neither holds. Suppose we cannot do any more questioning for the moment, and have
to do with the answer. We then have to decide for φ or ¬φ, and also may want to have some idea of the quality of
the answer, e.g. in order to decide for further inquiries later on.

We think that the decision is best based on a comparison of the quality of the argument ψ for or against φ.

For instance, if ψ ∧ φ is a big subset of φ, and ψ ∧ ¬φ is a small subset of ¬φ, ψ seems a good argument for φ,
and a bad one for ¬φ, and we can measure the quality e.g. by the pair (big,small), or directly by the pair of sets
(ψ ∧ φ, ψ ∧ ¬φ), if we want more information.

But the situation can be more complicated, too: The sizes we discuss may also depend strongly on what we want to
do with the information φ. If we decide for an action involving high risks in case of error, even a small probability
of assuming φ, when ¬φ is the case, will weigh heavily. So size or probability should not be an absolute notion.

Approximation is (partly) a related problem. It has two parts: first, how to find an approximation, second, how
to judge its quality. Sometimes, not all sets will be admitted as candidates for an approximation to a set X, due
to various reasons. (E.g. only ”simple” sets might be chosen, where e.g. a set convex wrt. some distance might
be a simple set. In this case, the best approximation from above is the smallest convex set containing it, and from
below any of the biggest convex sets contained in it.) Approximation from above can also be seen as nonmonotonic
reasoning applied to the complement - choosing a suitable subset.

The quality of an approximation can be determined similarly to the quality of a reply. We can e.g. measure the
size of the set difference between the approximated set X, and the approximation A. We might also work with
distances, and determine the quality of an approximation from above by the biggest distance of a point a ∈ A−X
from X, if A is an approximation from below, we might take the biggest distance of a point a ∈ X −A from U-X.

Complexity

We have already said repeatedly that a distance relation - in particular the Hamming distance - and its associated
notion of convexity can be used to describe simple sets. We can now define the complexity of a set, c(X) by

2.2. REASONING TYPES 47

counting the minimal number of convex sets it decomposes to. In a next step, we can define the complexity of a
logic described by a model set function f as the maximal (or average) difference c(f(X))− c(X). Note that this is
not a complexity of computation, but of argument vs. result.

2.2.7 Useful reasoning

We consider here situations like the following: a physician has several drugs d, d′ etc. at his disposal, he is
confronted with a patient, but has only limited diagnostic possibilities, he may make an error in his diagnosis,
and consequently give the wrong drug. The right drug has beneficial effects, the wrong one can do harm. So he
has to weigh the benefits and costs, and the likeliness of error. Essentially, what he does here, is some kind of
rough integration, or rough multiplication, in the following sense: ”The likeliness of error is small, but if I err, the
consequences are very serious. On the other hand, with this diagnosis, I am less sure, but if I am mistaken, the
drug may not help but at least will not do much harm, what shall I do? Is small∗big better than medium∗small?′′

There will not be any global answer to this, but we can probably still give a reasonable framework. In particular,
it might be important to be able to do relative reasoning here. Essentially, the question is how abstract measures
inherit from sets to their products, (like small ∗ small = (very) small?). What if we can compare both base sets?

It seems reasonable to decompose the problem into two sub-problems:

• 1. What is the utility (or harm) of assuming φ in model m?

• 2. What is the overall utility for a set of models?

On 1.:

It seems that we can make only very weak reasonable assumptions: Diagnosing truth has probably value 0, as we
know beforehand that truth holds, diagnosing for a model m Th(m) (its complete description) will probably have
maximal value for that model - one cannot get better -, and logically equivalent formulas have the same utility.

Unfortunately, this seems about all we can do. Suppose e.g. m |= φ ∧ ψ. Diagnosing correctly φ ∧ ψ may lead
to an efficient treatment, but diagnosing correctly φ, without realising at the same time ψ may be a catastrophy.
Now, the diagnosing person (or apparatus) might first say ′′φ′′, stop a moment, and go on ′′ψ′′. So he has really
said ′′φ ∧ ψ′′. Consequently, what we mean by diagnosis is something like: ′′φ, ψ, - and this is all I know”,
or, equivalently, the conjunction. So the diagnosis is a single formula (and, if you like, all its logical consequences).
Consequently, in above case, the (correct but incomplete) diagnoses φ and ψ may have very negative value, the
(correct and perhaps still incomplete) diagnosis φ∧ψ may have a very positive value. Conversely, if m |= φ∧ψ∧σ,
diagnosing φ and ψ (separately) may have positive value, but diagnosing φ ∧ ψ (and failing to see σ) may have
very negative value. As the values depend on the world as it is, and the world can be bizarre, it seems that any
attribution of values is possible.

Fortunately, the world is not as bizarre as it could be, so there will be regularities. Often (normally, by default),
utility will be additive, i.e. realizing φ ∧ ψ will have the sum of the utilities of φ and ψ.

Note also that, usually, not all formulas are candidates for a diagnosis, but only (conjunctions of) a limited number
of formulas (e.g. ”patient has cold”, ”patient is injured”,, but not: ”patient wears green trousers” etc.).

On 2.:

We are here in a situation where we have some information, and make a diagnosis. As we have only some
information, we cannot be sure which actual case we are in, say we only know that we are in set X (e.g. patient is
conscious, middle-aged,). So the utility of the diagnosis is the sum of the individual utilities of this diagnosis
for all x ∈ X. Note that, even if we think that φ is the best diagnosis by symptoms, we may still prefer to work
with a weaker (or different) diagnosis, because the danger in case of error may be less.

Usually, we will not calculate a detailed sum, but will do with a rough estimate. This can either be a rough sum
as discussed above (e.g. a mortal risk for a patient will carry it all), or a rough product: If, in most cases, the
diagnosis is very beneficial, and in a few cases slightly harmful, we will probably consider the overall utility positive.
We look at this product now in more detail.

48 CHAPTER 2. CONCEPTS

First, if a rare occurrence of an extreme value can carry it all, it seems that we look more at an extreme form of
sum than at a multiplication. In that case, in a way, one of the coordinates is stronger than the other. In the other
cases, We think we often just calculate the minimum of both values: small ∗anything is small, medium∗anything
is medium or small (if ”anything” is small), etc.

2.2.8 Inheritance and argumentation

Inheritance and arguments have a realistic feeling: they look like real reasoning. We think it is their combination
of nonmonotonicity and analogical reasoning which makes them attractive.

We will discuss in this Section two things:

• 1. Why we think that it is at least hard to find a satisfactory theory of argumentation - and we have certainly
none to offer - and a way out of this difficulty.

• 2. Present in anecdotal fashion elements to consider in this framework. They will fit into the general
considerations presented in 1.

The problems with theories of argumentation and a way out

We think it might be difficult to find a good and universal theory of argumentation - where, in this context, a
theory of argumentation compares arguments, and does not tell how to generate them.

First, an anecdotal (meta) argument. Defeasible inheritance can be seen as a simple case of argumentation -
the language is poor, so is the logic. Yet there are a big number of different approaches (upward vs. downward
concatenation, choice of admissible reference classes, etc.), and we have never seen a convincing (meta) argument
why to prefer one approach over the other. Note also that being cautious in one case might mean being bold in
the other: the argument we were cautious about could have served to oppose the one we end up bold about.

Second, as a side remark, note that the existence of a perfect theory of argumentation would lead to a funny
situation:

As long as a theory of argumentation is deficient, we can find situations, where it gives the intuitively wrong answer:
it says argument a is better than b, where the converse intuitively seems true.

But once we have found an optimal and universal theory TA of argumentation, what do we see? Suppose we have
another theory TA’. If TA is optimal, and TA’ not, we have to be able to see this, so there must be good arguments
in favour of TA and against TA’. As TA is optimal and universal, it has to be able to recognize them as such. They
are instances of the situations TA describes as good arguments. So the quality of TA is based on its own instances
- and not on anything more: if there were other reasons to consider TA optimal, by optimality and universality,
TA would be able to recognize them.

So any optimal TA must be some kind of fixed point - you cannot improve, but the ground you stand on is shaky,
as it is a cycle, or else of limited scope.

Third, forms of argumentation which may be bizarre in one context, can be justified in others. Usually, it is bad
argumentation to give more weight to components of an argument, because we like the result. A very bad example
can often be seen in politics, where people deny facts to embellish their favorite political monstrosity (Hitler and
Auschwitz, Stalin and the Gulag, BenLaden and the destruction of the World Trade Center). But, in tentative
scientific reasoning, making correct predictions, or solving some difficult problem, can give credit to a new scientific
theory (if we are not hard core Popperians). Despite the differences in these cases, the underlying question is
whether we can justify an argumentation by its results.

Thus, the quality of an argument seems to depend on the context, and perhaps we cannot do more than enumerate
some cases, questions, and problems, without any hope for an exhaustive treatment.

One such question is whether one argument can influence the quality of another one. An example is specificity in
defeasible inheritance. Establishing that B → A may allow to give precedence to a path from C via B to one from

2.2. REASONING TYPES 49

C via A - as more specific information is considered more reliable.

The general situation can probably be described as follows: we have ”bits of logic”, i.e. perfectly logical inferences
(in whatever logic), and ”shaky bridges” between these inferences to make them fit for concatenation, which really
ARE the argument (and which are weaker than justified by the logic we work with). These bridges can be seen
as the strengthening of the first inference, or of the second, or of something in between. They may be temporary
and local constructions, just for this one argument, or more global and durable strengthenings of the respective
inferences. An argument can thus be considered a mesh of inferences in some logic, with some patchwork to fill
the gaps.

A comparison of two arguments will then be the comparison of the quality of these ”bridges” - plus the comparison
of the different underlying logics when they differ. The question how we measure the quality, and whether it is
fixed once and for all, or itself subject to reasoning, is left open.

We have then the following situation: there might be no universal and optimal theory of argumentation. The quality
of an argument is determined by the quality of the underlying logic (classical logic, or, even better, something
stronger than classical logic, some form of nonmonotonic logic, etc.) and the size of the ”gaps” between the
inferences - in our approach, the quality of an argument is the size, importance, or whatever, of the cases we have
neglected. In the simplest form, this is just the set of cases neglected. In a more subtle approach, this set might
itself be reasoned about, we may consider it big, important, negligeable, etc., and this size etc. need not be fixed
from the outset, but might be reasoned and argued about. If the theory of argumentation is not a constant, we
treat it as a variable, and put it into object language.

We then have to put the necessary tools for this reasoning into the language.

For the moment, we see two things we need: We have to speak about (relative) size, and about (relative) distance.
Distance might be used here in two variants: first, an elementwise distance between sets as in the revision semantics,
second as a measure of similarity between sets (where e.g. one might be a subset of the other), e.g. for analogical
reasoning.

If we work in the finite framework, we then add for instance a new operator < to the language (with, of course,
precise meaning), where φ < ψ means that the φ−models form a small subset of the ψ−models. The connection to
the N-operator is obvious: φ < ψ iff φ → ¬N(ψ) - provided we speak about the same notion of size, but this will
usually not be the case. In argumentation, as described above, a neglected set of cases might still be much bigger
than the complement of N, we will go beyond what usual nonmonotonicity allows us to do. We can relativize
further by e.g. φ < ψ → φ′ < ψ′. Similarly, we may express d(φ, ψ) < d(φ′, ψ′), a quaternary relation. Once we
have these operators, we can express counterfactuals, revision, nonmonotonicity etc., by using sufficiently many of
them. Soundness and completeness themselves migrate (essentially) to the object language.

But now we can go still one step further. In a realistic setting, a Reiter style default should be interpreted as a
tentative argument (and it is implicitly so, as it can be overridden by stronger classical logic): unless we can provide
a better argument to the contrary, we assume φ to hold, or, here is an (admittedly not very strong) argument for φ,
I challenge you to prove the contrary by a stronger argument. We thus extend the essential meaning of defaults to
arbitrarily weak arguments, which we can treat using our building blocks (< etc.) for a comparison of arguments.

Further elements to consider in a theory of argumentation

In defeasible inheritance, a diagram like A → B → C (which allows for exceptions) is, we think, best read as:
normal A’s are B′s, and normal B’s are C ′s, and, by default, normal A’s behave like normal B′s, so they are C ′s,
too. The problem is, of course, the default reasoning. Contradictions are (usually) resolved by specificity. So,
we have to look at specificity. The default reasoning has to be weaker than normality in above example: If N
expresses normality, and N ′ the default, then the diagram A→ B → C says: N(A) ⊆ B, N(B) ⊆ C, N ′(N(A) ⊆ B
→ N(A) ⊆ N(B)) - we prefer situations where normal A’s are normal B’s in the language of preference. This
preference can be seen as preference between whole structures, or as ”the most normal elements of A are (most, if
we want to concatenate further) normal elements of B ′′.

We turn to a justification of the specificity criterion.

50 CHAPTER 2. CONCEPTS

Reasoning by specificity may best be described as a special case of analogical reasoning. Specificity says that a
more specific reference class is the better one in case of conflict. But, this corresponds well to the simple notion of
distance between subsets: If X ⊆ Y ⊆ Z, then X is closer to Y than to Z, so it seems reasonable to take the closer
one as reference class.

There are a few complications:

• (1) In the case of conflict, we will not abandon all information of the losing reference class, but only that
which is in conflict with the better one. So, this behaviour is the one of ”subideal defaults” seen above,
or, alternatively, we have a case of revision: we fuse the information of the superclasses, giving precendence
in case of conflict to the more specific one - we preserve as much as possible of each superclass, and solve
conflicts by specificity, if there is no such criterion, we drop both pieces of information (direct scepticism).
At the same time, conflicts are thus isolated: we have no EFQ (ex falso quodlibet, from ⊥, we can conclude
anything in classical logic), but we solve conflicts locally by revision. To do so, we use the ”place” of the
information, the point in the diagram, which is a criterion for its scope (effective only at it and below) and
strength (by specificity).

• (2) The reference class itself is not really the better candidate, but the set of its normal elements, as an
example, see the Tweety diagram: Tweety is a penguin, and a bird, peguins normally cannot fly, birds can,
and penguins are birds. The latter gives the specificity criterion: the information about penguins has priority.

• (3) Which reference classes do we admit? This is not so trivial as it might seem, as the difference between
split validity and total validity preclusion shows, see Section 6.1 in [Sch97-2].

Note that it is easy to see that independent arguments for the same result give additional strength: the sets we
neglect (and which determine certainty) are different - this leads to a natural generalization of the measure of
certainty of an argument (or a proof). (Un)Certainty is the amount of risk we take. Independent arguments give
different risks. The more different (and individually smaller) risks we take, the less likely is an error. A bigger risk
corresponds to AND, independent risks to OR.

We can find a second argument for following specificity: if we did not take information from the nearest neighbour
upward, we would have to make another change going down the inheritance chain: If Tweety were to fly, we change
from ”fly” at bird, to ”not fly” at penguin, again to ”fly” at Tweety, one change more than by having Tweety fly.
And we should make changes only when we are forced to.

In realistic reasoning, inheritance networks will often be complemented by analogical reasoning: cases that are close
to those in a known inheritance network, will be treated in an analogous way - thus the accepted paths of a network
will have a certain ”width of channel”. Thus, an argument system has a certain ”fit” to a class of situations, and
a suitable system will then be close to a situation.

2.2.9 Dynamic systems

We call reasoning systems dynamic when they are decomposed into a sequence of reasoning steps, whose results
are evaluated, and, if they are found insufficient by some criterion, reasoning continues.

In a general form, at each step some question is posed, and the systems returns an answer after some time.

Before posing a question, we should evaluate the following:

• how good (reliable, precise, etc.) is the information given to the system to solve the question?

• do we know something about the system’s competence to answer the question based on the information it is
given?

– do we have prior experience?

– do we have several systems at our disposal?

2.2. REASONING TYPES 51

– can we estimate precision, reliability, etc.?

• do we know how long the system will probably take to return an answer?

• the overall probable cost of obtaining the answer (time, other resources)

• how useful will the probable answer(s) be to solve the original problem?

Once we have received an answer, we have to evaluate it and the method used to answer it (reliability, precision,
usefulness, see above) wrt. the question posed, but also wrt. the original problem (which need not coincide with
the question posed). An improbable answer (unlikely cases) can also lead to a revision of the prerequisites the
answer is based on.

If we receive several, perhaps contradictory answers, from perhaps several reasoning systems, we have again a
problem of theory revision.

So, in general, the procedure is a cycle: evaluate which question to pose, pose question, evaluate answer, until we
are satisfied. A good strategy might be to mix fast, bold guessing (perhaps based on prototypes or few cases) with
more careful verification.

We think it is important that the start of the procedure is not so crucial for the final outcome: we should be able
to start with a very bad guess, but still converge to st. reasonable - there must be sufficient correction and control
in the approximation.

A formalization of such reasoning will certainly contain meta-reasoning about: quality of conclusion, normalities
and coherences used (and thus the logical system: preferential/rational etc.), reasoning itself, choice of arguments.

Note that such a procedure will also provide some hiding of complexity: We have small modules, and a ”master-
mind” which consults the small modules, posing questions. The answers to these questions can be simpler than
the apparatus inside the modules needed to answer the questions. The answers are composed to yield an overall
answer. Inconsistencies can be treated on the level of answers. The whole system is close to defeasible inheritance,
composing nodes of information in a more complex picture.

It is desirable to have progressively finer reasoning in the following sense: we can first reason on the level of e.g. a
preferential structure, and only if this is not fine enough, we can reason about the structure, i.e. the relation itself,
provided we have put it into the object language. Progressive reasoning is then a kind of argumentation, refining
its methods, if we are not satisfied with a conclusion, we want the argument leading to it, revealing the underlying
complexity - i.e., going from more to less abstraction. Formally, this can be achieved by admitting progressively
more elements of the language into argumentation.

2.2.10 Theory revision

2.2.10.1 General discussion

Theory revision (TR for short) is the problem of ”fusing” contradictory information to obtain consistent infor-
mation. The now classical, and most influential, approach is the one by AGM. (Recall that we use ”AGM”
indiscriminately for the article [AGM85], for its three authors, and for their approach.) We will present below in
very rough outline, but first, we will take a more general point of view, and discuss shortly some different cases and
basic ideas of the problem. We will not, or only marginally, discuss here more complicated approaches to theory
revision, where the theory itself contains information about revision etc.

Of course, there are situations where a contradiction is so coarse, that both informations will just be discarded. If,
e.g. one witness says to have seen a bicycle, the other an airplane, without further information, we will probably
exclude both, and not conclude that there was a means of transportation. This does not interest us here - the
operation is trivial, but it is not trivial when to think that this is the adequate procedure.

Let us first state that the problem is underspecified, so, just as for nonmonotonic logics, there are different reasonable
solutions for different situations. Consider:

52 CHAPTER 2. CONCEPTS

• two witnesses in court tell different versions of a nighttime accident with poor visibility. We will probably
conclude on their reliability from the difference of their testimonies. So the outcome will probably be some
”haze” around the OR of the two stories.

• as in traditional (AGM style) TR, theories are deontic statements, where the old law was as reliable as the
new one, but the new one shall nonetheless have priority.

• we have contradictory information from two sources, but have good assumptions where each source might
err,

etc.

So, speaking semantically, given (at least) two sets X, Y, we look for suitable f(X,Y), which captures some of the
idea of revision.

There are the following two basic approaches (with their reasons):

• we choose a subset of the union of models if we do not take any reliability into account

• we consider the contradictions a sign of lack of precision, and do not really believe any of the sources, so we
choose some set not included in the union.

Can we find some postulates for a problem, which is posed in so general terms? It seems so:

• 1) If we have no good reason for the contrary, each bit of information should have at least potential influence.

• 2) We should not throw the baby with the bathwater:

– the result should not be overly strong, i.e. it should be consistent, if possible (but there might be good
reason to have e.g. f(∅, ∅) = ∅).

– the result should not be overly weak (i.e. U), if possible. This point is usually summarized by the
informal postulate of ”minimal change” - ubiquous in common sense reasoning (counterfactuals, theory
update)! But this smells distance: given situation A, we look for situation B, which is minimally different
from A, given some conditions (which usually exclude A itself), and some criterion of difference. If the
”distance” between A and B is the amount of change, the cloud of smell concretizes to a formal definition:
B is the one among a set of candidates B, which is closest to A. And that is exactly what we will do
later on. We can also base revision on a notion of size of models, essentially, this done by considering the
biggest models as closest. This is developed in more detail in Section 7.4, and also shows a connection
between size and ranking.

A major distinction is whether each bit of information has the same weight, or whether some have a priviledged
position. We call the first variant symmetrical revision, the second asymmetrical revision. Traditional (AGM)
theory revision is asymmetrical, so we will discuss it first.

We have then the following situation: two sets X and Y, perhaps disjoint, and Y should be given more weight than
X. The approach by AGM is extremist in the following sense: f(X,Y) will always be a subset of Y, so the influence
of Y is very very strong. In particular, we do not doubt about the reliability of Y. So the question is how to choose
this subset, recalling that some influence of X should nonetheless be felt. Given a distance, the more we go away
from X, the less likely a point y will be, seen from X. So it is a natural idea to take those points in Y, which seem
most likely, seen from X.

We can be less radical, and still be asymmetrical in a variant of the symmetrical approach (putting a doubt on the
precision of Y): Given a distance d, we do not only take all points of Y, but also all those between (wrt. d) X and
Y, up to the middle e.g.: Y ∪ {z : d(z,X)+d(z, Y) = d(X,Y)∧d(z,X) ≥ d(z, Y)}. (If we have no addition, we can
define ”between x and y′′ by d(x, z) ≤ d(x, y) ∧ d(y, z) ≤ d(x, y).) An other idea is to take all points around Y, up
to the distance d(X,Y). - Again, one can imagine a number of possible approaches, playing around with distances.

2.2. REASONING TYPES 53

But we can also work with structural information: Let e.g. X = X1∩X2, and let X ∩Y = ∅, but X1∩Y 6= ∅. Then
Y ∩ X1 is a possible candidate for revision of X by Y, as X has a certain influence on the result, but the result
is a sharpening of Y. If there are several candidates, we can take the ”best” (e.g. biggest by number of models),
or, if this is impossible, take the union of the results etc. If X is a union of intersections, we can work with each
component of X separately, then take the union of the results, or work with the ”biggest” component etc. There
are many ways to play around with such ideas. This generalizes naturally to many sets X, Y, Z, as we can first
form unions, they have the same form (unions of pure intersections). Instead of working with intersections, we can
also work with convex sets wrt. some distance.

Other revision ideas are possible, too, e.g., we might choose for X ∗ Y a ”useful” subset of Y.

Again, we have seen the basic semantical notions of distance and size appear in various possible interpretations of
revision.

Two remarks on the Ramsey test

The problem of the Ramsey test has found some interest in the field of theory revision, we address it very shortly.

The idea behind the Ramsey test is that the theory K itself fully expresses all its possible revisions: φ > ψ ∈ K iff
ψ ∈ K ∗ φ - whatever ′′ >′′ may be.

Note that the deduction theorem and the Ramsey test have the same form: they tell how logical operators migrate
through |= or ` . In the case of the deduction theorem, ∧ on the left changes to → on the right, and vice versa:
φ ∧ ψ |= σ iff φ |= ψ → σ. The Ramsey test would like to have s.t. like φ ∗ ψ |= σ iff φ |= ψ > σ for some kind
of operator > . We now have the (perhaps embarrassing) result that if M(φ) ⊆ M(φ′), then φ′ ∗ ψ |= σ implies
φ′ |= ψ > σ, so φ |= ψ > σ, and φ ∗ ψ |= σ, and this is quite a restriction under normal circumstances (and is
heavily violated in usual revision). It is a property of individual evaluation (like counterfactuals or classical modal
logic), and it seems accepted that theory revision does not follow this property.

There are several ways out:

• (1) first, we go from K first to some f(K) (like in nonmonotonic reasoning), and evaluate the Ramsey test
there: φ > ψ ∈ f(K).

• (2) We accept monotonicity, but put it on a higher level, i.e. ′′ >′′ is not a symbol of the base language, so
we can have low level nonmonotonicity. (Take e.g. distance based revision for propositional logic, and just
add as new formulas all φ > ψ corresponding to the Ramsey test. Evaluate classical formulas as usual, and
Ramsey formulas by the Ramsey test. This does at least the trick for the not iterated case.)

Finally we will put φ ∗ ψ into the object language. The formula φ ∗ ψ will evaluate true in those models of ψ,
which are closest to φ−models (thus, φ ∗ψ cannot evaluate true at the same time as φ if φ and ψ are inconsistent).
′′σ ∈ φ ∗ψ′′ is now replaced by ` φ ∗ψ → σ, and we have made φ explicit as starting point of the revision, and not
implicit as in the Ramsey test.

We now address in more formal detail the AGM approach to theory revision.

2.2.10.2 The AGM approach

We give here in very very rough outline the essentials of the AGM approach. Definitions and results are due to
AGM. We present in parallel the logical and the semantic (or purely algebraic) side. For the latter, we work in
some fixed universe U, and the intuition is U = ML, X = M(K) etc., so e.g. A ∈ K becomes X ⊆ B etc. The
translation is trivial, but worth while being written down, otherwise one always has to translate on the fly, and
risks to make mistakes. For reasons of readability, we omit all caveats about definability.

Definition 2.2.1

54 CHAPTER 2. CONCEPTS

K⊥ will denote the inconsistent theory, contraction will be written - (), revision ∗ (|) on the language (algebraic)
side.

Definition 2.2.2

We consider two functions, - and ∗, taking a deductively closed theory and a formula as arguments, and returning
a (deductively closed) theory on the logics side. The algebraic counterparts work on definable model sets. It is
obvious that (K-1), (K ∗ 1), (K-6), (K ∗ 6) have vacuously true counterparts on the semantical side. Note again
that K (X) will never change, everything is relative to fixed K (X). K ∗φ is the result of revising K with φ. K −φ
is the result of subtracting enough from K to be able to add ¬φ in a reasonable way.

If they satisfy the following ”rationality postulates” for -:
(K-1) K-A is deductively closed -
(K-2) K-A ⊆ K (X 	 2) X ⊆ X 	A
(K-3) A 6∈ K ⇒ K − A = K (X 	 3) X 6⊆ A ⇒ X 	A = X
(K-4) 6` A ⇒ A 6∈ K −A (X 	 4) A 6= U ⇒ X 	A 6⊆ A

(K-5) K ⊆ (K −A) ∪ {A} (X 	 5) (X 	A) ∩ A ⊆ X
(K-6) ` A↔ B ⇒ K −A = K −B -
(K-7) (K −A) ∩ (K−B) ⊆ K − (A ∧ B) (X 	 7) X 	 (A ∩ B) ⊆ (X 	A) ∪ (X 	B)
(K-8) A 6∈ K − (A ∧ B) ⇒ K − (A ∧B) ⊆ K −A (X 	 8) X 	 (A ∩ B) 6⊆ A ⇒ X 	A ⊆ X 	 (A ∩ B)

and for ∗
(K ∗ 1) K ∗A is deductively closed -
(K ∗ 2) A ∈ K ∗A (X | 2) X | A ⊆ A

(K ∗ 3) K ∗A ⊆ K ∪ {A} (X | 3) X ∩ A ⊆ X | A

(K ∗ 4) ¬A 6∈ K ⇒ K ∪ {A} ⊆ K ∗A (X | 4) X ∩ A 6= ∅ ⇒ X | A ⊆ X ∩ A
(K ∗ 5) K ∗A = K⊥ ⇒ ` ¬A (X | 5) X | A = ∅ ⇒ A = ∅
(K ∗ 6) ` A↔ B ⇒ K ∗A = K ∗B -

(K ∗ 7) K ∗ (A ∧B) ⊆ (K ∗A) ∪ {B} (X | 7) (X | A) ∩ B ⊆ X | (A ∩ B)

(K ∗ 8) ¬B 6∈ K ∗A ⇒ (K ∗A) ∪ {B} ⊆ K ∗ (A ∧ B) (X | 8) (X | A) ∩ B 6= ∅ ⇒ X | (A ∩ B) ⊆ (X | A) ∩ B

they are called a (syntactical or semantical) contraction and revision function respectively.

Remark 2.2.1

(1) Note that (X | 7) and (X | 8) express a central condition for ranked structures, see Section 3.10: If we note
X | . by fX(.), we then have: fX(A) ∩B 6= ∅ ⇒ fX(A ∩ B) = fX(A) ∩ B.

(2) It is trivial to see that AGM revision cannot be defined by a local distance: Suppose X | Y := {y ∈ Y : ∃xy ∈
X(∀y′ ∈ Y.d(xy , y) ≤ d(xy , y

′))}. Consider a,b,c. {a, b} | {b, c} = {b} by (X | 3) and (X | 4), so d(a, b) < d(a, c).
But on the other hand {a, c} | {b, c} = {c}, so d(a, b) > d(a, c), contradiction.

Proposition 2.2.2

Both notions are interdefinable by the following equations:
K ∗A := (K − ¬A) ∪ {A} X | A := (X 	CA) ∩A

K-A := K ∩ (K ∗ ¬A) X 	A := X ∪ (X | CA)

i.e., if the defining side has the respective properties, so will the defined side. 2

Definition 2.2.3

Let ≤K be a relation on the formulas relative to a deductively closed theory K on the formu-
lae of L, and ≤X a relation on P(U) or a suitable subset of P(U) relative to fixed X s.t.

2.2. REASONING TYPES 55

(EE1) ≤K is transitive (EE1) ≤X is transitive
(EE2) A ` B ⇒ A ≤K B (EE2) A ⊆ B ⇒ A ≤X B
(EE3) ∀A,B A ≤K A ∧ B or B ≤K A ∧ B (EE3) ∀A,B A ≤X A ∩ B or B ≤X A ∩ B
(EE4) K 6= K⊥ ⇒ (A 6∈ K iff ∀B.A ≤K B) (EE4) X 6= ∅ ⇒ (X 6⊆ A iff ∀B.A ≤X B)
(EE5) ∀B.B ≤K A ⇒ ` A (EE5) ∀B.B ≤X A ⇒ A = U

We then call ≤K a relation of epistemic entrenchment for K (X). When the context is clear, we simply write ≤ .

A remark on intuition:

The idea of epistemic entrenchment is that φ is more entrenched than ψ (relative to K) iff M(¬ψ) is closer to M(K)
than M(¬φ) is to M(K). In shorthand, the more we can twiggle K without reaching ¬φ, the more φ is entrenched.
Truth is maximally entrenched - no twiggling whatever will reach falsity. Another word for entrenchment is
certainty. The more φ is entrenched, the more we are certain about it. Seen this way, the properties of epistemic
entrenchment relations are very natural (and trivial): As only the closest points of M(¬φ) count (seen from M(K)),
φ or ψ will be as entrenched as φ∧ψ, and there is a logically strongest φ′ which is as entrenched as φ - this is just
the sphere around M(K) with radius d(M(K),M(¬φ)).

Again, we have an interdefinability result:

Proposition 2.2.3

The function K- (X) and the ordering ≤K (≤X) are interdefinable in the following sense:

Define K-A by B ∈ K −A :↔ B ∈ K and (A <K A ∨ B or ` A) (A <K B means: A ≤K B, and not B ≤K A)

and

X 	A := X iff A = U, and
⋂
{B : X ⊆ B ⊆ U, A <X A ∪ B} otherwise.

Define A ≤K B by A ≤K B :↔ A 6∈ K − (A ∧ B) or ` A ∧ B

and

A ≤X B :↔ A,B = U or X 	 (A ∩ B) 6⊆ A.

Then, if the defining side has the respective properties, so will the defined side. 2

Taking up the intuition behind epistemic entrenchment, K ∗ φ is (the theory defined by) that part (of the models)
of φ, which is closest to K (or its models). K − φ is (the theory defined by) M(K) ∪M(K ∗ ¬φ). Once you follow
this intuition, this is all trivial. Note that the resulting formalism is not necessarily monotone in the first argument:
if X ⊆ Y, then not necessarily X | Z ⊆ Y | Z - as would be the case if the distance would be applied locally. See
also above remark on the Ramsey test.

2.2.11 Update

Theory update is about changing situations. The problem can be posed in a number of ways. In its most general
form, it is probably as follows: I have information about the situation at time tn, tm, tp etc. and I would like
to make an educated guess about the situation at time tk, where tk might be before or after tn, tp etc. The
general hypothesis is that of inertia: things stay the same as long as there is no reason that they change. Thus,
developments of minimal change are considered more normal or likely. Consequently, we have to consider how we
measure or compare the change of developments. In any case, this will be equivalent to an (abstract) distance.

As we speak about real developments, we will usually consider threads of models, and thus any choice by distance
will be elementwise (local), and not global (as usually for theory revision).

One thread of development involves usually several changes. (Otherwise we have just the situation of counterfac-
tuals, see Section 2.2.13. This is the difference made by Katsuno/Mendelzon between Theory Revision and Theory

56 CHAPTER 2. CONCEPTS

Update, see [KM90]. According to their analysis, Theory Revision is done by global distance, Theory Update by
local distance (in our terminology)) Thus, to measure the global change, we have to form somehow a sum - in the
roughest, least abstract form, this is just the set of changes. We can then measure or compare these sums. The
changes themselves may be measured by distances. The choice of best or normal cases can then be made along the
same lines as for nonmonotonic logics. D. Lehmann has suggested a very simple criterion: proper subsequences of
changes are more plausible than the longer sequence, see [BLS99] for a discussion and representation result.

Thus, we have based update on sums of distances - or a special ranking of sequences.

2.2.12 Counterfactual conditionals

Counterfactual conditionals speak about possible, but not actually true cases: if it were to rain, I would open my
umbrella (but it does not rain).

The - in the author’s opinion very natural - semantics of Stalnaker/Lewis tries to capture this by coding the minimal
change in a distance: very unlikely worlds (where, e.g. there is always a storm of 200 km/h, and using an umbrella
has no sense) are distant, and it suffices to look at those wordls which differ minimally from the actual one, but
where it rains. More formally:

The intuition for counterfactual conditionals seems relatively clear: If we want to evaluate φ > ψ at world m, we
look at the closest (to m) worlds m′ where φ holds, and m |= φ > ψ iff ψ holds there.

We should note two things here:

• 1. this is the local variant of distance, i.e. we take the pointwise closest elements.

• 2. there has been some discussion whether there is one global distance over the whole universe, or whether
the distances might vary for the different m - which might contradict the existence of a global distance. But,
as we show in Section 4.3, this does not matter if we are prepared to accept copies: Given a multitude of
distances, we can construct a logically equivalent structure with one distance only.

So, we see again distance at work.

2.3 Basic semantical concepts

We have seen in the last Section a number of concepts, and their (more or less total) reduction to very few basic
concepts:

”Size” of sets of worlds or other entities allows us to define ”majority” and ”usefulness”. ”Distance” between worlds
or other entities allows us to define ”direction”, ”neighbourhood”, ”worst or marginal elements”, ”center” and then
”prototypical” (perhaps with the additional notion of a sum), ”between” (again perhaps with the additional notion
of a sum), this allows to define ”convex set”, this gives a notion of ”simplicity”. A relation of ”preference” between
worlds or other entities allows to define ”normal”, ”important”, perhaps again ”worst or marginal elements”.
Somewhat apart is structural information like ”simplicity”, which can probably only partly be captured by the
notion of ”convex”.

The aim of this Section 2.3 is to discuss the basic notions ”size”, ”preference”, ”distance” in detail. We will also
go deeper into utility, as it is intricately related to the problems which ”size” itself presents.

We will also compare the different notions. We will define several types of preference relations (smooth, ranked) over
several types of domain (injective or 1-copy, with copies), and with several types of evaluation (minimal variant,
limit variant), various types of addition (the maximum wins, etc.), and various types of filters (principal, weak), so
it will be tedious to extablish a full list of correspondences. We concentrate on some we consider important, and
on the conceptual side, the corresponding properties will be examined in the section on coherence properties.

2.3. BASIC SEMANTICAL CONCEPTS 57

In all cases, it might be impossible to say that someting is big, or that a is preferred to b, or that a is as far as
b, but we can sometimes still say relativized versions of these statements, like: ”if a is big, then so is b′′, ”if a is
preferred to b, then c is preferred to d′′ etc. Such arguments can be very useful, and a good object language, which
shows details, should be able to express them.

2.3.1 Preference

A preferential structure is essentially a set of classical models, with a binary relation, just like a Kripke structure,
but the relation is used differently.

Historically, preferential structures were first invented by Hansson, [Han69], as a semantics for deontic logics, where
the relation expresses degrees of conformity with deontic statements. They were then re-invented by Shoham,
[Sho87b], and in the limit version by Bossu/Siegel, [BS85]. The latter has fallen in oblivion, despite its intuitive
attractiveness, as it appeared too difficult to manipulate. We will make this impression precise in Section 5.2.3,
and show on the other hand that important classes of the limit variant do not go beyond the minimal version (see
Section 3.4.1 and 3.10.3). Both versions work with the same kind of structure, a set with a binary relation ≺,
but they interpret the structure differently. The minimal version considers the minimal models wrt. the relation
≺, whereas the limit version considers those formulas, which ”hold in the limit”. This is made precise below in
Definitions 2.3.1 and 2.3.2, and briefly described now.

We work as usual in propositional logic. For a fixed language L, we take the set of (for simplicity) all classical
models ML, with a binary relation ≺ on ML. Denote the entire structure, ML with ≺, M, so M =< ML,≺> .
Given X ⊆ML, x ∈ X is called ≺ −minimal, or just minimal when the relation is fixed, in X iff there is no x′ ∈ X
x′ ≺ x. Then µ(X), more precisely µ≺(X), is the set of all ≺ −minimal elements of X. If x ≺ y, we sometimes say
that x kills y, or that x minimizes y. Note that, with this definition, µ(X) can be empty, even if X is not, e.g. if
we have infinite descending chains or cycles.

We then define T |=M φ iff µ(M(T)) |= φ classically, i.e. iff in all minimal models of T, φ holds, i.e. iff

µ(M(T)) ⊆ M(φ). We write sometimes, when the context is clear T ∼| φ for T |=M φ, and T for the set of

all |=M −consequences. Thus, even if T is consistent, T may be inconsistent, if µ(M(T)) = ∅.

This leads us to the second, more general and much more difficult to manipulate, version, which we call the limit
version. Here, T ∼| φ iff φ holds ”in the limit”. Let again M be given, and let X ⊆ ML. We consider here sets
Y ⊆ X with the following property:

For all x ∈ X there is y ∈ Y s.t. y � x (i.e. y ≺ x or y = x), and if y ∈ Y, x ∈ X, x ≺ y, then y ∈ Y. So Y is then
downward closed in X, and minimizes all elements of X.

There seems to be no accepted terminology for such sets, we can call them closed minimizing sets, or minimizing
initial segments. We will use the latter, and abbreviate as MISE, as any abbreviation containing ”C” may cause
confusion with consequence, cumulativity etc., and the ”mice” of Jensen’s Core Model are quite far off. We will
use MISE indiscriminately as adjective or noun, in plural or singular.

Note that, if ≺ is transitive, and X, X ′ are MISE of Y, then so is X ∩ X ′. If ≺ is not transitive, this need not
be the case. In particular, Y is a MISE of Y, and ∅ is not, unless Y is empty. We then define T |=M φ iff there

is MISE X of M(T) s.t. X |= φ classically. As we saw, if T is consistent, in this definition T will not contain ⊥

either, and if ≺ is transitive, T is closed under AND, φ, ψ ∈ T → φ ∧ ψ ∈ T .

We now turn to the versions with copies. (People who like to think in terms of labelling functions, will call the
version without copies injective, as the labelling function is. But these are just different words for the same thing.)
Here, a classical model m might occur several times in the structure, with different positions with respect to ≺ .
First, this has a tradition in modal logic, where we usually consider classically equivalent models several times.
Second, it has been argued that we might sometimes be interested in minimizing only for a subset of language, so
the rest of it is ”invisible” to minimization, and appears only as copies. Third, we will argue in Section 3.9 that the
existence of copies makes universal models possible. (We work there with strict total orders on the set of models
(without copies), which carry maximal preferential information - they decide all odering questions, just as classical

58 CHAPTER 2. CONCEPTS

models decide all classical formulas. In the completeness proofs, we work then with sets of such total orders, just
as is done in classical logic. Such sets are very close to their disjoint union, and thus to preferential structures with
copies and partial orders.)

We now define µ(X) as the set of those x ∈ X s.t. there is at least one copy of x, which is minimal in X.

Whatever the justification, structures with copies can do things that structures without copies cannot do. The
main interest is, that we may need several (logically different, this case is the most interesting) models, to minimize
one other model. Take two logically equivalent copies of m, m1 and m2, and set m′ ≺ m1, m

′′ ≺ m2. Now
m ∈ µ({m,m′}), m ∈ µ({m,m′′}), but m 6∈ µ({m,m′,m′′}). This has immediate repercussions in logic, as the
following example shows, which will be restated as Example 3.1.1 in Section 3.1. (The first to publish such examples
seem to have been D.Lehmann and his co-authors, but we may safely attribute it to folklore, as it must have been
re-invented many times.)

Example 2.3.1

Consider the propositional language L of 2 propositional variables p,q, and the classical preferential model M
defined by

m |= p ∧ q, m′ |= p ∧ q, m2 |= ¬p ∧ q, m3 |= ¬p ∧ ¬q, with m2 ≺ m, m3 ≺ m′, and let |=M be its consequence
relation.

Obviously, Th(m)∨ {¬p} |=M ¬p, but there is no complete theory T ′ s.t. Th(m)∨ T ′ |=M ¬p. (If there were one,
T ′ would correspond to m, m2, m3, or the missing m4 |= p ∧ ¬q, but we need two models to kill all copies of m.)
On the other hand, if there were just one copy of m, then one other model,

i.e. a complete theory would suffice. More formally, if we admit at most one copy of each model in a structureM,
m 6|= T, and Th(m) ∨ T |=M φ for some φ s.t. m |= ¬φ - i.e. m is not minimal in the models of Th(m) ∨ T - then
there is a complete T ′ with T ′ ` T and Th(m) ∨ T ′ |=M φ, i.e. there is m′′ with m′′ |= T ′ and m′′ ≺ m. 2

Perhaps we should stress again, as this is a property quite often overlooked: Copies give an asymmetry to preferential
structures. We may need many x to kill one y, but if x kills y and y′ separately, it will kill them all together,
too. Thus one element can be stronger than two others separately, but overcome to their united strength, but the
analogue in the other sense is impossible. Shortly, we have some kind of addition on the left, but none on the right.
We will come back to this later when we speak about addition.

In all cases, the logical side is only the more or less trivial upper structure, and what we really do (cum grano salis,
we will see more fine grained problems when we speak about definability preservation) is to look at the µ function.
But once we are at this level of abstraction, it is easy and natural to go one step further: we forget about models
and logic altogether and just speak about arbitrary sets and relations, with and without copies of the elements.
And this is what we will do almost throughout the entire book. As long as special properties of the domain are
not important, we forget about logic, and just look at the algebraic picture. From time to time, however, we will
have to take a very close look at those properties, and also at a property we call ”definability preservation”. For
the moment, this does not bother us.

We now make all our definitions official. We will work in some universe U, with a binary relation ≺ on U or on
some set of copies of elements of U. It is sometimes useful to consider µ(X) even when X 6⊆ U. This codes that our
structure may have ”holes” in it.

Note that in all these definitions, normality is relative, and not absolute. We are not necessarily interested in the
most normal elements of the universe, it suffices to be most normal in the set considered.

Definition 2.3.1

Fix U 6= ∅, and consider arbitrary X. Note that this X has not necessarily anything to do with U, or U below.
Thus, the functions µM are in principle functions from V to V - where V is the set theoretical universe we work
in.

2.3. BASIC SEMANTICAL CONCEPTS 59

(1) The minimal version:

(1.1) The version without copies:

Fix ≺, a binary relation on U, let M be the structure < U,≺> . Define µM(X) := {x ∈ X : x ∈ U ∧ ¬∃x′ ∈
X ∩ U.x′ ≺ x}, the set of minimal elements of X.

(1.2) The version with copies:

Let U be a set of pairs, the second element is intended to be the index of the copy, and the first an element of U.
Fix ≺, a binary relation on U , and let M be the structure < U ,≺> .

Define µM(X) := {x ∈ X : ∃ < x, i >∈ U .¬∃ < x′, i′ >∈ U(x′ ∈ X ∧ < x′, i′ >′≺< x, i >)}. Again, by abuse of
language, we say that µM(X) is the set of minimal elements of X in the structure.

Recall that we sometimes say that < x, i > ”kills” or ”minimizes” < y, j > if < x, i >≺< y, j > . By abuse of
language we also say a set X kills or minimizes a set Y if for all < y, j >∈ U , y ∈ Y there is < x, i >∈ U , x ∈ X
s.t. < x, i >≺< y, j > .

M is also called injective or 1-copy, iff there is always at most one copy < x, i > for each x.

(2) The limit version:

(2.1) The version without copies:

Fix ≺, a binary relation on U, let M be the structure < U,≺> . Define: Y ⊆ X ⊆ U is a minimizing initial
segment, or MISE, of X iff:

(a) ∀x ∈ X∃x ∈ Y.y � x - where y � x iff x ≺ y or x = y

and

(b) ∀y ∈ Y, ∀x ∈ X(x ≺ y → x ∈ Y).

(2.2) The version with copies:

Let U andM be as in the minimal variant, i.e. M =< U ,≺> . Define for Y ⊆ X ⊆ U

Y is a MISE of X iff:

(a) ∀ < x, i >∈ X∃ < y, j >∈ Y. < y, j >�< x, i >

and

(b) ∀ < y, j >∈ Y, ∀ < x, i >∈ X(< x, i >≺< y, j > → < x, i >∈ Y).

We say that M is transitive, irreflexive etc., iff ≺ is.

Finally, we say that a set X of MISE is cofinal in another set of MISE X ′ (for the same base set X) iff for all
Y ′ ∈ X ′, there is Y ∈ X , Y ⊆ Y ′. As we will see in the next definition, cofinal MISE sets are just as good as the
original MISE sets: This is just as in analysis, where any cofinal subsequence of a converging sequence converges
to the same point.

In the case of ranked structures (see Definition 2.3.4 below), we may assume without loss of generality that the
MISE sets have a particularly simple form, we will postpone the definition until Section 3.10.3, Definition 3.10.4.

Definition 2.3.2

We define the resulting consequence relation in preferential structures for a given propositional language L.

For a set X of copies < m, i >, where the m are classical models of a given language L, we say by abuse of language
< m, i >|= φ iff m |= φ, and that X |= φ iff for all < m, i >∈ X m |= φ.

Fix M as above, i.e. M =< U,≺>, and U ⊆ ML for the case without copies, and M =< U ,≺>, with < x, i >∈
U → x ∈ML for the case with copies.

(1) The resulting consequence relation for the minimal variant. We define:

T |=M φ iff µM(M(T)) |= φ, i.e. µM(M(T)) ⊆M(φ). We also write sometimes TM := {φ : T |=M φ}.

60 CHAPTER 2. CONCEPTS

(1.1)M will be called definability preserving iff for all X ∈DL µM(X) ∈DL.

(2) The resulting consequence relation for the limit variant. We define:

T |=M φ iff there is a MISE Y ⊆ UdM(T) s.t. Y |= φ.

(d is defined in Definition 1.6.1: UdM(T) := {< x, i >∈ U : x ∈M(T)}.)

A MISE X is called definable iff {x : ∃ < x, i >∈ X} ∈ DL.

Discussion of the limit variant:

Note that the same structure can be read in the minimal and the limit variant, and both readings do not always
give the same results. In particular, the limit reading is sometimes adequate, if we have infinite descending, and
no minimal elements.

As interesting as the limit variant seems at first sight, it reveals itself essentially as hopelessly complicated or
unnecessarily complicated:

• (1) The general case has only arbitrarily complex characterizations, as we will see in Section 5.2.3. The same
holds for general ranked structures, and general, distance defined revision.

• (2) The natural simpler classes, transitive structures (without copies) with:

– (a) cofinally often definable closed minimizing subsets

– (b) considering only formulas on the left in the resulting logic

do not go beyond the much simpler minimal variant. (See Fact 3.4.6 and Fact 3.4.4, summarized in Proposition
3.4.7.)

• (3) The natural simpler classes in the ranked case (without copies) with:

– (a) cofinally often definable closed minimizing subsets

– (b) considering only formulas on the left in the resulting logic

again do not go beyond the much simpler minimal variant. (See Fact 3.10.18 and Proposition 3.10.19.)

This looks like a coup de grâce for the limit variant as a reasoning tool.

Of course, this does not mean that there might not still exist an interesting subclass, which is neither desperate
nor trivial. This is an interesting open problem. But, for the meantime, one might probably declare the demise of
the limit variant as a natural reasoning tool.

On the other hand, the limit variant might find redemption as a tool to investigate differences between finitary and
infinitary versions of logical rules, as can be seen in Section 3.4.1, where we show that finitary cumulativity can
hold without the infinitary version, and where we also differentiate between the finitary and the infinitary version
of (PR), using the limit version. In a way, this is not surprising: limits speak about infinitary approximations, so
we may expect some subtleties when using them as a tool of investigation of infinite properties.

Discussion of the relation:

So far for the basics of the definition, the use of the relation and the question of copies. What about the relation
itself?

The most general case is that of an arbitrary binary relation. Perhaps the most natural requirements are freedom
from cycles, and transitivity.

We show in Section 3.1 below, Lemma 3.1.1, that we can always choose a cycle-free (and irreflexive) relation
generating an equivalent structure, preserving transitivity, too. (We replace cycles by infinite descending chains.)

2.3. BASIC SEMANTICAL CONCEPTS 61

We show in Section 3.2 and 3.3 that for structures with copies the relation can be chosen transitive without any
additional properties in the general and the smooth case. This is not true for structures without copies:

Example 2.3.2

Consider the structure a ≺ b ≺ c, but a 6≺ c. This is not equivalent to any transitive structure with one copy
each, i.e. there is no transitive structure whose function µ′ is equal to µ : As µ({a, b}) = {a}, and µ({b, c}) = {b},
we must have a ≺ b ≺ c, but then by transitivity a ≺ c, so µ′({a, c}) = {a} in the new structure, contradicting
µ({a, c}) = {a, c} in the old structure.

A strong requirement for the relation, which we find difficult to justify intuitively as a relation property, is smooth-
ness. Essentially, it says that elements are either minimal, or there is a minimal element below them.

Definition 2.3.3

Let Z ⊆ P(U). (In applications to logic, Z will be DL.)

A preferential structureM is called Z−smooth iff in every X ∈ Z every element x ∈ X is either minimal in X or
above an element minimal in X. More precisely:

(1) The version without copies:

If x ∈ X ∈ Z , then either x ∈ µ(X) or there is x′ ∈ µ(X).x′ ≺ x.

(2) The version with copies:

If x ∈ X ∈ Z , and < x, i >∈ U , then either there is no < x′, i′ >∈ U , x′ ∈ X, < x′, i′ >≺< x, i > or there is
< x′, i′ >∈ U , < x′, i′ >≺< x, i >, x′ ∈ X, s.t. there is no < x′′, i′′ >∈ U , x′′ ∈ X, with < x′′, i′′ >≺< x′, i′ > .

When considering the models of a language,M will be called smooth iff it is DL−smooth - DL is the default.

In the finite case without copies, smoothness is a trivial consequence of transitivity and lack of cycles. But note
that in the other cases infinite descending chains might still exist, even if the condition holds, they are just ”short-
circuited”: we might have such chains, but below every element in the chain is a minimal element.

The attractiveness of smoothness comes from two sides:

First, it generates a very valuable logical property, (CUM): IfM is smooth, and T is the set of |=M −consequences,

then for T ⊆ T ′ ⊆ T ⇒ T = T ′. We can see this property as normal use of lemmas: We have worked hard and
found some lemmas. Now we can take a rest, and come back again with our new lemmas. Adding them to the
axioms will neither add new theorems, nor prevent old ones to hold.

Second, for certain approaches, it facilitates completeness proofs, as we can look directly at ”ideal” elements,
without having to bother about intermediate stages. See in particular the work by Lehmann and his co-authors,
[KLM90], [LM92].

We will see in Section 3.6 that Cumulativity can also be achieved without smoothness, by topological means.

Another property seems easier to justify intuitively, rankedness:

Definition 2.3.4

A relation ≺U on U is called ranked iff there is an order-preserving function from U to a total order O, f : U → O,
with u ≺U u

′ iff f(u) ≺O f(u′), equivalently, if x and x′ are ≺U −incomparable,

then (y ≺U x iff y ≺U x′) and (y �U x iff y �U x′).

(See Fact 3.10.2.)

The property of rankedness is very strong, and the proof techniques differ substantially between the ranked and
the other cases.

62 CHAPTER 2. CONCEPTS

This might be the place to give another reading for preferential structures: the relation expresses an abstract
distance from an ideal point of maximal normality - which might not exist. The lower an element, the more it is
an approximation to this point. This interpretation is perhaps particularly adapted to ranked structures, where
two incomparable elements have then the same distance from the ideal.

A consequence of rankedness, perhaps too strong intuitively, is, that one single smaller element will always suffice
to kill arbitrarily many bigger ones. This very strong property reminds us of the consistency property in default
reasoning: one single consistent case suffices to make the default ”fire”.

It is easily seen (and proved formally in Section 3.10, Lemma 3.10.4) that copies are largely unnecessary in ranked
structures. The rough argument is as follows: suppose we have two copies of x, x1 and x2, and y ≺ x1, z ≺ x2. If
e.g. x1 ≺ x2, then x2 is superflous (at least in the transitive case, and ranked structures are transitive). If x1 and
x2 are incomparable, then both z and y are smaller than both copies, again they are superfluous.

We can preserve the general idea of ranked structures, but still avoid this perhaps overly strong property, if we
have a real distance which cooperates with the ranking: x can kill y only iff y is higher up, and if x is ”between”
”the ideal case” and y, or, if y is behind x, seen from the ideal case. In this way, x can kill several y ′s, one behind
the other, but not on the same level. More precisely: Ranking is seen from an ideal, fixed point I. If we have, in
addition, a distance d(a, b) on the domain (and the ideal point I), where a and b can both vary, we can see whether
x is between the ideal point and y, or not. In the first case, d(I, y) = d(I, x) + d(x, y).

We do not know whether there are still other properties of the relation ≺ of general interest.

2.3.2 Distance

It is not surprising that we see distance so often as a basic notion in the semantics of common sense reasoning,
which has so much to do with analogy, small changes, etc. It is more surprising that its important role in many
situations has not been more emphasized earlier.

Recall that, when we fix a point x in the universe, and consider only distances from this fixed x, we are in the same
situation as in preferential structures. Thus, for fixed x, we can consider partial orders, total orders, ranked orders,
smooth ones, etc. So all considerations of the last Section apply. In particular, there can be situations where
the limit approach seems the more adequate one. This approach is again much more complicated, and sometimes
subject to quite sophisticated domain closure properties. Such problems are discussed in Section 4.2.5. Usually, a
ranked order, where two distances are either comparabel or equal - with values in the reals or not - will probably
appear as the most natural choice.

Some more questions which we can pose already for distances from one fixed point are:

• (1) Do we have addition of the values?

• (2) Are we only interested in relative values (y is more distant from x than z is), or also in absolute values
(like 1.5)? (If not, we can make the triangle inequality hold at no extra cost by choosing the values as 0 or
in the interval from 0.5 to 1.0.)

But, of course, usually, we measure the distance from different points. It is not surprising that this makes the
situation much more complicated. We have thus a number of new questions.

• (1) Is the distance symmetric? Often yes, but think of the distance between Bachenthal and Ebershőhe -
where Bachenthal is in the valley, and Ebershőhe on a hill, and you are cycling.

• (2) Can we compare distances from different points? We will see in Section 4.2 that there are realistic
situations where this is impossible, and that such situations can cause much trouble. We will see that they
are the reason why finite representation is sometimes impossible.

• (3) Do we measure distance independently from each point, or do we respect coherences which are present
with a common measure - see Section 4.3.

2.3. BASIC SEMANTICAL CONCEPTS 63

• (4) We saw above (to be proved formally in Section 3.10) that in ranked structures, copies have almost no
meaning. But these are copies seen from a fixed point x. Here, we may make copies also of the points of origin
(i.e. on the left). We will see again in Section 4.3 that this is an interesting question, even if the distance is
ranked (and even if it is a metric).

• (5) Are we only interested in the closest elements, or do the others come into consideration, too (with perhaps
less influence)? In the latter case, is there a more sophisticated way of weighting involved? Dually, are we
interested in the farthest elements (perhaps to be avoided in a very cautious approach)?

• (6) When considering the closest elements only, are we interested in a global approach, i.e. looking at the
closest to the set of origin, or do we take an individual approach, i.e. look from each element of the set of
origin to the ones closest to this element? The first approach is connected to theory revision, the second to
counterfactual conditionals (Lewis/Stalnaker semantics) and update (see the work of Katsuno/Mendelsohn).

We make this formal.

Definition 2.3.5

For |g (|l) the global (local) operator choosing the closest elements in the second operand, we define:

X |g Y := {y ∈ Y : ∃xy ∈ X.∀x
′ ∈ X, ∀y′ ∈ Y (d(xy , y) ≤ d(x

′, y′)}

and

X |l Y := {y ∈ Y : ∃xy ∈ X.∀y′ ∈ Y (d(xy , y) ≤ d(xy , y′)}

It might be worth while to stress already here that we will often encounter domain closure (or, if you prefer)
observability problems, which make representation complicated, preventing finite characterizations. This, of course,
can also be seen in other problems. That it occurs so often in this context, has the following intuitive reason: When
looking for close elements, other elements may interfere, and obscure some observations. On the positive side, this
allows uniform constructions (uniform metrics for counterfactuals, see Section 4.3), on the negative side, we cannot
always compare distances, and paths can be partly hidden, forcing us to take infinite characterizations, see Section
4.2.4.

2.3.3 Size

There are different ways to determine the size of a subset, e.g.:

• 1. By counting in the finite case.

• 2. By using some measure in the sense of mathematical measure theory.

• 3. By a (weak) filter.

We first discuss the concepts of (weak) filters.

If X ′ ⊆ X, then the set of all Y s.t. X ′ ⊆ Y ⊆ X is a filter over X. Such filters, which are generated by a smallest
set, are called principal filters. Trivially, all filters over a finite set are principal filters. The following is an example
of a non-principal filter: Take all subsets A of the set of natural numbers N s.t. N − A is finite. Obviously, the
only filters compatible with counting in the finite case are the trivial ones: All sets are big, or none but the universe
is big. If the universe has size one in some measure, all sets of size one form a filter.

A principal weak filter is automatically a filter, but we can, of course, look at minimal big sets in a weak filter, if
they exist.

A (weak) filter is a mathematical abstraction, capturing the essential aspects of the intuitive abstractions ”small
and big subsets” - much coarser notions than those given by counting or measure theory, and thus perhaps better

64 CHAPTER 2. CONCEPTS

suited to capture rough common sense reasoning. In our context, it is useful to recall that the notion of a filter
was created for other purposes than ours, so there is a priori no need to take it over without change; of course,
we may become convinced that this abstraction is also the right thing for us. But we should keep in mind that
abstractions should follow the essential aspects, and not the other way round.

Real filters, by their idealistic approach, cooperate well with other notions, e.g. that of a proof: Say that all axioms
suppose that the number of their exceptions is small, and all rules have the form ”if α1 . . . α2 hold, then so will α,
and the set of exceptions to α is a subset of the union of the exceptions to the α′′

i , then proofs (by their finiteness)
preserve smallness of the set of exceptions, so filters allow us to forget the history of deduction. But this does
not mean that filters are always the adequate notion, as growing uncertainty in common sense deduction, or the
lottery paradox, show. Depending on the kind of reasoning, we might conclude that our results get ever weaker in
certainty as reasoning goes on.

We turn to other basic questions:

How much bigger than small is big?

We look now in more detail into the ”algebra of small/big”, and assume U 6= ∅ to avoid trivialities.

If the notions ”small” and ”big” are to have any meaning, no set should be small and big at the same time.
Consequently, e.g. the degenerate filter F = P(U) should be excluded. By the same reasoning, and recalling that
the complements of big sets are small, the union of two small sets should never be the universe: otherwise, both
will be small and big.

In normal filters, no finite union of small sets will ever be big, it will not even be medium size, as finite unions
of small sets stay small. By its very definition, the union of two medium sets can be big (if A is medium, so is
its complement), so medium and big are not very far from each other, and ”medium” is better considered just an
auxiliary notion, without any more profound meaning. In weak filters, the union of two small sets can be big (and,
consequently, the union of 3 small sets can be the universe): Consider an universe of 3 elements, and every subset
of at least 2 elements is big. So, this is the very limit. On other hand, in a filter, any finite union of small sets is
small (but the union of countably many small sets can be big, and thus even the universe - recall above example
of the filter of cofinite subsets of N). Thus, weak filters formalize that small sets are smaller than big ones, real
filters say that they are much much smaller, it takes infinitely many of them to grow.

We can ask whether it is useful to introduce some intermediate notion, is there anything between 3 and infinity?
We have some doubts, it seems too arbitrary. On the other hand, there is a natural way to define ”very small”
or ”very big”, given a system of filters: Let F be filter over U, X ∈ F , and F ′ a filter over U-X, with X ′ ∈ F ′.
Then it seems natural to call X ∪X ′ very big (and thus its complement in U very small). Equivalently, if A ⊆ B
is small, B ⊆ C is small, then A ⊆ C is very small, or, X − µ(X)− µ(X − µ(X)) is very small in X in preferential
structures.

It can also be reasonable to relativize comparison of size: Inside X, A and B ⊆ X might have different size, but
seen from higher up, in a bigger X ′, this may not any longer be the case.

The following remarks on size have a direct translation to coherence properties.

So far, we have mostly looked at subsets of a fixed set, and thought about their size. Now, we think about changing
this fixed set. Thus, our perspective is more abstract, and we allow for more substitution, we cannot only speak
about size relative to a fixed set, but relative to several sets, which we will sometimes call base or reference sets.

We now introduce three conditions which speak about such coherence. We first define, and then discuss them.

Definition 2.3.6

(Coh0) If A is a small subset of B, then A will also be a small subset of any superset B ′ of B.

(CohCUM) If A and A′ are small subsets of B, then A-A’ will still be a small subset of B-A’.

(CohRM) If A is a small subset of B, and A′ not a big subset of B, i.e. A′ has at most medium size, then A-A’
will still be a small subset of B-A’.

2.3. BASIC SEMANTICAL CONCEPTS 65

We first discuss (Coh0).

(Coh0) is in parallel to and as natural as the simple filter condition, if A ⊆ B ⊆ X, and A ∈ F(X), then B ∈ F(X) :

If ”small” and ”big” have any abstract meaning, (Coh0) should certainly hold, even to a stronger degree for B ′

than for B.

If we have a filter on B, and one on B′, we can now express the (OR) condition, when we interpret α ∼| β by
′′α ∧ ¬β is small in α′′, or, more precisely, ′′M(α ∧ ¬β) is a small subset of M(α)′′ : Let A be a small subset
of B, A′ of B′, then A and A′ will be small subsets of B ∪ B′, so by the filter or ideal property A ∪ A′ will
be small in B ∪ B′. α ∼| β ⇒ M(α ∧ ¬β) ⊆ M(α) is small, α′ ∼| β ⇒ M(α′ ∧ ¬β) ⊆ M(α′) is small, so
M(α ∧ ¬β) ∪M(α′ ∧ ¬β) = M((α ∨ α′) ∧ ¬β) ⊆M(α ∨ α′) is small, so α ∨ α′ ∼| β.

Condition (CohCUM) is more delicate. (Coh0) says that increasing a base set will keep small sets small. (CohCUM)
says that diminishing base sets by a small amount will keep small subsets small. This goes in the wrong direction,
so we have to be careful. We cannot diminish arbitrarily, e.g., if A is a small subset of B, A should not be a small
subset of B − (B −A) = A. It still seems quite safe, if ”small” is a robust notion, i.e. defined in an abstract way,
and not anew for each set, and, if ”small” is sufficiently far from ”big”, as, for example in a filter. This results
now in cautious monotony: If β ∼| α, β ∼| α′, M(β ∧ ¬α′) is small in M(β), so by this principle in M(β ∧ α), so
β ∧ α ∼| α′ (assume disjointness for simplicity).

There is, however, an important conceptual distinction here. Filters express ”size” in an abstract way, in the context
of NML, if α ∼| β, the set of α ∧ ¬β is small. But here, we were interested in ”small” changes in the reference set
X (or α in our example). So we have two quite different uses of ”size”, one for NML, abstractly expressed by a
filter, the other for coherence conditions. It is possible, but not necessary, to consider both essentially the same
notions. But we should not forget that we have two conceptually different uses of size here.

(CohRM) is obviously a stronger variant of (CohCUM).

Now, (in comparison to the reasoning about the property (CohCUM)) A′ can be a medium size subset of B.

As a matter of fact, it is a very big strengthening: Consider a principal filter F := {X ⊆ B : B ′ ⊆ X}, b ∈ B′.
Then {b} has medium size, so any small set A of B is smaller than {b} - and this is, of course, just rankedness.
If we only have (CohCUM), then we need the whole generating set B ′ to see that A is small. This is the strong
substitution property of rankedness: any b as above will show that A is small. It is easy to see that (RM) holds, if
(CohRM) holds.

The more we see size as an abstract notion, and the more we see ”small” different from ”big” (or ′′medium′′), the
more we can go from one base set to another and find the same sizes - the more we have coherence when we reason
with small and big subsets.

(CohCUM) works with iterated use of ”small”, just as do filters, but not weak filters. So it is not surprising that
weak filters and (CohCUM) do not cooperate well: Let A, B, C be small subsets of X - pairwise disjoint, and
A ∪ B ∪ C = X, this is possible. By (CohCUM) B and C will be small in X-A, so again by (CohCUM) C will be
small in (X −A)−B = C, but this is absurd.

If we think that filters are too strong, but we still want some coherence, i.e. abstract size, we can consider the
following property: If A is a small subset of B, and A′ of B′, and B and B′ are disjoint, then A ∪ A′ is a small
subset of B∪B′. It expresses a uniform approach to size, or distributivity, if you like. It holds e.g. for considering a
small set to be one smaller than a certain fraction when counting. The important point is here that by disjointness,
the big subsets do not get ”used up”. This property generalizes in a straightforward way to the infinite case.

The following idea and considerations are due to David Makinson:

Definition 2.3.7

Let A4B := (A − B) ∪ (B − A), the symmetrical difference between A and B. Define A ∼ B iff A4B is a small
subset of A ∪ B.

Obviously, ∼ is symmetric and reflexive (leaving aside the pathological case where A = ∅).

66 CHAPTER 2. CONCEPTS

Assuming now (Coh0), (CohCUM) and the filter property, then, as it is easy to see:

(1) ∼ is transitive,

(2) if A ∼ B, then A ∼ X for any X s.t. A ∩ B ⊆ X ⊆ A ∪B,

(3) ∼ is a congruence relation wrt. ∪ : A ∼ A′, B ∼ B′ → A ∪ B ∼ A′ ∪ B′.

(4) Note that we do not want full congruence for meet, for even when A is almost the same as B we might intersect
each of them with a set X that leaves very small meets, between which the difference remains small in absolute
terms but large when compared with the join of the two meets.

(5) Nevertheless, properties (1) and (2) above give us a mitigated kind of congruence wrt. meet: A ∼ B i.e.
A∩X ∼ B∩X for all X ∼ A. Verification: Suppose A ∼ B and X ∼ A. By (2) and symmetry from (1), A∩X ∼ A,
and likewise using also transitivity from (1) we have B ∩X ∼ B. So by transitivity again, A ∩X ∼ B ∩X.

Remarks:

(1) Here transitivity does much of the work.

(2) It should be interesting (and is an exercise/open problem) to see exactly which of these constraints on ∼ (and
thus, indirectly, on ′′small′′) are needed to validate the various postulates of preferential reasoning, under the
definition α ∼| β iff M(α ∧ β) ∼M(α).

Transformations:

We look now briefly at transformations of one notion to another:

The construction of filters from preferences:

Given a preferential structure, can we define a filter? First in the non-limit reading: Yes, even a system of
(principal) filters, in two ways. The basic idea is to take the set of minimal elements as the generating sets
for principal filters. Given any subset X of the universe (this is the first reason for a system of filters), define
F(X) := {Y ⊆ X : µ(X) ⊆ Y }, the filter generated by the set of minimal elements of X. We will see below that
such filter systems {F(X) : X ⊆ U} have certain (coherence) properties. Second, given fixed X, we can form a
nested system of filters (expressing ever increasing certainty) generated by µ(X), µ(X) ∪ µ(X − µ(X)), etc. This
seems especially natural in the case of ranked structures.

Now to the limit reading: In the transitive case, the closed minimizing sets form the basis of a filter (they are
closed under finite intersections), in the non-transitive case, they form the basis of a weak filter: the intersection of
two cannot be empty. We will see below in Sections 3.4.1 and 3.10 that the limit reading and the minimal reading
coincide in some cases (if certain closure properties of the domain hold).

We consider now the converse, from filters to preferences:

Given a suitable system of (principal) filters - see the characterizations of the choice functions in Chapter 3 - it
naturally generates a preferential structure.

In the case of ranked structures, we have also characterized suitable bases for filters generated in the limit case,
see Section 3.10.

In Section 7.3, we will compare a system of size relations with a system of filters. As this is somewhat more
complicated, we refer the reader there.

2.3.3.1 Sums and products

From the intuitive point of view, addition is interesting e.g. if parallel is different from serial, i.e. if we can do
several tasks one after the other, but not in parallel, or if resources are used up.

There are many possible different ways to define sums.

If we consider the size of sets, it is natural to consider addition, which corresponds closely to disjoint union. Assume
now a fixed universe relative to which we calculate sizes, and suppose for simplicity that all sets mentioned are

2.3. BASIC SEMANTICAL CONCEPTS 67

disjoint. As we have already done the case with 3 values (small, medium, big), we assume more values here. Assume
a set of possible sizes s1, . . . , sk be given, which are ordered somehow, by a total or partial (transitive) order. We
can also postulate that ∅ has minimal size, and U maximal size. We want to calculate the size S of X1 ∪ . . . ∪Xn

from their individual sizes. Thus, we want to forget about individual sets, and retain only their abstract sizes si.

The first possibility to calculate S is ”the winner takes it all”, i.e. if (in the case of a total order) sm is the biggest
of the si, then the sum is just this sm. A second possibility is to count the number of times the maximum is present,
if this is r, then the sum is r ∗max - whatever this might be.

If we cannot calculate a sum σ = x, we might perhaps be able to obtain relative versions, like Σ ≤ x, or Σ ≤ Σ′,
and, if all values are positive, the sum should at least be as big as each of its elements.

Note that these procedures can be justified by different assumptions about the sizes at hand and using standard
addition - under these assumptions they give the same result as the usual sum. If, for instance, we have reasons
to believe that the different sizes are very far from each other, for instance s << s′ << s′′, then any set of size s′

will obscure anyone of size s, and no matter how many sets of size s′ we have, we will never be able to come close
to a set of size s′′, so mentioning s′ several times makes no sense. It all depends on our hypotheses about the case
at hand. The closer the values are, the more we have to go into detail, so there seems to be no universal solution.

Expressing addition in preferential structures: We have seen that preferentials structures without copies cannot
add. If they have copies, they can add on the left: x and y separately may not suffice to minimize z, but x and y
together may. On the other hand, there is no way to add on the right of ≺ . If we try to capture this, we would have
to code this by some additonal information, that one copy can only kill one other copy at the same time. (This is,
of course, possible, but would lead beyond traditional structures. Another possibility is to work immediately with
sets of elements.)

Filters express a very simple addition: No matter how many (but a finite number) small sets we put togther, we
will never get one big set. But two medium size sets can be big.

Far more interesting is the procedure to obtain in a natural way a (system of) filter(s) from a weight on the single
elements in the finite case. As a matter of fact, we had used this procedure in the past without really understanding
it in order to define revision from size - see Section 7.4 below. We present now the idea.

In the finite case, the only filter compatible with counting is the trivial filter. If we give different weight to the
elements, the situation is more complicated. Let X be finite and let x be the only element with minimal weight
w. Then X − {x} is a true subset with maximal weight, and a natural candidate for a big subset, defining the
filter {X − {x}, X}. If x,x’ have same minimal weight w, then by fairness, both X − {x} and X − {x′} should be
treated the same way, but then their intersection has to be big, too. If x′′ has now weight ≤ 2 ∗ w, then again by
fairness wrt. X −{x, x′}, X −{x′′} should also be big. In a way, x and x′ form a coalition to put x′′ on their side.
Consequently, X − {x, x′, x′′} should be big, etc.

We have therefore the following definitions:

(1) A ⊆ X is a stable subset iff for all a ∈ A and all B ⊆ X−A w(a) > w(B), where w(.) is the weight of elements,
extended to sets by addition. We can also say that the elements in A are much smaller than the elements outside
A.

(2) F is a filter compatible with w iff F is generated by a stable set.

Thus, a suitable weight on elements can generate a nested system of filters over the same set - big, very big, very
very big, etc. subsets.

The construction described above seems to merit further comments and discussion.

We create clusters of elements, ordered by size. The process is highly asymmetric, as only weaker elements can
form coalitions to ”knock other elements out”, and, by this fact, the process is absolute only on the side of the
stronger elements, as the amount of coalitions possible depends on the background set - so possible coalitions are
context dependent. This asymmetry reminds us of the asymmetry of preferential models: minimizing elements can
form alliances to minimize all copies of another element.

Forming coalitions is not commutative: a might be too weak to win c directly, it first has to win b, and using b as

68 CHAPTER 2. CONCEPTS

an ally, it can win c. The same procedure can be seen e.g. in default reasoning: we start with knowing x, from x
we conclude y, and we need x and y to conclude z, we cannot reach z first.

We do not use up our forces to win allies, any ally once convinced will only increase our strength. In this sense,
the process might differ from progressive reasoning, as progressing in the reasoning might weaken our conviction
in the result - they are not independent arguments, but all are based on the start.

In our approach, coalition forming was via sums, of course, there might be other ways to form coalitions.

In argumentation, coalition forming will mostly be more symmetric, each side can try to win allies, so our process
seems a very special one of argumentation.

A (partially) open problem is representation:

(1) Neglecting context sensitivity, it is easy (in the finite case) to generate any ranked structure by such coalitions:
Give to all elements in the top layer weight 1. Let n elements be in the top layer, then give to all elements in
the second layer from top weight n + 1, let there be n′ elements, in the next layer, elements will have weight
n+ n′ ∗ (n+ 1) + 1, etc. This will give again the same ranking. Conversely, any such coalition forming will give a
ranking.

(2) The case of context sensitive clustering is more complicated: Let X ⊆ U be any subset of the universe. Then,
inside X, we form layers, by considering only the elements of X. Working in a superset X ′ ⊇ X, different layers
of X might collaps, as we may have more possibilities to form coalitions. Relative to small sets, we have finer
differentiation than relative to bigger sets: ”from the point of view of God, dwarfs and giants are alike”.

We do not know the requirements of such systems of layers to be generated by coalition forming via sums - this
remains an open problem.

2.4 Coherence

Coherence conditions are not just nice abstract toys. They allow sometimes reasoning by strictly controlled analogy,
and can thus speed up reasoning significantly (in the average case, if we memorize results).

On the abstract level, considering logics as coherent systems

• gives a uniform view on many logical systems, and thus allows the transfer of results from one problem to
another,

• simplifies considerably at least intuitive reasoning about such systems,

• thus bring to light more clearly many questions, like

– representation problems,

– basic notions like certainty, size, addition, and distance

• generates new approaches to problems like revision (see (3) below).

(1) What is coherence?

The rule

(AND) φ ` ψ, φ ` ψ′ → φ ` ψ ∧ ψ′

differs from the rule

(Monotony) φ ` ψ → φ ∧ φ′ ` ψ

as the first one leaves the left hand side of ` unchanged, and the second one changes the left hand side.

We call properties of the second type coherence properties.

2.4. COHERENCE 69

For the logics we consider, rules of the second type are often more important than those of the first type. In slight
exaggeration, one might say that the logics we consider are essentially characterized by properties of the second
type. We have already seen a number of such properties, e.g. (OR), (CUM), (RM), for instance in preferential
reasoning, when we consider µ(M(T)).

It is not surprising that such properties are at the center of our interest, as we treat mostly ”generalized modal
logics”, which work with suitable choice functions on model sets, e.g. µ(M(T)) in the preferential case. Thus, the
properties of ∼| for fixed φ or T on the left will just be the properties of the classical `, but usually for a different
φ′ or T ′, as we do not consider directly M(φ) or M(T), but rather M(φ′) or M(T ′), where e.g. M(T ′) = µ(M(T)).

In the following technical sections, we will usually characterize the coherence properties of choice functions (and
not directly their logics) resulting from structures like preferential models using sufficient properties to be able
to recover them - and thus obtain representation results. The coherence properties bring to light the essential
properties of the logics we consider in abstract terms, and thus allow meaningful classification, comparison, and
parallel development.

We will use ”coherence” as an expression, but we will not present a general theory about it. Perhaps the notion is
even too general to create a powerful general theory on it.

We saw (in rough outline) the use of coherence properties from the theorist’s point of view, but there is also an
eminently practical aspect to them. Coherence properties allow the transfer of conclusions from one situation to
another - we do not always have to start from scratch again. This is the more so important for nonmonotonic and
similar logics, as we do not necessarily have the strong coherence property of monotony, which allows powerful
transfer. The more we have coherence properties, the more we have regularities, the more we can do efficient

reasoning. For instance, the rule (CUM) is stronger than what we have in classical logic: If T ⊆ T ′ ⊆ T , then T
and T ′ have exactly the same consequences, as the choice function evaluates to the same results for T and T ′.

In the completeness results we consider in the sequel, coherence conditions are imposed by the underlying structure.
When we consider a semantics based on size, coherence conditions will only be plausible, but not imposed. To cite
the same example again, if A ⊆ B ⊆ C, and A is a big subset of C, then it is plausible, but not necessary, that it
should be one of B, too.

It is reasonable and not just a formal exercise to generalize the concept a little in two directions:

First, e.g. the usual deduction theorem can be seen as a coherence property: φ ∧ ψ ` σ → φ ` ψ → σ - here, not
only the left hand side changes, but the right hand side changes, too, in, of course, well-defined ways.

Second, the case of defaults shows, that sometimes, not all properties will be transferred (as in the case of (CUM)),
but only those which figure explicitly as a default: normally φ will be transferred to subsets of the universe, but
not arbitrary φ′ will be transferred.

Coherence is, of course, at the very center of analogical and related reasoning: we transfer a conclusion φ from a
situation s to a situation s′ which we consider similar. This is ubiquious in common sense reasoning. We even
express it by words like ”similar”, ”irrelevant changes”, etc. Abstraction and substitution express the same idea:
we can abstract from certain properties, which are irrelevant, and we can substitute one situation for another,
without major changes. Of course, what is similar and what is relevant are properties of the world, and not of
logics, and we can only reason relative to some such similarity, we cannot find it in our logics itself. We can perhaps
conclude that if we are permitted to transfer φ from s to s′, then also from s to s′′ for a class of situations s, s′,
s′′, etc., but we cannot justify it in the absolute - unless we have coded it already into our picture of the world like
in cumulative logics.

This hypothesis of locality - changing the situation a little will not change consequences very much - can be found
in many considerations, like the help of already existing plans as guidelines, limiting the search space (see e.g.
Bratman [Bra87]). A formal version is e.g. to consider intervals, expressing ”between”: f([x, x′]) ⊆ [f(x), f(x′)] -
a condition of continuity.

(2) Where do we see coherence?

70 CHAPTER 2. CONCEPTS

As already said, coherence properties are often generated by underlying structures (preferential relations, distances
. . . .). They are the ”glue” which keeps the different bits of information together. When, for instance, we try to
construct a preferential relation to represent a logic, or its choice function for model sets, the essential coherence
property tells us that if x ≺ y holds inX, then so it will in Y, ifX ⊆ Y. This imposes restrictions on the construction.
We cannot have y minimal in Y, but not in X, if X ⊆ Y.

This is perhaps the place to describe this role of coherence properties in completeness proofs in somewhat more
detail, though still on an abstract level.

In general, we may have the following possible cases for building the structure in completeness proofs:

• (1) We have information which generates the structure, i.e. gives precise information. E.g. if µ({x, y}) = {x},
then we know that x ≺ y (in preferential structures).

• (2) Some information excludes certain cases, but does not decide everything, e.g. {a, b} | {c, d} for distance
based theory revision does not always allow to have full information, see Example 4.2.1.

• (3) Redundancy: We can have more information than needed to generate the structure, e.g. µ({x, y}) = {x},
and µ({x, y, z}) = {x}, both tell us x ≺ y in the transitive case.

• (4) The information has to be coherent (according to the properties of the structure generated, e.g. a
ranked order imposes more regularities than a simple relation). E.g. in the example in (3), we cannot have
µ({x, y}) = {x}, and µ({x, y, z}) = {y}.

• (5) If we do not have enough information to construct the full structure, we need a uniform method of
construction, i.e. of complementation of the missing information, and we should not have to try everything.

Whereas coherence looked at so far is absolute, i.e. expresses a complete transfer of information (any φ will be
transferred), coherence generated by defaults is the opposite, the information to be transferred is made precise,

but the target is much less so: Consider cumulativity: If T ∼| φ, and T ⊆ T ′ ⊆ T , then T ′ ∼| φ, for any φ, but the
target (T ′) is precisely described by the condition. The default ”normally φ′′ inherits φ to all subsets of the universe
where φ is still consistent, but it transfers only φ, and nothing else. Thus, the information is precisely expressed
(only φ, nothing else), but not the target, almost any subset of the universe can be a target. We discussed above
that this arbitrary choice of subsets is often too strong.

(3) A new use of coherence (Revision of NML)

Reasoning with the normal case, by its very nature, risks to be wrong. Thus, it has the revision problem built in.
Fortunately, it has the solution built in, too.

Suppose α ∼| ψ, but we find α and ¬ψ. The problem of theory revision is how far to go. We can go all the way
and have nothing but the new information, this is usually too radical. But we have to move some way. Now,
in non-monotonic logic with e.g. a system of filters, the system itself gives the answer: We weaken N(X) to
N(X)∪N(X −N(X)) - the best and second best elements - and see whether this helps. This is perhaps best seen
with ranked structures: we go up as far as necessary (recall that rankedness is almost distance). When even α is
wrong, we can still go up as far as necessary.

In [ALS99], we discussed another approach: we revised there one order by another. Again, we had encountered
definability problems there. The reader is referred there for more information.

(4) Coherence as abstract conclusion transfer

When we look at coherence from a more abstract point of view, we can pose questions like the following for model
choice functions f. Do such properties hold as:

f(f(A)) = f(A),

A ⊆ B → f(A) ⊆ f(B),

2.4. COHERENCE 71

f(A ∪ B) = f(A) ∪ f(B),

f(A ∩ B) = f(A) ∩ f(B),

injectivity, surjectivity,

etc.?

And if such properties seem interesting, we can ask what kind of properties they impose on some underlying
structure as preferences etc.

We can also try to find general properties like:

• If we transfer conclusion φ from T to T ′, and T ′′ is closer to T than T ′ is, then we should also be able to transfer
φ to T ′′. Here, the distance would code our experience with the world. Recall our similar considerations when
we shortly described a possible way of reasoning with prototypes or with marginal cases, and extrapolation.

• If we can transfer φ from T to T ′, but only modified to φ′, and if ψ is close to φ, and ψ′ close to φ′, can we
then transfer ψ from T to T ′, with result ψ′?

• If we can transfer φ from T to T ′ and to T ′′, both stronger than T, can we transfer also to T ′ ∪ T ′′? (The
problem of ”admissible” predicates.)

• Do we want to put certainty in the process? If we transfer φ from T to T ′, and T ′′ is more distant from T
than T ′ is, are we less certain to do the transfer to T ′′?

• How far are we prepared to transfer φ from T, given a distance?

In the case of defaults and inheritance, we know which kind of conclusion can be transferred. They are specified
explicitly. In the general case, this is not true, and will depend on the situation. For instance, in a static situation,
we cannot transfer from point a to point b the exact position they have, but in a dynamic situation, we can say
that object x has stayed at the same place over time. Logic cannot tell us which properties to transfer and which
not.

In general, however, we do not transfer information naively, but we do so because we suspect a common mechanism
behind the cases: birds are built such that they have wings, lay eggs, etc., cars move because they have an engine
inside, etc. I think, information transfer without this background is often unnessarily naive, and this transfer will
benefit from a theory of causation (or action) in the background, which may restrict changes we may reasonably
expect. So the (still naive, but perhaps somewhat less so) picture we have in mind is: there is a common principle
underlying several cases, this common principle may differ somewhat from one case to the other, but not too much,
and, there might be disturbances which prevent the principle to ”express” itself (a platonistic idea) - the match
might be wet, flying might have become unnecessary in the course of evolution etc. Of course, this is very similar
to counterfactuals: in the closest ideal or normal case, something holds.

If we know nothing else, the bigger the distance is between source and destination of information transfer, the bigger
the chance that some contradictory information might enter by transfer ”from the side” (whatever its strength). If
we transfer information from animal to blackbird, there are more possibilities that disturbing information affects
blackbirds (but not animals), than if we transfer just from birds to blackbirds. This consideration is based on the
criterion of specificity. Of course, there might by a very strong transfer of information over ”big” distances. E.g.
dead animals will never fly by their own means, and this transfers to small sets of animals in a strong way - in this
case, it is even a universal quantifier.

(5) Coherence and range of application

We can see the notion of coherence as the abstract view from above, we see the whole system.

There is another, more local view, or concept, of reasoning, of rules, or even of logics: Their range of application.

72 CHAPTER 2. CONCEPTS

This seems to be an important concept for the description and analysis of real human reasoning - and should thus
be one for the logics of common sense reasoning. This concept deserves in the author’s opinion future attention
and research.

Our ”rules of thumb” (even in highly structured reasoning, like in physics, cf. quantum physics, and the theory
of relativity, if the author has understood correctly) have the form ”birds fly” - but we know that their range of
application is not just limited by ”bird”. One kind of limit is given by specificity. It is also quite possible that one
type of logic is well adapted to one situation, and another one for another situation, so even logics may have their
range of application. This range of application can have the form

(a) of a restriction of the domain of application, or

(b) the kind of information we reason about can be restricted.

As said already above, there are some forms of such restrictions coded into different logics:

Quantifiers may be ”softened” from ∀ to ∇ - an example of restriction type (a).

(Single) Reiter defaults speak, type (b), about just one formula to be transferred, but, type (a), restrict the domain
only by consistency. (Specificity as limit can be coded, but this is artificial.)

Rules like Cumulativity speak about arbitrary formulas, but, (a), restrict the domain precisely (everything between
T and the set of its consequences).

Inheritance networks make range and kind of information to be transferred precise: (b), the kind of information is
limited by the precise and simple language, (a), the range is limited by specificity.

Judea Pearl’s networks of causation do a similar thing: they, (b), have a limited language, and, (a), treat essentially
indirect causation: A has B as consequence, B has C as consequence, so C is an indirect consequence of A. In this
setting, B can block A’s influence on C.

We often also have competing influences, a hammer and a feather both feel gravity and wind, but to different
degrees. So gravity’s influence is less ”extended” to feathers than to hammers. Although a precise, quantitative
description is possible in this case, we will often face situations which are not so clear, and where we will do
with some rough qualitative reasoning, using reasoning with and about ranges of application. We may use some
reasoning with distance e.g. when we think that the influence decreases with distance.

Clearly, indirect causation and competing influences are diffent phenomena.

Interpolation from extreme cases as discussed in Section 2.2.3 is a case of restriction (a).

We can now perhaps describe our reasoning as follows: we have some procedures or rules of reasoning which have
proved useful in the past. In different domains, different procedures or logics may prove useful. When confronted
with a new problem, we may try to extend the domain of application of the various procedures we know, so to
include the new problem. Often, the different candidates will give different results for the problem at hand. As we
are reasoning about a not totally known world, we cannot be sure how to proceed, and use some reasoning with
and about domains of application.

In the author’s opinion, these phenomena deserve a systematic treatment of their own in future research, and their
successful analysis can help make the logics of common sense reasoning better suited for real applications. In short,
”range of application” seems to be an important concept of common sense reasoning, and an interesting problem
for future research.

Chapter 3

Preferences

3.1 Introduction

Recall that we gave the main definitions on preferential structures in Section 2.3.1.

3.1.1 General discussion

This Chapter 3 on preferential structures is the formally most developed part of the book. For this reason, the
introduction will also be more detailed than that of the other Chapters.

We discuss preferential structures, stressing

• general constructions

• domain closure questions

Domain closure problems will be seen in particular in Section 3.5 on a counterexample to the KLM characterization
(this is the reason we repeat it here), in Section 3.7 on Plausibility Logic, in Section 3.4.1 and 3.10.3 on the limit
version, and in our remarks on definability preservation.

Definability preservation will be assumed in this part, but we will come back to the problem later in Chapter 5,
describing problems, as well as general results without definability preservation, and their techniques. The reason
we postpone the discussion is, that exactly the same problems are seen in revision, they are solved in the same
way, so it seems better to present them after the discussion of revision. We will also show there that a usual
characterization in the not definability preserving case is not possible.

In general, one allows multiple copies (or non-injective labelling functions) for preferential structures. This has
a tradition in classical modal logics, and there is some justification of this tradition for preferential structures in
Section 3.9, where we work with sets of total orders instead of single partial orders. We start with this multi-copy
approach, and append in each case a remark on the case with one copy each.

We first present the terminology, and then some basic results about preferential structures.

We then treat the (probably) most general case: arbitrary, not necessarily smooth, structures, without transitivity.
The technique used there is basic for much of the rest. We show that adding transitivity gives nothing new. Next,
we present the general case with one copy each. We then attack the smooth case, again first with copies admitted,
then without. Again, with copies, adding transitivity gives nothing new. We finish these cases with a logical
characterization, and show that, in two important classes, the limit version is equivalent to the minimal version.

We then turn to ranked structures, show basic properties of them, and characterize the minimal variant of them.

73

74 CHAPTER 3. PREFERENCES

We then turn to the limit variant, and finally show equivalence of the minimal and the limit variant in important
cases again.

Recall that we use the Axiom of Choice without further mentioning.

In more detail:

The present Chapter 3 is one of the central technical parts of the book.

It discusses representation results and problems for various types of preferential structures. It can be read at
several levels. First, more superficially, one can look at the main results, without descending to auxiliary lemmas
and proofs. At a deeper level, one will read the results of the lemmas, and then go down to read and check
all proofs. At an even deeper level, one will try to identify the main problems and ideas which are behind the
fundamental questions and the constructions which attack them. For readers interested in this level, we have tried
to elaborate the main ideas (at least as far as we did understand them ourselves) before and in the course of the
proofs. Beyond these comments, there are results which in themselves reach deeper into the underlying questions.

Among these are:

• all problems and results concerning closure properties of the domain (the counterexample to the KLM - with
”KLM” we refer indiscriminately to the article [KLM90], the authors Krauss, Lehman, Magidor, or to their
approach and technique, context will tell what is meant - characterization and its analysis (see Section 3.5),
as well as the negative and positive results for plausibility logic (see Section 3.7), and the equivalence of the
limit version with the minimal version in certain cases (see Section 3.4.1 and 3.10.3));

• obtaining cumulativity without smoothness (see Section 3.6), by a topological approach;

• a discussion of the limit variant of ranked structures, which uses heavily topological properties, particularly
in the examples (see Section 3.10.3 again);

• more detailed investigations in the number of copies of models which might be needed to represent a logic
(see Section 3.8 and in a different direction: Section 3.9).

By their very nature, these parts are addressed primarily at those readers who want to do their own research on
the subject (or related ones) and progress deeper than the present text does. Even stronger, they are intended
as pointers to such deeper problems and perhaps (partial) answers and their more systematic treatment than the
author was able to see at the moment of writing this text. They point, we hope, towards a research project on
fundamental problems of representation in the domain.

We have tried to reflect the various levels of reading in the exposition, which will not always group matter by
contents. Thus, e.g. the problem of multiple copies is just briefly addressed at the beginning (see Example 3.1.1)
to motivate their existence, but discussed in more detail only in Section 3.8, in order not to present a less central
problem at the very beginning. We then first give the positive representation results for the general, the general
transitive, the smooth, and the smooth and transitive case, for the algebraic and the logical case. This is a relatively
homogenous development and a successive refinement of the basic technique, and we wanted to present it to the
reader as such. The KLM-counterexample and its analysis (see Section 3.5), cumulativity by topological means
(see Section 3.6), and plausibility logic (see Section 3.7) are presented after, as they lead into more subtle questions,
and risk to deviate the reader from the mainstream development.

There is a major cleavage between the general and smooth case on the one side, and the ranked case on the other.
The cleavage is due to the very strong rankedness condition, which groups many elements on the same level. More
precisely, if a and b are incomparable (they are on the same level), and c is smaller (greater) than a, then it will
also be smaller (greater) than b. Not only does the importance of multiple copies (almost) disappear (see Section
3.10.1), but we have a strong equivalence between different elements on the same level. This simplifies many things
enormously and the techniques used are quite different for the case with and the case without rankedness. This is
reflected in the organisation of the text, as we first discuss (almost) the complete non-ranked case, and turn only
then to the ranked case.

3.1. INTRODUCTION 75

The case of not necessarily definability preserving structures is discussed only in Chapter 5, in order to better
elaborate the common approach for preferential structures and distance based revision. We also show there that
general, i.e. not necessarily definability preserving preferential structures, as well as the general limit version do
not have a normal characterization at all, even if we admit infinitary characterizations. A similar result for general
distance based Theory Revision can probably also be shown. Thus, we choose to group by proof and description
techniques, and not by subject, as the former seems to be the more important connection.

The section on total orders as basic entities of preferential reasoning (Section 3.9) stands a little apart, as its main
motivation is more philosophical. We give here a justification to the use of copies, and, at the same time, move
closer to the notion of a classical model. A classical model has maximal information, it decides every formula. In
the context of orders, a total order has maximal information. It is therefore natural to consider total orders as
the basic entities or models of preferential reasoning. Completeness proofs will then have the form known from
classical logic, i.e. every formula which is not a consequence, has a counter-model, but there need not be universal
structures, which make exactly those formulas true, which are consequences. We join the mainstream of preferential
structures by considering disjoint unions of such total orders, and have, essentially, copies of classical models.

In general, to explain the main conceptual and proof ideas and techniques, we will try to elaborate in each case

• what has to be done,

• where the main problems are,

• what the main idea of solution is,

• which, if any, problems arise for its execution,

• which the main auxiliary results to be used are,

• the importance of the technique used for the further development,

• a general assessment of the positive and negative aspects of the idea or technique.

As we concentrate on the technical development, we will not discuss the basic concepts presented at some length
in previous chapters any more.

A suggested sequence of reading for readers interested in proofs

• the introduction (Section 2.3.1), with definitions on the fly, as they are needed (we have grouped them
together for easier referencing),

• the basic construction for the not necessarily transitive case (Proposition 3.2.2),

• briefly jump to the logical representation result (Proposition 3.4.1) to get its flavour,

• the basic transitive case (Proposition 3.2.4) or the smooth case without transitivity (Proposition 3.3.4),

• the smooth case with transitivity (Proposition 3.3.8),

• the equivalence of the minimal and the limit variant in special cases (Section 3.4.1),

• the introduction to the ranked case (Section 3.10.1),

• the main results for the minimal variant of the ranked case (Section 3.10.2),

• the equivalence of the minimal and the limit variant in special cases of ranked structures (Section 3.10.3.2),

• the rest in any order.

76 CHAPTER 3. PREFERENCES

At the risk of being too redundant, we briefly describe here the main strand of development, though it will be
repeated again below, but in more dispersed manner.

We start with the algebraic characterizations. The first case is that of the general preferential structures. We show
that they are charaterized by the conditions

(µ ⊆) f(X) ⊆ X

and

(µPR) X ⊆ Y → f(Y) ∩X ⊆ f(X).

It is easy to see that they really hold in all preferential structures: minimization is upward absolute, every element
which not minimal in some set X, will also be so in any superset Y of X.

Given then a function with these properties, we have to find a structure which represents it. We take the most
general approach possible, and use all elements of X to minimize x, if x ∈ X − f(X). The use of copies of x (done
by indexing with choice functions) is crucial here. The relation defined between the copies is, on the contrary, the
dumbest possible, but also the adequate one, given that we should not make an arbitrary choice.

The proof that the construction does what it should is short and straightforward.

Next, we attack the transitive case. We see that indexing by trees is the natural construction, as this allows us to
look ahead to all direct and indirect successors and note them as nodes in a tree. We give an intuitive argument
why transitivity does not require additional properties, and pour this idea into mathematical form by considering
trees which express this.

We discuss shortly the one-copy case. The crucial property is that any element, if it is minimized at all, is minimized
by one single element (or several single elements separately). We consider two properties which express this, and
see that the finitary version does not suffice for the general case, but the infinitary one does. We also show that
transitivity imposes new conditions, if we work with one copy only.

We then turn to the smooth case, start with minimizing by all of f(X), if x ∈ X−f(X), but we have to do suitable
repair operations sufficiently far from X, as we might have destroyed minimality in other sets, and have, in order
to achieve smoothness, add suitable pairs to the relation. This again might have to be repaired, and so on, in an
infinite process. The proof needs in a crucial way certain domain closure properties, as will become apparent in
Section 3.7 on Plausibility Logic.

We now combine the ideas from the general transitive case, and from the smooth case, to tackle the transitive
smooth case. Indexing is again via trees, to have control over successors, and we have to work again far enough
from the original set we treat. The case is complicated by the fact, that we also have to stay away from other sets,
collected in the inductive process.

Translation into logic is straightforward, using classical soundness and completeness, and definability preservation.
Getting rid of definability preservation is a more intricate matter, and discussed in Chapter 5 - essentially, we admit
small sets of exceptions, but loose normal characterization. We also show in this Section 3.4 that in important
classes (transitive structures, but only formulas on the left of ∼| , or cofinally many definable closed minimizing
sets), the limit version is equivalent to the minimal version.

In Section 3.9, we take a different approach to preferential structures. This Section stands a little apart, as its more
philosophical motivations and the technical development are closely intertwined; due to its technical character, we
have put it in this Chapter. First, we consider strict total orders on the set of classical models of the underlying
language as the basic entity. Such structures have maximal preferential information, just as classical propositional
models have maximal propositional information. Second, we will work in completeness proofs with sets of such
total orders and thus again closely follow the approach in classical logic, whereas the traditional approach for
preferential structures works with one canonical structure. More precisely, in classical logic, one shows T ` φ iff
T |= φ, by proving soundness and that for every φ s.t. T 6` φ there is a T-model mT,¬φ , where φ fails. In traditional
preferential logic, one constructs a canonical structureM, which satisfies exactly the consequences of T. We work
in this Section 3.9, just as in classical logic, with sets of structures to show completeness. Third, our approach
will also shed new light on the somewhat obscure question of multiple copies (equivalent to non-injective labelling

3.1. INTRODUCTION 77

functions) present in most constructions (see e.g. the work of the author, or [KLM90], [LM92]). In our approach,
it is natural to consider disjoint unions of sets of total orders over the classical models. They have (almost) the
same properties as these sets have. As disjoint unions are structures with multiple copies, we have thus justified
multiple copies of models or labelling functions in a natural way.

Next, we discuss ranked structures. As already said, they are very different from the non-ranked case, as the
rankedness condition is very strong, and many complicated situations arising in the general case do not apply
any more. In particular, the need for and usefulness of copies is drastically restricted. On the other hand, there
is a multitude of very similar and natural conditions, which, however, often show subtle differences. For this
reason, we first show a number of positive and negative results comparing those conditions, and only then attack
representation problems. We give three representation results, the first two differ slightly in their conditions, and
the closure conditions imposed on the domain, the last one discusses a more general case.

The part on the limit version of ranked structures is probably the most interesting one of the material on ranked
structures. We show by a number of examples, which use divergence between the order limit and the topological
limit (in the standard topology of propositional logics) several quite interesting results:

• logics working with formulas or full theories on the left of ∼| have quite different behaviour under the limit
version

• the full theory version is not equivalent to the minimal version.

On the positive side, we show that rankedness makes the limit version amenable, we give a completeness result,
and, probably most importantly, show that the limit version is equivalent to the minimal version (not necessarily
with the same order, however), as long as we consider just formulas on the left of ∼| , or if the definable closed
minimizing sets are cofinal.

In Section 3.2.4, we mention very briefly X-logics, which are in many interesting cases just an unorthodox way to
note preferential logics.

Organization:

In Section 3.2, we discuss the minimal variant of general preferential structures. In Section 3.2.1, we work with
arbitrarily many copies, and present the most general result about preferential structures we know. We then show
in Section 3.2.2 that the transitive case gives nothing new. In Section 3.2.3, we discuss the 1-copy variant, and
show that transitivity matters here. X-logics are briefly analyzed in Section 3.2.4.

In Section 3.3, we investigate the minimal variant of smooth structures, first for arbitrarily many copies, show
again that transitivity gives nothing new, turn to the 1-copy case, and show again that transitivity matters there.

In Section 3.4, we present the logical characterization of the cases investigated so far. We also show equivalence of
the limit and the minimal version in important classes.

In Section 3.5, we give the KLM characterization and show that it does not carry over to the case of full theories.

In Section 3.6, we show that there are also non-smooth models of cumulativity.

In Section 3.7, we discuss the example of plausibility logic, showing the importance of closure under finite unions
for smooth structures: The standard technique will fail, but we can modify it to make it work.

In Section 3.8, we present more detailed results on the role of copies, and in

Section 3.9 a different approach to preferential models, based on total orders.

In Section 3.10, we turn to ranked structures. First, in Section 3.10.1, we discuss some basic properties. In Section
3.10.2, we present the minimal version of smooth and not necessarily smooth cases. In Section 3.10.3, we discuss
the limit version, and show that in particular but important cases, it is equivalent to the minimal variant - again
due to closure properties of the domain.

78 CHAPTER 3. PREFERENCES

3.1.2 The basic definitions and results

Recall from Chapter 1:

A child (or successor) of an element x in a tree t will be a direct child in t. A child of a child etc. will be called an
indirect child. Trees will be supposed to grow downwards, so the root is the top element.

We first show that every preferential structure has an equivalent irreflexive one - perhaps by adding copies.

Lemma 3.1.1

For any preferential structure Z =< X ,≺>, there is a preferential structure Z ′ :=< X ′,≺′> s.th.

(1) µZ = µZ′

(2) Z ′ is irreflexive

(3) if Z is transitive, then so is Z ′.

Proof of Lemma 3.1.1:

Let X ′ := {< x,< i, n >>: < x, i >∈ X , n ∈ ω} and

< x′, < i′, n′ >> ≺′ < x,< i, n >> iff

(i) n′ > n and

(ii) < x′, i′ > ≺ < x, i >.

(1) Let Y be any set, we have to show µZ(Y) = µZ′(Y).

′′ ⊆′′: Suppose y ∈ µZ(Y), but y 6∈ µZ′(Y). Take < y, i >∈ X s.th. there is no < y′, i′ >∈ XdY, < y′, i′ >≺< y, i > .
Consider u :=< y,< i, 0 >>∈ X ′dY. By y 6∈ µZ′ , there is u′ :=< y′, < i′, n′ >>∈ X ′dY, u′ ≺′ u, but then
< y′, i′ >≺< y, i >, contradiction. ′′ ⊇′′: Suppose y ∈ µZ′(Y), but y 6∈ µZ(Y). Take u :=< y,< i, n >>∈ X ′dY
s.th. there is no u′ :=< y′, < i′, n′ >>∈ X ′dY, u′ ≺′ u. Then < y, i >∈ XdY, so there is < y′, i′ >∈ XdY s.th.
< y′, i′ >≺< y, i > . But then < y′, < i′, n+ 1 >> ≺′ < y,< i, n >>, contradiction.

(2) is trivial by the condition n′ > n.

(3) Let < x′′, < i′′, n′′ >> ≺′ < x′, < i′, n′ >> ≺′ < x,< i, n >> . Then < x′′, i′′ >≺< x′, i′ >≺< x, i >, so
by transitivity of ≺, < x′′, i′′ >≺< x, i > . Moreover, n′′ > n′ > n, so n′′ > n, and thus < x′′, < i′′, n′′ >> ≺′

< x,< i, n >> . 2 (Lemma 3.1.1)

We conclude this introduction with a simple example illustrating the importance of copies. Such examples seem to
have appeared for the first time in print in [KLM90], but can probably be attibuted to folklore. A more detailed
discussion is in Section 3.8 below.

Example 3.1.1

The finite case, an illustration:

Consider the propositional language L of 2 propositional variables p,q, and the classical preferential model M
defined by

m |= p ∧ q, m′ |= p ∧ q, m2 |= ¬p ∧ q, m3 |= ¬p ∧ ¬q, with m2 ≺ m, m3 ≺ m′, and let |=M be its consequence
relation. (m and m′ are logically identical.)

Obviously, Th(m)∨ {¬p} |=M ¬p, but there is no complete theory T ′ s.t. Th(m)∨ T ′ |=M ¬p. (If there were one,
T ′ would correspond to m, m2, m3, or the missing m4 |= p ∧ ¬q, but we need two models to kill all copies of m.)
On the other hand, if there were just one copy of m, then one other model,

i.e. a complete theory would suffice. More formally, if we admit at most one copy of each model in a structureM,
m 6|= T, and Th(m) ∨ T |=M φ for some φ s.t. m |= ¬φ - i.e. m is not minimal in the models of Th(m) ∨ T - then

3.2. GENERAL PREFERENTIAL STRUCTURES 79

there is a complete T ′ with T ′ ` T and Th(m) ∨ T ′ |=M φ, i.e. there is m′′ with m′′ |= T ′ and m′′ ≺ m. 2

3.2 General preferential structures

We discuss first general preferential structures with arbitrarily many copies. We start with the main conditions,
and then present the development for the general preferential case.

Condition 3.2.1

For a function µ : Y → Y , we consider the conditions:

(µ ⊆) µ(X) ⊆ X,

(µPR) X ⊆ Y → µ(Y) ∩X ⊆ µ(X),

(µCUM) µ(X) ⊆ Y ⊆ X → µ(X) = µ(Y),

(µ∅) µ(Y) 6= ∅ if Y 6= ∅,

(for all X,Y ∈ Y).

Note that, if Y is closed under finite intersections, in the presence of (µ ⊆), (µPR) is equivalent to (µPR′), where

(µPR′) µ(X) ∩ Y ⊆ µ(X ∩ Y).

Discussion:

There are two main possibilities: an element x ∈ X−µ(X) is minimized by some element in X (perhaps by x itself
in an infinite descending chain or a cycle), or, we need a set of elements in X to minimize x. The first possibility
works directly with elements x, the second variant needs copies: we have to destroy all copies, and for this, we
need a full set of elements.

In the general case with copies, transitivity does not need new conditions, the case without copies does.

We present first the algebraic constructions for the general case with copies in its transitive and not necessarily
transitive variant. At first sight, it might be surprising that transitivity does not impose additional conditions.
But, look: Transitivity is about replacement. If a � b � c, then, if the relation is transitive, we can replace b by
c to minimize a. This has to be read more precisely in set terms: If a is minimized by a set containing b, we can
substitute b by any set minimizing b. Yet, in the most general construction, we will also have b present in any set
which minimizes b (it might kill itself), as we do not know in general which c minimizes b. Thus, we replace b by a
set containing b, and it is no surprise that the new set also minimizes a. If, on the other hand, we know that c as
element or singleton suffices to minimize b, the situation is different, and transitivity may impose supplementary
conditions. This is true when we work with single elements, i.e. without copies. (On the other hand, as the case of
smoothness shows, which is in itself a weak form of transitivity, there are more specific situations, where transitivity
does not change conditions either, see the discussion of the smooth case below.)

The main problem in both the transitive and the not necessarily transitive case is to choose the elements which
minimize a given element. Usually, we have not enough information to decide which, as a consequence, we need full
sets of elements to minimize a given element, and this lack of information is coded into copies, which all together
are minimized by such a set of elements. This is the basic construction given in Section 3.2.1 and explained in some
more detail below. The construction of the copies is the most general possible, but the construction of the relation
is the most brutal possible (all copies of the smaller element are made smaller, where just one would suffice), but,
as we have no criterion for decision, choosing all is again the best possible choice. On the other hand, this choice
prevents transitivity to hold (see Example 3.2.1). As we cannot do much about the construction of the copies, we

80 CHAPTER 3. PREFERENCES

have to restrict the relation. This is done in a look-ahead technique of bookkeeping. (As a matter of fact, we even
add new copies, but they behave as the old ones do, they are just added for clarity.)

Look now at a relation and the transitivity condition. Suppose a � b, a � b′, b � c, b � c′, b′ � d, b′ � d′. If we
write this down all at once, we have a tree (where branches may ”fuse” again, of course, as e.g. c = d is possible,
but this is unimportant here - it seems easier to think in terms of trees). There might be infinite branches, but
this is not important, as the transitivity condition speaks about finite chains. Thus, for given a, it suffices to
consider the tree of heigt ≤ ω of direct and indirect successors of a. If we index a with this tree, it fully describes
the behaviour as far as transitivity is concerned for a. If, then, b is a successor of a, and we take care that its
tree is the subtree of a’s tree beginning at b, we have ”synchronized” a’s and b’s behaviour, and full control about
successors. The tree used for bookkeeping describes immediately all direct and indirect successors of a. This idea,
which, again, seems the most general and natural possible construction for transitivity, is basic for all transitive
constructions in the general and the smooth case. We also conjecture that this type of construction can be used in
other contexts. There is a much simpler direct proof, but with a technique we cannot re-use for the smooth case,
it is given in Proposition 3.2.8 - a similar result was already shown in [Sch92].

3.2.1 General minimal preferential structures

The following construction, already used in [Sch92], is the basis for all other constructions for non-ranked minimal
preferential structures in Sections 3.2 and 3.3. Thus, the reader interested in proofs should understand it. For this
reason, we explain it more leisurely than the other constructions. The basic idea is very simple. We first describe
the problem, and then show how a suitable choice of copies solves it in a very simple manner.

We have to find suitable elements x′ ∈ X, x′ ≺ x, if x ∈ X − f(X). In the general case, we do not have enough
information to choose one or more such x′, and this will lead us naturally to a construction with copies. One
might perhaps say that the use of copies is the key element in the construction which allows to work with less than
complete knowledge, it will code the OR of incomplete knowledge.

Suppose then x ∈ X − f(X).

To represent f, we have to find some x′ ∈ X, x′ ≺ x. But we may not know which x′. This is often the main
problem in completeness proofs: we have to make some choice, but we do not know which alternative to choose. If
there is a (inclusion-) minimal X ′ ⊆ X s.t. x ∈ X ′ − f(X ′), we could choose in X ′. But such a minimal X ′ need
not exist. And even if it were to exist, this need not solve the problem: there might be X ′′ ⊆ X ′ s.t. x ∈ f(X ′′),
and such X ′′ may even cover all of X ′ as a set, X ′ =

⋃
{X ′′ : X ′′ ⊆ X ′, x ∈ f(X ′′)}. The possible existence of

copies solves all these problems at the same time. We do as if we knew nothing else than x ∈ X − f(X). For each
x′ ∈ X, we make a copy < x, x′ > which is minimized by x′ : < x, x′ >� x′. (Note that x might minimize itself in
an infinite descending chain.) This guarantees that the full set X will minimize all copies of x - but nothing less.

If X ′
⊂
6= X, then at least one copy will not be minimized, and x will be in µ(X ′). It is a sort of big OR: we need all

elements of X to do the minimizing. This settles our X.

Of course, there might be other X ′ s.t. x ∈ X ′ − f(X ′), even X ′ with X ′
⊂
6= X. Thus, we have to repeat the

procedure for all such X ′ : every copy of x has to be minimized by by some x′ ∈ X ′ for any X ′ s.t. x ∈ X ′−f(X ′).
This is a kind of big AND: it has to be minimized by all such X ′. We now have to combine the OR and the
AND. The Cartesian product does exactly the choice we want to do: we consider all copies < x, g >, where
g ∈ Π{X : x ∈ X − f(X)}, and make < x, g > bigger than any x′ ∈ ran(g). Every such copy will be minimized
in all such X, as it chooses some element in X, but nothing less does the job: there will be one copy which is not
minimized by any element in any X where x ∈ f(X). This is proven in Claim 3.2.1.

Of course, any superset X ′ of some X which minimizes x, will also minimize x - this is the basic condition any f
representable by preferential structures has to satisfy.

The construction is now the most general possible: we cannot do less to code minimization.

There is still one step to do: we have to repeat the construction for all other x. Thus, we will consider copies
< x, g > and < x′, g′ > . Now, we have some liberty: It suffices to make one copy < x′, g′ > smaller than < x, g >,

3.2. GENERAL PREFERENTIAL STRUCTURES 81

if x′ ∈ ran(g), but we do not know which. The best choice at this time seems to be to make ALL such < x′, g′ >
smaller than < x, f >, independent from g′. This is the most ”brutal” construction possible - justified, of course, by
our lack of knowledge -, and it is important to see that we could do with much less. We will refine the construction
for the transitive case, where we want exactly to have more control over the copies < x′, g′ > which are smaller
than < x, g > for given x′.

To summarize:

The construction is basic for many results on preferential structures. We code our lack of knowledge into copies, and
combine the conditions on several sets by using the Cartesian product. The construction is then straightforward.
It is most general in one aspect (choice of copies), and most brutal in another (choice of the relation), showing
where refinements are possible.

At the price of being perhaps overly redundant, we give an example: Suppose x ∈ X−µ(X). If µ is to be represented
by a preferential structure Z , x, (or, more precisely, all copies of x) cannot be minimal in the structure. Thus, for
each copy < x, i > of x, there must be some < x′, i′ > s.t. x′ ∈ X, < x′, i′ >≺< x, i >, i.e. which ”kills” < x, i > .
An element x ∈ X might be non-minimal in X and X ′. At the same time, X might need two elements, say y and
y′, to kill (all copies of) x, and X ′ might need two elements, say z and z′, to kill x. But we do not know which
copy is killed by which elements. If these are all the possibilities to kill the copies of x, any Y which kills x has
to contain {y, y′} or {z, z′}. But this is equivalent to the fact that the range of any choice function in the product
{y, y′}×{z, z′} has non-empty intersection with Y. This is the central idea, to be found in the proof of Claim 3.2.1
below, too.

Definition 3.2.1

For x ∈ Z, let Yx := {Y ∈ Y : x ∈ Y − µ(Y)}, Πx := ΠYx.

Note that ∅ 6∈ Yx, Πx 6= ∅, and that Πx = {∅} iff Yx = ∅.

Claim 3.2.1

Let µ : Y → Y satisfy (µ ⊆) and (µPR), and let U ∈ Y . Then x ∈ µ(U) ↔ x ∈ U ∧ ∃f ∈ Πx.ran(f) ∩ U = ∅.

Proof:

Case 1: Yx = ∅, thus Πx = {∅}. ′′ →′′: Take f := ∅. ′′ ←′′: x ∈ U ∈ Y , Yx = ∅ → x ∈ µ(U) by definition of Yx.

Case 2: Yx 6= ∅.
′′ →′′: Let x ∈ µ(U) ⊆ U. It suffices to show Y ∈ Yx → Y − U 6= ∅. But if Y ⊆ U and Y ∈ Yx,

then x ∈ Y − µ(Y), contradicting (µPR). ′′ ←′′: If x ∈ U − µ(U), then U ∈ Yx, so ∀f ∈ Πx.ran(f) ∩ U 6= ∅. 2

Proposition 3.2.2

An operation µ : Y → Y is representable by a preferential structure iff µ satisfies (µ ⊆) and (µPR).

Proof:

One direction is trivial. The central argument is: If a ≺ b in X, and X ⊆ Y, then a ≺ b in Y, too.

We turn to the other direction. The preferential structure is defined in Construction 3.2.1, Claim 3.2.3 shows
representation.

Construction 3.2.1

Let X := {< x, f >: x ∈ Z ∧ f ∈ Πx}, and < x′, f ′ >≺< x, f > :↔ x′ ∈ ran(f). Let Z :=< X ,≺> .

Claim 3.2.3

For U ∈ Y , µ(U) = µZ(U).

82 CHAPTER 3. PREFERENCES

Proof:

By Claim 3.2.1, it suffices to show that for all U ∈ Y x ∈ µZ(U) ↔ x ∈ U and ∃f ∈ Πx.ran(f) ∩ U = ∅.
So let U ∈ Y . ′′ →′′: If x ∈ µZ(U), then there is < x, f > minimal in XdU (recall from Definition 1.6.1 that
XdU := {< x, i >∈ X : x ∈ U}), so x ∈ U, and there is no < x′, f ′ >≺< x, f >, x′ ∈ U, so by Πx′ 6= ∅ there is no
x′ ∈ ran(f), x′ ∈ U, but then ran(f) ∩U = ∅. ′′ ←′′: If x ∈ U, and there is f ∈ Πx, ran(f) ∩U = ∅, then < x, f >
is minimal in XdU. 2 (Claim 3.2.3 and Proposition 3.2.2)

3.2.2 Transitive minimal preferential structures

Discussion:

Construction 3.2.1 (also used in [Sch92]) cannot be made transitive as it is, this will be shown below in Example
3.2.1. The second construction in [Sch92] is a special one, which is transitive, but uses heavily lack of smoothness.
(For completeness’ sake, we give a similar proof in Proposition 3.2.8.) We present here a more flexibel and more
adequate construction, which avoids a certain excess in the relation ≺ of the construction in Section 3.2.1: There,
too many elements < y, g > are smaller than some < x, f >, as the relation is independent of g. This excess
prevents transitivity.

We refine now the construction of the relation, to have better control over successors.

Recall that a tree of height ≤ ω seems the right way to encode the successors of an element, as far as transitivity is
concerned (which speaks only about finite chains). Now, in the basic construction, different copies have different
successors, chosen by different functions (elements of the Cartesian product). As it suffices to make one copy of
the successor smaller than the element to be minimized, we do the following: Let < x, g >, with g ∈ Π{X : x ∈
X − f(X)} be one of the elements of the standard construction. Let < x′, g′ > be s.t. x′ ∈ ran(g), then we make
again copies < x, g, g′ > etc. for each such x′ and g′, and make only < x′, g′ >, but not some other < x′, g′′ >
smaller than < x, g, g′ >, for some other g′′ ∈ Π{X ′ : x′ ∈ X ′ − f(X ′)}. Thus, we have a much more restricted
relation, and much better control over it. More precisely, we make trees, where we mark all direct and indirect
successors, and each time, the choice is made by the appropriate choice functions of the Cartesian product. An
element with its tree is a successor of an other element with its tree, iff the former is an initial segment of the latter
- see the definition in Construction 3.2.2.

Recall also that transitivity is for free as we can use the element itself to minimize it. This is made precise by the
use of the trees tfx for a given element x and choice function fx. But they also serve another purpose. The trees
tfx are constructed as follows: The root is x, the first branching is done according to fx, and then we continue with
constant choice. Let e.g. x′ ∈ ran(fx), we can now always choose x′, as it will be a legal successor of x′ itself, being
present in all X ′ s.t. x′ ∈ X ′ − f(X ′). So we have a tree which branches once, directly above the root, and is then
constant without branching. Obviously, this is essentially equivalent to the old construction in the not necessarily
transitive case. This shows two things: first, the construction with trees gives the same µ as the old construction
with simple choice functions. Second, even if we consider successors of successors, nothing changes: we are still
with the old x′. Consequently, considering the transitive closure will not change matters, an element < x, tfx > will
be minimized by its direct successors iff it will be minimized by direct and indirect successors. If you like, the trees
tfx are the mathematical construction expressing the intuition that we know so little about minimization that we
have to consider suicide a serious possibility - the intuitive reason why transitivity imposes no new conditions.

To summarize: Trees seem the right way to encode all the information needed for full control over successors
for the transitive case. The special trees tfx show that we have not changed things substantially, i.e. the new
µ−functions in the simple case and for the transitive closure stay the same. We hope that this construction will
show its usefulness in other contexts, its naturalness and generality seem to be a good promise.

We now give the example which shows that the old construction is too brutal for transitivity to hold.

Recall that transitivity permits substitution in the following sense: If (the two copies of) x is killed by y1 and y2

3.2. GENERAL PREFERENTIAL STRUCTURES 83

together, and y1 is killed by z1 and z2 together, then x should be killed by z1, z2, and y2 together.

But the old construction substitutes too much: In the old construction, we considered elements < x, f >, where
f ∈ Πx, with < y, g >≺< x, f > iff y ∈ ran(f), independent of g. This construction can, in general, not be made
transitive, as the following example shows:

Example 3.2.1

As we consider only one set in each case, we can index with elements, instead of with functions. So suppose
x, y1, y2 ∈ X, y1, z1, z2 ∈ Y, x 6∈ µ(X), y1 6∈ µ(Y), and that we need y1 and y2 to minimize x, so there are two
copies < x, y1 >, < x, y2 >, likewise we need z1 and z2 to minimize y1, thus we have < x, y1 >�< y1, z1 >,
< x, y1 >�< y1, z2 >, < x, y2 >� y2, < y1, z1 >� z1, < y1, z2 >� z2 (the zi and y2 are not killed). If we take
the transitive closure, we have < x, y1 >� zk for any i,k, so for any zk {zk, y2} will minimize all of x, which is not
intended. 2

The new construction avoids this, as it ”looks ahead”, and not all elements < y1, ty1 > are smaller than < x, tx >,
where y1 is a child of x in tx (or y1 ∈ ran(f)). The new construction is basically the same as Construction 3.2.1,
but avoids to make too many copies smaller than the copy to be killed.

Recall that we need no new properties of µ to achieve transitivity here, as a killed element x might (partially)
”commit suicide”, i.e. for some i, i′ < x, i >≺< x, i′ >, so we cannot substitute x by any set which does not contain
x : In this simple situation, if x ∈ X − µ(X), we cannot find out whether all copies of x are killed by some y 6= x,
y ∈ X. We can assume without loss of generality that there is an infinite descending chain of x-copies, which are
not killed by other elements. Thus, we cannot replace any yi as above by any set which does not contain yi, but
then substitution becomes trivial, as any set substituting yi has to contain yi. Thus, we need no new properties to
achieve transitivity.

Proposition 3.2.4

An operation µ : Y → Y is representable by a transitive preferential structure iff µ satisfies (µ ⊆) and (µPR).

Proof:

The trivial direction follows from the trivial direction in Proposition 3.2.2.

We turn to the other direction.

There is a trivial proof, given in Proposition 3.2.8. This proof is, however, not very instructive. In particular, it
cannot be generalized to the smooth case. We therefore give a more tedious, but also much more instructive, proof,
whose main idea works in the smooth case, too.

The preferential structure is defined in Construction 3.2.2, Claim 3.2.6 shows representation for the simple structure,
Claim 3.2.7 representation for the transitive closure of the structure.

The main idea is to use the trees tfx, whose elements are exactly the elements of the range of the choice function
f. This makes the constructions of Sections 3.2.1 and 3.2.2 basically equivalent, and shows that the transitive case
is characterized by the same conditions as the general case. These trees are defined below in Fact 3.2.5, (3), and
used in the proofs of Claims 3.2.6 and 3.2.7.

Construction 3.2.2

(1) For x ∈ Z, let Tx be the set of trees tx s.t.

(a) all nodes are elements of Z,

(b) the root of tx is x,

(c) height(tx) ≤ ω,

84 CHAPTER 3. PREFERENCES

(d) if y is an element in tx, then there is f ∈ Πy := Π{Y ∈ Y : y ∈ Y −µ(Y)} s.t. the set of children of y is ran(f).

(2) For x, y ∈ Z, tx ∈ Tx, ty ∈ Ty, set tx � ty iff y is a (direct) child of the root x in tx, and ty is the subtree of tx
beginning at y.

(3) Let Z := < {< x, tx >: x ∈ Z, tx ∈ Tx} , < x, tx >�< y, ty > iff tx � ty > .

Fact 3.2.5

(1) The construction ends at some y iff Yy = ∅, consequently Tx = {x} iff Yx = ∅. (We identify the tree of height
1 with its root.)

(2) If Yx 6= ∅, tcx, the totally ordered tree of height ω, branching with card = 1, and with all elements equal to x
is an element of Tx. Thus, with (1), Tx 6= ∅ for any x.

(3) If f ∈ Πx, f 6= ∅, then the tree tfx with root x and otherwise composed of the subtrees ty for y ∈ ran(f), where
ty := y iff Yy = ∅, and ty := tcy iff Yy 6= ∅, is an element of Tx. (Level 0 of tfx has x as element, the t′ys begin at
level 1.)

(4) If y is an element in tx and ty the subtree of tx starting at y, then ty ∈ Ty.

(5) < x, tx >�< y, ty > implies y ∈ ran(f) for some f ∈ Πx. 2

Claim 3.2.6

∀U ∈ Y .µ(U) = µZ(U)

Proof:

By Claim 3.2.1, it suffices to show that for all U ∈ Y x ∈ µZ(U) ↔ x ∈ U ∧ ∃f ∈ Πx.ran(f) ∩ U = ∅. Fix U ∈ Y .
′′ →′′: x ∈ µZ(U) → ex. < x, tx > minimal in ZdU, thus x ∈ U and there is no < y, ty >∈ Z , < y, ty >≺< x, tx >,
y ∈ U. Let f define the set of children of the root x in tx. If ran(f) ∩ U 6= ∅, if y ∈ U is a child of x in tx, and if
ty is the subtree of tx starting at y, then ty ∈ Ty and < y, ty >≺< x, tx >, contradicting minimality of < x, tx >
in ZdU. So ran(f) ∩ U = ∅. ′′ ←′′: Let x ∈ U. If Yx = ∅, then the tree x has no �−successors, and < x, x > is
� −minimal in Z . If Yx 6= ∅ and f ∈ Πx s.t. ran(f) ∩ U = ∅, then < x, tfx > is � −minimal in ZdU. 2

We consider now the transitive closure of Z . (Recall that ≺∗ denotes the transitive closure of ≺ .)

Claim 3.2.7

Let Z ′ := < {< x, tx >: x ∈ Z, tx ∈ Tx}, < x, tx >�< y, ty > iff tx �∗ ty > . Then µZ = µZ′ .

Proof:

Suppose there is U ∈ Y , x ∈ U, x ∈ µZ(U), x 6∈ µZ′(U). Then there must be an element < x, tx >∈ Z with no
< x, tx >�< y, ty > for any y ∈ U. Let f ∈ Πx determine the set of children of x in tx, then ran(f) ∩ U = ∅,
consider tfx. As all elements 6= x of tfx are already in ran(f), no element of tfx is in U. Thus there is no
< z, tz >≺∗< x, tfx > in Z with z ∈ U, so < x, tfx > is minimal in Z ′dU, contradiction. 2 (Claim 3.2.7 and
Proposition 3.2.4)

We give now the direct proof, which we cannot adapt to the smooth case. Such easy results must be part of the
folklore, but we give them for completeness’ sake.

3.2. GENERAL PREFERENTIAL STRUCTURES 85

Proposition 3.2.8

In the general case, every preferential structure is equivalent to a transitive one - i.e. they have the same
µ−functions.

Proof:

If < a, i >�< b, j >, we create an infinite descending chain of new copies < b,< j, a, i, n >>, n ∈ ω, where
< b,< j, a, i, n >>�< b,< j, a, i, n′ >> if n′ > n, and make < a, i >�< b,< j, a, i, n >> for all n ∈ ω, but cancel
the pair < a, i >�< b, j > from the relation (otherwise, we would not have achieved anything), but < b, j > stays
as element in the set. Now, the relation is trivially transitive, and all these < b,< j, a, i, n >> just kill themselves,
there is no need to minimize them by anything else. We just continued < a, i >�< b, j > in a way it cannot bother
us. For the < b, j >, we do of course the same thing again. So, we have full equivalence, i.e. the µ−functions of
both structures are identical (this is trivial to see). 2

3.2.3 One copy version

The following material is very simple, and does not require further comments.

The essential property of preferential structures with at most one copy each is that we never need two or more
elements to kill one other element. This is expressed by the following proerty, which we give in a finitary and an
infinitary version:

Definition 3.2.2

(1-fin) Let X = A ∪ B1 ∪ B2 and A ∩ µ(X) = ∅. Then A ⊆ (A ∪ B1 − µ(A ∪ B1)) ∪ (A ∪ B2 − µ(A ∪ B2)).

(1-infin) Let X = A ∪
⋃
{Bi : i ∈ I} and A ∩ µ(X) = ∅. Then A ⊆

⋃
{A ∪ Bi − µ(A ∪ Bi)}.

It is obvious that both hold in 1-copy structures, it is equally obvious that the second guarantees the 1-copy
property (consider X = {{x} : x ∈ X}, if x 6∈ µ(X), we find at least one x′ ∈ X s.t. x 6∈ µ({x, x′}), and this gives
the construction for representation, too. It is almost as obvious that the finitary version does not suffice:

Example 3.2.2

Take an infinitary language {p, qi : i ∈ ω}, and let every p-model be killed by any infinite set of ¬p−models, and
nothing else. Now, if A is minimized by B1 ∪B2, B1 ∪B2 contains an infinite number of ¬p−models, so either B1

or B2 does, so (1-fin) holds, but, obviously, the structure is not equivalent to any structure with one copy at most. 2

We turn to transitivity in the 1-copy case. Consider a ≺ b ≺ c, but a 6≺ c. So µ({a, c}) = {a, c}. By µ({a}) = {a},
µ({b}) = {b}, µ({c}) = {c}, we see that all three elements are present, so each has to be there as one copy. By
µ({a, b}) = {a} and µ({b, c}) = {b}, we see that a ≺ b ≺ c has to hold. But then transitivity requires a ≺ c, thus
µ({a, c}) = {a} has to hold, so the present structure is not equivalent to any transitive structure with the 1-copy
property. Thus, to have transitivity, we need a supplementary condition:

Definition 3.2.3

(T) µ(A ∪ B) ⊆ A, µ(B ∪ C) ⊆ B → µ(A ∪ C) ⊆ A.

Taking a ≺ b ≺ c and A := {a}, B := {b}, C := {c}, we see that (T) imposes transitivity on 1-copy structures.

Note, however, that (T) does not necessarily hold in transitive structures with more that one copy - see above
Example.

86 CHAPTER 3. PREFERENCES

3.2.4 A (very) short remark on X-logics

Introduction:

X-logics were introduced by P.Siegel et al. as an alternative approach to usual nonmonotonic logics. They work
with formula sets in an unorthodox way. We translate these logics to model set operators, this makes them easy
to understand. We give the natural definition of an extension in these terms, discuss some simple examples, show
as our main small result that X-logics with one extension are just preferential systems, and indicate a short proof
of the converse in the finite case. It seems easy to obtain further results - if desired - on the subject, using our
translation. One should probably expect difficulties with infinite versions, as X-logics speak about formulas, and
not full theories. But these are open problems.

Definition 3.2.4

(Taken from [FRS01].) If X , A, B are sets of L−formulas, then A ∼| XB iff A ∪ B ∩ X ⊆ A ∩ X , where C is as
usual the closure of C under classical logic.

Consider the following simple example: Let L be given, φ, ψ, σ be formulas in L, X := {φ}. Let X := M(φ),
B := M(ψ), C := M(σ). By definition of X-logic, ψ ∼| Xσ iff ψ ∧ σ ∩ X ⊆ ψ ∩ X , i.e. if ψ ` φ, then σ can be
anything, and if ψ 6` φ, then ψ ∧ σ 6` φ, i.e. Con(ψ, σ,¬φ) has to hold.

To understand what happens, we translate into model sets: This more or less trivializes the problem. If B ⊆ X,
then C can be any set, including ∅. If B 6⊆ X, then B ∩ C 6⊆ X, in particular B ∩ C 6= ∅, but apart from this
condition, it can again be anything. In particular, for each x ∈ B−X, C can be {x}. Intuitively, any X ∈ X is a
kind of asymmetrical border: if you are (partially) outside, B 6⊆ X, you cannot come totally inside, B ∩ C 6⊆ X.

It seems plausible to call all minimal C such that B ∩ C 6⊆ X extensions. Thus, simple X ′s are plagued with an
inflation of extensions. (One might consider several extensions as not one set of models associated, but as a set of
models, a sort of ”supermodal” logic.)

We consider now richer X , and generalize above analysis. If X = {φ, φ′}, with X := M(φ), X ′ := M(φ′), then
B 6⊆ X → B ∩ C 6⊆ X and B 6⊆ X ′ → B ∩ C 6⊆ X ′.

For A and X , let AX := {X ∈ X : A 6⊆ X}. Thus, we need ∀X ∈ AX some a ∈ A−X, i.e. we have to look at
choice functions f for AX with values in A-X for X ∈ AX . In particular, any extension corresponds now to an f
with ⊆ −minimal ran(f), or, an extension E of A is a ⊆ −minimal subset of A s.t. E −X 6= ∅ for all X ∈ AX .

Obviously, extensions always exist. If some A has only one extension E, A is just Th(E). Obviously, AND holds

iff there is just one extension. In the general case, A =
⋃
{Th(E) : E is an X−extension for A}.

Example: If Xx := ML − {x}, and X := {Xx}, then any B with x ∈ B is fixed: its only extension is {x}. If
X := {Xx, Xx′}, then any B with x, x′ ∈ B has {x, x′} as only extension, and if only x ∈ B, then its only extension
is {x} etc.

A small side remark on Lemma 2.5 in [FRS01]: Consider ∅ 6= D ⊆ML fixed, and let X := {D ∪ (ML − {x}) : x ∈
ML}. Then, if B ⊆ D, its only extension is ∅, if B 6⊆ D, its only extension is B-D. Consequently, AND can also
hold if L − X is not closed under classical consequence.

We show our main remark:

Fact 3.2.9

If the X-logic has always only one extension, then it is preferential.

Proof:

Suppose that B has only one extension E, and B′ ⊆ B. We show that any extension of B′ has to contain E ∩ B′.
Thus the central condition for preferential structures (µPR) is satisfied, so, in this case, X-logic does not go beyond
preferential logic.

3.3. SMOOTH MINIMAL PREFERENTIAL STRUCTURES 87

Let then B′ ⊆ B, and x ∈ E ∩ B′. We have to show that x is in any extension of B′. By minimality of E for B,
there is A ∈ BX , E − A = {x}. Let Y := {A ∈ BX : E − A = {x}}. As x ∈ B′, any A ∈ Y is in B′

X , so for all
A ∈ Y , we need some yA ∈ B′ −A in any extension of B′. Suppose we can find for all A ∈ Y yA ∈ B′−A, yA 6= x,
i.e. replace x by the yA. But then E′ := (E − {x}) ∪ {yA : A ∈ Y} or one of its subsets would be an extension
for B, a contradiction: If A ∈ AX and E−A 6= {x}, then (E−{x})∩A 6= ∅. If E−A = {x}, there is a new yA ∈ E′. 2

Conversely (in the finite case):

The receipt to construct X-logic from preferences in a set U (in rough outline):

(1) If a is globally minimal, i.e. a ∈ µ(U), we code this by U − {a} ∈ X . If A contains a, then any extension of A
is forced to contain a, too.

(2) If b can be minimized by a and a′ (separately, no copies), i.e. a ≺ b, a′ ≺ b, then we put U − {b, a, a′} into X .
Thus, if A contains just b, it has to be in. If it contains e.g. a and b, then one of a or b has to be in, but a has to
be in anyway provided it is globally minimal, so a alone suffices.

(3) Suppose we need a, a′, a′′ to minimize the 3 copies of b, i.e. a ≺ b0, a
′ ≺ b1, a

′′ ≺ b2. We then put U − {a, b},
U −{a′, b}, U −{a′′, b} into X . Thus, if A contains e.g. a, a′ and b, but not a′′, then, by the last condition, we still
have to have b in.

This is essentially the dual construction of the one presented in Theorem 3.1 of [FRS01], with the advantage can
we can also cover multiple copies. We leave it to the interested reader to flesh out the details. 2

A small warning to the reader interested to pursue the matter: Example 2.3 in [FRS01] seems to be wrong at many
points. Consider just the case A := ∅. Then both (¬a ∧ b ∧ ¬f) ∨ (¬a ∧ ¬b ∧ f) and (¬a ∧ b ∧ f) ∨ (¬a ∧ ¬b ∧ ¬f)
are candidates, which do not imply any φ ∈ X. Moreover, any ψ s.t. ¬a ` ψ will not entail any φ ∈ X either.

3.3 Smooth minimal preferential structures

3.3.1 Smooth minimal preferential structures with arbitrarily many copies

Discussion:

In the smooth case, we know that, if x ∈ X − f(X), then there must be x′ ≺ x, x′ ∈ f(X) (or, more precisely,
for each copy < x, i > of x, there must be such x′). Thus, the freedom of choice is smaller, and, at first sight, the
case seems simpler. The problem is to assure that obtaining minimization for x in X does not destroy smoothness
elsewhere, or, if it does, we have to repair it. Recall that smoothness says that if some element is not minimal,
then there is a minimal element below it - it does not exclude that there are non-minimal elements below it, it
only imposes the existence of minimal elements below it. Thus, if, during construction, we put some non-minimal
elements below some element, we can and have to repair this by putting a suitable minimal one below it. Of course,
we have to take care that this repairing process does not destroy something else, or, we have to repair this again,
etc., and, that we do not alter the choice function.

The basic idea is thus as follows for some given x, and a copy < x, σ > to be constructed (< x, σ > will later be
minimized by all elements in the ranges of the σi which constitute σ) :

• First, we minimize x, where necessary, using the same idea of Cartesian product as in the not necessarily
smooth case, but this time choosing in f(Y) for suitable Y : σ0 ∈ Π{f(Y) : x ∈ Y − f(Y)}.

• This might have caused trouble, if X is such that x ∈ f(X), and ran(σ0) ∩ X 6= ∅, we have destroyed
minimality of the copy < x, σ > under construction in X, and have to put a new element minimal in this X

88 CHAPTER 3. PREFERENCES

below it, to preserve smoothness: σ1 ∈ Π{f(X) : x ∈ f(X) and ran(σ0) ∩X 6= ∅}.

• Again, we might have caused trouble, as we might have destroyed minimality in some X, this time by the
new ran(σ1), so we repeat the procedure for σ1, and so on, infinitely often.

We then show that for each x and U with x ∈ f(U) there is such < x, σ >, s.t. all ran(σi) have empty intersection
with U - this guarantees minimality of x in U for some copy. As a matter of fact, we show a stronger property,
that ran(σi)∩H(U) = ∅ for all σi, where H(U) is a sufficiently big ”hull” around U. The existence of such special
< x, σ > will also assure smoothness: Again, we make in an excess of relation all copies irrespective of the second
coordinate smaller than a given copy. Thus, if an element < y, τ > for y ∈ f(Y) is not minimal in the constructed
structure, the reason is that for some i ran(τi) ∩ Y 6= ∅. This will be repaired in the next step i + 1, by putting
some x minimal in Y below it, and as we do not look at the second coordinate, there will be a minimal copy of x,
< x, σ > below it.

The hull H(U) is defined as
⋃
{X : f(X) ⊆ U}. The motivation for this definition is that anything inside the hull

will be ”sucked” into U - any element in the hull will be minimized by some element in some f(X) ⊆ U, and thus
by U. In particular, it is easier to stay altogether out of H(U) in the inductive construction of σ, than to avoid
U directly - which we need for our minimal elements. Note that H(U) need not be an element of the domain,
which is not necessarily closed under arbitrary unions. But this does not matter, as H(U) will never appear as an
argument of f.

Obviously, the properties of H(U) as shown in Fact 3.3.1 are crucial for the inductive construction of the σ used
for minimal elements. Note that closure of the domain under finite unions is used in a crucial way in this Fact
3.3.1.

To summarize: We start in a straightforward manner with σ0, and repair successively the damage we have done.
To make it possible, we use a suitable hull H(U), which we avoid in order to avoid U itself, facilitating thus the
construction. Once this idea is clear, and we have found a suitable H(U), the execution is quite straightforward -
but the author has to admit that it took him some time and several trials to find a nice H(U), and to see how to
use it.

The constructions:

Recall that Y will be closed under finite unions and finite intersections throughout this Section 3.3. We first define
H(U), and show some facts about it. H(U) has an important role in Sections 3.3.1 and 3.3.2, for the following
reason: If u ∈ µ(U), but u ∈ X−µ(X), then there is x ∈ µ(X)−H(U). Consequently, to kill minimality of u in X,
we can choose x ∈ µ(X)−H(U), x ≺ u, without interfering with u’s minimality in U. Moreover, if x ∈ Y − µ(Y),
then, by x 6∈ H(U), µ(Y) 6⊆ H(U), so we can kill minimality of x in Y by choosing some y 6∈ H(U). Thus, even in
the transitive case, we can leave U to destroy minimality of u in some X, without ever having to come back into
U, it suffices to choose sufficiently far from U, i.e. outside H(U). H(U) is the right notion of ”neighbourhood”.

Note: Not all z ∈ Z have to occur in our structure, therefore it is quite possible that X ∈ Y , X 6= ∅, but µZ(X) = ∅.
This is why we have introduced the set K in Definition 3.3.2, and such X will be subsets of Z-K.

Let µ : Y → Y .

Definition 3.3.1

Define H(U) :=
⋃
{X : µ(X) ⊆ U}.

Fact 3.3.1

Let A, U, U ′, Y and all Ai be in Y .

(µ ⊆) and (µPR) entail:

(1) A =
⋃
{Ai : i ∈ I} → µ(A) ⊆

⋃
{µ(Ai) : i ∈ I},

(2) U ⊆ H(U), and U ⊆ U ′ → H(U) ⊆ H(U ′),

3.3. SMOOTH MINIMAL PREFERENTIAL STRUCTURES 89

(3) µ(U ∪ Y)−H(U) ⊆ µ(Y).

(µ ⊆), (µPR), (µCUM) entail:

(4) U ⊆ A, µ(A) ⊆ H(U) → µ(A) ⊆ U,

(5) µ(Y) ⊆ H(U) → Y ⊆ H(U) and µ(U ∪ Y) = µ(U),

(6) x ∈ µ(U), x ∈ Y − µ(Y) → Y 6⊆ H(U),

(7) Y 6⊆ H(U) → µ(U ∪ Y) 6⊆ H(U).

Proof:

(1) µ(A) ∩ Aj ⊆ µ(Aj) ⊆
⋃
µ(Ai), so by µ(A) ⊆ A =

⋃
Ai µ(A) ⊆

⋃
µ(Ai).

(2) trivial.

(3) µ(U ∪ Y)−H(U) ⊆(2) µ(U ∪ Y)− U ⊆(µ⊆) µ(U ∪ Y) ∩ Y ⊆(µPR) µ(Y).

(4) µ(A) =
⋃
{µ(A)∩X : µ(X) ⊆ U} ⊆(µPR′)

⋃
{µ(A∩X) : µ(X) ⊆ U}. But if µ(X) ⊆ U ⊆ A, then by µ(X) ⊆ X,

µ(X) ⊆ A ∩X ⊆ X →(µCUM) µ(A ∩X) = µ(X) ⊆ U, so µ(A) ⊆ U.

(5) Let µ(Y) ⊆ H(U), then by µ(U) ⊆ H(U) and (1) µ(U ∪ Y) ⊆ µ(U) ∪ µ(Y) ⊆ H(U), so by (4) µ(U ∪ Y) ⊆ U
and U ∪ Y ⊆ H(U). Moreover, µ(U ∪ Y) ⊆ U ⊆ U ∪ Y →(µCUM) µ(U ∪ Y) = µ(U).

(6) If not, Y ⊆ H(U), so µ(Y) ⊆ H(U), so µ(U∪Y) = µ(U) by (5), but x ∈ Y −µ(Y)→(µPR) x 6∈ µ(U∪Y) = µ(U),
contradiction.

(7) µ(U ∪ Y) ⊆ H(U) →(5) U ∪ Y ⊆ H(U). 2

Assume now (µ ⊆), (µPR), (µCUM) to hold.

Definition 3.3.2

For x ∈ Z, let Wx := {µ(Y): Y ∈ Y ∧ x ∈ Y − µ(Y)}, Γx := ΠWx, and K := {x ∈ Z: ∃X ∈ Y .x ∈ µ(X)}.

Note that we consider here now µ(Y) in Wx, and not Y as in Yx in Definition 3.2.1.

Remark 3.3.2

(1) x ∈ K → Γx 6= ∅,

(2) g ∈ Γx → ran(g) ⊆ K.

Proof:

(1) We have to show that Y ∈ Y , x ∈ Y − µ(Y) → µ(Y) 6= ∅. By x ∈ K, there is X ∈ Y s.t. x ∈ µ(X). Suppose
x ∈ Y, µ(Y) = ∅. Then x ∈ X ∩ Y, so by x ∈ µ(X) and (µPR) x ∈ µ(X ∩ Y). But µ(Y) = ∅ ⊆ X ∩ Y ⊆ Y, so by
(µCUM) µ(X ∩ Y) = ∅, contradiction.

(2) By definition, µ(Y) ⊆ K for all Y ∈ Y . 2

The following Claim is the analogue of Claim 3.2.1 above.

Claim 3.3.3

Let U ∈ Y , x ∈ K. Then

(1) x ∈ µ(U) ↔ x ∈ U ∧ ∃f ∈ Γx.ran(f) ∩ U = ∅,

(2) x ∈ µ(U) ↔ x ∈ U ∧ ∃f ∈ Γx.ran(f) ∩H(U) = ∅.

90 CHAPTER 3. PREFERENCES

Proof:

(1) Case 1: Wx = ∅, thus Γx = {∅}. ′′ →′′: Take f := ∅. ′′ ←′′: x ∈ U ∈ Y , Wx = ∅ → x ∈ µ(U) by definition of
Wx.

Case 2: Wx 6= ∅. ′′ →′′: Let x ∈ µ(U) ⊆ U. It suffices to show Y ∈ Wx → µ(Y) − H(U) 6= ∅. But Y ∈ Wx →
x ∈ Y−µ(Y)→ (by Fact 3.3.1, (6)) Y 6⊆ H(U)→ (by Fact 3.3.1, (5)) µ(Y) 6⊆ H(U). ′′ ←′′: If x ∈ U−µ(U), U ∈ Wx,
moreover Γx 6= ∅ by Remark 3.3.2, (1) and thus (or by the same argument) µ(U) 6= ∅, so ∀f ∈ Γx.ran(f) ∩ U 6= ∅.

(2): The proof is verbatim the same as for (1). 2 (Claim 3.3.3)

Proposition 3.3.4

Let Y be closed under finite unions and finite intersections, and µ : Y → Y . Then there is a Y−smooth preferential
structure Z , s.t. for all X ∈ Y µ(X) = µZ(X) iff µ satisfies (µ ⊆), (µPR), (µCUM).

Proof:

′′ →′′ is again easy and left to the reader.

Outline of ′′ ←′′: We first define a structure Z (in a way very similar to Construction 3.2.1) which represents µ,
but is not necessarily Y−smooth, refine it to Z ′ and show that Z ′ represents µ too, and that Z ′ is Y−smooth.

In the structure Z ′, all pairs destroying smoothness in Z are successively repaired, by adding minimal elements:
If < y, j > is not minimal, and has no minimal < x, i > below it, we just add one such < x, i > . As the repair
process might itself generate such ”bad” pairs, the process may have to be repeated infinitely often. Of course, one
has to take care that the representation property is preserved.

The proof given is close to the minimum one has to show (except that we avoid H(U), instead of U - as was done in
the old proof of [Sch96-1]). We could simplify further, we do not, in order to stay closer to the construction that is
really needed. The reader will find the simplification as building block of the proof in Section 3.3.2. (In the simplified
proof, we would consider for x,U s.t. x ∈ µ(U) the pairs < x, gU > with gU ∈ Π{µ(U ∪ Y) : x ∈ Y 6⊆ H(U)},
giving minimal elements. For the U s.t. x ∈ U − µ(U), we would choose < x, g > s.t. g ∈ Π{µ(Y) : x ∈ Y ∈ Y}
with < x′, g′U >≺< x, g > for < x′, g′U > as above.)

Construction 3.3.1

(Construction of Z) Let X := {< x, g >: x ∈ K, g ∈ Γx}, < x′, g′ >≺< x, g > :↔ x′ ∈ ran(g), Z :=< X ,≺> .

Claim 3.3.5

∀U ∈ Y .µ(U) = µZ(U)

Proof:

Case 1: x 6∈ K. Then x 6∈ µ(U) and x 6∈ µZ(U).

Case 2: x ∈ K. By Claim 3.3.3, (1) it suffices to show that for all U ∈ Y x ∈ µZ(U) ↔ x ∈ U ∧
∃f ∈ Γx.ran(f) ∩ U = ∅. Fix U ∈ Y . ′′ →′′: x ∈ µZ(U) → ex. < x, f > minimal in XdU, thus x ∈ U and
there is no < x′, f ′ >≺< x, f >, x′ ∈ U, x′ ∈ K. But if x′ ∈ K, then by Remark 3.3.2, (1), Γx′ 6= ∅, so we find
suitable f ′. Thus, ∀x′ ∈ ran(f).x′ 6∈ U or x′ 6∈ K. But ran(f) ⊆ K, so ran(f) ∩U = ∅. ′′ ←′′: If x ∈ U, f ∈ Γx s.t.
ran(f) ∩ U = ∅, then < x, f > is minimal in XdU. 2 (Claim 3.3.5)

We now construct the refined structure Z ′.

3.3. SMOOTH MINIMAL PREFERENTIAL STRUCTURES 91

Construction 3.3.2

(Construction of Z ′)

σ is called x-admissible sequence iff

1. σ is a sequence of length ≤ ω, σ = {σi : i ∈ ω},

2. σo ∈ Π{µ(Y): Y ∈ Y ∧ x ∈ Y − µ(Y)},

3. σi+1 ∈ Π{µ(X): X ∈ Y ∧ x ∈ µ(X) ∧ ran(σi) ∩X 6= ∅}.

By 2., σ0 minimizes x, and by 3., if x ∈ µ(X), and ran(σi) ∩X 6= ∅, i.e. we have destroyed minimality of x in X,
x will be above some y minimal in X to preserve smoothness.

Let Σx be the set of x-admissible sequences, for σ ∈ Σx let σ̃ :=
⋃
{ran(σi) : i ∈ ω}. Note that by the argument in

the proof of Remark 3.3.2, (1), Σx 6= ∅, if x ∈ K.

Let X ′ := {< x, σ >: x ∈ K ∧ σ ∈ Σx} and < x′, σ′ >≺′< x, σ > :↔ x′ ∈ σ̃. Finally, let Z ′ :=< X ′,≺′>, and
µ′ := µZ′ .

It is now easy to show that Z ′ represents µ, and that Z ′ is smooth. For x ∈ µ(U), we construct a special x-admissible
sequence σx,U using the properties of H(U) as described at the beginning of this Section.

Claim 3.3.6

For all U ∈ Y µ(U) = µZ(U) = µ′(U).

Proof:

If x 6∈ K, then x 6∈ µZ(U), and x 6∈ µ′(U) for any U. So assume x ∈ K. If x ∈ U and x 6∈ µZ(U), then for
all < x, f >∈ X , there is < x′, f ′ >∈ X with < x′, f ′ >≺< x, f > and x′ ∈ U. Let now < x, σ >∈ X ′, then
< x, σ0 >∈ X , and let < x′, f ′ >≺< x, σ0 > in Z with x′ ∈ U. As x′ ∈ K, Σx′ 6= ∅, let σ′ ∈ Σx′ . Then
< x′, σ′ >≺′< x, σ > in Z ′. Thus x 6∈ µ′(U). Thus, for all U ∈ Y , µ′(U) ⊆ µZ(U) = µ(U).

It remains to show x ∈ µ(U)→ x ∈ µ′(U).

Assume x ∈ µ(U) (so x ∈ K), U ∈ Y , we will construct minimal σ, i.e. show that there is σx,U ∈ Σx s.t.

σ̃x,U ∩ U = ∅. We construct this σx,U inductively, with the stronger property that ran(σx,Ui) ∩ H(U) = ∅ for all
i ∈ ω.

σx,U0 : x ∈ µ(U), x ∈ Y − µ(Y) → µ(Y)−H(U) 6= ∅ by Fact 3.3.1, (6) + (5). Let σx,U0 ∈ Π{µ(Y)−H(U) : Y ∈ Y ,

x ∈ Y − µ(Y)}, so ran(σx,U0) ∩H(U) = ∅.

σx,Ui → σx,Ui+1 : By induction hypothesis, ran(σx,Ui) ∩H(U) = ∅. Let X ∈ Y be s.t. x ∈ µ(X), ran(σx,Ui) ∩X 6= ∅.

Thus X 6⊆ H(U), so µ(U ∪X)−H(U) 6= ∅ by Fact 3.3.1, (7). Let σx,Ui+1 ∈ Π{µ(U ∪X)−H(U) : X ∈ Y , x ∈ µ(X),

ran(σx,Ui) ∩X 6= ∅}, so ran(σx,Ui+1) ∩H(U) = ∅. As µ(U ∪X)−H(U) ⊆ µ(X) by Fact 3.3.1, (3), the construction
satisfies the x-admissibility condition. 2

It remains to show:

Claim 3.3.7

Z ′ is Y−smooth.

Proof:

Let X ∈ Y , < x, σ >∈ X ′dX.

92 CHAPTER 3. PREFERENCES

Case 1, x ∈ X − µ(X) : Then ran(σ0) ∩ µ(X) 6= ∅, let x′ ∈ ran(σ0) ∩ µ(X). Moreover, µ(X) ⊆ K. Then for all
< x′, σ′ >∈ X ′ < x′, σ′ >≺< x, σ > . But < x′, σx

′,X > as constructed in the proof of Claim 3.3.6 is minimal in
X ′dX.

Case 2, x ∈ µ(X) = µZ(X) = µ′(X) : If < x, σ > is minimal in X ′dX, we are done. So suppose there is
< x′, σ′ >≺< x, σ >, x′ ∈ X. Thus x′ ∈ σ̃. Let x′ ∈ ran(σi). So x ∈ µ(X) and ran(σi) ∩ X 6= ∅. But
σi+1 ∈ Π{µ(X ′): X ′ ∈ Y ∧ x ∈ µ(X ′) ∧ ran(σi) ∩ X ′ 6= ∅}, so X is one of the X ′, moreover µ(X) ⊆ K, so
there is x′′ ∈ µ(X) ∩ ran(σi+1) ∩K, so for all < x′′, σ′′ >∈ X ′ < x′′, σ′′ >≺< x, σ > . But again < x′′, σx

′′,X > as
constructed in the proof of Claim 3.3.6 is minimal in X ′dX. 2 (Claim 3.3.7 and Proposition 3.3.4)

3.3.2 Smooth and transitive minimal preferential structures

Discussion:

In a certain way, it is not surprising that transitivity does not impose stronger conditions in the smooth case either.
Smoothness is itself a weak kind of transitivity: If an element is not minimal, then there is a minimal element
below it. I.e., x � y with y not minimal is possible, i.e. there is z′ ≺ y, but then there is z minimal with x � z.
This is ”almost” x � z′, i.e. transitivity.

To obtain representation, we will combine here the ideas of the smooth, but not necessarily transitive case with
those of the general transitive case - as the reader will have suspected. Thus, we will index again with trees, and
work with (suitably adapted) admissible sequences for the construction of the trees. In the construction of the
admissible sequences, we were careful to repair all damage done in previous steps. We have to add now reparation
of all damage done by using transitivity, i.e., the transitivity of the relation might destroy minimality, and we have
to construct minimal elements below all elements for which we thus destroyed minimality. Both cases are combined
by considering immediately all Y s.t. x ∈ Y −H(U). Of course, the properties described in Fact 3.3.1 play again
a central role.

The (somewhat complicated) construction will be commented on in more detail below.

Note that even beyond Fact 3.3.1, closure of the domain under finite unions is used in the construction of the
trees. This - or something the like - is necessary, as we have to respect the hulls of all elements treated so far
(the predecessors), and not only of the first element, because of transitivity. For the same reason, we need more
bookkeeping, to annotate all the hulls (or the union of the respective U ′s) of all predecessors to be respected. One
can perhaps do with a weaker operation than union - i.e. just look at the hulls of all U’s separately, to obtain
a transitive construction where unions are lacking, see the case of Plausibility Logic below - but we have not
investigated this problem.

To summarize: we combine the ideas from the tramsitive general case and the simple smooth case, using the
crucial Fact 3.3.1 to show that the construction goes through. The construction leaves still some freedom, and
modifications are possible as indicated below in the course of the proof. The construction is perhaps the most
complicated in the entire book, as it combines several ideas, some of which are already somewhat involved. If
necessary, the proof can certainly still be elaborated, and its main points (use of a suitable H(U) to avoid U,
successive repair of damage done in the construction, trees as indexing) be used in other contexts.

The construction:

Recall again that Y will be closed under finite unions and finite intersections in this Section, and let again µ : Y → Y .

Proposition 3.3.8

Let Y be closed under finite unions and finite intersections, and µ : Y → Y . Then there is a Y−smooth transitive
preferential structure Z , s.t. for all X ∈ Y µ(X) = µZ(X) iff µ satisfies (µ ⊆), (µPR), (µCUM).

3.3. SMOOTH MINIMAL PREFERENTIAL STRUCTURES 93

Proof:

The idea:

We have to adapt the Construction 3.3.2 (x-admissible sequences) to the transitive situation, and to our construction
with trees. If < ∅, x > is the root, σ0 ∈ Π{µ(Y) : x ∈ Y − µ(Y)} determines some children of the root. To
preserve smoothness, we have to compensate and add other children by the σi+1 : σi+1 ∈ Π{µ(X) : x ∈ µ(X),
ran(σi) ∩ X 6= ∅}. On the other hand, we have to pursue the same construction for the children so constructed.
Moreover, these indirect children have to be added to those children of the root, which have to be compensated
(as the first children are compensated by σ1) to preserve smoothness. Thus, we build the tree in a simultaneous
vertical and horizontal induction.

This construction can be simplified, by considering immediately all Y ∈ Y s.t. x ∈ Y 6⊆ H(U) - independent of
whether x 6∈ µ(Y) (as done in σ0), or whether x ∈ µ(Y), and some child y constructed before is in Y (as done in
the σi+1), or whether x ∈ µ(Y), and some indirect child y of x is in Y (to take care of transitivity, as indicated
above). We make this simplified construction.

There are two ways to proceed. First, we can take as �∗ in the trees the transitive closure of �. Second, we can
deviate from the idea that children are chosen by selection functions f, and take nonempty subsets of elements
instead, making more elements children than in the first case. We take the first alternative, as it is more in the
spirit of the construction.

We will suppose for simplicity that Z = K - the general case in easy to obtain by a technique similar to that in
Section 3.3.1, but complicates the picture.

For each x ∈ Z, we construct trees tx, which will be used to index different copies of x, and control the relation ≺ .

These trees tx will have the following form:

(a) the root of t is < ∅, x > or < U, x > with U ∈ Y and x ∈ µ(U),

(b) all other nodes are pairs < Y, y >, Y ∈ Y , y ∈ µ(Y),

(c) ht(t) ≤ ω,

(d) if < Y, y > is an element in tx, then there is some Y(y) ⊆ {W ∈ Y : y ∈ W}, and f ∈ Π{µ(W) : W ∈ Y(y)}
s.t. the set of children of < Y, y > is {< Y ∪W, f(W) >: W ∈ Y(y)}.

The first coordinate is used for bookkeeping when constructing children, in particular for condition (d).

The relation ≺ will essentially be determined by the subtree relation.

We first construct the trees tx for those sets U where x ∈ µ(U), and then take care of the others. In the construction
for the minimal elements, at each level n > 0, we may have several ways to choose a selection function fn, and each
such choice leads to the construction of a different tree - we construct all these trees. (We could also construct only
one tree, but then the choice would have to be made coherently for different x,U. It is simpler to construct more
trees than necessary.)

Definition 3.3.3

If t is a tree with root < a, b >, then t/c will be the same tree, only with the root < c, b > .

Construction 3.3.3

(A) The set Tx of trees t for fixed x:

(1) Construction of the set Tµx of trees for those sets U ∈ Y , where x ∈ µ(U) :

Let U ∈ Y , x ∈ µ(U). The trees tU,x ∈ Tµx are constructed inductively, observing simultaneously:

If < Un+1, xn+1 > is a child of < Un, xn >, then (a) xn+1 ∈ µ(Un+1)−H(Un), and (b) Un ⊆ Un+1.

Set U0 := U, x0 := x.

94 CHAPTER 3. PREFERENCES

Level 0: < U0, x0 > .

Level n → n + 1: Let < Un, xn > be in level n. Suppose Yn+1 ∈ Y , xn ∈ Yn+1, and Yn+1 6⊆ H(Un). Note that
µ(Un ∪ Yn+1) −H(Un) 6= ∅ by Fact 3.3.1, (7), and µ(Un ∪ Yn+1) −H(Un) ⊆ µ(Yn+1) by Fact 3.3.1, (3). Choose
fn+1 ∈ Π{µ(Un∪Yn+1)−H(Un) : Yn+1 ∈ Y , xn ∈ Yn+1 6⊆ H(Un)} (for the construction of this tree, at this element),
and let the set of children of < Un, xn > be {< Un ∪ Yn+1, fn+1(Yn+1) >: Yn+1 ∈ Y , xn ∈ Yn+1 6⊆ H(Un)}. (If
there is no such Yn+1, < Un, xn > has no children.) Obviously, (a) and (b) hold.

We call such trees U,x-trees.

(2) Construction of the set T ′
x of trees for the non-minimal elements. Let x ∈ Z. Construct the tree tx as follows

(here, one tree per x suffices for all U):

Level 0: < ∅, x >

Level 1: Choose arbitrary f ∈ Π{µ(U) : x ∈ U ∈ Y}. Note that U 6= ∅ → µ(U) 6= ∅ by Z = K (by Remark 3.3.2,
(1)). Let {< U, f(U) >: x ∈ U ∈ Y} be the set of children of < ∅, x > . This assures that the element will be
non-minimal.

Level > 1: Let < U, f(U) > be an element of level 1, as f(U) ∈ µ(U), there is a tU,f(U) ∈ Tµf(U). Graft one of
these trees tU,f(U) ∈ Tµf(U) at < U, f(U) > on the level 1. This assures that a minimal element will be below it
to guarantee smoothness.

Finally, let Tx := Tµx ∪ T ′
x.

(B) The relation � between trees: For x, y ∈ Z, t ∈ Tx, t′ ∈ Ty, set t� t′ iff for some Y < Y, y > is a child of the
root < X, x > in t, and t′ is the subtree of t beginning at this < Y, y > .

(C) The structure Z : Let Z := < {< x, tx >: x ∈ Z, tx ∈ Tx}, < x, tx >�< y, ty > iff tx �∗ ty > .

The rest of the proof are simple observations.

Fact 3.3.9

(1) If tU,x is an U,x-tree, < Un, xn > an element of tU,x, < Um, xm > a direct or indirect child of < Un, xn >, then
xm 6∈ H(Un).

(2) Let < Yn, yn > be an element in tU,x ∈ Tµx, t′ the subtree starting at < Yn, yn >, then t′ is a Yn, yn − tree.

(3) ≺ is free from cycles.

(4) If tU,x is an U,x-tree, then < x, tU,x > is ≺ −minimal in ZdU.

(5) No < x, tx >, tx ∈ T ′
x is minimal in any ZdU, U ∈ Y .

(6) Smoothness is respected for the elements of the form < x, tU,x > .

(7) Smoothness is respected for the elements of the form < x, tx > with tx ∈ T ′
x.

(8) µ = µZ .

Proof:

(1) trivial by (a) and (b).

(2) trivial by (a).

(3) Note that no < x, tx > tx ∈ T ′
x can be smaller than any other element (smaller elements require U 6= ∅ at the

root). So no cycle involves any such < x, tx > . Consider now < x, tU,x >, tU,x ∈ Tµx. For any < y, tV,y >≺<
x, tU,x >, y 6∈ H(U) by (1), but x ∈ µ(U) ⊆ H(U), so x 6= y.

(4) This is trivial by (1).

(5) Let x ∈ U ∈ Y , then f as used in the construction of level 1 of tx chooses y ∈ µ(U) 6= ∅, and some < y, tU,y >
is in ZdU and below < x, tx > .

3.4. THE LOGICAL CHARACTERIZATION OF GENERAL AND SMOOTH PREFERENTIAL MODELS 95

(6) Let x ∈ A ∈ Y , we have to show that either < x, tU,x > is minimal in ZdA, or that there is < y, ty >≺< x, tU,x >
minimal in ZdA. Case 1, A ⊆ H(U): Then < x, tU,x > is minimal in ZdA, again by (1). Case 2, A 6⊆ H(U): Then
A is one of the Y1 considered for level 1. So there is < U ∪ A, f1(A) > in level 1 with f1(A) ∈ µ(A) ⊆ A by Fact
3.3.1, (3). But note that by (1) all elements below < U ∪ A, f1(A) > avoid H(U ∪ A). Let t be the subtree of tU,x
beginning at < U ∪ A, f1(A) >, then by (2) t is one of the U ∪ A, f1(A) − trees, and < f1(A), t > is minimal in
ZdU ∪ A by (4), so in ZdA, and < f1(A), t >≺< x, tU,x > .

(7) Let x ∈ A ∈ Y , < x, tx >, tx ∈ T ′
x, and consider the subtree t beginning at < A, f(A) >, then t is one of the

A, f(A)−trees, and < f(A), t > is minimal in ZdA by (4).

(8) Let x ∈ µ(U). Then any < x, tU,x > is ≺ −minimal in ZdU by (4), so x ∈ µZ(U). Conversely, let x ∈ U −µ(U).
By (5), no < x, tx > is minimal in U. Consider now some < x, tV,x >∈ Z , so x ∈ µ(V). As x ∈ U − µ(U),
U 6⊆ H(V) by Fact 3.3.1, (6). Thus U was considered in the construction of level 1 of tV,x. Let t be the subtree
of tV,x beginning at < V ∪ U, f1(U) >, by µ(V ∪ U) − H(V) ⊆ µ(U) (Fact 3.3.1, (3)), f1(U) ∈ µ(U) ⊆ U, and
< f1(U), t >≺< x, tV,x > . 2 (Fact 3.3.9 and Proposition 3.3.8)

One copy again

The same techniques as in the general case will work again, details are left to the reader.

3.4 The logical characterization of general and smooth preferential

models

Discussion:

The proofs and properties are straightforward. One has to pay attention, however, to the fact that we can go back
and forth between model sets on the one hand side, and theories and their consequences on the other, due to the fact
that we have classical soundness and completeness, and that the model set operators are assumed to be definability
preserving. The reader will see in Chapter 5 that the lack of definability preservation complicates things, as we
might ”overlook” exceptions, when we do not separate carefully model sets from the sets of all models of a theory.
The complication is very serious, as we will also show that, in this case, there is no normal characterization at all
possible.

The properties (LLE) and (CCL) are, of course, essentially void, and hold for all logics defined via model sets.
(SC) is trivial and expresses the subset condition, and only (PR) and (CUM) are really interesting and expressive.

We will see in Chapter 5, Example 5.1.2, (given already in [Sch92]) that condition (PR) may fail, if the structure
is not definability preserving.

The problem of definability preservation occurs in other situations, too, e.g. in distance based revision, see [LMS01],
and Example 4.2.3 below. A solution to the problem of definability preservation in another context (revision
of defeasible databases) was examined in [ALS99]. A characterization of general, not necessarily definability
preserving, preferential structures (by fundamentally non-logical, and much uglier conditions than those presented
here) is given in [Sch00-2], and, with more results, in Chapter 5 below.

In Section 3.4.1, we will show that, in an important class of examples, the limit version is equivalent to the minimal
version. We consider there transitive structures in the limit interpretation, where

• either the set of definable closed minimizing sets is cofinal, or

• we consider only formulas on the left of ∼|

and show that both satisfy the laws of the minimal variant, so the generated logics can be represented by a minimal
preferential structure (but, of course, perhaps with a different relation).

96 CHAPTER 3. PREFERENCES

Proposition 3.4.1

Let ∼| be a logic for L. Recall from Definition 2.3.2 TM := Th(µM(M(T))), whereM is a preferential structure.

(1) Then there is a (transitive) definability preserving classical preferential model M s.t. T = TM iff

(LLE) T = T ′ → T = T ′,

(CCL) T is classically closed,

(SC) T ⊆ T ,

(PR) T ∪ T ′ ⊆ T ∪ T ′

for all T, T ′ ⊆ L.

(2) The structure can be chosen smooth, iff, in addition

(CUM) T ⊆ T ′ ⊆ T → T = T ′

holds.

The proof is an immediate consequence of Proposition 3.4.2 and the respective results of Sections 3.2 and 3.3. This
proposition (or its analogue) was already shown in [Sch92] and [Sch96-1] and is repeated here for completeness’
sake.

Proposition 3.4.2

Consider for a logic ∼| on L the properties

(LLE) T = T ′ → T = T ′,

(CCL) T is classically closed,

(SC) T ⊆ T ,

(PR) T ∪ T ′ ⊆ T ∪ T ′,

(CUM) T ⊆ T ′ ⊆ T → T = T ′

for all T, T ′ ⊆ L,

and for a function µ : DL → P(ML) the properties

(µdp) µ is definability preserving,

(µ ⊆) µ(X) ⊆ X,

(µPR) X ⊆ Y → µ(Y) ∩X ⊆ µ(X),

(µCUM) µ(X) ⊆ Y ⊆ X → µ(X) = µ(Y)

for all X,Y ∈DL.

It then holds:

(a) If µ satisfies (µdp), (µ ⊆), (µPR), then ∼| defined by T := T µ := Th(µ(M(T))) (see Definition 1.6.4) satisfies
(LLE), (CCL), (SC), (PR). If µ satisfies in addition (µCUM), then (CUM) will hold, too.

(b) If ∼| satisfies (LLE), (CCL), (SC), (PR), then there is µ : DL → P(ML) s.t. T = T µ for all T ⊆ L and µ
satisfies (µdp), (µ ⊆), (µPR). If, in addition, (CUM) holds, then (µCUM) will hold, too.

Proof of Proposition 3.4.2:

We recall that, as DL is closed under finite intersections, in the presence of (µ ⊆), (µPR) is equivalent to (µPR′)
µ(X) ∩ Y ⊆ µ(X ∩ Y), we work with (µPR′) in the proof.

3.4. THE LOGICAL CHARACTERIZATION OF GENERAL AND SMOOTH PREFERENTIAL MODELS 97

(a) Suppose T = T µfor some such µ, and all T.

(LLE): If T = T ′, then MT = MT ′ , so µ(MT) = µ(MT ′), and T µ = T ′µ. (CCL) and (SC) are trivial.

We show (PR): Let now φ ∈ T ∪ T ′, so φ holds in all m ∈ µ(MT∪T ′) = µ(MT ∩MT ′), so by (µPR′), φ holds in all

m ∈ µ(MT) ∩MT ′ . By (µdp), µ(MT) = MTµ = M
T
, so φ holds in all m ∈ M

T
∩MT ′ = M

T∪T ′
, so T ∪ T ′ |= φ,

and φ ∈ T ∪ T ′.

We turn to (CUM): Assume T ⊆ T ′ ⊆ T , so M
T

= µ(MT) ⊆ MT ′ ⊆ MT by (µdp). If φ ∈ T ′ = T ∪ T ′, then by

(PR) φ ∈ T ∪ T ′ = (T) = T . Let φ ∈ T , so φ holds in all m ∈ µ(MT) = µ(MT ′) = M
T ′

by (µCUM) and (µdp).

Thus T ′ ` φ, but then by (CCL), φ ∈ T ′.

(b) Let ∼| satisfy (LLE)− (CUM) for all T. We define µ and show T = T µ. (CUM) will be needed only to show
(µCUM).

If X = MT for some T ⊆ L, set µ(X) := M
T

. If X = MT = MT ′ , then T = T ′, thus T = T ′ by (LLE), so

M
T

= M
T ′

, and µ is well-defined. Moreover, µ satisfies (µdp), and by (SC), µ(X) ⊆ X . We show T = T µ: Let

now T ⊆ L be given. Then φ ∈ T µ :←→ ∀m ∈ µ(MT).m |= φ ←→ ∀m ∈ M
T
.m |= φ ←→ T ` φ ←→ φ ∈ T (as

T is classically closed).

Next, we show that the above defined µ satisfies (µPR′). Suppose X := MT , Y := MT ′ . Let m ∈ µ(X) ∩ Y

= M
T
∩MT ′ , so m |= T ∪ T ′, and m |= T ∪ T ′, so by (PR) m |= T ∪ T ′. As X ∩ Y = MT ∩MT ′ = MT∪T ′ ,

µ(X ∩ Y) = M
T∪T ′

by (µdp), so m ∈ µ(X ∩ Y).

It remains to show (µCUM). So let X = MT , Y = MT ′ , and µ(MT) := M
T
⊆ MT ′ ⊆ MT → T ⊆ T ′ ⊆ T = (T)

→ T = (T) = (T ′) = T ′ → µ(MT) = M
T

= M
T ′

= µ(MT ′), thus µ(X) = µ(Y). 2 (Proposition 3.4.2)

3.4.1 Simplifications of the general transitive limit case

We show here that the transitive limit version does not go beyond the minimal version, when we restrict ourselves
to formulas on the left. This is not true for full theories on the left. We also show that the limit variant does not
go beyond the minimal variant if the set of definable closed minimizing sets is cofinal.

So we work in this Section 3.4.1 with a transitive relation, and recall that we abbreviate closed minimizing set or
minimizing initial segment by MISE, used rather sloppily - see Definition 2.3.1.

Fact 3.4.3

Let the relation ≺ be transitive.

(1) If X is MISE for A, and X ⊆ B ⊆ A, then X is MISE for B.

(2) If X is MISE for A, and X ⊆ B ⊆ A, and Y is MISE for B, then X ∩ Y is MISE for A.

(3) If X is MISE for A, Y MISE for B, then there is Z ⊆ X ∪ Y MISE for A ∪B.

Proof:

(1) trivial.

(2)

98 CHAPTER 3. PREFERENCES

(2.1) X ∩ Y is closed in A : Let < x, i >∈ X ∩ Y, < y, j >≺< x, i >, then < y, j >∈ X. If < y, j > 6∈ B, then
< y, j >6∈ X, contradiction. So < y, j >∈ B, but then < y, j >∈ Y.

(2.2)X∩Y minimizes A : Let < a, i >∈ A. (a) If < a, i >∈ X−Y ⊆ B, then there is < y, j >≺< a, i >, < y, j >∈ Y.
By closure of X, < y, j >∈ X. (b) If < a, i >6∈ X, then there is < a′, i′ >∈ X ⊆ B, < a′, i′ >≺< a, i >, continue
by (a).

(3)

Let Z := {< x, i >∈ X : ¬∃ < b, j >�< x, i > . < b, j >∈ B − Y } ∪ {< y, j >∈ Y : ¬∃ < a, i >�< y, j > . <
a, i >∈ A−X}, where � stands for ≺ or = .

(3.1) Z minimizes A ∪ B : We consider A, B is symmetrical. (a) We first show: If < a, k >∈ X−Z, then there is
< y, i >∈ Z. < a, k >�< y, i > . Proof: If < a, k >∈ X−Z, then there is < b, j >�< a, k >, < b, j >∈ B−Y.
Then there is < y, i >≺< b, j >, < y, i >∈ Y. But < y, i >∈ Z, too: If not, there would be < a′, k′ >�< y, i >,
< a′, k′ >∈ A−X, but < a′, k′ >≺< a, k >, contradicting closure of X. (b) If < a′′, k′′ >∈ A−X, there is
< a, k >∈ X, < a, k >≺< a′′, k′′ > . If < a, k >6∈ Z, continue with (a).

(3.2) Z is closed in A ∪B : Let then < z, i >∈ Z, < u, k >≺< z, i >, < u, k >∈ A ∪B. Suppose < z, i >∈ X - the
case < z, i >∈ Y is symmetrical. (a) < u, k >∈ A−X cannot be, by closure of X. (b) < u, k >∈ B−Y cannot be,
as < z, i >∈ Z, and by definition of Z. (c) If < u, k >∈ X−Z, then there is < v, l >�< u, k >, < v, l >∈ B−Y,
so < v, l >≺< z, i >, contradicting (b). (d) If < u, k >∈ Y−Z, then there is < v, l >�< u, k >, < v, l >∈ A−X,
contradicting (a).

2

Fact 3.4.4

If ≺ is transitive, then

(1) (AND) holds,

(2) (OR) holds,

(3) φ ∧ φ′ ⊆ φ ∪ {φ′}

Proof:

Let Z be the structure.

(1) Immediate by Fact 3.4.3, (2) - set A = B.

(2) Immediate by Fact 3.4.3, (3).

(3) Let ψ ∈ φ ∧ φ′, so there is X MISE for ZdM(φ∧ φ′), X ⊆ ZdM(ψ). Consider φ ∧ ¬φ′, ZdM(φ ∧¬φ′) is MISE
for itself, so by Fact 3.4.3, (3) there is Z ⊆ (ZdM(φ ∧ ¬φ′)) ∪X, MISE for ZdM(φ), and Z |= ψ ∨ ¬φ′ = φ′ → ψ,

so φ ∼| φ′ → ψ, and ψ = φ′ ∧ (φ′ → ψ) ∈ φ ∪ φ′. 2

The following example (together with Fact 3.4.4) shows that the limit version separates the finitary and infinitary
versions of (PR). We see a similar result below (Fact 3.4.5 and Example 3.4.2) for the finitary and infinitary versions
of Cumulativity. The limit version thus reveals itself as an interesting tool of abstract investigation.

Example 3.4.1

T ∪ T ′ ⊆ T ∪ T ′ can be wrong in the transitive limit version.

Any not definability preserving structure, where (PR) fails, serves as a counterexample, as minimal structures are

3.4. THE LOGICAL CHARACTERIZATION OF GENERAL AND SMOOTH PREFERENTIAL MODELS 99

special cases of the limit variant. Here is still another example.

Let v(L) := {pi : i < ω}. Let m |= pi : i < ω, and m′ |= ¬p0, m
′ |= pi : 0 < i < ω, with m ≺ m′ (this is the entire

relation).

Let T := ∅, T ′ := Th({m,m′}), then T ∪ T ′ = T ′, T ′ = Th({m}), so T ∪ T ′ ∼| p0, T = T = ∅, and T ∪ T ′ = T ′ =
T ′, but p0 6∈ T

′, contradiction. 2

Remark:

The structure is not definability preserving, and (PR) holds neither in the minimal nor in the limit variant.

Fact 3.4.5

Finite cumulativity holds in transitive limit structures: If φ ∼| ψ, then φ = φ ∧ ψ.

Proof:

Suppose φ ∼| ψ, φ ∼| σ, and let X,Y be MISE for ZdM(φ), with X ⊆ ZdM(ψ), Y ⊆ ZdM(σ). Then X ∩ Y is
MISE for ZdM(φ) by Fact 3.4.3, (2), thus for ZdM(φ ∧ ψ) by Fact 3.4.3, (1), so φ ∧ ψ ∼| σ.

Conversely, let φ ∼| ψ, X MISE for ZdM(φ), X ⊆ ZdM(ψ), and φ ∧ ψ ∼| σ, with Y MISE for ZdM(φ ∧ ψ),
Y ⊆ ZdM(σ). By Fact 3.4.3, (2), X ∩ Y is MISE for ZdM(φ), so φ ∼| σ.

2

Example 3.4.2

Infinitary cumulativity may fail.

Consider the same language as in Example 3.4.1, set again m < m′, so Th({m,m′}) ∼| p0, but this time, we
add more pairs to the relation: m and m′ will now be the topmost models, and we put below all other models,
making more and more pi, i 6= 0, true, but alternating p0 with ¬p0, resulting in a total order (i.e. a ranked struc-

ture). Set φ := p0∨¬p0. Thus φ = Th({m,m′}), so ∼| is not even idempotent, φ 6= (φ), as Th({m,m′}) = Th(m). 2

Consequently:

1. Our proofs show that, for the transitive case, on the left formulas only (perhaps the most important case),
any limit version structure is equivalent to a minimal version structure. The proof uses closure properties (closure
under set difference). Conversely, we can read any smooth minimal version as a trivial limit version, so the two are
in an important class (transitive, formulas on the left) equivalent. Somewhat surprising. This and the next point
will be summarized in Proposition 3.4.7.

2. The KLM results show that they are equivalent to a smooth minimal structure. (We work in the other Sections
with the strong condition, which fails here, see Example 3.4.2.)

3. Example 3.4.2 separates the two versions of (CUM) - we can have one thing after the other in the limit version,
but not all together. In a way, this is not surprising, limit was exactly about that.

We conclude with

Fact 3.4.6

100 CHAPTER 3. PREFERENCES

Having cofinally many definable sets trivializes the problem (again in the transitive case).

Proof:

We show that under above condition, any instance of the limit version is equivalent to an instance of the minimal
version.

First, we make the condition precise: We postulate that if T is any theory, and X is MISE in M(T), then there is
X ′ ⊆ X X ′ MISE in M(T) s.t. {x : ∃ < x, i >∈ X ′} = M(T ′) for some theory. We call such X ′ definable MISE.

Suppose the condition holds. We show that φ ∈ T ∪ T ′ implies φ ∈ T ∪ T ′, so the main condition for the minimal
variant (PR) is satisfied (the others are so trivially). Let Z be the structure considered.

Let then φ ∈ T ∪ T ′, so there is A MISE in M(T ∪T ′) = M(T)∩M(T ′), A |= φ. Consider X := Zd(M(T)−M(T ′))
(as a set), let B be MISE in X, e.g. X itself. By above Fact 3.4.3 (3), there is B ′ ⊆ B ∪ A MISE for M(T). Take
B′′ ⊆ B′ definable MISE for M(T). We have then: φ holds in A, so in B′′ ∩M(T ′), B′′ ∩ZdM(T ′) more precisely.

As B′′ is definable, B′′ = M(S) for some S ⊆ T , so in particular, φ holds in all m ∈M(T) ∩M(T ′) = M(T ∪ T ′),

thus T ∪ T ′ ` φ. 2

and summarize

Proposition 3.4.7

Let the relation be transitive. Then

(1) Every instance of the the limit version where the definable closed minimizing sets are cofinal in the closed
minimizing sets is equivalent to an instance of the minimal version.

(2) If we consider only formulas on the left of ∼| , the resulting logic of the limit version can also be generated by
the minimal version of a (perhaps different) preferential structure. Moreover, the structure can be chosen smooth.

Proof:

(1) This was shown in Fact 3.4.6. Note that there are instances of the minimal version which do not correspond to

the limit version: if X 6= ∅, but µ(X) = ∅, then Con(T) 6⇒ Con(T).

(2) By Fact 3.4.4 (3), the basic law (restricted to formulas) of preferential structures in the minimal variant holds.
The other laws do so trivially. So the limit variant with formulas on the left can be represented by the minimal
variant by Proposition 3.4.1 (restrict the domain to formula definable model sets).

By Fact 3.4.4 (2), (OR) holds for formulas, by Fact 3.4.5 (CUM) holds for formulas, it is trivial that (LLE), (RW),
(SC) hold for formulas. It was shown in [KLM90] that any such logic can be represented by a smooth preferential
structure.

Conversely, it is easy to see that for a smooth structure, the minimal and the limit reading coincide.

Thus, they are equivalent.

2

3.5 A counterexample to the KLM-system

Discussion:

3.5. A COUNTEREXAMPLE TO THE KLM-SYSTEM 101

In [KLM90], S.Kraus, D.Lehmann, M.Magidor have shown that the finitary restrictions of all supraclassical, cumu-
lative, and distributive inference operations are representable by preferential structures. In [Sch92], we have shown
that this does not generalize to the arbitrary infinite case. Before we present the counterexample given there, we
analyze the situation, and show that it is again due to a problem of domain closure. This is also the reason why
we repeat this old result here: to show the ubiquity of the problem.

First, we recall or define the notions.

Definition 3.5.1

We say that ∼| satisfies

Distributivity iff A ∩ B ⊆ A ∩ B for all theories A, B of L.

Leaving aside questions of definability preservation, it translates into the following model set condition, where µ is
the model choice function:

(µD) µ(X ∪ Y) ⊆ µ(X) ∪ µ(Y)

We have shown that condition

(µPR) X ⊆ Y → µ(Y) ∩X ⊆ µ(X)

essentially characterizes preferential structures, and its validity was seen as soon as the definition of minimal
preferential structures was known. In these terms, the problem is whether (µ ⊆) + (µCUM) + (µD) entail (µPR)
in the general case. Now, we see immediately:

(µPR) + (µ ⊆) entail (µD) : µ(X ∪ Y) = (µ(X ∪ Y) ∩X) ∪ (µ(X ∪ Y) ∩ Y) ⊆ µ(X) ∪ µ(Y).

Second, if the domain is closed under set difference, then (µD)+(µ ⊆) entail (µPR) : Let U ⊆ V, V = U ∪ (V −U).
Then µ(V) ∩ U ⊆ (µ(U) ∪ µ(V − U)) ∩ U = µ(U).

The condition of closure under set difference is, of course, satisfied for formula defined model sets, but not in the
general case of theory defined model sets.

To make the problem more palatable, we formulate it as follows: µ(X) is something like the ”core” of X. A
counterexample to (µPR) i.e. a case of X ⊆ Y and µ(Y)∩X 6⊆ µ(X) says that small sets do not always ”protect”
their core as well as big ones - the contrary to preferential structures, which ”autodestruct” their ”outer part”, and,
the bigger the set, the more elements will be destroyed. (µD) says that protection is immune to finite unions: their
components protect their cores as well their union does. Now, it seems not so difficult to find a counterexample,
and, in hindsight, it is surprising that it took some time to arrive there.

Intuitively, we can work from the inside, where smaller sets destroy more elements, or from the outside, where
bigger sets protect their elements better. The original counterexample is of the first type: smaller sets decide
more things, and we use this decision to make the logic stronger: the decision of infinitely many pi will destroy all
¬r−models in the definition of the choice function. We might also work from the outside: say a point is in the core
(or protected) iff there is a (nontrivial) sequence of elements converging to it in some suitable topology, e.g. the
natural one in propositional logic. Then small sets are less protective, and the property will be robust under finite
operations. If we take a little care, we can make the operations cumulative.

The original example, which is formulated directly on the logics side (and this is, we guess, the reason it took
so long to find it: people, the author included, worked on the wrong (i.e. logics) side of the problem, instead
of attacking it semantically). The approach taken there has some interest of its own, as it gives an easy way to
construct funny logics by sufficiently long inductive constructions. For this reason, we give it here in all details.

To summarize: Distributivity says only something about well-behaviour for finite unions, this leaves a large area
to move about, and we can protect the core of small sets better or less well than that of big sets. Both conditions
are really quite far from each other. Again, we see that a semantical description clarifies the picture a lot.

102 CHAPTER 3. PREFERENCES

3.5.1 The formal results

S.Kraus, D.Lehmann, and M.Magidor have shown that for any logic ∼| for L, which is supraclassical, cumulative,

and distributive, there is a D−smooth preferential modelM, s.th. for all finite T ⊆ L TM = T - where TM is the
logic defined by the structure. ([KLM90], see also [Mak94], Observation 3.4.7.) We now show that the restriction
to finite T is necessary, by providing a counterexample for the infinite case. We start by quoting a Lemma by D.
Makinson.

Both Lemma 3.5.1 and our counterexample Example 3.5.1 have appeared in [Mak94], Section 3.4 (Lemma 3.4.9,
Observation 3.4.10). The reader less familiar with transfinite ordinals can find there a more algebraic proof that
our counterexample satisfies the logical properties claimed. Our technique of constructing a logic inductively by a
mixed iteration of suitable length has, however, proved useful in other situations as well (see [Sch91-2]), moreover,
it is very fast and straightforward: once you have the necessary ingredients, the machinery will run almost by itself.

Lemma 3.5.1

Let a logic ∼| on L be representable by a classical preferential model structure. Then, for all A ⊆ L, x ∈ L, x 6∈ A

there is a maximal consistent (under `) ∆ ⊆ L s.th. A ⊆ ∆, x 6∈ ∆, and ∆ 6= L.

Proof:

Let M = (X ,≺) be a representation of ∼| , i.e. A = AM for all A ⊆ L. Let A ⊆ L, x ∈ L, and x 6∈ A. Then

there is < m, i > minimal in XdMA, with m 6|= x. Note that by minimality, m |= A. ∆ := {y ∈ L: m |= y} is

maximal consistent, x 6∈ ∆, A ⊆ ∆, and < m, i > is also minimal in XdM∆, by M∆ ⊆MA. Thus, m |= ∆, and by

classicality of the models, ∆ 6= L. 2

We now construct a supraclassical, cumulative, distributive logic, and show that the logic so defined fails to satisfy
the condition of Lemma 3.5.1, and is thus not representable by a preferential structure.

Example 3.5.1

Let v(L) contain the propositional variables pi : i ∈ ω, r. (Note that we do not require L to be countable, we leave
plenty of room for modifications of the construction!) We shall violate compactness badly ”in both directions” by
adding the rules (infinitely many pi) ∼| r and (infinitely many ¬pi) ∼| r. To account for distributivity, we shall
add for all φ ∈ L (infinitely many pi ∨ φ) ∼| r ∨ φ and (infinitely many ¬pi ∨ φ) ∼| r ∨ φ. Closing under ∼| and
classical logic ω1 many times to take care of the countably infinite rules will give the result.

The details:

We define the logic ∼| by a mixed iteration: For B ⊆ L define I+
B,φ := {i < ω: pi ∨φ ∈ B}, I

−
B,φ := {i < ω: ¬pi ∨φ

∈ B}. Define now inductively

A0 := A

for successor ordinals (α a limit or 0, i ∈ ω):

Aα+2i+1 := Aα+2i

Aα+2i+2 := Aα+2i+1 ∪ {r ∨ φ: I+
Aα+2i+1,φ

is infinite or I−Aα+2i+1,φ
is infinite}

for limit λ:

Aλ :=
⋃
{Ai : i < λ}

A := Aω1 .

We show ∼| is as desired. Note that the defined logic is monotone.

3.6. A NON-SMOOTH MODEL OF CUMULATIVITY 103

1) A ⊆ A is trivial.

2) A ⊆ B ⊆ A → A = B :

2.1) A ⊆ B by monotony

2.2) B ⊆ A: Let φ ∈ B. In deriving φ in B, we have used only countably many elements from B. This is seen as
follows. Let β be minimal such that φ ∈ Bβ . φ can be derived from at most countably many φi ∈ Bβ−1 (β has to
be a successor ordinal). Arguing backwards, and using ω.ω = ω (cardinal

multiplication), we see what we wanted. (This is, of course, the outline for an inductive proof.) As B ⊆ A, using
regularity of ω1, we see that there is some α < ω1 s.th. all φj used in the derivation of φ from B are in Aα. But
then φ ∈ Aα+β .

3) Distributivity: We show by induction on the derivation of a, b that a ∈ A, b ∈ B → a ∨ b ∈ A ∩B. To get
started, use A0 ⊆ A1 = A, and a ∈ A, b ∈ B → a∨ b ∈ A∩B. By symmetry, it suffices to consider the cases for a.

Let a1, . . . , an ` a by classical inference. By induction hypothesis, a1∨b, . . . , an∨b ∈ A ∩ B, but then a∨b ∈ A ∩ B,
as the latter is closed under ` . Assume now a = r ∨φ ∈ Aα has been derived from infinitely many pi ∨ φ (i ∈ I) in

Aα−1. By induction hypothesis, pi ∨φ∨ b ∈ A ∩ B. So pi ∨φ∨ b ∈ (A∩B)βi
for βi < ω1. Again by regularity of ω1,

all pi∨φ∨b ∈ (A∩B)β (i ∈ I) for some β < ω1. But then r∨φ∨b = a∨b ∈ (A∩B)β+2. The case ¬pi∨φ is similar. 2

We use the Lemma to obtain the negative result, as the logic constructed above does not satisfy the Lemma’s
condition:

Consider now A := ∅. Assume there is φ s.th. infinitely many pi∨φ ∈ A, thus there is φ s.th. infinitely many pi∨φ
are tautologies. But then φ has to be a tautology (consider (pi ∨ φ)↔ (¬φ→ pi) and finiteness of φ!), thus φ and

φ ∨ r ∈ A. Likewise for ¬pi ∨ φ. So, the rules (infinitely many pi ∨ φ) ∼| r ∨ φ etc. give nothing new, and A = A.

In particular, r 6∈ A.

Assume now ∆ ⊆ L to be maximal consistent. So ∆ decides all pi : i ∈ ω. Thus either infinitely many pi, or ¬pi
in ∆. Thus, r ∈ ∆. Hence ∼| is not representable by a preferential structure. 2

3.6 A non-smooth model of cumulativity

Discussion:

The idea behind the construction in this Section is extremely simple, and, again, related to closure properties of
the domain.

Smoothness says that below each non-minimal element in a set of the domain, there must be a minimal element
in the set. Smoothness on the model side entails cumulativity on the logics side - but not vice versa, as the
construction to be presented shows. Cumulativity can be violated in preferential structures, i.e. φ ∼| ψ, φ ∼| τ,
but not φ ∧ ψ ∼| τ, may hold, as there might be a φ ∧ ψ ∧ ¬τ−model m, which is not minimal in the set of
φ−models, but minimal in the set of φ ∧ ψ−models. There will then be a φ ∧ ¬ψ−model m′ smaller than m, but
no φ∧ψ−model smaller than m, in particular no minimal φ−model smaller than m, as smoothness postulates. To
do without smoothness is simple. We just have to assure that in all formula definable sets (and it is here where the
domain properties matter), which contain the set of φ−minimal models µ(φ), there must be an element smaller
than m. But this is guaranteed if we have a sequence of models smaller than m converging in the standard topology
to µ(φ). Then any set of models for any ψ which contains µ(φ) will contain some element of this sequence, so m
will not be minimal.

104 CHAPTER 3. PREFERENCES

Much in the argument to be presented now shows that we have indeed to do without smoothness - this is imposed
by the framework given by [FLM90].

To summarize: The [FLM90] framework forces us to consider non-smooth structures. It is natural to have cumu-
lativity without smoothness through a topological construction. The topological view demonstrates thus again its
utility and naturalness. We might say it is a subtle bridge between the semantics and the logics.

3.6.1 The formal results

We need some further rules here:

Definition 3.6.1

(NR) (Negation Rationality): α ∼| β ⇒ α ∧ γ ∼| β or α ∧ ¬γ ∼| β (for any γ),

(WD) (Weak Determinacy): true ∼| ¬α ⇒ α ∼| β or α ∼| ¬β (for any β) (we say that such α decide),

(DR) (Disjunctive Rationality): α ∨ β ∼| γ ⇒ α ∼| γ or β ∼| γ.

We also recall the rule (which is part of the system P):

(CM) (Cautious Monotony): α ∼| β and α ∼| γ ⇒ α ∧ γ ∼| β.

We use ¬(NR) as shorthand for the existence of α, β, γ such that α ∼| β, but neither α ∧ γ ∼| β, nor α ∧ ¬γ ∼| β.

The main idea:

We work here in transitive structures - as this was a prerequisite in the [FLM90]-paper.

If (CM) is violated, there are φ, ψ, τ such that φ ∼| ψ, φ ∼| τ, but φ ∧ ψ 6∼| τ. As all minimal models of φ are
then minimal models of φ ∧ ψ, there must be a new minimal model of φ ∧ ψ, which is not a minimal model of φ,
weakening the set of consequences of φ ∧ ψ, compared to the set of consequences of φ. Smoothness assures that
this cannot happen, as any model of φ ∧ ψ must be above some minimal model of φ. If smoothness cannot hold,
we must prevent the existence of ”dangerous” (i.e. consequence changing) new minimal φ ∧ ψ−models by other
means, which (by transitivity) can only be infinite descending chains of φ ∧ ψ−models.

But smoothness cannot hold in an injective structure showing joint consistency of the system P, (WD), and ¬(NR) :

Fact 3.6.1

There is no smooth injective preferential structure validating (WD) and ¬(NR).

Proof:

Suppose (NR) is false, so there are α, β, γ with α ∼| β, α ∧ γ 6∼| β, α ∧ ¬γ 6∼| β. Let α ∼| β, so true ∼| α→ β. (If
m is a minimal model of true, and if m |= α, then m is a minimal model of α, so m |= β.) So true ∼| ¬(α ∧ ¬β).
If ` φ→ α ∧ ¬β, then true ∼| ¬φ. Thus, by (WD), if ` φ→ α ∧ ¬β, φ decides, thus, by injectivity, φ has at most
one minimal model in the structure.

Let now α∧γ 6∼| β, α∧¬γ 6∼| β, thus there is a minimal model m1 of α∧γ, where ¬β holds, and a minimal model
m2 of α ∧ ¬γ, where ¬β holds. Thus, m1 is a minimal model of α ∧ γ ∧ ¬β, m2 a minimal model of α ∧ ¬γ ∧ ¬β.

(a) Suppose m1 is not a minimal model of α ∧ ¬β, then by smoothness, there is m < m1, m a minimal model of
α ∧ ¬β. ¬γ has to hold in m, so m is a minimal model of

α ∧ ¬β ∧ ¬γ. By uniqueness, m = m2, so m2 < m1, and m2 is a minimal model of α ∧ ¬β.

(b) If m2 is not a minimal model of α ∧ ¬β, then, analogously, m1 is, and m1 < m2.

(c) m1 and m2 are minimal models of α ∧ ¬β : Impossible, as α ∧ ¬β decides.

3.6. A NON-SMOOTH MODEL OF CUMULATIVITY 105

Suppose now e.g. m2 is the minimal model of α ∧ ¬β, and m2 < m1. As α ∼| β, m2 cannot be a minimal model
of α, so there must be m′ |= α below m2. m

′ |= α ∧ ¬β is impossible (by minimality of m2), so m′ |= α ∧ β. (Note
that we did not need smoothness for this argument.) But m′ |= γ, or m′ |= ¬γ, contradicting minimality of m1 or
of m2. The other case is analogous. 2

Thus, we have such ”dangerous” φ∧ψ−models, as we will see now. By failure of (NR), there are α, β, γ such that
α ∼| β, α ∧ γ 6∼| β, α ∧ ¬γ 6∼| β. Thus we have a minimal model m1 of α ∧ γ ∧ ¬β, and a minimal model m2 of
α∧¬γ ∧¬β. By (WD), there will be at most one minimal α∧¬β−model, so they cannot both be minimal models
of α∧¬β. Suppose m1 is not, the other case is analogous. A simple analysis shows that there cannot be a minimal
model of α ∧ ¬β below m1, so smoothness is indeed violated, and we must have an infinite descending chain X
of α ∧ ¬β−models below m1. Let now φ := α ∧ ¬β, and m be the unique (if it exists - if not, a similar argument
applies) minimal α∧¬β−model, and suppose m |= ψ, so φ ∼| ψ. If there were now a minimal model m′ of φ∧ψ in
X, Cumulativity would be violated: By injectivity of the structure, m′ is logically different from m, and the theory
determined by {m} is stronger than the one determined by {m,m′} (finiteness of {m} is crucial here). Thus, in
X either ψ will be infinitely often true, or not at all. We will make it infinitely often true, so ”X approximates m
logically”.

3.6.1.1 A non-smooth injective structure validating P, (WD), −(NR)

Definition 3.6.2

A sequence f of models converges to a set of models M, f →M, iff ∀φ(M |= φ → ∃i∀j ≥ i.fj |= φ). If M = {m},
we will also write f → m.

Fact 3.6.2

Let f be a sequence composed of n subsequences f 1, . . . , fn, e.g. fn∗j+0 = f1
j etc., and f i → Mi. Let φ be a

formula unboundedly often true in f. Then there is 1 ≤ i ≤ n and m ∈Mi s.t. m |= φ.

Proof:

If for all i and all m ∈ Mi m 6|= φ, then Mi |= ¬φ, so there are ji s.t. for all j ≥ ji f
i
j |= ¬φ, so there is k s.t. for

all j ≥ k fj |= ¬φ. 2

Example 3.6.1

(A non-smooth transitive injective structure validating system P, (WD), ¬(NR).)

As any transitive acyclic relation over a finite structure is necessarily smooth, and an injective structure over a
finite language is finite, Fact 3.6.1 shows that we need an infinite language.

Take the language defined by the propositional variables r, s, t, pi : i < ω.

Take 4 models mi, i = 1, . . . , 4, where for all i,j mi |= pj (to be definite), and let m0 |= r,¬s, t, m1 |= r,¬s,¬t,
m2 |= r, s, t, m3 |= r, s,¬t. It is important to make m2 and m3 identical except for t, the other values for the pj
are unimportant.

Let m2 < m1. (The other mi are incomparable.)

Define two sequences of models f 1 → m1, f
3 → m3 s.t. for all i,j f ij |= r,¬t. This is possible, as m1 |= r,¬t,

m3 |= r,¬t.

All models in these sequences can be chosen different, and different from the mi - this is no problem, as we have
for all consistent φ uncountably many models where φ holds.

106 CHAPTER 3. PREFERENCES

Figure 3.6.1

6

s

?

m0 |= r,¬s, t

D

f

m1 |= r,¬s,¬t

m2 |= r, s, t m3 |= r, s,¬t

Let f be the mixture of f i, e.g. f2n+0 := f1
n, etc.

Put m0 above f, with f in descending order. Arrange the rest of the 2ω models above m0 ordered as the ordinals -
i.e. every subset has a minimum. Thus, there is one long chain C (i.e. C is totally ordered) of models, at its lower
end a descending countable chain f, directly above f m0, above m0 all other models except m1 −m3, arranged in
a well-order. The models m1 −m3 form a separate group. See Figure 3.6.1.

Figure 3.6.1

Note that m0 is a minimal model of t.

Obviously, (NR) is false, as r ∼| s, but neither r ∧ t ∼| s, nor r ∧ ¬t ∼| s.

The usual rules of P hold, as this is a preferential structure, except perhaps for (CM), which holds in smooth
structures, and our construction is not smooth. (This is the real problem.)

Note that (CM) says φ ∼| ψ → φ = φ ∧ ψ, so it suffices to show for all φ φ ∼| ψ → µ(φ) = µ(φ ∧ ψ). This is the
point of the construction. The infinite descending chains converge to some minimal model, so if α holds in this
minimal model, then α holds infinitely often in the chain, too. Thus there are no new minimal models of α, which
might weaken the consequences.

For (WD), we have to show by Fact 3.6.1 that, if M(φ)∩µ(true) = ∅, then µ(φ) contains at most one model (where
µ(true) = {m2,m3}).

We examine the possible cases of µ(φ) (∅, {m1}, {m2}, {m3}, {m1,m3}, {m2,m3}, and µ(φ) ∩ C 6= ∅).

For (CM):

Case 1: µ(φ) = {m2,m3} : Then φ ∼| ψ iff {m2,m3} |= ψ. So if φ ∼| ψ, then φ ∧ ψ holds in m3, so by f3, φ ∧ ψ is
(downward) unboundedly often true in f, so µ(φ ∧ ψ) = {m2,m3}.

3.7. PLAUSIBILITY LOGIC - PROBLEMS WITHOUT CLOSURE UNDER FINITE UNION 107

Case 2: µ(φ) = {m1} and Case 3: µ(φ) = {m3} : as above, by f1 and f3.

Case 4: µ(φ) = {m2} : As m2 |= φ, and m3 6|= φ, φ is of the form φ′ ∧ t, so none of the fi is a model of φ, so φ has
a minimal model in the chain C, so this is impossible.

Case 5: µ(φ) = {m1,m3} : Then φ ∼| ψ iff {m1,m3} |= ψ. So as in Case 1, if φ ∼| ψ, φ ∧ ψ is unboundedly often
true in f1 (and in f3), and µ(φ ∧ ψ) = {m1,m3}.

Case 6: µ(φ) = ∅ : This is impossible by Fact 3.6.2: If φ is unboundedly often true in C, then it must be true in
one of m1, m3.

Case 7: µ(φ) ∩ C 6= ∅ : Then below each m |= φ, there is m′ ∈ µ(φ). Thus, the usual argument which shows
Cumulativity in smooth structures applies.

For (WD):

We only have to consider the cases where m2,m3 6∈M(φ), so the only possible cases are: Case 2, Case 7.

In Case 2, there is nothing to show, µ(φ) is a singleton.

In Case 7, (WD) is trivial, we have a unique minimum: m2,m3 6∈ M(φ) by prerequisite. But if m1 |= φ, then φ
would be true unboundedly often in f, so it would not have a minimal model in C. Thus, µ(φ) is a singleton.

2

3.7 Plausibility logic - problems without closure under finite union

3.7.1 Introduction

As Plausibility Logic is given as a sequent calculus, we begin with

A short general remark on different axiom systems

Hilbert style axiomatisations do the following:

The axioms say what the universe U (set of all models) is, e.g. the axiom φ → (ψ → φ) says that M(φ → (ψ →
φ)) = U. The rules, e.g. MP say: X ∩ Y ⊆ Z: if x ∈M(φ) and x ∈M(φ→ ψ), then x ∈M(ψ). Thus, the system
characterizes U, and how to preserve U. If the axiomatization is complete, we find all (definable) sets equivalent to
the universe. To show that T ` φ corresponds to T |= φ, we need X ⊆ Y iff C(X) ∪ Y = U, or s.t. equivalent.

In sequent calculus, we try to find all X,Y, s.t. X ⊆ Y, i.e. we characterize inclusion. We begin e.g. with the
”axiom” X ⊆ X, and say, if A ⊆ B, then C ⊆ D etc. This gives directly T ` φ, i.e. M(T) ⊆ M(φ), but no
theorems. For this, we need one tautology T , and this suffices: we look then at T ⇒ φ, or M(T) ⊆M(φ)?

It is important to recall for the intuition that a sequence X ⇒ Y is to be interpreted as
∧
X ⇒

∨
Y.

Finally, in Plausibility Logic, we do not describe X ⇒ Y, or, semantically, X ⊆ Y, but µ(X) ⊆ Y - this is the way
to read sequences in Plausibility Logic intuitively.

We turn to a

Discussion of Plausibility Logic

Plausibility Logic was introduced by D.Lehmann [Leh92a], [Leh92b] as a sequent calculus in a propositional language
without connectives. Thus, a Plausibility Logic language L is just a set, whose elements correspond to propositional
variables, and a sequent has the form X ∼| Y, where X, Y are finite subsets of L, thus, in the intuitive reading,∧
X ∼|

∨
Y. (We use ∼| instead of the ` used in [Leh92a], [Leh92b] and continue to reserve ` for classical logic.)

108 CHAPTER 3. PREFERENCES

For lack of space, and as our main thrust is in other directions, we will not discuss the logic itself or its motivation
here in detail, but concentrate on representation questions and associated issues. The reader interested in motivation
is referred to the original articles [Leh92a], [Leh92b].

The representation problem held some surprise. First, it was relatively easy to show that the weak version had
a representation by general preferential structures, and it looked as if the full version would have one by smooth
structures. All that was missing, and which seemed quite innocent, was that the domain was not closed under
finite union, as an OR is missing in the language. As the author had never understood why we needed this closure
property (which is given in classical logic), he had thought that he had just not thought hard enough to find a
representation result without this closure condition. After trying some time in vain, the author worked for the
opposite, a counterexample. And, after some fiddling (with a small handwritten programm to calculate the (finite)
closure), we had one. This was the first time we realized the importance of closure conditions for the domain.

We show here the following:

• a proof that the weak system is complete for general preferential structures,

• a counterexample which shows that the full system is not complete for smooth preferential structures,

• improve or modify our representation result for smooth (not necessarily transitive) preferential structures
when the domain is not necessarily closed under finite unions.

The last proof follows closely the lines of the old proof (see Section 3.3.1), so one might wonder whether to unite
them into one single proof. Yet, the new proof seems to need more complicated hulls, which also depend on the
elements, of the form H(U, x), and it might not be a good idea to complicate the picture in the proof of Proposition
3.3.4 by a supplementary argument x, which will not be needed there. For this reason, we preferred a certain
redundancy. As a matter of fact, we simply replace the old Fact 3.3.1 by sufficiently strong conditions on H(U, x),
see Definition 3.7.6 of the property (HU). Thus, as we see time and again in this book, if the domain is not nice,
the conditions will not be, either.

As we are mainly interested in the basic algebraic ideas, we did not add conditions to Plausibility Logic to make
it complete for smooth models, and left this (open problem) to the interested reader.

It is also an open problem to characterize transitive smooth structures without closure of the domain under finite
unions - our proof of the transitive case uses unions.

A word of warning: Even if the domain is not closed under unions, we may well consider unions X ∪ Y, only we
cannot be sure that the function f to be represented will be defined: f(X ∪ Y) need not be defined, even if f(X)
and f(Y) are defined. A look at the proof of the transitive smooth case shows that we work there with µ(Un∪Yn+1)
etc. - and this need not be defined any more. The simple union is, of course, defined, but it need not be a legal
argument of the function considered any more.

To summarize: The poor language of Plausibility Logic results in poor closure conditions for the domain. These
can cause problems, i.e. result in more complicated conditions for representation. For the author, this was the
first encounter with this phenomenon, which appears again and again in various forms (lack of finite representation
etc.), and has been too much neglected so far, in his opinion. The details are somewhat involved and farther away
from the mainstream, just as the logic itself.

The details:

We abuse notation, and write X ∼| a for X ` {a}, X, a ∼| Y for X ∪ {a} ∼| Y, ab ∼| Y for {a, b} ∼| Y etc. When
discussing Plausibility Logic, X,Y etc. will denote finite subsets of L, a,b etc. elements of L.

Definition 3.7.1

The base axiom and rules of Plausibility Logic are (X,Y finite subsets of L, a etc. elements of L), where we use
the prefix Pl to differentiate them from the usual ones.

3.7. PLAUSIBILITY LOGIC - PROBLEMS WITHOUT CLOSURE UNDER FINITE UNION 109

(PlI) (Inclusion): X ∼| a for all a ∈ X,

(PlRM) (Right Monotony): X ∼| Y ⇒ X ∼| a, Y,

(PlCLM) (Cautious Left Monotony): X ∼| a, X ∼| Y ⇒ X, a ∼| Y,

(PlCC) (Cautious Cut): X, a1 . . . an ∼| Y, and for all 1 ≤ i ≤ n X ∼| ai, Y ⇒ X ∼| Y,

and as a special case of (PlCC):

(PlUCC) (Unit Cautious Cut): X, a ∼| Y , X ∼| a, Y ⇒ X ∼| Y.

and we denote by PL, for Plausibility Logic, the full system, i.e. (P lI) + (P lRM) + (P lCLM) + (P lCC). 2

We show here that:

• (1) The system (P lI)+(P lRM)+(P lCC) is sound and complete for minimal preferential models (as adapted
to Plausibility Logic).

• (2) The system (P lI) + (P lRM) + (P lCC) + (P lCLM) is not complete for smooth minimal preferential
models. This is somewhat surprising, and in contrast to standard propositional non-monotonic logics, where
comparable axiom systems are complete for smooth minimal preferential models. Incompleteness is essentially
due to the absence of an ”or” on the left hand side of ∼| , so the sets of models of Plausibility formulas are
not closed under finite union, violating one of the prerequisites of Proposition 3.3.4.

• (3) We show how to mend the representation result for smooth structures to work without closure under
finite unions.

Before we turn to the main results, we show a considerable simplification of Plausibility Logic (which will be used
later), and introduce the main definition.

Fact 3.7.1

We note that (partially by finiteness of all sets involved)

1. In the presence of (PlRM), (PlI) is equivalent to (P lI ′): X ∼| Y for X ∩ Y 6= ∅.

2. (PlRM) is equivalent to (P lRM ′): X ∼| Y → X ∼| Z, Y for all Z.

3. (PlCC) is equivalent to (P lCC ′): X,Z ∼| Y and X ∼| z, Y for all z ∈ Z → X ∼| Y for all X,Y,Z s.th.
(X ∪ Y) ∩ Z = ∅. 2

Let PL’ denote (P lCLM) + (P lCC ′).

PL and PL’ are equivalent in the following sense, i.e. (PlRM) can essentially be omitted as rule:

Fact 3.7.2

Let A be a set of L−sequences, A′ be the closure of A under PL, and A′′ be the closure of {X ∼| Y : X ∩ Y 6= ∅}
∪ {X ∼| Y : X ∼| Y ′ ∈ A for some Y ′ ⊆ Y } under PL’. Then A′ = A′′.

Proof:

′′ ⊇′′ is trivial.

′′ ⊆′′: Any application of (PlRM) can be pulled back through applications of (PlCLM) and (PlCC). More formally,
let e.g. Π be a proof of X ′, a′ ∼| a, Y ′ terminating with (PlCLM), followed by (PlRM): X ′ ∼| a′, X ′ ∼| Y ′ ⇒(PlCLM)

110 CHAPTER 3. PREFERENCES

X ′, a′ ∼| Y ′ ⇒(PlRM) X
′, a′ ∼| a, Y ′. Then X ′ ∼| Y ′ ⇒(PlRM) X

′ ∼| a, Y ′ and X ′ ∼| a′, X ′ ∼| a, Y ′ ⇒(PlCLM)

X ′, a′ ∼| a, Y ′ also is a proof of X ′, a′ ∼| a, Y ′. (The case (PlCC) is analogous.)

Thus, any proof can be assumed to start with instances of (PlI) or elements from A, followed by some applications
of (PlRM), and only then applications of (PlCLM) or (PlCC). 2

The value of this remark lies in the fact that it considerably reduces the number of possible proofs of a sequence.

We now adapt the definition of a preferential model to Plausibility Logic. This is the central definition on the
semantic side.

Definition 3.7.2

Fix a Plausibility Logic language L. A model for L is then just an arbitrary subset of L.

If M :=< M,≺> is a preferential model s.th. M is a set of (indexed) L−models, then for a finite set X ⊆ L (to
be imagined on the left hand side of ∼| !), we define

(a) m |= X iff X ⊆ m

(b) M(X) := {m: < m, i >∈M for some i and m |= X}

(c) µ(X) := {m ∈M(X): ∃ < m, i >∈M.¬∃ < m′, i′ >∈M (m′ ∈M(X) ∧ < m′, i′ >≺< m, i >)}

(d) X |=M Y iff ∀m ∈ µ(X).m ∩ Y 6= ∅. 2

(a) reflects the intuitive reading of X as
∧
X, and (d) that of Y as

∨
Y in X ∼| Y. Note that X is a set of

”formulas”, and µ(X) = µM(M(X)).

We note as trivial consequences of the definition.

Fact 3.7.3

(a) a |=M b iff for all m ∈ µ(a).b ∈ m

(b) X |=M Y iff µ(X) ⊆
⋃
{M(b) : b ∈ Y }

(c) m ∈ µ(X) ∧ X ⊆ X ′ ∧ m ∈M(X ′) → m ∈ µ(X ′). 2

3.7.2 Completeness and incompleteness results for plausibility logic

We have taken an old proof of ours (with a correction of Fact 3.7.6, due to D.Lehmann), and not the one published
in [Sch96-3], as this (somewhat more complicated) proof fits better into the general proof strategy.

3.7.2.1 (PlI)+(PlRM)+(PlCC) is complete (and sound) for preferential models

((P lI) + (P lRM) + (P lCC) is the system of [Leh92b].)

Fact 3.7.4

If Xi : i ∈ I are all finite, and Y is s.t. Y ∩ Xi 6= ∅ for all i ∈ I, then there is f ∈ ΠXi s.t. (1) ran(f) ⊆ Y (2)

¬∃g ∈ ΠXi.ran(g)
⊂

6= ran(f).

3.7. PLAUSIBILITY LOGIC - PROBLEMS WITHOUT CLOSURE UNDER FINITE UNION 111

Proof:

(a) There is Y ′ ⊆ Y minimal with Y ′ ∩Xi 6= ∅ for all i: If not, there is an infinite descending sequence Yα : α < κ,
lim(κ), Y0 = Y, and for all α < κ Yα ∩Xi 6= ∅ for all i, but

⋂
Yα ∩Xi = ∅ for some fixed i, contradicting finiteness

of Xi.

(b) Let f ∈ Π(Y ′ ∩Xi), any g ∈ ΠXi, ran(g)
⊂

6= ran(f) ⊆ Y ′ would show Y ′ not minimal. 2

Definition 3.7.3

For T ⊆ L let T := {Y : T ∼| Y }.

Let Pf (X) denote the set of finite subsets of X.

Let Π′T := {f ∈ ΠT : there is no g ∈ ΠT s.t. ran(g)
⊂

6= ran(f)}.

Given a function µ : Pf (L)→ PP(L), define for T, Y ∈ Pf (L) T |=µ Y :↔ ∀m ∈ µ(T).m ∩ Y 6= ∅.

Lemma 3.7.5

Let ∼| satisfy (PlRM), and µ be s.t.

1. If T ∼| ∅, then µ(T) = ∅.

2. If T 6∼| ∅, then µ(T) has the properties

(a) {ran(f) : f ∈ Π′T} ⊆ µ(T),

(b) if m ∈ µ(T), then ex. f ∈ Π′T s.t. ran(f) ⊆ m.

Then |=µ=∼| .

Proof:

We have to show T ∼| Y ↔ T |=µ Y for all T, Y ∈ Pf (L).

Note that if T 6∼| ∅, then µ(T) 6= ∅ by (a) and Fact 3.7.4.

Case 1: T ∼| ∅ T ∼| ∅ ↔ µ(T) = ∅ ↔ ∀m ∈ µ(T).m ∩ ∅ 6= ∅ ↔ T |=µ ∅.

Case 2: T 6∼| ∅ ′′ →′′: Let T ∼| Y, so for all f ∈ ΠT ran(f) ∩ Y 6= ∅ → (by (b)) ∀m ∈ µ(T).m ∩ Y 6= ∅ →

T |=µ Y
′′ ←′′: Suppose T 6∼| Y, then by (PlRM), for no X ⊆ Y T ∼| X. Thus, for all X ∈ T X − Y 6= ∅, let

f ∈ Π{X − Y : X ∈ T}, so f ∈ ΠT , and ran(f) ∩ Y = ∅. Let f ′ ∈ Π′T s.t. ran(f ′) ⊆ ran(f) (this exists by Fact
3.7.4), so ran(f ′) ∈ µ(T), and T 6|=µ Y. 2

Thus, if (PlRM) holds for ∼| , then for µ defined by µ(T) :=
{
∅ iff T ` ∅

{ran(f): f ∈ Π′T} otherwise

|=µ=∼| .

Definition 3.7.4

For M :=< M,µ > with M ⊆ P(L), µ : Pf (L) → P(M), let |=M:=|=µ. Let ∼| be given, define M :=< M,µ >
by:

1.) M := P(L)

112 CHAPTER 3. PREFERENCES

2.) µ(T) :=




∅ iff T ` ∅

{ m ⊆ L: 1. m ∩ Y 6= ∅ for all Y ∈ T

2. ex. T ′ ⊆ T s.t. m = ran(f) for some f ∈ Π′T ′} otherwise

By Fact 3.7.4, µ satisfies the prerequisites of Lemma 3.7.5, so if ∼| satisfies (PlRM), then |=M=∼| .

For T ⊆ L, let M(T) := {X ⊆ L : T ⊆ X} and Y := {M(T) : T ⊆ L}, thus Y ⊆ P(M). Define F : Y → P(M) by
F (M(T)) := µ(T), this is well-defined, as T =

⋂
M(T).

We work now with µ and F as just defined, and first note two auxiliary Facts:

Fact 3.7.6

Let ∼| satisfy (PlRM), f ∈ Π′S, R ⊆ ran(f) be finite, then there is YS,f,R s.t.

1. S ∼| r, YS,f,R for all r ∈ R

2. YS,f,R ∩ ran(f) = ∅.

Proof:

By minimality of ran(f), for each q ∈ ran(f) exists Zq ∈ S with Zq ∩ ran(f) = {q}. Let Yq := Zq − {q}, so
Yq ∩ ran(f) = ∅ and S ∼| q, Yq . Let YS,f,R :=

⋃
{Yr : r ∈ R}, so YS,f,R ∩ ran(f) = ∅ and for r ∈ R S ∼| r, YS,f,R

(by (PlRM)). 2

Fact 3.7.7

Let ∼| satisfy (P lRM) + (P lCC), f ∈ Π′S, S ⊆ S′ ⊆ ran(f), S′ ∼| Y, then ran(f) ∩ Y 6= ∅.

Proof:

If S = S′, we are done. Let R := {r1 . . . rn}, S′ := S ∪ R, and YS,f,R as in Fact 3.7.6. so S ∼| ri, YS,f,R, and by

(PlRM) and S′ ∼| Y S ∪ {r1 . . . rn} ∼| Y, YS,f,R and S ∼| ri, Y, YS,f,R. So by (PlCC), S ∼| Y, YS,f,R. By f ∈ ΠS,
ran(f) ∩ (Y ∪ YS,f,R) 6= ∅, but ran(f) ∩ YS,f,R = ∅. 2

Lemma 3.7.8

(a) If ∼| satisfies (PlI), then F (M(T)) ⊆M(T).

(b) If ∼| satisfies (P lRM) + (P lCC), then M(T ′) ⊆M(T) → F (M(T)) ∩M(T ′) ⊆ F (M(T ′)).

Proof:

(a) If T ∼| ∅, we are done. Otherwise, let m ∈ µ(T), but by (PlI), T ∼| x for all x ∈ T, so T ⊆ m.

(b) By M(T ′) ⊆M(T), T =
⋂
M(T), and T ′ =

⋂
M(T ′), T ⊆ T ′ holds. We have to show µ(T) ∩M(T ′) ⊆ µ(T ′).

Let m ∈ µ(T) ∩M(T ′), so T ⊆ T ′ ⊆ m. Moreover, there is T ′′ ⊆ T ⊆ T ′, m = ran(f) for some f ∈ Π′T ′′. It thus

remains to show m ∩ Y 6= ∅ for all Y ∈ T ′. But this follows from Fact 3.7.7. 2

3.7. PLAUSIBILITY LOGIC - PROBLEMS WITHOUT CLOSURE UNDER FINITE UNION 113

We have shown in Section 3.2.2 above, Proposition 3.2.4, that such F can be represented by a (transitive, irreflexive)
preferential structure.

2 (Completeness)

3.7.2.2 Incompleteness of full plausibility logic for smooth structures

We work in PL and construct a counterexample, a set of formulas which satisfies the axiom and rules of Plausibility
Logic, but violates Fact 3.7.9 below, and thus cannot be represented by a smooth preferential model.

We note the following fact for smooth preferential models:

Fact 3.7.9

Let U,X,Y be any sets,M be smooth for at least {Y,X} and let µ(Y) ⊆ U∪X, µ(X) ⊆ U, thenX∩Y ∩µ(U) ⊆ µ(Y).

Proof:

We show m ∈ X ∩Y, m 6∈ µ(Y) → m 6∈ µ(U). As m ∈ Y −µ(Y), by smoothness, there is m′ ≺ m, m′ ∈ µ(Y). Case
1: m′ ∈ U : we are done. Case 2 : m′ ∈ X. Thus m ∈ X − µ(X), so by smoothness, there is m′′ ≺ m, m′′ ∈ µ(X),
but µ(X) ⊆ U, so we are done again. (An analogous proof holds when we work with copies.) 2

Example 3.7.1

Let L := {a, b, c, d, e, f}, and X := {a ∼| b, b ∼| a, a ∼| c, a ∼| fd, dc ∼| ba, dc ∼| e, fcba ∼| e}. We show that X
does not have a smooth representation.

Fact 3.7.10

X does not entail a ∼| e.

Proof:

Let A := {a ∼| b, a ∼| c, a ∼| ed, a ∼| fd, b ∼| a, b ∼| c, b ∼| ed, b ∼| fd, ba ∼| c, ba ∼| ed, ba ∼| fd, ca ∼| b,
ca ∼| ed, ca ∼| fd, cb ∼| a, cb ∼| ed, cb ∼| fd, cba ∼| ed, cba ∼| fd, dc ∼| ba, dc ∼| e, edc ∼| ba, fcba ∼| e}

Set A0 := {X ∼| Y : X ∩ Y 6= ∅}, A1 := {X ∼| Y : there is Y ′ ⊆ Y s.th. X ∼| Y ′ ∈ A}, and A′′ := A0 ∪ A1.

As A′′ contains X , but not a ∼| e, it suffices to show that A′′ is a Plausibility Logic, i.e. is closed under PL. By
Fact 3.7.2, this is equivalent to showing that A′′ is closed under (PlCLM) + (P lCC ′). We note

Remark 3.7.11

(a) For X ∈ {a, b, ba, ca, cb, cba} and Y ∈ {a, b, c, ed, fd} X ∼| Y ∈ A′′,

(b) for X ∈ {dc, edc, fcba, fecba}, Y ∈ {e, ba} X ∼| Y ∈ A′′

2 (Remark 3.7.11)

Note also that all cases of A occur as cases of (a) or (b).

We first show closure of A′′ under (PlCLM): X ′ ∼| a′, X ′ ∼| Y ′ → X ′, a′ ∼| Y ′ (a′ 6∈ X ′):

114 CHAPTER 3. PREFERENCES

Thus, X ′ ∼| a′ ∈ A, and X ′ = a and a′ = b or a′ = c, X ′ = b and a′ = a or a′ = c, X ′ = ba and a′ = c, X ′ = ca
and a′ = b, X ′ = cb and a′ = a, X ′ = dc and a′ = e, X ′ = fcba and a′ = e.

The case X ′ ∼| Y ′ ∈ A0 is trivial. Suppose X ′ ∼| Y ′ ∈ A1, so there is Y ⊆ Y ′ and X ′ ∼| Y ∈ A. It suffices to show
that then X ′, a′ ∼| Y ∈ A′′, as A′′ is obviously closed under (PlRM). But all cases are handled by Remark 3.7.11
(a) or (b): If X ′ ∼| a′ ∈ A and X ′ ∼| Y ∈ A, then X ′ is one of the X and Y is one of the Y in (a) or (b). But then
X ′, a′ is also one of the X in (a) or (b).

We turn to closure under (P lCC ′). We have to show for all X ′, Y ′, Z ′ with Z ′∩(X ′∪Y ′) = ∅, Z ′ 6= ∅: X ′, Z ′ ∼| Y ′,
X ′ ∼| z′, Y ′ for all z′ ∈ Z ′ → X ′ ∼| Y ′. As for no Y ∅ ∼| Y ∈ A′′, X ′ 6= ∅.

The case X ′, Z ′ ∼| Y ′ ∈ A0 is again trivial, as Z ′ ∩ Y ′ = ∅, likewise the case X ′ ∼| z′, Y ′ ∈ A0 for some z′ ∈ Z ′, as
Z ′ ∩X ′ = ∅.

So assume without loss of generality X ′ 6= ∅, Z ′ 6= ∅, X ′ ∩ Z ′ = ∅, Y ′ ∩ Z ′ = ∅, X ′, Z ′ ∼| Y ′ ∈ A1, and for all
z′ ∈ Z ′ X ′ ∼| z′, Y ′ ∈ A1. We have to show X ′ ∼| Y ′ ∈ A′′. Note that by definition of A1, and X ′ ∼| z′, Y ′ ∈ A1,
X ′ has to occur on the left hand side in A, so X ′ ∈ {a, b, ba, ca, cb, cba, dc, edc, fcba}. As X ′, Z ′ ∼| Y ′ ∈ A1, there
is some Y ⊆ Y ′ with X ′, Z ′ ∼| Y ∈ A. Moreover, X ′ ∪ Z ′has at least 2 elements.

Case 1: X ′ ∪ Z ′ ∈ {ba, ca, cb, cba}. X ′ is a proper, non-empty subset of X ′ ∪ Z ′. As X ′ 6= c, Remark 3.7.11 (a)
shows that X ′ ∼| Y too, and thus X ′ ∼| Y ′.

Case 2: X ′ ∪ Z ′ ∈ {dc, edc, fcba}. The possible cases are:

(1) X ′ ∪ Z ′ = edc, X ′ = dc and Z ′ = e,

(2) X ′ ∪ Z ′ = fcba, X ′ ∈ {a, b, ba, ca, cb, cba}, Z ′ = fcba−X ′, so f ∈ Z ′.

In (1), we are done by Remark 3.7.11 (b).

(2): As X ′ ∪ Z ′ ∼| Y ′ ∈ A1, Y
′ has to contain e. Moreover, by f ∈ Z ′, X ′ ∼| f, Y ′ ∈ A1, so there must be some

Y ′′ ⊆ f, Y ′ with X ′ ∼| Y ′′ ∈ A. If Y ′′ ⊆ Y ′, we are done, as then X ′ ∼| Y ′ ∈ A1 ⊆ A′′. But if f ∈ Y ′′, then
Y ′′ = fd, so d ∈ Y ′. Thus, d, e ∈ Y ′. But by Remark 3.7.11 (a), X ′ ∼| ed ∈ A′′, so X ′ ∼| Y ′ ∈ A′′.

2 (X does not entail a ∼| e)

Suppose now that there is a smooth preferential model M =< M,≺> for Plausibility Logic which represents ∼| ,
i.e. for all X,Y finite subsets of L X ∼| Y iff X |=M Y. (See Definition 3.7.2 and Fact 3.7.3.)

a ∼| a, a ∼| b, a ∼| c implies for m ∈ µ(a) a, b, c ∈ m. Moreover, as a ∼| df, then also d ∈ m or f ∈ m. As a 6∼| e,
there must be m ∈ µ(a) s.th. e 6∈ m. Suppose now m ∈ µ(a) with f ∈ m. So a, b, c, f ∈ m, thus by m ∈ µ(a) and
Fact 3.7.3, m ∈ µ(a, b, c, f). But fcba ∼| e, so e ∈ m. We thus have shown that m ∈ µ(a) and f ∈ m implies e ∈ m.
Consequently, there must be m ∈ µ(a) s.th. d ∈ m, e 6∈ m. Thus, in particular, as cd ∼| e, there is m ∈ µ(a),
a, b, c, d ∈ m, m 6∈ µ(cd). But by cd ∼| ab, and b ∼| a, µ(cd) ⊆ M(a) ∪M(b) and µ(b) ⊆ M(a) by Fact 3.7.3. Let
now T := M(cd), R := M(a), S := M(b), and µM be the choice function of the minimal elements in the structure
M, we then have by µ(S) = µM(M(S)):

1. µM(T) ⊆ R ∪ S,

2. µM(S) ⊆ R,

3. there is m ∈ S ∩ T ∩ µM(R), but m 6∈ µM(T),

but this contradicts above Fact 3.7.9. 2 (Counterexample)

3.7.2.3 Discussion and remedy

We show here only how to do the construction of Section 3.3.1 without closure under finite unions.

3.7. PLAUSIBILITY LOGIC - PROBLEMS WITHOUT CLOSURE UNDER FINITE UNION 115

The important point in the counterexample in Section 3.7.2.2 is that the condition

µ(T) ⊆ R ∪ S, µ(S) ⊆ R implies S ∩ T ∩ µ(R) ⊆ µ(T)

holds in all smooth models, but not in the example.

Thus, we need new conditions, which take care of the ”semi-transitivity” of smoothness, coding it directly and not
by a simple condition, using finite union. For this purpose, we modify the definition of H(U), and replace it by
H(U, x) :

Definition 3.7.5

Definition of H(U, x) :

H(U, x)0 := U

H(U, x)i+1 := H(U, x)i ∪
⋃
{U ′ : x ∈ µ(U ′), µ(U ′) ⊆ H(U, x)i}

Take unions at limits.

H(U, x) :=
⋃
{H(U, x)i : i < κ} for κ sufficiently big.

Definition 3.7.6

(HU) is the property:

x ∈ µ(U), x ∈ Y − µ(Y) → µ(Y) 6⊆ H(U, x).

We then have:

Fact 3.7.12

(1) x ∈ µ(Y), µ(Y) ⊆ H(U, x) → Y ⊆ H(U, x),

(2) (HU) holds in all smooth models.

Proof:

(1) Trivial by definition.

(2) Suppose not. So let x ∈ µ(U), x ∈ Y −µ(Y), µ(Y) ⊆ H(U, x). By smoothness, there is x1 ∈ µ(Y), x � x1, and
let κ1 be the least κ s.t. x1 ∈ H(U, x)κ1 . κ1 is not a limit, and x1 ∈ U ′

x1
−µ(U ′

x1
) with x ∈ µ(U ′

x1
) for some U ′

x1
, so

as x1 6∈ µ(U ′
x1

), there must be (by smoothness) some other x2 ∈ µ(U ′
x1

) ⊆ H(U, x)κ1−1 with x � x2. Continue with
x2, we thus construct a descending chain of ordinals, which cannot be infinite, so there must be xn ∈ µ(U ′

xn
) ⊆ U,

x � xn, contradicting minimality of x in U. (More precisely, this works for all copies of x.) 2

This suffices for the construction:

We patch the proof of the smooth case in Section 3.3.1 a little. H(U) is replaced by H(U, x), Fact 3.3.1 is replaced
by above Fact 3.7.12, and we avoid unions.

For intersections: We can either stipulate closure under intersections, and work with Remark 3.7.13 below, or
demand that X 6= ∅ → µ(X) 6= ∅, or, perhaps the simplest thing, just demand that if x ∈ K, Y ∈ Y , x ∈ Y −µ(Y),
then µ(Y) 6= ∅, as shown in 3.7.13.

Suppose now (µ ⊆), (µPR), (µCUM) to hold, as well as property (HU), as defined in Definition 3.7.6.

Definition 3.7.7

For x ∈ Z, let Wx := {µ(Y): Y ∈ Y ∧ x ∈ Y − µ(Y)}, Γx := ΠWx, and K := {x ∈ Z: ∃X ∈ Y .x ∈ µ(X)}.

116 CHAPTER 3. PREFERENCES

Remark 3.7.13

(1) x ∈ K → Γx 6= ∅,

(2) g ∈ Γx → ran(g) ⊆ K.

Proof:

(1) See above remark on closure under intersections. We have to show that Y ∈ Y , x ∈ Y − µ(Y) → µ(Y) 6= ∅.
By x ∈ K, there is X ∈ Y s.t. x ∈ µ(X). Suppose x ∈ Y, µ(Y) = ∅. Then x ∈ X ∩ Y, so by x ∈ µ(X) and (µPR)
x ∈ µ(X ∩ Y). But µ(Y) = ∅ ⊆ X ∩ Y ⊆ Y, so by (µCUM) µ(X ∩ Y) = ∅, contradiction.

(2) By definition, µ(Y) ⊆ K for all Y ∈ Y . 2

Claim 3.7.14

Let U ∈ Y , x ∈ K. Then

(1) x ∈ µ(U) ↔ x ∈ U ∧ ∃f ∈ Γx.ran(f) ∩ U = ∅,

(2) x ∈ µ(U) ↔ x ∈ U ∧ ∃f ∈ Γx.ran(f) ∩H(U) = ∅.

Proof:

(1) Case 1: Wx = ∅, thus Γx = {∅}. ′′ →′′: Take f := ∅. ′′ ←′′: x ∈ U ∈ Y , Wx = ∅ → x ∈ µ(U) by definition of
Wx.

Case 2: Wx 6= ∅. ′′ →′′: Let x ∈ µ(U) ⊆ U. By (HU), if Y ∈ Wx, then µ(Y) − H(U, x) 6= ∅. ′′ ←′′: If
x ∈ U − µ(U), µ(U) ∈ Wx, moreover Γx 6= ∅ by Remark 3.7.13, (1) and thus (or by the same argument) µ(U) 6= ∅,
so ∀f ∈ Γx.ran(f) ∩ U 6= ∅.

(2): The proof is verbatim the same as for (1). 2 (Claim 3.7.14)

Proposition 3.7.15

Let Y be closed under finite intersections (or some other condition, see above), and µ : Y → Y . Then there is a
Y−smooth preferential structure Z , s.t. for all X ∈ Y µ(X) = µZ(X) iff µ satisfies (µ ⊆), (µPR), (µCUM), and
(HU) above.

Proof:

′′ →′′ is again easy and left to the reader. (HU) was shown in Fact 3.7.12.

The strategy is the same as in Section 3.3.1, we recall it:

Outline of ′′ ←′′: We first define a structure Z which represents µ, but is not necessarily Y−smooth, refine it to
Z ′ and show that Z ′ represents µ too, and that Z ′ is Y−smooth.

In the structure Z ′, all pairs destroying smoothness in Z are successively repaired, by adding minimal elements:
If < y, j > is not minimal, and has no minimal < x, i > below it, we just add one such < x, i > . As the repair
process might itself generate such ”bad” pairs, the process may have to be repeated infinitely often. Of course, one
has to take care that the representation property is preserved.

Construction 3.7.1

(Construction of Z) Let X := {< x, g >: x ∈ K, g ∈ Γx}, < x′, g′ >≺< x, g > :↔ x′ ∈ ran(g), Z :=< X ,≺> .

3.7. PLAUSIBILITY LOGIC - PROBLEMS WITHOUT CLOSURE UNDER FINITE UNION 117

Claim 3.7.16

∀U ∈ Y .µ(U) = µZ(U)

Proof:

Case 1: x 6∈ K. Then x 6∈ µ(U) and x 6∈ µZ(U).

Case 2: x ∈ K. By Claim 3.7.14, (1) it suffices to show that for all U ∈ Y x ∈ µZ(U) ↔ x ∈ U ∧
∃f ∈ Γx.ran(f) ∩ U = ∅. Fix U ∈ Y . ′′ →′′: x ∈ µZ(U) → ex. < x, f > minimal in XdU, thus x ∈ U and
there is no < x′, f ′ >≺< x, f >, x′ ∈ U, x′ ∈ K. But if x′ ∈ K, then by Remark 3.7.13, (1), Γx′ 6= ∅, so we find
suitable f ′. Thus, ∀x′ ∈ ran(f).x′ 6∈ U or x′ 6∈ K. But ran(f) ⊆ K, so ran(f) ∩U = ∅. ′′ ←′′: If x ∈ U, f ∈ Γx s.t.
ran(f) ∩ U = ∅, then < x, f > is minimal in XdU. 2 (Claim 3.7.16)

We now construct the refined structure Z ′.

Construction 3.7.2

(Construction of Z ′)

σ is called x-admissible sequence iff

1. σ is a sequence of length ≤ ω, σ = {σi : i ∈ ω},

2. σo ∈ Π{µ(Y): Y ∈ Y ∧ x ∈ Y − µ(Y)},

3. σi+1 ∈ Π{µ(X): X ∈ Y ∧ x ∈ µ(X) ∧ ran(σi) ∩X 6= ∅}.

By 2., σ0 minimizes x, and by 3., if x ∈ µ(X), and ran(σi) ∩X 6= ∅, i.e. we have destroyed minimality of x in X,
x will be above some y minimal in X to preserve smoothness.

Let Σx be the set of x-admissible sequences, for σ ∈ Σx let σ̃ :=
⋃
{ran(σi) : i ∈ ω}. Note that by the argument in

the proof of Remark 3.7.13, (1), Σx 6= ∅, if x ∈ K.

Let X ′ := {< x, σ >: x ∈ K ∧ σ ∈ Σx} and < x′, σ′ >≺′< x, σ > :↔ x′ ∈ σ̃. Finally, let Z ′ :=< X ′,≺′>, and
µ′ := µZ′ .

It is now easy to show that Z ′ represents µ, and that Z ′ is smooth. For x ∈ µ(U), we construct a special x-admissible
sequence σx,U using the properties of H(U, x) as described at the beginning of this Section.

Claim 3.7.17

For all U ∈ Y µ(U) = µZ(U) = µ′(U).

Proof:

If x 6∈ K, then x 6∈ µZ(U), and x 6∈ µ′(U) for any U. So assume x ∈ K. If x ∈ U and x 6∈ µZ(U), then for
all < x, f >∈ X , there is < x′, f ′ >∈ X with < x′, f ′ >≺< x, f > and x′ ∈ U. Let now < x, σ >∈ X ′, then
< x, σ0 >∈ X , and let < x′, f ′ >≺< x, σ0 > in Z with x′ ∈ U. As x′ ∈ K, Σx′ 6= ∅, let σ′ ∈ Σx′ . Then
< x′, σ′ >≺′< x, σ > in Z ′. Thus x 6∈ µ′(U). Thus, for all U ∈ Y , µ′(U) ⊆ µZ(U) = µ(U).

It remains to show x ∈ µ(U)→ x ∈ µ′(U).

Assume x ∈ µ(U) (so x ∈ K), U ∈ Y , we will construct minimal σ, i.e. show that there is σx,U ∈ Σx s.t.

σ̃x,U ∩ U = ∅. We construct this σx,U inductively, with the stronger property that ran(σx,Ui) ∩H(U, x) = ∅ for all
i ∈ ω.

σx,U0 : x ∈ µ(U), x ∈ Y − µ(Y) → µ(Y) − H(U, x) 6= ∅ by (HU). Let σx,U0 ∈ Π{µ(Y) − H(U, x) : Y ∈ Y ,

x ∈ Y − µ(Y)}, so ran(σx,U0) ∩H(U, x) = ∅.

118 CHAPTER 3. PREFERENCES

σx,Ui → σx,Ui+1 : By induction hypothesis, ran(σx,Ui)∩H(U, x) = ∅. Let X ∈ Y be s.t. x ∈ µ(X), ran(σx,Ui)∩X 6= ∅.

Thus X 6⊆ H(U, x), so µ(X)−H(U, x) 6= ∅ by Fact 3.7.12, (1). Let σx,Ui+1 ∈ Π{µ(X)−H(U, x) : X ∈ Y , x ∈ µ(X),

ran(σx,Ui) ∩X 6= ∅}, so ran(σx,Ui+1) ∩H(U, x) = ∅. The construction satisfies the x-admissibility condition. 2

It remains to show:

Claim 3.7.18

Z ′ is Y−smooth.

Proof:

Let X ∈ Y , < x, σ >∈ X ′dX.

Case 1, x ∈ X − µ(X) : Then ran(σ0) ∩ µ(X) 6= ∅, let x′ ∈ ran(σ0) ∩ µ(X). Moreover, µ(X) ⊆ K. Then for all
< x′, σ′ >∈ X ′ < x′, σ′ >≺< x, σ > . But < x′, σx

′,X > as constructed in the proof of Claim 3.7.17 is minimal in
X ′dX.

Case 2, x ∈ µ(X) = µZ(X) = µ′(X) : If< x, σ > is minimal in X ′dX, we are done. So suppose there is< x′, σ′ >≺<
x, σ >, x′ ∈ X. Thus x′ ∈ σ̃. Let x′ ∈ ran(σi). So x ∈ µ(X) and ran(σi) ∩X 6= ∅. But σi+1 ∈ Π{µ(X ′): X ′ ∈ Y ∧
x ∈ µ(X ′) ∧ ran(σi)∩X ′ 6= ∅}, so X is one of the X ′, moreover µ(X) ⊆ K, so there is x′′ ∈ µ(X)∩ ran(σi+1)∩K,
so for all < x′′, σ′′ >∈ X ′ < x′′, σ′′ >≺< x, σ > . But again < x′′, σx

′′,X > as constructed in the proof of Claim
3.7.17 is minimal in X ′dX.

2 (Claim 3.7.18 and Proposition 3.7.15)

Comments:

(1) We have not looked into the transitive case, my first (weak) conjecture is that we need new conditions for the
transitive case.

(2) We have again the situation where weaker closure conditions impose more complicated representation conditions.

(3) Note that the construction of H(U, x) is ”vertically” essentially finite, as the argument when using it, shows.
Smoothness is like transitivity, where it suffices to show closure under finite chains. The horizontal part is arbitrary,
but a look at the argument in the old construction shows that we do not need unions there. These, we think, are
the basic reasons why closure under finite unions can replace the infinite construction above.

3.8 The role of copies in preferential structures

We now discuss the importance of copies in preferential structures in more detail. The material in this Section 3.8
was published in [Sch96-1].

Several representation results use in their constructions several copies of (logically identical) models (see e.g. [Sch92],
or the present paper). Thus, we may have in those constructions m and m′ with the same logical properties, but
with different ”neighbourhoods” in the preferential structure, for example, there may be some m′′ with m′′ ≺ m,
but m′′ 6≺ m′. David Makinson and Hans Kamp had asked the author whether such repetitions of models are
sometimes necessary to represent a logic, we now give a (positive) answer. For the connection of the question to
ranked structures see Section 3.10, in particular Lemma 3.10.4.

We have already given a simple example (see Example 3.1.1 above) illustrating the importance in the finite case.
We discuss now more subtle situations.

3.8. THE ROLE OF COPIES IN PREFERENTIAL STRUCTURES 119

The infinite case

Let κ, λ be infinite cardinals. Let L have κ propositional variables, pi, i < κ. Consider any ` −consistent L−theory
T, a model m s.t. m 6|= T, and the following structure M: X := {< m,n >: n |= T} ∪ {< n, 0 >: n |= T}, with
< n, 0 >≺< m,n > . Let φ ∈ T be s.t. m 6|= φ. Obviously, T ∨ Th(m) |=M φ, as all copies of m are destroyed by
the full set of models of T, but no T ′ truly stronger than T will do, as some copy of m will not be destroyed.

In general, however, the same logic as defined byM can be represented by structures with considerably less copies.
It suffices to find a set of models M ⊂ MT , where exactly the formulas of the classical closure of T hold - i.e.
M |= φ iff T ` φ, we shall then call M dense in MT - and to take as M′ the structure X ′ := {< m,n >: n ∈
M}∪{< n, 0 >: n ∈M}, again with < n, 0 >≺< m,n > . So we can rephrase the question to: What is the minimal
size of M dense in MT ?

(a) A nice case:

Take for m the model that makes all pi true, and T := {¬p0}, so card(MT) = 2κ, and the first construction ofM
as above will need 2κ copies of m. As L has only κ formulas, and any subset of MT makes all formulas of T true, we
see that there is a dense subset M ⊆MT of size κ: For any φ s.t. T 6` φ take some mφ ∈MT s.t. mφ 6|= φ. But, in
our nice case, considerably less than κ models might do: Assume there is λ < κ s.t. 2λ ≥ κ, so there is an injection
h : {pi : 0 < i < κ} → P(λ). Let now 0 < i 6= j < κ. For α < λ, define the model mα by mα |= ¬p0 and mα |= pi
:↔ α ∈ h(pi). By h(pi) 6= h(pj), there is α < λ s.t. α ∈ h(pi) − h(pj) or α ∈ h(pj) − h(pi), so mα |= pi ∧ ¬pj or
mα |= ¬pi ∧ pj , i.e. there is some mα which discerns pi, pj . This is essentially enough: Let M be the closure of
{mα : α < λ} under the finite operations −,+, ∗ defined by

(−m) |= pi :↔ m |= ¬pi

(m+m′) |= pi :↔ m |= pi or m′ |= pi

(m ∗m′) |= pi :↔ m |= pi and m′ |= pi.

M still has cardinality λ, and M ⊆MT .

Let φ be s.t. ¬p0 6` φ, we have to find m ∈M s.t. m |= ¬φ. Let ¬φ ≡ φ0∨ . . .∨φn, where each φk = ±pi0∧ . . .∧±pir
for some i0 . . . ir. By ¬p0 6` φ, Con(¬p0,¬φ) (` −consistency), so Con(¬p0, φk) for some 0 ≤ k ≤ n. Fix such
φk = ±pi0 ∧ . . . ∧ ±pir , say φk = pj0 ∧ . . . ∧ pjs ∧ ¬pg0 ∧ . . . ∧ ¬pgt

. By Con(¬p0, φk), p0 is none of the pjx . (If one
of the ¬pgy

is ¬p0, it can be neglected, it will come out true anyway.) Fix 0 ≤ x ≤ s, let 0 ≤ y ≤ t. Then there
is mα s.t. mα |= pjx ∧ ¬pgy

or −mα |= pjx ∧ ¬pgy
. Let mx,y be the mα or −mα, and set mx := mx,0 ∗ . . . ∗mx,t.

Then mx |= pjx ∧ ¬pg0 ∧ . . . ∧ ¬pgt
. For m := m0 + . . .+ms, m |= φk, so m |= ¬φ, and m ∈M.

On the other hand, in our example, λ many models with 2λ < κ will not do: Assume that for each 0 < i 6= j < κ
there is α < λ and mα ∈ MT with mα |= pi ∧ ¬pj . Then there is a function f : 2λ → κ − {0} onto: For A ⊆ λ,
let f(A) :=

⋃
{j : 0 < j < κ ∧ ∀α ∈ A.mα |= pj}. But, for 0 < i < κ, and Ai := {α < λ : mα |= pi} f(Ai) = i:

Obviously, for α ∈ Ai, mα |= pi. But, if i 6= j, then there is α ∈ Ai with mα |= pi ∧ ¬pj .

(b) There are, however, examples where we need the full size κ:

Let L be as above, consider m− |= {¬pj : j < κ}, T := {pi ∨ pj : i 6= j < κ}, and let m+ |= {pj : j < κ} and
m−
i |= {¬pi} ∪ {pj : i 6= j < κ} for i < κ.

Let the structureM be defined by X := {< m−,m+ >}∪{< m−,m−
i >: i < κ}∪{< m+, 0 >}∪{< m−

i , 0 >: i < κ}
and < n, 0 >≺< m−, n > for n = m+ or n = m−

i , some i < κ. Then Th(m−)∨ T |=M T. But there is no M ⊆MT

dense with card(M) < κ. Obviously, MT = {m+} ∪ {m−
i : i < κ}, and {m−

i : i < κ} ⊆MT is dense (see [Sch92]),
but taking away any m−

i will change T : pi becomes true.

We turn now to a different approach to copies.

120 CHAPTER 3. PREFERENCES

3.9 A new approach to preferential structures

3.9.1 Introduction

This Section 3.9 deals with some fundamental concepts and questions of preferential structures. A model for
preferential reasoning will, in this Section, be a total order on the models of the underlying classical language.
Instead of working in completeness proofs with a canonical preferential structure as done traditionally, we work
with sets of such total orders. We thus stay close to the way completeness proofs are done in classical logic.
Our new approach will also justify multiple copies (or non-injective labelling functions) present in most work on
preferential structures. A representation result for the finite case is given.

3.9.1.1 Main concepts and results

We address in this Section 3.9 some fundamental questions of preferential structures. Our guiding principle will be
classical propositional (or first order) logic.

First, we reconsider the concept of a model for preferential reasoning. Traditionally, such a model is a strict partial
order on the set of classical models of the underlying language. Instead, we will work here with strict total orders
on the set of classical models of the underlying language. Such structures have maximal preferential information,
just as classical propositional models have maximal propositional information.

Second, we will work in completeness proofs with sets of such total orders and thus again closely follow the approach
in classical logic, whereas the traditional approach works with one canonical structure. More precisely, in classical
logic, one shows T ` φ iff T |= φ, by proving soundness and that for every φ s.t. T 6` φ there is a T-model mT,¬φ ,
where φ fails. In traditional preferential logic, one constructs a canonical structureM, which satisfies exactly the
consequences of T, i.e. T |=M φ iff T ∼| φ, simultaneously for all T and φ (where T |=M φ iff µ(T) ⊆M(φ), i.e. iff
in all minimal models of T in M φ holds).

Third, our approach will also shed new light on the somewhat obscure question of multiple copies (equivalent
to non-injective labelling functions) present in most constructions (see e.g. the work of the author, or [KLM90],
[LM92]). In our approach, it is natural to consider disjoint unions of sets of total orders over the classical models.
They have (almost) the same properties as these sets have. As disjoint unions are structures with multiple copies,
we have justified multiple copies of models or labelling functions in a natural way.

3.9.1.2 Motivation and overview

Our work started as an analysis of the different ways completeness proofs are made in classical logic and traditional
preferential structures - the first is folklore, for the second see e.g. [KLM90]. The idea to consider total orders as
models can essentially also be found in [ALS99], where we revised nonmonotonic databases. The justification of
multiple copies arose naturally with the definition of a disjoint union of total orders.

The concept of a disjoint union of preferential structures raises the question whether a property which holds in all
individual structures will also hold in the disjoint union of the structures. This is (trivially) true for entailment
relations, but not necessarily for inference rules. A counterexample for the latter using definability problems is
given in Section 3.9.3, Example 3.9.1.

In the rest of this Section, we will first argue in more detail that total orders can be considered as the models of
preferential reasoning. We then introduce some notation and basic facts. Finally, we will describe the type of our
representation result.

In Section 3.9.2, we examine the kind of properties describing preferential structures and their logics, and their
interpretation in our new approach.

In Section 3.9.3, we introduce disjoint unions of preferential structures, and present our results on preservation
of properties from sets of structures to their disjoint union. We also show that not all preferential structures are

3.9. A NEW APPROACH TO PREFERENTIAL STRUCTURES 121

equivalent to a disjoint union of total orders, and justify in more detail the existence of multiple copies of models
or labelling functions in traditional preferential structures.

In Section 3.9.4, we formulate and prove our representation result for the finite case, taking our usual algebraic
detour (which has proved useful in many cases). We first characterize the choice functions of sets of total orders
(or, equivalently, their disjoint unions), and translate this characterization by a standard argument to logic.

Strict total orders are the models of preferential reasoning

A classical propositional or first order model has maximal propositional or first order information: every formula is
decided, either the formula or its negation holds. A set of models (corresponding to an incomplete formula, i.e. to
a formula φ s.t. there is a formula ψ with neither φ ` ψ, nor φ ` ¬ψ) has less information. Preferential reasoning
reasons about preferences between the classical models of a given language L. Maximal preferential information is
given by a strict total order between these classical models. A strict partial order can also be considered as the set
of total orders which extend it (as a set of pairs). Thus, strict total orders on the set of classical models are, in this
sense, the models of preferential reasoning, just as classical propositional models are the models of propositional
reasoning.

3.9.1.3 Basic definitions and facts

Recall that by a child (or successor) of an element x in a tree t we mean a direct child in t. A child of a child etc.
will be called an indirect child. Trees will be supposed to grow downwards, so the root is the top element.

Definition 3.9.1

For a given language L, TO etc. will stand for a strict total order on ML. Considering TO as a preferential model,
we will slightly abuse notation here: as there will only be one copy per model, we will omit the indices i.

O etc. will stand for sets of such structures.

If O is such a set, we set µO(X) :=
⋃
{µM(X) :M∈ O}, and define T |=O φ iff T |=M φ for allM∈ O.

Note that for all T and all strictly totally ordered structures TO, µTO(T) is either a singleton, or empty, so TO is
definability preserving.

Definition 3.9.2

Let Z :=< X ,≺> be a preferential structure. For < x, i >∈ X , let < x, i >−
Z := {< y, j >∈ X :< y, j >≺< x, i >},

and < x, i >∗
Z := {y : ∃ < y, j >∈ X . < y, j >≺< x, i >}. When the context is clear, we omit the index Z .

Fact 3.9.1

Let Z :=< X ,≺>, Z ′ :=< X ′,≺′> be two preferential structures.

(1) Let x ∈ X. Then x ∈ µZ(X) iff ∃ < x, i >∈ X .X∩ < x, i >∗
Z= ∅.

(2) If ∀ < x, i >∈ X∃ < x, i′ >∈ X ′. < x, i′ >∗
Z′⊆< x, i >∗

Z and ∀ < x, i′ >∈ X ′∃ < x, i >∈ X . < x, i >∗
Z⊆<

x, i′ >∗
Z′ , then µZ = µZ′ .

Proof:

(1) x ∈ µZ ⇔ ∃ < x, i >∈ X .¬∃ < y, j >∈ X . < y, j >≺< x, i > ∧y ∈ X ⇔ ∃ < x, i >∈ X . < x, i >∗
Z ∩X = ∅.

(2) Let x ∈ µZ(X), then by (1) ∃ < x, i >∈ X .X∩ < x, i >∗
Z= ∅. By prerequisite, ∃ < x, i′ >∈ X ′. < x, i′ >∗

Z′⊆<
x, i >∗

Z , so x ∈ µZ′(X) by (1). The other direction is symmetrical. 2

122 CHAPTER 3. PREFERENCES

Fact 3.9.2

If O is a set of preferential structures, then T |=O φ iff µO(MT) |= φ.

Proof:

µO(MT) |= φ ⇔ µO(MT) :=
⋃
{µZ(MT) : Z ∈ O} ⊆ M(φ) ⇔ ∀Z ∈ O.µZ(MT) ⊆ M(φ) ⇔ ∀Z ∈ O.T |=Z φ ⇔

T |=O φ. 2

3.9.1.4 Outline of our representation results and technique

We describe here the kind of representation result we will show in Section 3.9.4.

We have characterized in Sections 3.3 and 3.4 usual smooth preferential structures first algebraically by conditions
on their choice functions, and only then logically by corresponding conditions. More precisely, given a function µ
satisfying certain conditions, we have shown that there is a preferential structure Z , whose choice function µZ is

exactly µ. The choice functions correspond to the logics by the equation µ(M(T)) = M(T).

We will take a similar approach here, but will first analyze the form a representation theorem will have in our
context.

Our starting point was that classical completeness proofs have the form: For each φ s.t. T 6` φ, find mT,¬φ s.t.
mT,¬φ |= T,¬φ, or, equivalently, find a set of models MT s.t. for each such φ there is suitable mT,¬φ in MT .
Then, by soundness, Th(MT) = T . Our construction will have a similar form.

First, given any strict total order TO (or any set O of strict total orders) over ML, the logic defined by T ∼| φ
:⇔ T |=TO φ (or :⇔ T |=O φ) satisfies our conditions (LLE), (CCL), (SC), (PR), (CUM) (see Proposition 3.9.5).
Second, given a logic ∼| satisfying (LLE), (CCL), (SC), (PR), (CUM), there is a set O of strict total orders over
ML s.t. T ∼| φ ⇔ T |=O φ. Thus, the set O represents exactly ∼| , contrary to usual preferential structures, where
a single structure represents exactly ∼| .

We work again first via an algebraic characterization, and show the following: Given any strict total order TO (or
any set O of strict total orders), the choice function µTO (the choice function µO) satisfies our algebraic conditions
(µ ⊆), (µPR), (µCUM) (see Proposition 3.9.6). Conversely, given a choice function µ satisfying (µ ⊆), (µPR),
(µCUM), there is a set O of strict total orders s.t. µ = µO.

The logical part will then follow easily via a standard argument.

To summarize:

We have presented a new analysis of preferential reasoning. We have modified the notion of a model, and, conse-
quently, the way completeness results are proved. Both modifications keep us close to the concepts and techniques
of classical propositional and first order logic. We have also given a new justification of preferential structures with
multiple copies (or labelling functions) by introducing disjoint unions of structures. We have shown that some, but
not all, properties are preserved by going from sets of structures to their disjoint unions. Finally, we have given a
representation result for the finite case.

The main open problem seems to be a characterization of the infinite case, or at least the infinite smooth case.

3.9.2 Validity in traditional and in our preferential structures

We distinguish here validity of type 1 and type 2, where type 1 validity is validity of entailment like T ∼| φ, and
type 2 validity is validity of rules like φ ∼| ψ ∧ σ ⇒ φ ∼| ψ.

(The set O used in this Section is motivated by Example 3.9.1, where we do not consider all totally ordered sets,
but only those satisfying a certain property.)

3.9. A NEW APPROACH TO PREFERENTIAL STRUCTURES 123

Definition 3.9.3

(1) Validity of type 1:

This is validity of expressions like φ ∼| ψ (or T ∼| ψ), and is defined for a given preferential structure M in the
usual sense by φ |=M ψ (or T |=M ψ). In our new interpretation we read this as: φ |=O ψ (or T |=O ψ).

(2) Validity of type 2:

This is validity of rules of e.g. the type

(2.1) φ ∼| ψ, φ ∼| ψ′ ⇒ φ ∼| ψ ∧ ψ′,

(2.2) φ ∼| ψ ⇒ (φ ∼| ¬φ′ or φ ∧ φ′ ∼| ψ),

(2.3) T ∪ T ′ ⊆ T ∪ T ′.

As strict total orders are definability preserving, we can argue semantically when dealing with them. More precisely,
there is a 1-1 correspondence between theories (and formulas) and sets of models: IfM is a definability preserving

preferential model, and T a theory, then M({φ : T |=M φ}) = µM(M(T)), so setting T := {φ : T |=M φ}, we have

for instance T ′ ` T iff M(T ′) ⊆M(T).

Discussion of (2.1):

In usual preferential structures, we read (2.1) as: If in a fixed structure M φ |=M ψ and φ |=M ψ′ hold, then so
will φ |=M ψ ∧ ψ′.

In our new approach, we read (2.1) now as: If φ |=O ψ and φ |=O ψ′ hold, then φ |=O ψ ∧ ψ′ will also hold. In
semantical terms: If µO(φ) ⊆M(ψ) and µO(φ) ⊆M(ψ′), then µO(φ) ⊆M(ψ) ∩M(ψ′).

This is the exact analogue of the classical definition: α |= β iff in all classical models where α (and perhaps some
other property, too) holds, β will also hold. Our α is here of the form φ ∼| ψ (or φ |=TO ψ) etc.

Discussion of (2.2):

The usual approach is similar to the one for rule (2.1).

For the new approach, we have to be careful with distributivity. A comparison with classical logic helps. In all
classical models it is true that if α ∨ β holds, then α holds, or β holds (by definition of validity of ′′or′′). But we
do not say that α ∨ β |= α or α ∨ β |= β holds, as this would imply either that in all models where α ∨ β holds, α
holds, or that in all models where α ∨ β holds, β holds, which is usually false.

So a rule of type (2.2) holds iff φ |=O ψ implies φ |=O ¬φ′ or φ ∧ φ′ |=O ψ. In semantical terms: A rule of type
(2.2) holds iff µO(φ) ⊆M(ψ) implies µO(φ) ⊆M(¬φ′) or µO(φ ∧ φ′) ⊆M(ψ).

Note that (2.2) holds in all strict total orders on ML, as such structures are ranked. But in a set of such structures,
it is usually wrong, as it is usually not true that either in all these structures φ ∼| ¬φ′ holds, or that in all these
structures φ ∧ φ′ ∼| ψ holds.

Discussion of (2.3):

(2.3) stands for: If T ∪ T ′ ∼| φ, then there are φ1, . . . , φn and φ′1, . . . , φ
′
m s.t. T ∼| φi and φ′i ∈ T ′, and

{φ1, . . . , φn, φ
′
1, . . . , φ

′
m} ` φ.

So, in usual preferential structures, (2.3) holds in structureM, iff: If T ∪ T ′ |=M φ, then there are φ1, . . . , φn and
φ′1, . . . , φ

′
m s.t. T |=M φi and φ′i ∈ T

′, and {φ1, . . . , φn, φ
′
1, . . . , φ

′
m} ` φ.

In our new approach, (2.3) holds iff in all strict total orders TO ∈ O T ∪ T ′ |=TO φ, there are φ1, . . . , φn and
φ′1, . . . , φ

′
m s.t. T |=TO φi and φ′i ∈ T

′, and {φ1, . . . , φn, φ
′
1, . . . , φ

′
m} ` φ.

The discussion in semantical terms clarifies the role of the existential quantifiers (which are ”ors” - see the discussion

124 CHAPTER 3. PREFERENCES

of (2.2)): Condition (2.3) reads now: in all TO ∈ O µTO(T) ∩ M(T ′) ⊆ µTO(T ∪ T ′) holds (and thus also
µO(T) ∩M(T ′) ⊆ µO(T ∪ T ′)).

3.9.3 The disjoint union of models and the problem of multiple copies

3.9.3.1 Disjoint unions and preservation of validity in disjoint unions

We introduce the disjoint union of preferential structures and examine the question whether a property Φ which
holds in allMi, i ∈ I, will also hold in their disjoint union

⊎
{Mi : i ∈ I}. This is true for type 1 validity, but not

for type 2 validity in the general infinite case.

Disjoint unions and preservation of type 1 validity

Definition 3.9.4

Let Mi :=< Mi,≺i> be a family of preferential structures. Let then
⊎
{Mi : i ∈ I} :=< M,≺>, where M := {<

x,< k, i >>: i ∈ I, < x, k >∈ Mi}, and < x,< k, i >>≺< x′, < k′, i′ >> iff i = i′ and < x, k >≺i< x′, k′ > .
Thus,

⊎
{Mi : i ∈ I} is the disjoint union of the sets and the relations, and we will call it so.

Fact 3.9.3

Let µi be the choice functions of the Mi. Then µ⊎
{Mi:i∈I}

(X) =
⋃
{µi(X) : i ∈ I}, so µ⊎

{Mi:i∈I}
= µ{Mi:i∈I}.

Proof:

(Trivial.) Let µ := µ⊎
{Mi:i∈I}

. Let < x,< k, i >>∈ µ(X), then x ∈ X, and there is no x′ ∈ X with

< x′, < k′, i >>≺< x,< k, i >> for some < x′, k′ >∈ Mi, so x ∈ µi(X). The converse holds by a similar ar-
gument. 2

Fact 3.9.4

T |=⊎
{Mi:i∈I}

φ iff for all i ∈ I T |=Mi
φ. Thus T |=⊎

{Mi:i∈I}
φ iff T |={Mi:i∈I} φ, and disjoint unions preserve

type 1 validity.

Proof:

(Trivial.) Let again µ := µ⊎
{Mi:i∈I}

. T |=⊎
{Mi:i∈I}

φ iff in all m ∈ µ(T) φ holds. If for all i ∈ I in all m ∈ µi(T)

φ holds, then φ holds in all m ∈ µ(T) by Fact 3.9.3. But if there is some i ∈ I and m ∈ µi(T) s.t. φ fails in m,
then φ will fail in some m ∈ µ(T), too, again by Fact 3.9.3. 2

Preservation of type 2 validity

Rules of type (2.1) are preserved: This is a direct consequence of Fact 3.9.4, the argument is similar to the following
one for type (2.2) rules.

Rules of type (2.2) are preserved: We show that if in all strict total orders TO where φ ∼| ψ (and perhaps some
other property) holds, φ ∼| ¬φ′ holds, then φ ∼| ¬φ′ holds in the disjoint unionM of these structures, and, if in all
strict total orders TO where φ ∼| ψ (and perhaps some other property) holds, φ ∧ φ′ ∼| ψ holds, then φ ∧ φ′ ∼| ψ

3.9. A NEW APPROACH TO PREFERENTIAL STRUCTURES 125

holds in the disjoint unionM of these structures. But, it is a direct consequence of Fact 3.9.4 that in the first case
φ |=M ¬φ′, and in the second case φ ∧ φ′ |=M ψ.

Rules of type (2.3) are not necessarily preserved - at least not in the general infinite case:

Example 3.9.1

(This is the - slightly adapted - Example 5.1.2, which shows failure of infinite conditionalization in a case where
definability preservation fails.)

Consider the language L defined by the propositional variables pi, i ∈ ω. Let T+
0 := {p0} ∪ {pi : 0 < i < ω},

T−
0 := {¬p0} ∪ {pi : 0 < i < ω}, set T ′ := T+

0 ∨ T
−
0 , and T := ∅. Let the classical model m+

0 (m−
0) be the unique

model satisfying T+
0 (T−

0), so M(T ′) = {m+
0 ,m

−
0 }. Consider the set O of all strict total orders TO on ML satisfying

T ′ |=TO T−
0 . Obviously T ′ |=TO T−

0 iff m−
0 ≺TO m+

0 . If TO ∈ O has no (global) minimum, then T |=TO ⊥, so

¬p0 ∈ T ∪ T ′ - where T := {φ : T |=TO φ}. If TO has a minimum, which is neither m+
0 nor m−

0 , then T ∪ T ′ is

inconsistent, and again ¬p0 ∈ T ∪ T ′. The minimum cannot be m+
0 , so in all cases ¬p0 ∈ T ∪ T ′. But now every

model except m+
0 can be minimal, so in the disjoint union M :=

⊎
O of these structures, µM(T) = ML − {m

+
0 }.

Thus T = T (inM), and T ∪ T ′ = T ′, but ¬p0 6∈ T ′. In particular, the example shows that rule (2.3) of Section 3.9.2
might hold in all components of a disjoint union, but fail in the union: As any total order TO is definability preserv-

ing, (2.3) holds in TO, by the results of Section 3.4. On the other hand, ¬p0 ∈ T ∪ T ′ (inM), so (2.3) fails inM. 2

Remarks:

(1) Failure of definability preservation in M is crucial for our example. More generally, definability preserving
disjoint unions preserve rule (2.3). We know this already from Section 3.4, but give a direct argument to illustrate
which kinds of rules of type 2 will be preserved in definability preserving disjoint unions. Let X be some set of

strict total orders andM =
⊎
X . We have to show M(T ∪T ′) ⊆M(T ∪ T ′) (inM). IfM is definability preserving,

then M(T) = µM(T), so M(T ∪ T ′) = M(T) ∩M(T ′) = µM(T) ∩M(T ′) =
⋃
{µTO(T) : TO ∈ X} ∩M(T ′) =⋃

{µTO(T) ∩M(T ′) : TO ∈ X} ⊆
⋃
{µTO(T ∪ T ′) : TO ∈ X} = µM(T ∪ T ′) = M(T ∪ T ′). (In the inclusion, we

have used property (µPR′), which holds in all preferential structures.) Thus T ∪ T ′ ⊆ T ∪ T ′, and as ¬p0 ∈ T ∪ T ′

in our Example 3.9.1, the Example would not work.

(2) The general argument showing preservation of a rule in a definability preserving structure will argue semantically
as above, that it is preserved under union: Φ(µi(X), µi(Y), . . .) implies Φ(

⋃
µi(X),

⋃
µi(Y), . . .). The semantical

argument is possible by M(T) = µM(T).

Equivalence of general preferential structures with sets of total orders

Ideally, one would like every preferential structure to be (or at least, to be equivalent for type 1 validity to) a
disjoint union of strictly totally ordered structures. This is not the case.

Example 3.9.2

Consider the language defined by one variable, p. Let m |= p, m′ |= ¬p, and consider the structure < m, 0 >�<
m′, 0 >�< m′, 1 >�< m′, 2 >� Then µ(true) = ∅, but µ(p) = {m}. There are only two possible total
orders: m ≺ m′, m′ ≺ m. m ≺ m′ gives µ(∅) = {m}, m′ ≺ m gives µ(∅) = {m′}, (m ≺ m′)] (m′ ≺ m) gives
µ(∅) = {m,m′}. (Omitting some models totally will not help, either.)

Thus, traditional preferential structures are more expressive than strict total orders (or their disjoint union).

In Section 3.9.4, we will construct an equivalent structure in the finite cumulative case.

126 CHAPTER 3. PREFERENCES

3.9.3.2 Multiple copies

The usual constructions with multiple copies (the author’s notation) or non-injective labelling functions (notation
e.g. of Kraus, Lehmann, Magidor) have always intrigued the author for their intuitive justification, which seemed
somewhat weak (e.g. different languages of description and reasoning, as discussed in [Imi87]). We give here a
purely formal one. Recall that we have discussed in Section 3.8 the expressive strength of structures with multiple
copies in more detail.

Fact 3.9.4 shows that we can construct a usual structure with multiple copies out of a set of strictly totally ordered
sets of classical models (without multiple copies), preserving validity of type 1. Example 3.9.1 shows that validity of
type 2 is usually not preserved. For its failure, we needed a not definability preserving structure, which exists only
for infinite languages. We thus conjecture that validity of type 2 is also preserved in the case of finite languages -
this is difficult to prove, as we do not know any framework which describes all usual or reasonable type 2 rules.

Thus, considering sets of strict total orders of models leads us naturally to consider their disjoint unions - at least
largely equivalent structures -, which are constructions with multiple copies.

3.9.4 Representation in the finite case

We show in this Section 3.9.4 our main result, Proposition 3.9.5, a representation theorem for the finite cumulative
case. The infinite case stays an open problem.

As done before, we first show an algebraic representation result, Proposition 3.9.6, whose proof is the main work,
and translate this result by routine methods to the logical representation problem.

It is easily seen that the consequence relations of the structures examined will be cumulative: First, it is well
known (see e.g. [KLM90], or Section 3.4) that smooth structures define cumulative consequence relations. Second,
transitive relations over finite sets are smooth, and, third, we will see that our structures will be finite (see the
modifications in the proof of Proposition 3.9.6).

Let us explain why the result of Proposition 3.9.5 is precisely the result to be expected. Classical logic defines
exactly one consequence relation, ` . The conditions for preferential structures (system P of [KLM90], or our
conditions of Proposition 3.4.1) do not describe one consequence relation, but a whole class, which have to obey
certain principles. The representation theorem of classical logic states T ` φ iff in all models, if T holds, then so
will φ. This unrestricted universal quantifier fixes one consequence relation, ` . This cannot be expected in our
case. In our case, each preferential consequence relation ∼| , i.e. each relation ∼| satisfying our conditions, will have
to correspond to one particular set O ∼| of total orders, in the sense that T ∼| φ iff in all TO ∈ O ∼| T |=TO φ.
The quantifier is restricted to O ∼| . This is the completeness part of Proposition 3.9.5. The soundness part shows
that any set O of total orders satisfies the conditions, thus a fortiori any total order will do so. Looking back at
traditional preferential structures, and e.g. the classical paper [KLM90], we see the exact correspondence to our
result. There, it was shown in the soundness part that every preferential structure satisfies the system P. The
completeness part there shows that there is one preferential structure M s.t. T ∼| φ iff T |=M φ, if ∼| satisfies
system P. As preferential structures in the usual sense correspond to sets of total orders, we see that our result
is the exact analogue of e.g. the KLM-result. To summarize, we show the exact analogue to usual preferential
structures, and the closest analogue possible to classical logic.

Proposition 3.9.5

Let L be a propositional language defined by a finite set of variables.

(A) (Soundness) Let O be a set of strict total orders over ML, defining a logic ∼| by T ∼| φ :⇔ T |=O φ. Then ∼|
satisfies (LLE), (CCL), (SC), (PR), (CUM).

(B) (Completeness) If a logic ∼| for L satisfies (LLE), (CCL), (SC), (PR), (CUM), then there is a set O of strict
total orders over ML s.t. T ∼| φ ⇔ T |=O φ.

For the algebraic representation result, we will consider some Y ⊆ P(Z), closed under finite unions and finite

3.9. A NEW APPROACH TO PREFERENTIAL STRUCTURES 127

intersections, and a function µ : Y → Y . Y is intended to be DL for some propositional language L.

Proposition 3.9.6

Let Z be a finite set, let Y ⊆ P(Z) be closed under finite unions and finite intersections, and µ : Y → Y .

(A) (Soundness) Let O be a set of strict total orders over Z, then µO satisfies (µ ⊆), (µPR), (µCUM).

(B) (Completeness) Let µ satisfy (µ ⊆), (µPR), (µCUM), then there is a set O of strict total orders over Z s.t.
µ = µO.

The proof of Proposition 3.9.6 will be a modification of a proof for traditional preferential structures in Section 3.3.

We turn now to the modifications.

Proof of Proposition 3.9.6:

By Fact 3.9.3, µO = µ⊎
O, so we can work with the set or its disjoint union.

(A) Soundness:

Conditions (µ ⊆) and (µPR) hold for arbitrary preferential structures, and (µCUM) holds for smooth preferential
structures (see Sections 3.2 and 3.3). Strict total orders over finite sets are smooth, so is their disjoint union.

(B) Completeness:

We will modify the construction in the proof of Proposition 3.3.8. We have constructed there for a function µ
satisfying (µ ⊆), (µPR), (µCUM) a transitive smooth preferential structure Z =< X ,≺> representing µ. We first
show in (a) that the construction is finite for finite languages. We then eliminate in (b) unnecessary copies, and
construct in (c) for each remaining < x, i > a total order TO<x,i> such that the set of all these TO<x,i> represents
µ.

(a) Finiteness of the construction:

First, if the language L is finite, the constructed structure is finite, too: As v(L) is finite, Z = ML is finite. For
each non-minimal element x ∈ Z, there is one tree in T ′

x, so this is easy. Now, for the set Tx. Tx consists of trees
tU,x where the elements of tU,x are pairs < U ′, x′ > with U ′ ∈ Y ⊆ P(Z) and x′ ∈ Z, so there are finitely many
such pairs. Each element in the tree has at most card(P(Z)) successors, and by Fact 3.3.9, (1), if < Um, xm > is
a direct or indirect successor in the tree of < Un, xn >, then xm 6∈ H(Un), but xn ∈ Un ⊆ H(Un), so xn 6= xm,
so branches have length at most card(Z). So there is a uniform upper bound on the size of the trees, so there are
only finitely many of such trees.

(b) Elimination of unnecessary copies:

Next, if, for each x ∈ Z, there is a finite number of copies, then ”best” copies < x, i > in the sense that there
is no < x, i′ >≺< x, i > in Z exist, so we can eliminate the ”not so good” copies < x, i > for which there is
< x, i′ >≺< x, i >, without changing representation. (Note that, instead of arguing with finiteness, we can argue
here with smoothness, too, as singletons are definable.)

Representation is not changed, as the following easy argument shows: Let Z ′ =< X ′,≺> be the new structure, we
have to show that µZ = µZ′ . Suppose X ∈ Y , and x ∈ µZ(X). Then there is < x, i > minimal in ZdX. But then
< x, i >∈ X ′ too, and, as we have not introduced new smaller elements, x ∈ µZ′(X). Suppose now x ∈ µZ′ , then
there is some < x, i > minimal in Z ′dX. If there were < y, j > smaller than < x, i > in Z , y ∈ X, then < y, j >
would have been eliminated, as there is minimal < y, k > below < y, j >, but then, by transitivity, < y, k > is
smaller than < x, i >, too, but < y, k > is kept in Z ′, so < x, i > would not be minimal in Z ′, either. Thus,
µZ = µZ′ .

(c) Construction of the total orders:

We take now the modified construction Z ′ to construct a set of total orders. < x, i >− etc. will now be relative to
Z ′.

128 CHAPTER 3. PREFERENCES

We construct for each x ∈ Z a set Ox = {TO<x,i> :< x, i >∈ X ′} of total orders.
⊎
O :=

⊎
{TO : TO ∈ Ox, x ∈ Z}

will be the final structure, equivalent to Z . TO<x,i> is constructed as follows: We first put all elements y ∈< x, i >∗

below x, and all y 6= x, y 6∈< x, i >∗ above x. We then order < x, i >∗ totally, staying sufficiently close to the order
of Z ′, and finally do the same with the remaining elements.

Fix now < x, i >, and let <:=<TO<x,i>
be the strict total order on Z to be constructed.

First, set y < x iff y ∈< x, i >∗, and set x < y iff y 6= x and y 6∈< x, i >∗ .

We construct in (α) the part of the total order below x, and then in (β) the part above x.

(α) Work now inside < x, i >∗, and construct a total order < on < x, i >∗ in three steps.

(1) Extend the partial order ≺ on < x, i >− to a total order �.

(2) If < y, j > � < y, j ′ >, eliminate < y, j′ > . By finiteness, one copy of y survives.

(3) For y, z ∈< x, i >∗, let y < z iff there are < y, j >, < z, k > with < y, j > � < z, k > left in step (2).

By step (2), < in < x, i >∗ is free from cycles, by elimination of unnecessary elements in the construction of Z ′ x
does not occur in < x, i >∗, so the entire relation constructed so far is free from cycles.

Note that for y ∈< x, i >∗, there is some < y, j > s.t. < y, j >∗⊆ {z : z < y} : Let < y, j > be the �−least copy
of y, i.e. the one which survives step (2). Then by (1), all < z, k >∈< y, j >− are �−below < y, j > . But if some
such < z, k > is eliminated in (2), there is an even smaller < z, k′ > � < y, j > which survives, so z < y in step
(3).

(β) Work now on X ′ − ({< x, i >}∪ < x, i >−).

(1) Extend the order ≺ on X ′ − ({< x, i >}∪ < x, i >−) to a total order �.

(2) Eliminate again < y, j ′ >, if < y, j > � < y, j′ >, but eliminate also all < y, j ′ > s.t. y = x or y ∈< x, i >∗ .

(3) Let y < z iff there are < y, j >, < z, k > with < y, j > � < z, k > left in step (2).

By the same argument as above, we see that for any y < −above x, there is some< y, j > s.t. < y, j >∗⊆ {z : z < y}.

Let finally O = {TO<x,i> : x ∈ Z,< x, i >∈ X ′} and consider
⊎
O. Let < x, i >∈ X ′. By construction, <

x, TO<x,i> >∗
O = x∗TO<x,i>

= < x, i >∗
Z′ . Consider now arbitrary TO<x,i>, and y ∈ Z. It was shown in the

construction that there is < y, j >∈ X ′ s.t. < y, j >∗
Z′⊆ y∗TO<x,i>

= < y, TO<x,i> >∗
O. So by Fact 3.9.1, (2)

µZ′ = µ⊎
O = µO.

2 (Proposition 3.9.6)

Proposition 3.4.2 completes the proof of Proposition 3.9.5. (Note that by finiteness of the language, µ is definability
preserving.)

Proof of Proposition 3.9.5:

Let O be any set of strict total orders over ML, then µO = µ⊎
O satisfies (µ ⊆), (µPR), (µCUM) by Proposition

3.9.6, so the logic defined by T ∼| φ :⇔ µ⊎
O(MT) |= φ ⇔ T |=⊎

O φ (⇔ T |=O φ) satisfies (LLE), (CCL),

(SC), (PR), (CUM) by Proposition 3.4.2. Conversely, given a logic ∼| which satisfies (LLE), (CCL), (SC), (PR),
(CUM), then the model choice function µ defined by µ(MT) := M

T
satisfies (µ ⊆), (µPR), (µCUM) and T ∼| φ

⇔ µ(MT) |= φ by Proposition 3.4.2, so by Proposition 3.9.6, there is a set O of strict total orders over ML s.t.
µ = µO = µ⊎

O, so T ∼| φ iff µ(MT) = µO(MT) = µ⊎
O(MT) |= φ iff T |=O φ, the latter by Fact 3.9.2. 2

(Proposition 3.9.5)

3.10. RANKED PREFERENTIAL STRUCTURES 129

3.10 Ranked preferential structures

3.10.1 Introduction

First, we will present some general, basic results and discuss various properties of ranked preferential structures,
which apply mostly to the minimal variant only.

We then discuss in a more systematic fashion the following versions, where (1)− (3) treat the minimal variant:

• (1) Ranked structures which preserve non-emptiness, property (µ∅) X 6= ∅ → µ(X) 6= ∅, they are almost
equivalent to smooth ranked structures.

• (2) The more general case, but without copies of elements, which is very similar to case (1), as the decisive
property, (µ∅), still holds for finite sets. The order itself may, however, now be non-wellfounded.

• (3) The general case with copies.

• (4) The limit variant without copies.

• (5) Equivalence of the minimal and the limit variant for an important subclass (model sets definable by
formulas). This result is in parallel to those presented in Section 3.4.1 for the general case.

As the proofs are relatively straightforward, we present here a global discussion of this Section on ranked structures,
but will not give much more detailed comments directly before the individual results.

3.10.1.1 Detailed discussion of this section

The ranked case holds some paradoxa. On the one hand, the relation is much simpler in aspect and properties,
and much easier to manipulate, on the other hand, there is a multitude of conditions which are very close to each
other, but still differ in more or less exotic situations.

This bio-diversity leads to the confusing list of conditions in Definition 3.10.3, of positive interrelations in Fact
3.10.9, of negative results in Fact 3.10.10 and Fact 3.10.13. They largely came as a surprise to the author, too.
In particular, this teaches us to be careful with intuitions about ranked structures, what normally holds need not
hold in exceptional cases, but, after all, this is a text about non-monotonic logics, and the subject may be allowed
some non-monotonicity, too.

Such confusion is, of course, a sign that we did not delve deep enough into the subject to find deeper order where
disorder reigns on the surface. So, this is an obvious area of more research.

On the other hand, this list of in(ter)dependences may be useful to study logical systems of various strengths and
in many subtleties.

Now, first a word about simplicity. The crucial property is that incomparable elements have the same behaviour:
they are on one level, so anything which is smaller than one of them, is smaller than all of them, likewise for bigger.
Formally: a⊥b (i.e. neither a ≺ b nor b ≺ a) and c ≺ a (c � a) imply c ≺ b (c � b). Obviously, this makes the
relation a lot simpler. We can see the relation now as a quite realistic distance from some outside point, without
information about the absolute values, but only about the relative distance.

As an immediate result, copies are (mostly) redundant: if f({x}) = ∅, then either x is not at all present, or we
have a cycle x ≺ x (this is excluded in ranked structures), or an infinite descending chain of x-copies. Presence (or
absence) of x can be felt: If, for instance, f({x, y}) = ∅, but f({y}) = {y}, then x must minimize y, so it has to
be present, it sucks y in like a black hole. On the other hand, if we have for instance 2 copies of x, x′ and x′′, if
x′ ≺ x′′, then only x′ is interesting, if x′⊥x′′, then they have the same behaviour, so one copy suffices. So, we need
either infinitely many copies (ω many suffice), or just 1. A formal argument is in Lemma 3.10.4.

130 CHAPTER 3. PREFERENCES

The main positive results for minimal ranked structures are Propositions 3.10.11 and 3.10.12 for structures without
copies, 3.10.14 for the general case. Proposition 3.10.14 is the most general result we show in this context. The
first two are very similar, in both the condition

(µ =) X ⊆ Y, µ(Y) ∩X 6= ∅ → µ(Y) ∩X = µ(X)

plays a central role. This is (essentially) a strengthening of the basic condition (µPR) X ⊆ Y → µ(Y)∩X ⊆ µ(X),
and is a very strong property. Its validity in ranked structures is obvious.

As can be expected by above remarks, the condition (µ∅) µ(X) 6= ∅ if X 6= ∅, facilitates representation. The proof
of the second variant, Proposition 3.10.12 is perhaps more intuitive, as it works with pairs of elements - which
are required to be in the domain. Proposition 3.10.11 will in particular be used later (in Proposition 3.10.19) to
demonstrate equivalence of the limit variant with the minimal variant in a special, but important, case. Again,
closure conditions for the domain (existence of pairs, closure under unions etc.) play an important role, e.g.
Proposition 3.10.12 cannot be used to show Proposition 3.10.19, the prerequisites are not satisfied.

A word on the proofs of Propositions 3.10.11, 3.10.12, 3.10.14.

Propsition 3.10.11 uses (µ∅) for all sets, but does not require finite sets to be in the domain. The relation to be
constructed is defined by aRb iff for some A a ∈ µ(A) and b ∈ A. This relation R is then extended by a higher
abstract nonsense result to a total relation S, and we finally set a ≺ b iff aSb but not bSa. It is easy to show that
this ≺ represents µ and is ranked.

Proposition 3.10.12 uses only (µ∅fin), i.e. (µ∅) for finite sets, but the finite sets are required to be in the domain.
We define then directly a ≺ b by: a ≺ b iff µ({a, b}) = {a}. It is straightforward to show that ≺ does what it
should.

In the proof of Proposition 3.10.14, we split the set into two parts, A := {a : µ({a}) 6= ∅}, and B the rest. We
define the relation ≺ first on A, exactly as for Proposition 3.10.12 (finite sets are assumed to be in the domain).
For b ∈ B, we consider Ab := {a ∈ A : a 6∈ µ({a, b})}, and put all a ∈ Ab above all copies of b - for b ∈ B, we need
infinite descending chains of b-copies.

Perhaps the most important results in this Section concern the limit variant. (We consider here the limit variant
without copies, to simplify the picture.) Recall that we have shown similar results in Section 3.4.1 for the general
transitive case.

We first show at the beginning that suitable initial segments have wlog. a particularly nice form, which makes
working with them easy. In particular, they are totally ordered by inclusion. This property is in the list of those
needed for representation (Definition 3.10.5).

Suppose we are given a system of initial segments, and want to construct a representing relation. As we need not
work with copies, it suffices to consider pairs to construct the relation. But, for finite sets, the minimal and the
limit variant coincide. Thus, we can construct the relation for the limit variant by looking at pairs and the much
simpler minimal variant. This allows then a general technique: Special finite cases allow to construct the relation
in a unique way, using representation results for the minimal variant, and we only have to make sure that we have
sufficient conditions to assure that the relation so constructed coincides with the properties of the whole function.

The perhaps central property - called (Λ5) - is that for any suitable initial segment A of X, which has non-empty
intersection with Y ⊆ X, A ∩ Y is also a suitable initial segment for Y. This is a very strong condition and the
analogue of (µ =) : X ⊆ Y, µ(Y) ∩X 6= ∅ → µ(Y) ∩X = µ(X) above.

Apart from this condition, we add conditions which express that the system of intial segments is sufficiently big to
allow (essential) reconstruction of the system by the relation. (The reconstruction will not be total, but sufficiently
close: we will reconstruct a system in which the old one is a cofinal subsystem, and this is sufficient.)

Condition (Λ5) serves also to reflect the situation down to the finite case (choose Y finite), where the minimal
and the limit variant coincide, and allows a straightforward definition of the relation. More precisely, we define
σ(X) :=

⋂
Λ(X), where Λ(X) is the set of suitable initial segments. For finite X, σ(X) is not empty, and for finite

X, σ(X) has the properties needed to apply the same strategy as used in the proof of Proposition 3.10.12, to show
that the relation ≺ defined by a ≺ b iff σ({a, b}) = {a} is ranked. We define now Λ≺(X), and show that for every

3.10. RANKED PREFERENTIAL STRUCTURES 131

A ∈ Λ≺(X) there is B ∈ Λ(X), B ⊆ A, and, conversely, Λ(X) ⊆ Λ≺(X).

We now turn more to logics and consider problems - and solutions - inspired by the systems of sets defined by
formulas and theories. We will see that, again, closure conditions play a crucial role for what can be done.

In preparation of our main result - equivalence of the limit and the minimal variant for formulas φ on the left of ∼|
- we make the problem precise, and show a number of simple results and give some examples and counterexamples.

First, we define T |=Λ φ for a given system of initial segments, by T |=Λ φ iff there is A ∈ Λ(M(T)) s.t. A |= φ
(classically). Thus, T |=Λ φ means that φ holds in the limit of T-models, or, finally, φ becomes true.

Example 3.10.1 prepares for the more complicated and crucial Example 3.10.2. The examples always let the logical
(i.e. of the standard topology of classical logic) and the order (of the relation ≺) limit diverge. We use infinite
descending sequences of models, which converge logically to some model m, but we put the model m not at its
natural place, but elsewhere. Then, Λ converges to m, but m is not there.

Fact 3.10.17 shows some easy results about the logics defined by Λ.

One of the problems to handle is that the initial segments need not be definable by any theory. A natural idea for
a simplification is an overkill: If we assume that the systems Λ(M(T)) contains a cofinal subset of definable sets,
we trivialize the problem, it becomes equivalent to the minimal variant (see Fact 3.10.18).

The important Example 3.10.2 shows that formulas and full theories on the left of ∼| (or |=Λ) have a very different
behaviour. We can reorder structures without any influence on φ |=Λ ψ, but with drastic influences on T |=Λ ψ. In
particular, it is possible to find logics where the formula-fragment can be represented by the ranked limit variant,
but not the full logic with theories on the left of ∼| .

The main result, Proposition 3.10.19, shows that this is not the case for the formula fragment. Given a logic defined
for the formula part by a ranked structure, interpreted in the limit variant, we can find a logically equivalent ranked
structure interpreted in the minimal variant - with, perhaps a different ordering of the models. Thus, we have
reduced the much more complicated limit variant to the minimal variant for formulas, but also shown in Example
3.10.2 that the same is impossible for full theories.

The strategy, as well as its execution, of the proof of Proposition 3.10.19 are simple. We show that for f(M(φ)) :=
M({ψ : φ |=Λ ψ}), f has the properties of the prerequisites of Proposition 3.10.11, and can thus be represented by
a minimal ranked structure. The crucial property is again (Λ5).

We finish by a sketch of a characterization for the general (full theory) case.

To summarize: Rankedness is a very strong condition, which simplifies many problems, and necessitates new (and
simpler) techniques for representation. There are a number of closely related, but nonetheless differing conditions
of ranked structures, we show implications and independences. Three representation results are given, for various
structures and various closure conditions of the domain. We also examine the limit version, which is considerably
simpler than the limit version of general preferential structures, obtain a representation result, and can show that
the formula part, but not the general case, can be reduced to the minimal variant.

3.10.1.2 Introductory facts and definitions

Now to introductory technical matters. We give some definitions, and show elementary facts about ranked struc-
tures, in particular that it suffices to have 1 or infinitely (ω, more precisely) many copies. We also show a general
abstract nonsense fact about extending relations, to be used here, and again in Section 4.2 on theory revision.

We first note the following trivial

Fact 3.10.1

In a ranked structure, smoothness and the condition

(µ∅) X 6= ∅ → µ(X) 6= ∅

are (almost) equivalent.

132 CHAPTER 3. PREFERENCES

Proof:

Suppose (µ∅) holds, and let x ∈ X − µ(X), x′ ∈ µ(X). Then x′ ≺ x by rankedness. Conversely, if the structure is
smooth and there is an element x ∈ X in the structure (recall that structures may have ”gaps”, but this condition
is a minor point, which we shall neglect here - this is the precise meaning of ′′almost′′), then either x ∈ µ(X) or
there is x′ ≺ x, x′ ∈ µ(X), so µ(X) 6= ∅. 2

Note further that if we have no copies (and there is some x ∈ X in the structure), (µ∅) holds for all finite sets, and
this will be sufficient to construct the relation for representation results.

We introduce some notation:

Notation 3.10.1

(1) A = B ‖ C stands for: A = B or A = C or A = B ∪ C.

(2) Given ≺, a⊥b means: neither a ≺ b nor b ≺ a.

The crucial fact is now Lemma 3.10.4, it shows that we can do with either 1 or infinitely many copies of each
model. The reason behind it is the following: Suppose we have exactly 2 copies of one model, m, m′, where m
and m′ have the same logical properties. If, e.g., m ≺ m′, then, as we consider only minimal elements, m′ will be
”invisible”. If m and m′ are incomparable, then, by rankedness (modularity), they will have the same elements
above (and below) themselves: they have the same behaviour in the preferential structure.

An immediate consequence is the ”singleton property” of Fact 3.10.6: One element suffices to destroy minimality,
and it suffices to look at pairs (and singletons).

The material of Fact 3.10.2 - Fact 3.10.6 is taken from [Sch96-1], and is mostly folklore.

Fact 3.10.2

Let ≺ be an irreflexive, binary relation on X, then the following two conditions are equivalent:

(1) There is Ω and an irreflexive, total, binary relation ≺′ on Ω and a function f : X → Ω s.t. x ≺ y ↔ fx ≺′ fy
for all x, y ∈ X (we sometimes write fx for f(x) etc.).

(2) Let x, y, z ∈ X and x⊥y wrt. ≺ (i.e. neither x ≺ y nor y ≺ x), then z ≺ x → z ≺ y and x ≺ z → y ≺ z.

Proof:

(1)→ (2): Let x⊥y, thus neither fx ≺′ fy nor fy ≺′ fx, but then fx = fy. Let now z ≺ x, so fz ≺′ fx = fy, so
z ≺ y. x ≺ z → y ≺ z is similar.

(2) → (1): For x ∈ X let [x] := {x′ ∈ X : x⊥x′}, and Ω := {[x] : x ∈ X}. For [x], [y] ∈ Ω let [x] ≺′ [y] :↔ x ≺ y.
This is well-defined: Let x⊥x′, y⊥y′ and x ≺ y, then x ≺ y′ and x′ ≺ y′. Obviously, ≺′ is an irreflexive, total
binary relation. Define f : X → Ω by fx := [x], then x ≺ y ↔ [x] ≺′ [y]↔ fx ≺′ fy. 2

Definition 3.10.1

Call an irreflexive, binary relation ≺ on X, which satisfies (1) (equivalently (2)) of Fact 3.10.2, ranked. By abuse
of language, we also call the structure < X,≺> ranked.

Fact 3.10.3

If ≺ on X is ranked, and free of cycles, then ≺ is transitive.

3.10. RANKED PREFERENTIAL STRUCTURES 133

Proof:

Let x ≺ y ≺ z. If x⊥z, then y � z, resulting in a cycle of length 2. If z ≺ x, then we have a cycle of length 3. So
x ≺ z. 2

Definition 3.10.2

Let Z =< X ,≺> be a preferential structure. Call Z 1−∞ over Z, iff for all x ∈ Z there are exactly 1 or infinitely
many copies of x, i.e. for all x ∈ Z {u ∈ X : u =< x, i > for some i} has cardinality 1 or ≥ ω.

Lemma 3.10.4

Let Z =< X ,≺> be a preferential structure and f : Y → P(Z) with Y ⊆ P(Z) be represented by Z , i.e. for
X ∈ Y f(X) = µZ(X), and Z be ranked and free of cycles. Then there is a structure Z ′, 1 −∞ over Z, ranked
and free of cycles, which also represents f.

Proof:

We construct Z ′ =< X ′,≺′> .

Let A := {x ∈ Z: there is some < x, i >∈ X , but for all < x, i >∈ X there is < x, j >∈ X with < x, j >≺< x, i >},

let B := {x ∈ Z: there is some < x, i >∈ X , s.t. for no < x, j >∈ X < x, j >≺< x, i >},

let C := {x ∈ Z: there is no < x, i >∈ X}.

Let ci : i < κ be an enumeration of C. We introduce for each such ci ω many copies < ci, n >: n < ω into X ′, put
all < ci, n > above all elements in X , and order the < ci, n > by < ci, n >≺′< ci′ , n

′ > :↔ (i = i′ and n > n′) or
i > i′. Thus, all < ci, n > are comparable.

If a ∈ A, then there are infinitely many copies of a in X , as X was cycle-free, we put them all into X ′. If b ∈ B,
we choose exactly one such minimal element < b,m > (i.e. there is no < b, n >≺< b,m >) into X ′, and omit all
other elements. (For definiteness, assume in all applications m = 0.) For all elements from A and B, we take the
restriction of the order ≺ of X . This is the new structure Z ′.

Obviously, adding the < ci, n > does not introduce cycles, irreflexivity and rankedness are preserved. Moreover,
any substructure of a cycle-free, irreflexive, ranked structure also has these properties, so Z ′ is 1−∞ over Z, ranked
and free of cycles.

We show that Z and Z ′ are equivalent. Let then X ⊆ Z, we have to prove µ(X) = µ′(X) (µ := µZ , µ′ := µZ′).

Let z ∈ X − µ(X). If z ∈ C or z ∈ A, then z 6∈ µ′(X). If z ∈ B, let < z,m > be the chosen element. As z 6∈ µ(X),
there is x ∈ X s.t. some < x, j >≺< z,m > . x cannot be in C. If x ∈ A, then also < x, j >≺′< z,m >. If
x ∈ B, then there is some < x, k > also in X ′. < x, j >≺< x, k > is impossible. If < x, k >≺< x, j >, then
< z,m >�< x, k > by transitivity. If < x, k > ⊥ < x, j >, then also < z,m >�< x, k > by rankedness. In any
case, < z,m >�′< x, k >, and thus z 6∈ µ′(X).

Let z ∈ X − µ′(X). If z ∈ C or z ∈ A, then z 6∈ µ(X). Let z ∈ B, and some < x, j >≺′< z,m > . x cannot be
in C, as they were sorted on top, so < x, j > exists in X too and < x, j >≺< z,m > . But if any other < z, i >
is also minimal in Z among the < z, k >, then by rankedness also < x, j >≺< z, i >, as < z, i > ⊥ < z,m >, so
z 6∈ µ(X). 2

Assume in the sequel that Y contains all singletons and pairs, and fix f : Y → P(Z). We also fix the following
notation: A := {x ∈ Z : f(x) = ∅} and B := Z − A (here and in future we sometimes write f(x) for f({x}),
likewise f(x, x′) = x for f({x, x′}) = {x} etc., when the meaning is obvious).

Corollary 3.10.5

134 CHAPTER 3. PREFERENCES

If f can be represented by a ranked Z free of cycles, then there is Z ′, which is also ranked and cycle-free, all b ∈ B
occur in 1 copy, all a ∈ A ∞ often.

Fact 3.10.6

1) If Z ′ is as in Corollary 3.10.5, b ∈ B, a ∈ A, f(a, b) = b, then for all < a, i >∈ X ′ < a, i >�′< b, 0 > .

2) If f can be represented by a cycle-free ranked Z , then it has the ”singleton property”: If x ∈ X, then x 6∈ f(X)
↔ ∃x′ ∈ X.x 6∈ f(x, x′).

3) If f is as in 2), b, b′ ∈ B, then f(b, b′) 6= ∅.

Proof:

1) For no < a, i > < b, 0 >�′< a, i >, since otherwise f(a, b) = ∅. If < b, 0 > ⊥ < a, i >, then as there is
< a, j >≺< a, i >, < a, j >≺′< b, 0 > by rankedness, contradiction.

2) ′′ ←′′ holds for all preferential structures. ′′ →′′: If x ∈ A, then x 6∈ f(x, x). Let x ∈ B, Z a 1−∞ over Z structure
representing f as above. So there is just one copy of x in X , < x, 0 >, and there is some < y, j >≺< x, 0 >, y ∈ X,
thus x 6∈ f(x, y).

3) In any 1 −∞ over Z representation of f, < b, 0 > ⊥ < b′, 0 >, or < b, 0 >≺< b′, 0 >, or < b′, 0 >≺< b, 0 > .
< b, 0 >≺< b′, 0 >≺< b, 0 > cannot be, as this is a cycle. 2

We conclude this introduction by a generalized abstract nonsense result, taken from [LMS01], which must also be
part of the folklore:

Lemma 3.10.7

Given a set X and a binary relation R on X, there exists a total preorder (i.e. a total, reflexive, transitive relation)
S on X that extends R such that

∀x, y ∈ X(xSy, ySx⇒ xR∗y)

where R∗ is the reflexive and transitive closure of R.

Proof:

Define x ≡ y iff xR∗y and yR∗x. The relation ≡ is an equivalence relation. Let [x] be the equivalence class of x
under ≡ . Define [x] � [y] iff xR∗y. The definition of � does not depend on the representatives x and y chosen.
The relation � on equivalence classes is a partial order. Let ≤ be any total order on these equivalence classes that
extends � . Define xSy iff [x] ≤ [y]. The relation S is total (since ≤ is total) and transitive (since ≤ is transitive)
and is therefore a total preorder. It extends R by the definition of � and the fact that ≤ extends � . Suppose now
xSy and ySx. We have [x] ≤ [y] and [y] ≤ [x] and therefore [x] = [y] by antisymmetry. Therefore x ≡ y and xR∗y. 2

3.10.2 The minimal variant

3.10.2.1 Some introductory results

We work now on a (nonempty) set U, and consider functions µ : Y → P(U), where Y ⊆ P(U). We first enumerate
some conditions, which we will consider in the sequel. The differences between them are sometimes quite subtle,
as will be seen below, e.g. in Fact 3.10.10. Facts 3.10.8 and 3.10.9 collect some positive results, Fact 3.10.10 some
negative ones.

3.10. RANKED PREFERENTIAL STRUCTURES 135

Definition 3.10.3

The conditions for the minimal case - where we recall also some of the standard conditions for easier reading - are:

(µ ⊆) µ(X) ⊆ X

(µ∅) X 6= ∅ → µ(X) 6= ∅

(µ∅fin) X 6= ∅ → µ(X) 6= ∅ for finite X

(µPR) X ⊆ Y → µ(Y) ∩X ⊆ µ(X)

(µ =) X ⊆ Y, µ(Y) ∩X 6= ∅ → µ(Y) ∩X = µ(X)

(µ =′) µ(Y) ∩X 6= ∅ → µ(Y ∩X) = µ(Y) ∩X

(µ ‖) µ(X ∪ Y) = µ(X) ‖ µ(Y) (‖ is defined in Notation 3.10.1)

(µ∪) µ(Y) ∩ (X − µ(X)) 6= ∅ → µ(X ∪ Y) ∩ Y = ∅

(µ∪′) µ(Y) ∩ (X − µ(X)) 6= ∅ → µ(X ∪ Y) = µ(X)

(µ ∈) a ∈ X − µ(X) → ∃b ∈ X.a 6∈ µ({a, b})

(µCUM) µ(Y) ⊆ X ⊆ Y → µ(X) = µ(Y)

Note that (µ =′) is very close to Rational Monotony: Rational Monotony says: α ∼| β, α 6∼| ¬γ → α ∧ γ ∼| β. Or,
µ(A) ⊆ B, µ(A) ∩ C 6= ∅ → µ(A ∩ C) ⊆ B for all A,B,C. This is not quite, but almost: µ(A ∩ C) ⊆ µ(A) ∩ C (it
depends how many B there are, if µ(A) is some such B, the fit is perfect).

Fact 3.10.8

In all ranked structures, (µ ⊆), (µ =), (µPR), (µ =′), (µ ‖), (µ∪), (µ∪′), (µ ∈) will hold, if the corresponding
closure conditions are satisfied.

Proof:

(µ ⊆) and (µPR) hold in all preferential structures. (µ =) and (µ =′) are trivial. (µ∪) and (µ∪′) : All minimal
copies of elements in µ(Y) have the same rank. If some y ∈ µ(Y) has all its minimal copies killed by an element
x ∈ X, by rankedness, x kills the rest, too. (µ ∈) : If µ({a}) = ∅, we are done. Take the minimal copies of a in
{a}, they are all killed by one element in X. (µ ‖) : Case µ(X) = ∅ : If below every copy of y ∈ Y there is a copy
of some x ∈ X, then µ(X ∪ Y) = ∅. Otherwise µ(X ∪ Y) = µ(Y). Suppose now µ(X) 6= ∅, µ(Y) 6= ∅, then the
minimal ranks decide: if they are equal, µ(X ∪ Y) = µ(X) ∪ µ(Y), etc. 2

Fact 3.10.9

The following properties (2)−(9) hold, if some closure conditions for the domain Y are satisfied. We first enumerate
these conditions.

For (3), (4), (8): closure under finite unions.

For (2): closure under finite intersections.

For (6) and (7): closure under finite unions, and Y contains all singletons.

For (5): closure under set differences.

For (9): suffienctly strong conditions - which are satisfied for the set of models definable by propositional theories.

Note that the closure conditions for (5), (6), (9) are quite different, for this reason, (5) alone is not enough.

(1) (µ =) entails (µPR)

(2) In the presence of (µ ⊆), (µ =) is equivalent to (µ =′)

136 CHAPTER 3. PREFERENCES

(3) (µ ⊆), (µ =) → (µ∪)

(4) (µ ⊆), (µ∅), (µ =) entail:

(4.1) (µ ‖)

(4.2) (µ∪′)

(4.3) (µCUM)

(5) (µ ⊆) + (µ ‖) → (µ =)

(6) (µ ‖) + (µ ∈) + (µPR) + (µ ⊆) → (µ =)

(7) (µCUM) + (µ =) → (µ ∈)

(8) (µCUM) + (µ =) + (µ ⊆) → (µ ‖)

(9) (µPR) + (µCUM) + (µ ‖) → (µ =).

Proof:

(1) trivial

(2) (µ =) → (µ =′) : Let µ(Y) ∩ X 6= ∅, we have to show µ(X ∩ Y) = µ(Y) ∩ X. By (µ ⊆) µ(Y) ⊆ Y, so
µ(Y) ∩X = µ(Y) ∩ (X ∩ Y), so by (µ =) µ(Y) ∩X = µ(Y) ∩ (X ∩ Y) = µ(X ∩ Y). (µ =′)→ (µ =) : Let X ⊆ Y,
µ(Y) ∩X 6= ∅, then µ(X) = µ(Y ∩X) = µ(Y) ∩X.

(3) If not, µ(X ∪ Y) ∩ Y 6= ∅, but µ(Y) ∩ (X − µ(X)) 6= ∅. By (1), (µPR) holds, so µ(X ∪ Y) ∩ X ⊆ µ(X),
so ∅ 6= µ(Y) ∩ (X − µ(X)) ⊆ µ(Y) ∩ (X − µ(X ∪ Y)), so µ(Y) − µ(X ∪ Y) 6= ∅, so by (µ ⊆) µ(Y) ⊆ Y and
µ(Y) 6= µ(X ∪ Y) ∩ Y. But by (µ =) µ(Y) = µ(X ∪ Y) ∩ Y, a contradiction.

(4.1) If X or Y or both are empty, then this is trivial. Assume then X ∪Y 6= ∅, so by (µ∅) µ(X ∪Y) 6= ∅. By (µ ⊆)
µ(X∪Y) ⊆ X∪Y, so µ(X∪Y)∩X = ∅ and µ(X∪Y)∩Y = ∅ together are impossible. Case 1, µ(X∪Y)∩X 6= ∅ and
µ(X∪Y)∩Y 6= ∅ : By (µ =) µ(X∪Y)∩X = µ(X) and µ(X∪Y)∩Y = µ(Y), so by (µ ⊆) µ(X∪Y) = µ(X)∪µ(Y).
Case 2, µ(X ∪ Y) ∩ X 6= ∅ and µ(X ∪ Y) ∩ Y = ∅ : So by (µ =) µ(X ∪ Y) = µ(X ∪ Y) ∩ X = µ(X). Case 3,
µ(X ∪ Y) ∩X = ∅ and µ(X ∪ Y) ∩ Y 6= ∅ : Symmetrical.

(4.2) If X ∪ Y = ∅, then µ(X ∪ Y) = µ(X) = ∅ by (µ ⊆). So suppose X ∪ Y 6= ∅. By (3), µ(X ∪ Y) ∩ Y = ∅, so
µ(X ∪ Y) ⊆ X by (µ ⊆). By (µ∅), µ(X ∪ Y) 6= ∅, so µ(X ∪ Y) ∩X 6= ∅, and µ(X ∪ Y) = µ(X) by (µ =).

(4.3) If Y = ∅, this is trivial by (µ ⊆). If Y 6= ∅, then by (µ∅) - which is crucial here - µ(Y) 6= ∅, so by µ(Y) ⊆ X
µ(Y) ∩X 6= ∅, so by (µ =) µ(Y) = µ(Y) ∩X = µ(X).

(5) Let X ⊆ Y, and consider Y = X ∪ (Y − X). Then µ(Y) = µ(X) ‖ µ(Y − X). As µ(Y − X) ∩ X = ∅,
µ(Y) ∩X ⊆ µ(X). If µ(Y) ∩X 6= ∅, then by the same argument µ(X) is involved, so µ(X) ⊆ µ(Y).

(6) Suppose X ⊆ Y, x ∈ µ(Y) ∩ X, we have to show µ(Y) ∩X = µ(X). ′′ ⊆′′ is trivial by (µPR). ′′ ⊇′′: Assume
a 6∈ µ(Y) (by (µ ⊆)), but a ∈ µ(X). By (µ ∈) ∃b ∈ Y.a 6∈ µ({a, b}). As a ∈ µ(X), by (µPR), a ∈ µ({a, x}). By
(µ ‖), µ({a, b, x}) = µ({a, x}) ‖ µ({b}). As a 6∈ µ({a, b, x}), µ({a, b, x}) = µ({b}), so x 6∈ µ({a, b, x}), contradicting
(µPR), as a, b, x ∈ Y.

(7) Let a ∈ X − µ(X). If µ(X) = ∅, then µ({a}) = ∅ by (µCUM). If not: Let b ∈ µ(X), then a 6∈ µ({a, b}) by
(µ =).

(8) By (µCUM), µ(X ∪Y) ⊆ X ⊆ X ∪ Y → µ(X) = µ(X ∪ Y), and µ(X ∪Y) ⊆ Y ⊆ X ∪Y → µ(Y) = µ(X ∪ Y).
Thus, if (µ ‖) were to fail, µ(X∪Y) 6⊆ X, µ(X∪Y) 6⊆ Y, but then by (µ ⊆) µ(X∪Y)∩X 6= ∅, so µ(X) = µ(X∪Y)∩X,
and µ(X ∪ Y)∩ Y 6= ∅, so µ(Y) = µ(X ∪ Y)∩ Y by (µ =). Thus, µ(X ∪ Y) = (µ(X ∪ Y)∩X)∪ (µ(X ∪ Y)∩ Y) =
µ(X) ∪ µ(Y).

(9) Suppose (µ =) does not hold. So, by (µPR), there are X,Y,y s.t. X ⊆ Y, X ∩ µ(Y) 6= ∅, y ∈ Y − µ(Y),
y ∈ µ(X). Let a ∈ X ∩ µ(Y). If µ(Y) = {a}, then by (µCUM) µ(Y) = µ(X), so there must be b ∈ µ(Y), b 6= a.
Take now Y ′, Y ′′ s.t. Y = Y ′ ∪ Y ′′, a ∈ Y ′, a 6∈ Y ′′, b ∈ Y ′′, b 6∈ Y ′, y ∈ Y ′ ∩ Y ′′. Assume now (µ ‖) to hold,
we show a contradiction. If y 6∈ µ(Y ′′), then by (µPR) y 6∈ µ(Y ′′ ∪ {a}). But µ(Y ′′ ∪ {a}) = µ(Y ′′) ‖ µ({a, y}),

3.10. RANKED PREFERENTIAL STRUCTURES 137

so µ(Y ′′ ∪ {a}) = µ(Y ′′), contradicting a ∈ µ(Y). If y ∈ µ(Y ′′), then by µ(Y) = µ(Y ′) ‖ µ(Y ′′), µ(Y) = µ(Y ′),
contradiction as b 6∈ µ(Y ′).

2

Fact 3.10.10

(1) (µ ⊆) + (µPR) + (µ =) 6→ (µ ‖)

(2) (µ ⊆) + (µPR) + (µ ‖) 6→ (µ =) (without closure under set difference)

(3) (µ ⊆) + (µPR) + (µ ‖) + (µ =) + (µ∪) 6→ (µ ∈) (and thus (µ ⊆) + (µPR) + (µ ‖) + (µ =) + (µ∪) do not
guarantee representability by ranked structures by Fact 3.10.8).

Proof:

(1) Consider the following structure WITHOUT TRANSITIVITY: U := {a, b, c, d}, c and d have ω many copies
in descending order c1 � c2 etc. a,b have one single copy each. a � b, a � d1, b � a, b � c1. (µ ‖) does not
hold: µ(U) = ∅, but µ({a, c}) = {a}, µ({b, d}) = {b}. (µPR) holds as in all preferential structures. (µ =) holds:
If it were to fail, then for some A ⊆ B, µ(B) ∩ A 6= ∅, so µ(B) 6= ∅. But the only possible cases for B are now:
(a ∈ B, b, d 6∈ B) or (b ∈ B, a, c 6∈ B). Thus, B can be {a}, {a, c}, {b}, {b, d} with µ(B) = {a}, {a}, {b}, {b}. If
A = B, then the result will hold trivially. Moreover, A has to be 6= ∅. So the remaining cases of B where it might
fail are B = {a, c} and {b, d}, and by µ(B) ∩ A 6= ∅, the only cases of A where it might fail, are A = {a} or {b}
respectively. So the only cases remaining are: B = {a, c}, A = {a} and B = {b, d}, A = {b}. In the first case,
µ(A) = µ(B) = {a}, in the second µ(A) = µ(B) = {b}, but (µ =) holds in both.

(2) Work in the set of theory definable model sets of an infinite propositional language. Note that this is not closed
under set difference, and closure properties will play a crucial role in the argumentation. Let U := {y, a, xi<ω},
where xi → a in the standard topology. For the order, arrange s.t. y is minimized by any set iff this set contains a
cofinal subsequence of the xi, this can be done by the standard construction. Moreover, let the xi all kill themselves,
i.e. with ω many copies x1

i � x2
i � There are no other elements in the relation. Note that if a 6∈ µ(X), then

a 6∈ X, and X cannot contain a cofinal subsequence of the xi, as X is closed in the standard topology. (A short
argument: suppose X contains such a subsequence, but a 6∈ X. Then the theory of a Th(a) is inconsistent with
Th(X), so already a finite subset of Th(a) is inconsistent with Th(X), but such a finite subset will finally hold in
a cofinal sequence converging to a.) Likewise, if y ∈ µ(X), then X cannot contain a cofinal subsequence of the xi.

Obviously, (µ ⊆) and (µPR) hold, but (µ =) does not hold: Set B := U, A := {a, y}. Then µ(B) = {a},
µ(A) = {a, y}, contradicting (µ =).

It remains to show that (µ ‖) holds.

µ(X) can only be ∅, {a}, {y}, {a, y}. As µ(A ∪ B) ⊆ µ(A) ∪ µ(B) by (µPR), the

Case 1, µ(A ∪ B) = {a, y} is ok.

Note that if y ∈ X − µ(X), then X will contain a cofinal subsequence, and thus a ∈ µ(X).

Case 2: µ(A ∪ B) = {a}.

Case 2.1: µ(A) = {a} - we are done.

Case 2.2: µ(A) = {y} : A does not contain a, nor a cofinal subsequence. If µ(B) = ∅, then a 6∈ B, so a 6∈ A ∪ B, a
contradiction. If µ(B) = {a}, we are done. If y ∈ µ(B), then y ∈ B, but B does not contain a cofinal subsequence,
so A ∪B does not either, so y ∈ µ(A ∪B), contradiction.

Case 2.3: µ(A) = ∅ : A cannot contain a cofinal subsequence. If µ(B) = {a}, we are done. a ∈ µ(B) does have to
hold, so µ(B) = {a, y} is the only remaining possibility. But then B does not contain a cofinal subsequence, and
neither does A ∪ B, so y ∈ µ(A ∪ B), contradiction.

Case 2.4: µ(A) = {a, y} : A does not contain a cofinal subsequence. If µ(B) = {a}, we are done. If µ(B) = ∅,

138 CHAPTER 3. PREFERENCES

B does not contain a cofinal subsequence (as a 6∈ B), so neither does A ∪ B, so y ∈ µ(A ∪ B), contradiction. If
y ∈ µ(B), B does not contain a cofinal subsequence, and we are done again.

Case 3: µ(A∪B) = {y} : To obtain a contradiction, we need a ∈ µ(A) or a ∈ µ(B). But in both cases a ∈ µ(A∪B).

Case 4: µ(A ∪ B) = ∅ : Thus, A ∪ B contains no cofinal subsequence. If e.g. y ∈ µ(A), then y ∈ µ(A ∪ B), if
a ∈ µ(A), then a ∈ µ(A ∪ B), so µ(A) = ∅.

(3) Let U := {y, xi<ω}, xi a sequence, each xi kills itself, x1
i � x

2
i � . . . and y is killed by all cofinal subsequences

of the xi. Then for any X ⊆ U µ(X) = ∅ or µ(X) = {y}.

(µ ⊆) and (µPR) hold obviously.

(µ ‖) : Let A ∪ B be given. If y 6∈ X, then for all Y ⊆ X µ(Y) = ∅. So, if y 6∈ A ∪ B, we are done. If y ∈ A ∪ B,
if µ(A ∪ B) = ∅, one of A,B must contain a cofinal sequence, it will have µ = ∅. If not, then µ(A ∪ B) = {y}, and
this will also hold for the one y is in.

(µ =) : Let A ⊆ B, µ(B) ∩ A 6= ∅, show µ(A) = µ(B) ∩ A. But now µ(B) = {y}, y ∈ A, so B does not contain a
cofinal subsequence, neither does A, so µ(A) = {y}.

(µ∪) : (A− µ(A)) ∩ µ(A′) 6= ∅, so µ(A′) = {y}, so µ(A ∪ A′) = ∅, as y ∈ A− µ(A).

But (µ ∈) does not hold: y ∈ U − µ(U), but there is no x s.t. y 6∈ µ({x, y}).

2

We turn to characterizations.

3.10.2.2 Characterizations

We show first two results for the case without copies (Propositions 3.10.11 and 3.10.12), then again some nega-
tive results for the general case (Proposition 3.10.13), and conclude with a characterization of the general case
(Proposition 3.10.14).

We will show now that (µ ⊆), (µ∅), and (µ =) provide a complete characterization for the case where (µ∅) holds.

We give two variants. The first imposes (µ∅) globally, but does not require the finite subsets to be in the domain,
the second needs (µ∅) only for finite sets, i.e. (µ∅fin), but finite sets have to be in the domain. Thus, the first is
useful for rules of the form φ ∼| ψ, the second for rules of the form T ∼| φ. The second fully characterizes ranked
structures without copies. The first will be needed again below in the limit variant. The proof of the second variant
is somewhat more constructive than the proof for the first variant.

Proposition 3.10.11

Let Y ⊆ P(U) be closed under finite unions. Then (µ ⊆), (µ∅), (µ =) characterize ranked structures for which for
all X ∈ Y X 6= ∅ → µ<(X) 6= ∅ hold, i.e. (µ ⊆), (µ∅), (µ =) hold in such structures for µ<, and if they hold for
some µ, we can find ranked < on U s.t. µ = µ<. Moreover, the structure can be choosen Y−smooth.

Proof:

(1) Soundness: For (µ ⊆) and (µ =) see Fact 3.10.8, (µ∅) is trivial.

(2) Completeness:

Note that by Fact 3.10.9 (3) + (4) (µ ‖), (µ∪), (µ∪′) hold.

Define aRb iff ∃A ∈ Y(a ∈ µ(A), b ∈ A) or a = b. R is reflexive and transitive: Suppose aRb, bRc, let a ∈ µ(A),
b ∈ A, b ∈ µ(B), c ∈ B. We show a ∈ µ(A ∪ B). By (µ ‖) a ∈ µ(A ∪ B) or b ∈ µ(A ∪ B). Suppose b ∈ µ(A ∪ B),
then µ(A ∪ B) ∩A 6= ∅, so by (µ =) µ(A ∪ B) ∩A = µ(A), so a ∈ µ(A ∪ B).

3.10. RANKED PREFERENTIAL STRUCTURES 139

Moreover, a ∈ µ(A), b ∈ A − µ(A) → ¬(bRa) : Suppose there is B s.t. b ∈ µ(B), a ∈ B. Then by (µ∪)
µ(A ∪ B) ∩B = ∅, and by (µ∪′) µ(A ∪ B) = µ(A), but a ∈ µ(A) ∩B, contradiction.

Let by Lemma 3.10.7 S be a total, transitive, reflexive relation on U which extends R s.t. xSy,ySx → xRy (recall
that R is transitive and reflexive). Define a < b iff aSb, but not bSa. If a⊥b (i.e. neither a < b nor b < a), then,
by totality of S, aSb and bSa. < is ranked: If c < a⊥b, then by transitivity of S cSb, but if bSc, then again by
transitivity of S aSc. Similarly for c > a⊥b.

< represents µ and is Y−smooth: Let a ∈ A − µ(A). By (µ∅), ∃b ∈ µ(A), so bRa, but (by above argument) not
aRb, so bSa, but not aSb, so b < a, so a ∈ A− µ<(A), and, as b will then be < −minimal (see the next sentence),
< is Y−smooth. Let a ∈ µ(A), then for all a′ ∈ A aRa’, so aSa’, so there is no a′ ∈ A a′ < a, so a ∈ µ<(A).

2

Proposition 3.10.12

Let Y ⊆ P(U) be closed under finite unions, and contain singletons. Then (µ ⊆), (µ∅fin), (µ =), (µ ∈) characterize
ranked structures for which for all finite X ∈ Y X 6= ∅ → µ<(X) 6= ∅ hold, i.e. (µ ⊆), (µ∅fin), (µ =), (µ ∈) hold
in such structures for µ<, and if they hold for some µ, we can find ranked < on U s.t. µ = µ<.

Proof:

(1) Soundness: See Fact 3.10.8.

(2) Completeness:

Note that by Fact 3.10.9 (3) + (4) (µ ‖), (µ∪), (µ∪′) hold for finite sets.

Let a < b iff a 6= b and µ({a, b}) = {a}. (Thus, by (µ∅fin) a⊥b iff µ({a, b}) = {a, b}.)

We show:

(a) < is irreflexive

(b) < is transitive (and thus free from loops)

(c) < is ranked

(d) a < b iff there is A s.t. a ∈ µ(A), b ∈ A− µ(A)

(e) µ = µ<

(a) is trivial.

(b) Let µ({a, b}) = {a}, µ({b, c}) = {b}, then by (µ∪′) µ({a, b, c}) = {a}. By (µ ‖), µ({a, b, c}) = µ({a, c}) ‖
µ({b, c}), so µ({a, c}) = {a}. Thus, < contains no loops.

(c) a⊥b < c → a < c: By (µ∅fin) µ({c}) = {c}, by (µ =) c 6∈ µ({a, b, c}) = µ({a, b}) ‖ µ({c}), so µ({a, b, c}) =
µ({a, b}) = {a, b}. But µ({a, b, c}) = µ({a, c}) ‖ µ({b}), so µ({a, b, c}) = µ({a, c}) ∪ µ({b}), so µ({a, c}) = {a}.

a⊥b > c → a > c: b 6∈ µ({a, b, c}) = µ({a, b}) ‖ µ({b, c}), so µ({a, b, c}) = µ({b, c}) = {c}. So {c} = µ({a, b, c}) =
µ({a, c}) ‖ µ({b}), so µ({a, b, c}) = µ({a, c}) = {c}.

(d) Suppose there is A ∈ Y s.t. a ∈ µ(A), b ∈ A− µ(A). Then {a, b} ∩ µ(A) 6= ∅, so by (µ =) µ({a, b}) = {a}.

(e) Let a ∈ µ(A) and suppose a ∈ A − µ<(A), then there is b ∈ A s.t. b < a, so µ({a, b}) = {b}, contradicting
(µ =). Suppose a ∈ A− µ(A). Case 1: There is b ∈ µ(A). Then by (d) b < a, so a 6∈ µ<(A). Case 2: µ(A) = ∅. By
(µ ∈), there is b ∈ A a 6∈ µ({a, b}), so b < a, and a 6∈ µ<(A). (This is the only place where we used (µ ∈).)

2

Note that the prerequisites of Proposition 3.10.12 hold in particular in the case of ranked structures without copies,

140 CHAPTER 3. PREFERENCES

where all elements of U are present in the structure - we need infinite descending chains to have µ(X) = ∅ for
X 6= ∅.

We turn now to the general case, where every element may occur in several copies.

Fact 3.10.13

(1) (µ ⊆) + (µPR) + (µ =) + (µ∪) + (µ ∈) do not imply representation by a ranked structure.

(2) The infinitary version of (µ ‖) :

(µ ‖ ∞) µ(
⋃
{Ai : i ∈ I}) =

⋃
{µ(Ai) : i ∈ I ′} for some I ′ ⊆ I.

will not always hold in ranked structures.

Proof:

(1) Counterexample: Consider µ({a, b}) = ∅, µ({a}) = {a}, µ({b}) = {b}. The conditions hold trivially. This
is representable e.g. by a1 � b1 � a2 � b2 . . . without transitivity. (Note that rankedness implies transitivity,
a � b � c, but not for a = c.) But this cannot be represented by a ranked structure: As µ({a}) 6= ∅, there must be
a copy ai of minimal rank, likewise for b and some bi. If they have the same rank, µ({a, b}) = {a, b}, otherwise it
will be {a} or {b}.

(2) Take as counterexample an infinite descending chain of xi, Ai := {xi}, then µ(Ai) = {xi}, but µ(
⋃
{Ai : i ∈

I}) = ∅, so this will not hold.

2

Proposition 3.10.14

Let Y be closed under finite unions and contain singletons. Then (µ ⊆)+(µPR)+(µ ‖)+(µ∪)+(µ ∈) characterize
ranked structures.

Proof:

Note that the construction is similar to the proof of Proposition 3.8 in [Sch96-1].

(1) Soundness: See Fact 3.10.8.

(2) Completeness: By Fact 3.10.9 (5), (µ =) holds for finite sets, as they are closed under set difference. Set
A := {a ∈ U : µ({a}) 6= ∅} and B := {a ∈ U : µ({a}) = ∅}.

(A) We work first only with the elements of A.

Define for a, a′ ∈ A a < a′ iff µ({a, a′}) = {a}.

Note that by (µ ‖) for any finite subset A′ ⊆ A µ(A′) 6= ∅.

We show that so far the relation is ranked (and thus also transitive, and free from cycles). But when we look at the
proof of Proposition 3.10.12, we see that we work there with finite sets of elements, as possible cycles have finitely
many elements, transitivity etc. are shown by looking at 3 elements. But for finite subsets of A, we can use Fact
3.10.9 (5), so (µ =) will hold, and the proof of Proposition 3.10.12 goes through for parts (a) − (c), and (d) will
hold by (µPR) and (µ ‖) and by definition of A above.

(B) We treat now the b ∈ B.

For b ∈ B, let Ab := {a ∈ A : a 6∈ µ({a, b})}. (Note that by (µ ‖) a 6∈ µ({a, b})↔ µ({a, b}) = ∅.)

First, we show that

(1) a ∈ Ab, a′ ∈ A, a⊥a′ → a′ ∈ Ab

3.10. RANKED PREFERENTIAL STRUCTURES 141

(2) a ∈ Ab, a
′ ∈ A, a < a′ → a′ ∈ Ab

Proof:

(1) By a 6∈ µ({a, b}), a ∈ µ({a, a′}), and (µ∪) µ({a, a′, b}) ⊆ {b}. But by (µ ‖) µ({a, a′, b}) = µ({a′, b}) ‖ µ({a, a′}),
so µ({a′, b}) ⊆ {b}.

(2) By a′ 6∈ µ({a, a′}), a 6∈ µ({b, a}) and (µPR) µ({a, a′, b}) ⊆ {b}. But by (µ ‖) µ({a, a′, b}) = µ({a′, b}) ‖
µ({a, a′}), so µ({a′, b}) ⊆ {b}.

Corollary: Ab ⊆ Ab′ or Ab′ ⊆ Ab or Ab = Ab′ . (If not, let a ∈ Ab − Ab′ , a′ ∈ Ab′ − Ab, and consider the three
possible cases a < a′, a′ < a, a⊥a′.)

Define now b b’ iff Ab = Ab′ , and b ≺ b′ iff Ab
⊃

6= Ab′ . Inside each class [b] order the bi in some arbitrary total
order ≺ •.

Make infinite descending chains for each b, b1 ≥ b2 ≥

Finally, for each bi, b′j , a (b, b′ ∈ B, a ∈ A) set: bi < a iff a ∈ Ab, a < bi iff a ∈ A−Ab, bi < b′j iff b ≺ b′ or b ≺ •b′

(and close the latter two cases among each other under transitivity), to complement the relation defined so far just
between elements from A.

Note that all copies of b’s have the same behaviour wrt. other elements.

We have to show that the new relation is ranked, too, and, finally, that it represents µ.

Rankedness is easily seen by inspection of the cases.

Representation is now trivial: x ∈ X −µ(X) → by (µ ∈) ∃x′ ∈ X.x 6∈ µ({x, x′}) → x′ < x (as a singleton, or in all
copies). If x ∈ µ(X), then x ∈ A and there cannot be any x′ ∈ X s.t. x 6∈ µ({x, x′}), by (µPR).

2

3.10.3 The limit variant without copies

Introduction:

In this section, we consider structures of the type (U,≺), where ≺ is a ranked relation, without copies. ∅ 6= X ⊆ U
→ µ≺(X) 6= ∅ will not necessarily hold (but it will hold for finiteX as we have no copies). Instead of considering now
minimal elements, we will generalize, and consider initial segments, with the aim of defining in some way T ∼| φ, iff
φ ”finally holds” in the T-models, i.e. if we ”go down sufficiently far” then φ will hold - see the discussion in Section
2.3.1, in particular the definition of MISE in Definition 2.3.1. Obviously, this is a generalization of the minimal
case. We will see that rankedness makes this definition amenable. Again, we will first take an algebraic approach,
but see later that, as long as we just characterize ∼| for formulas, i.e. φ ∼| ψ, or, if we have cofinally many definable
closed minimizing sets (MISE), we will find an equivalent ranked structure where the minimal variant defines ∼| .
This is in general not true for full theories, as we will also see. Recall that we have shown analogous results for the
general case in Section 3.4.1.

3.10.3.1 Representation

We first present the main definition, show some easy but important results, and turn then to a representation result
and the discussion of its general technique. A similar technique will be used for revision in the limit case.

We now make the idea of closed minimizing set (MISE) precise for ranked structures, as we can simplify the concept
considerably.

First, which kind of initial segments do we consider? In a ranked structure, an initial segment consists of some
elements in a first layer, and all the complete layers below. If the first and the minimal layer are the same, this

142 CHAPTER 3. PREFERENCES

first layer has to be complete. Consequently, as only initial segments interest us, it suffices to consider full layers.
To summarize: wlog., we can assume that closed minimizing sets (MISE) are downward closed sets of full layers,
or, in other words, just (full) initial segments, as we will call them here for simplicity - this simplifies the task
considerably.

Thus, the basic definition is:

Definition 3.10.4

Given a ranked structure, let for X ⊆ U

Λ(X) := {A ⊆ X : ∀x ∈ X∃a ∈ A(a ≺ x or a = x) ∧ ∀a ∈ A∀x ∈ X(x ≺ a ∨ x⊥a → x ∈ A)}

(A minimizes X and is downward and horizontally closed.)

Λ(X) ist thus wlog. the set of MISE for X. Strictly speaking, we have to index Λ by ≺, but when the context is
clear, we omit it.

Remark 3.10.15

In ranked structures, the following hold:

(1) If ∅ 6= A ⊆ X, and ∀a ∈ A∀x ∈ X(x ≺ a ∨ x⊥a → x ∈ A), then A minimizes X.

(2) Thus, for X 6= ∅ Λ(X) = {∅ 6= A ⊆ X : ∀a ∈ A∀x ∈ X(x ≺ a ∨ x⊥a→ x ∈ A)}, Λ(X) consists of all nonempty,
and downward and horizontally closed subsets of X.

(3) If
⋂

Λ(X) 6= ∅, then
⋂

Λ(X) = µ(X) (where µ = µ≺, of course).

(4) If X is finite,
⋂

Λ(X) = µ(X).

(5) If x, y ∈
⋂

Λ(X), then x⊥y.

(6) As the order is fully determined by considering pairs, we can recover all information about Λ by considering
Λ(X), or, alternatively, µ(X) for pairs X = {a, b} - whenever Y contains all pairs.

Proof:

(1) Let x ∈ X, then for any a ∈ A x ≺ a or x⊥a or x � a. In the first two cases x ∈ A.

(3) If
⋂

Λ(X) 6= ∅, then this must be the bottom layer of X, which consists of its minimal elements.

(4) By finiteness, as there are no copies,
⋂

Λ(X) 6= ∅.

(5) By (3).

2

A representation result:

We consider now the following conditions for Λ :

Definition 3.10.5

(Λ1) Λ(X) ⊆ P(X),

(Λ2) X ∈ Λ(X),

(Λ3) X 6= ∅ → ∅ 6∈ Λ(X),

(Λ4) A,B ∈ Λ(X) → A ⊆ B or B ⊆ A,

(Λ5) A ∈ Λ(X), Y ⊆ X, Y ∩ A 6= ∅ → Y ∩ A ∈ Λ(Y),

3.10. RANKED PREFERENTIAL STRUCTURES 143

(Λ6) If there are X and A s.t. A ∈ Λ(X), a ∈ A, b ∈ X−A, then: a, b ∈ Y → ∃B ∈ Λ(Y)(a ∈ B, b 6∈ B),

(Λ7) Λ′ ⊆ Λ(X),
⋂

Λ′ 6= ∅ →
⋂

Λ′ ∈ Λ(X).

A general technique for representing the limit case

We first discuss in abstract terms a general technique to do the limit case, which we will use again for the limit
case for revision.

By Remark 3.10.15 (6), we can recover the full information needed to construct the ranked relation ≺ by considering
µ for pairs. We then construct ≺ using the results for µ. Finally, we have to check that the rest of the information
for Λ does not interfere.

It is thus a 3 step process:

(1) Reflect the limit case down to the finite case.

(2) Use representation for the finite case - we do not need to use the proof, just the result.

(3) Beam the result up to the limit situation (infinite case).

This procedure presupposes, of course, that we can code the limit case by (an infinite amout of) finite information.
In the general preferential case, this is impossible - we may need arbitrarily many copies. In the ranked preferential
case (where we have essentially only one copy - the case with ω copies is trivial), this is possible.

This is also possible in the revision case (symmetric or not necessarily so). In the revision case, we will have to
work with finite sets on the left, too, it is thus more complicated.

The details:

The conditions for the limit case (see Definition 3.10.5) can be separated into 4 groups, the first two are essentially
independent of the particular case:

(a) Trivial conditions like X ∈ Λ(X), conditions (Λ1)− (Λ4) in the ranked preferential case.

(b) Conditions which express that the systems are sufficiently rich, conditions (Λ6)−(Λ7) in the ranked preferential
case.

(c) Conditions which reflect the limit case to the finite one, condition (Λ5) in the ranked preferential case.

(d) Conditions which express the specificities of the finite case - they can either be general ones, which hold for the
infinite case, too, or conditions which directly treat the finite case, again condition (Λ5) in the preferential case.

Note that condition (Λ5) thus serves in the ranked preferential case a double purpose. On the one hand side, Y
can be chosen finite, which permits to go down, on the other hand, it expresses the basic coherence property of
ranked preferential models.

We show now that conditions (Λ1)−(Λ7) are sound and complete for the limit variant of ranked structures without
copies, where the domain is closed under finite unions and contains all finite sets.

Completeness means here the following: If ≺ is the relation constructed, Λ the original set of systems satisfying
(Λ1) − (Λ7), Λ≺ the set of ≺ −initial segments, then for all X ∈ Y Λ(X) ⊆ Λ≺(X), and for A ∈ Λ≺(X) there is
A′ ⊆ A A′ ∈ Λ(X). This is sufficient, as we are only interested in what finally holds.

Proposition 3.10.16

(Λ1)− (Λ7) are sound and complete for the limit variant of ranked structures without copies, where the domain is
closed under finite unions and contains all finite sets.

Proof:

(a) Soundness:

144 CHAPTER 3. PREFERENCES

(Λ1)− (Λ7) hold for ranked structures and Λ as defined above.

Proof:

(Λ1)− (Λ3) are trivial.

(Λ4) : Suppose not, so there are a ∈ A−B, b ∈ B−A. But if a⊥b, a ∈ B and b ∈ A, similarly if a ≺ b or b ≺ a.

(Λ5) : As A ∈ Λ(X) and Y ⊆ X, Y ∩ A is downward and horizontally closed. As Y ∩ A 6= ∅, Y ∩A minimizes Y.

(Λ6) : Consider B := {y ∈ Y : y ≺ b}.

(Λ7) :
⋂

Λ′ is downward and horizontally closed, as all A ∈ Λ′ are. As
⋂

Λ′ 6= ∅,
⋂

Λ′ minimizes X.

(b) Completeness:

Given Λ, define σ(X) :=
⋂

Λ(X). We first show the following

Fact:

(1) σ(X) ⊆ X.

Suppose for the following that X, Y are finite.

(2) σ(X) ∈ Λ(X),

(3) X 6= ∅ → σ(X) 6= ∅,

(4) Y ⊆ X, σ(X) ∩ Y 6= ∅ → σ(X) ∩ Y = σ(Y).

Proof of this Fact:

(1) trivial.

(2) trivial by finiteness of Λ(X) and (Λ4).

(3) trivial by (Λ3) and (2).

(4) By (2) and (Λ5) σ(Y) ⊆ σ(X)∩Y. By σ(Y) ∈ Λ(Y) and (Λ6) there is for each x ∈ Y −σ(Y) some Bx ∈ Λ(X) s.t.
x 6∈ Bx. By definition, σ(X) ⊆

⋂
{Bx : x ∈ Y −σ(Y)}, but

⋂
{Bx : x ∈ Y −σ(Y)}∩Y ⊆ σ(Y), so σ(X)∩Y ⊆ σ(Y).

Thus, (µ ⊆), (µ∅fin), (µ =) hold for σ and finite X,Y.

We work now as in the proof of Proposition 3.10.12.

Consider σ for finite sets. By Fact 3.10.9 (3) + (4), (µ ‖), (µ∪), (µ∪′) hold for σ and finite sets.

Define a ≺ b iff σ({a, b}) = {a}, thus by (µ∅fin) a⊥b iff σ({a, b}) = {a, b}. As in the proof of Proposition 3.10.12,
we show that ≺ is irreflexive, transitive, thus free from loops, and ranked.

Moreover, we have a ≺ b ↔ ∃X,A ∈ Λ(X)(a ∈ A, b ∈ X − A) : ′′ →′′ is trivial. ′′ ←′′: Suppose there are X,
A ∈ Λ(X) s.t. a ∈ A, b ∈ X−A. By (Λ5), {a} ∈ Λ({a, b}). As Λ(X) is totally ordered by ⊆, {b} 6∈ Λ({a, b}), and
as ∅ 6∈ Λ({a, b}), σ({a, b}) = {a}.

It remains to show that Λ is ”almost” Λ≺ for the relation ≺, more precisely for all X ∈ Y :

(5) Λ(X) ⊆ Λ≺(X),

(6) if A ∈ Λ≺(X), then there is A′ ⊆ A, A′ ∈ Λ(X).

Proof of (5) and (6):

(5) It suffices to show that each A ∈ Λ(X) is downward and horizontally closed wrt. ≺ (it is 6= ∅ by (Λ3), and thus
minimizing). Suppose a ∈ A, x ∈ X−A, x ≺ a (or x⊥a). Then {x} ∈ Λ({a, x}) ({a, x} ∈ Λ({a, x})), contradicting
(Λ5).

(6) Let A ∈ Λ≺(X). Fix a ∈ A. For each x ∈ X−A, there is by a ≺ x and (Λ6) Bx ∈ Λ(X)(a ∈ Bx, x 6∈ Bx). Thus
A′ :=

⋂
{Bx : x ∈ X −A} 6= ∅, so A′ ∈ Λ(X) by (Λ7), and A′ ⊆ A.

2

3.10. RANKED PREFERENTIAL STRUCTURES 145

3.10.3.2 Partial equivalence of limit and minimal ranked structures

We define the consequence relation for the limit version of ranked structures, give an introductory Example 3.10.1,
show an easy Fact 3.10.17 and a trivialization result Fact 3.10.18. We then go to the essential difference between
theories and formulas on the left of ∼| , and show that the first is not equivalent to the minimal variant (see e.g.
Example 3.10.2). We then prove our main result in this Section 3.10.3 that the situation with formulas on the left
of ∼| is equivalent to a minimal ranked structure (Proposition 3.10.19).

We make the central definition for the logical part now precise:

Definition 3.10.6

T |=Λ φ iff there is A ∈ Λ(M(T)) s.t. A |= φ We shall also write T ∼| φ for |=Λ, and T := {φ : T |=Λ φ}.

Comment:

The problem with the logical variant is that we do not ”see” directly the closed sets. We see only the φ, but not
the A - moreover, A need not be the model set of any theory.

Example 3.10.1

Take an infinite propositional language pi : i ∈ ω. We have ω1 models.

(1) Take the model m0 which makes all pi true, and put it on top. Next, going down, take all models which make
p0 false, and then all models which make p0 true, but p1 false, etc. in a ranked construction. So, successively
more pi will become (and stay) true. Consequently, ∅ |=Λ pi for all i. But the structure has no minimum, and
the logical limit m0 is not in the set wise limit - but, of course, a model of the theory. (Recall compactness, so

T = T ∪ {φ : T |=Λ φ} is consistent by inclusion, so it has a model, which must be in the set of all T-models.)

(2) Take exactly the same set structure, but enumerate the models differently: each consistent formula is made
unboundedly often true (this is possible, as each consistent formula has ω1 many models), so ∅ |=Λ φ iff φ is a
tautology.

The behaviour is as different as possible (under consistency - from the empty theory to a consistent complete one).

The first example shows in particular that M(T ∪{φ}) need not be closed in M(T), if T |=Λ φ - the topmost model
satisfies φ.

2

Note that the situation is quite asymmetric: If T |=Λ φ, then we know that all ¬φ models are minimized, from

some level onward, there will be no more ¬φ models, but we do not know whether any T −model is very low, as
we saw, it might be in the worst position. The best guess we had for a minimal model was the worst one.

Fact 3.10.17

The following laws hold in ranked structures so interpreted:

(1) T is consistent, if T is,

(2) T ⊆ T ,

(3) T is classically closed,

(4) T ∼| φ, T ′ ∼| φ → T ∨ T ′ ∼| φ,

(5) If T ∼| φ, then T ∼| φ′ ↔ T ∪ {φ} ∼| φ′.

146 CHAPTER 3. PREFERENCES

Proof:

Trivial.

(1) Follows from the fact that ∅ 6∈ Λ(X), if X 6= ∅, nestedness of Λ, and compactness of classical logic.

(2) Trivial by A ∈ Λ(X) → A ⊆ X.

(3) See the proof of (1).

(4) Let κ be some rank below which all T-models satisfy φ, κ′ likewise for T ′. Then min{κ, κ′} will do the job for
M(T) ∪M(T ′).

(5) Suppose φ holds in all T-models below κ, likewise κ′ for φ′ and T. Then φ′ will hold in all T ∪{φ} models below
min{κ, κ′}. Conversely, if φ′ holds below κ′ in all T ∪{φ} models, then, as a subset of M(T ∪ {φ}) forms an initial
segment of the T models, φ′ holds finally in all T models. 2

Fact 3.10.18

Having cofinally many definable sets in the Λ′s trivializes the problem - it becomes equivalent to the minimal
variant.

Proof:

Suppose each Λ(X) contains cofinally many definable sets, let Λ′(X) be this subset. Then
⋂

Λ(X) =
⋂

Λ′(X).
As Λ(X) is totally ordered by ⊆, by compactness of the standard topology, and ∅ 6∈ Λ,

⋂
Λ′(X) 6= ∅, but then

∅ 6=
⋂

Λ′(X) = µ(X), so we are in the simple µ−case. 2

The following example shows that there is an important difference between considering full theories and considering
just formulas (on the left of ∼|). If we consider full theories, we can ”grab” single models, and thus determine the
full order. As long as we restrict ourselves to formulas, we are much more shortsighted, and see only a blurred
picture. In particular, we can make sequences of models to converge to some model, but put this model elsewhere.
Suitable such manipulations will pass unobserved by formulas. The example also shows that there are structures,
whose limit version for theories is unequal to any minimal structure.

Example 3.10.2

Let L be given by the propositional variables pi, i < ω. Order the atomic formulas by pi ≺ ¬pi, and then order all
sequences s = < +/−p0, +/−p1, >, i < n ≤ ω lexicographically, identify models with such sequences of length
ω. So, in this order, the biggest model is the one making all pi false, the smallest the one making all pi true. Any
finite sequence (an initial segment) s = < +/−p0, +/−p1, . . . +/−pn > has a smallest model < +/−p0, +/−p1,
. . . +/−pn, pn+1, pn+2, . . . >, which continues all positive, call it ms. As there are only countably many such finite
sequences, the number of ms is countable, too (and ms = ms′ for different s, s′ can happen). Take now any formula
φ, it can be written as a finite disjunction of sequences s of fixed length n < +/ − p0, +/ − p1, . . . +/ − pn >,
choose wlog. n minimal, and denote sφ the smallest (in our order) of these s. E.g., if φ = (p0 ∧ p1) ∨ (p1 ∧ ¬p2) =
(p0 ∧ p1 ∧ p2) ∨ (p0 ∧ p1 ∧ ¬p2) ∨ (p0 ∧ p1 ∧ ¬p2) ∨ (¬p0 ∧ p1 ∧ ¬p2), and sφ =< p0, p1, p2 > .

(1) Consider now the initial segments defined by this order. In this order, the initial segments of the models of
φ are fully determined by the smallest (in our order) s of φ, moreover, they are trivial, as they all contain the
minimal model ms = sφ+ < pn+1, pn+2, . . . > - where + is concatenation. It is important to note that even when
we take away ms, the initial segments will still converge to ms - but it is not there any more. Thus, in both cases,
ms there or not, φ |=Λ sφ+ < pn+1, pn+2, . . . > - written a little sloppily. (A more formal argument: If φ |=Λ ψ,
with the ms present, then ψ holds in ms, but ψ has finite length, so beyond some pk the values do not matter, and
we can make them negative - but such sequences did not change their rank, they stay there.)

3.10. RANKED PREFERENTIAL STRUCTURES 147

(2) Modify the order now. Put all ms on top of the construction. As there are only countably many, all consistent
φ will have most of their models in the part left untouched - the ms are not important for formulas and their initial
segments.

To summarize: φ |=Λ ψ is the same in both structures, as long as we consider just formulas φ. Of course, when
considering full theories, we will see the difference - it suffices to take theories of exactly two models. Thus, just
considering formulas does not suffice to fully describe the underlying structure.

Note that we can add to the information about formulas information about full theories, which will contradict
rankedness (e.g., in the second variant, take three models, and make m⊥m′ ≺ m′′, but not m ≺ m′′) - but this
information will not touch the formula part, as far as formulas are concerned, it stays consistent, as we never miss
those models ms.

Moreover, the reordered structure (in (2)) is not equivalent to any minimal structure when considering full theories:
Suppose it were. We have ∅ ∼| +pi for all i, so the whole structure has to have exactly one minimal model, but
this model is minimized by other models, a contradiction.

2

We have, however, the following result, which shows equivalence between the limit and the minimal variant (not
necessarily with the same relation) for formulas. Essentially, this is again a question of domain closure (under
set difference). In the proof, we define the choice function on the model set, and show that it has the properties
required for representation by the minimal variant.

Proposition 3.10.19

When considering just formulas, in the ranked case without copies, Λ is equivalent to µ - so Λ is trivialized in this
case. More precisely:

Let a logic φ ∼| ψ be given by the limit variant without copies, i.e. by Definition 3.10.6. Then there is a ranked
structure, which gives exactly the same logic, but interpreted in the minimal variant.

(As Example 3.10.2 has shown, this is NOT necessarily true, if we consider full theories T and T ∼| ψ.)

Proof:

Assume ∼| is given by initial segments Λ, i.e. φ ∼| ψ iff ψ finally holds in all initial segments of the φ−models.

We show that, if we define f(M(φ)) := M(φ), f has the properties:

(µ ⊆) f(X) ⊆ X,

(µ∅) X 6= ∅ → f(X) 6= ∅,

(µ =) X ⊆ Y, f(Y) ∩X 6= ∅ → f(X) = f(Y) ∩X.

Obviously, the set of M(φ)′s is closed under finite unions.

The result is then a consequence of the representation result Proposition 3.10.11.

(µ ⊆) and (µ∅) are trivial.

(µ =) Assume M(ψ) ⊆ M(φ) and M(φ) ∩M(ψ) 6= ∅, so ` ψ → φ and Con(φ, ψ). We show ψ = φ ∪ {ψ}, thus

f(M(ψ)) = M(ψ) = M(φ ∪ {ψ}) = M(φ) ∩M(ψ) = f(M(φ)) ∩M(ψ).

Con(φ, ψ) implies ¬ψ 6∈ φ, so any initial segment A of M(φ) contains a ψ−model. Thus, M(ψ) ∩ A 6= ∅, and

M(ψ)∩A is an initial segment of M(ψ) by (Λ5). Thus, if φ′ ∈ φ, φ′ will finally hold in M(φ), so φ′ ∧ψ will finally

hold in M(ψ). Thus, if σ ∈ φ ∪ {ψ}, then φ ∪ {ψ} ` σ, so φ ` ψ → σ, so ψ → σ ∈ φ, so ψ ∧ (ψ → σ) ∈ ψ, and

σ ∈ ψ. Conversely, if φ′ holds finally in M(ψ), as any initial segment A′ of M(ψ) can be completed to an initial

148 CHAPTER 3. PREFERENCES

segment A of M(φ) (complete all levels of A′) s.t. A ∩M(ψ) = A′, in φ, finally φ′ ∨ ¬ψ holds. (This is the only

place where the fact that ψ is a formula is important.) So ψ ∼| φ′ implies φ ∼| φ′ ∨ ¬ψ, so φ′ ∈ φ ∪ {ψ}.

(The important fact is here the closure of the domain under complements.)

2

Sketch of a characterization:

Finally, we sketch a (not very nice) characterization. It will make heavy use of finite sets, as they are the only ones
we really have control about.

(CP) ⊥ 6∈ T → ⊥ 6∈ T

(SC) + (CCL) T ⊆ T = (T)

(LLE) T = (T)

Properties (1)− (2) allow to construct the relation by considering just theories with two models each, as for such

theories T, T can have one or two models. Property (3) just expresses robustness to syntactic reformulation.

We can now formulate what an initial segment is, and how intial segments behave. This is left to the reader.

(The perhaps main observation is that if T |=Λ φ, then there must be some m |= T ∪ {φ} which is smaller than all
¬φ−models in T, i.e. Th(m) ∨ (T ∪ {¬φ}) |= φ. The converse is also true.)

Chapter 4

Distances

4.1 Introduction

We discuss in this Chapter distance based revision and counterfactual conditionals. Again, there are different levels
of reading for this chapter. The main results are given in Propositions 4.2.2, 4.2.5, 4.2.9, 4.2.10, 4.2.11, 4.2.12 for
revision, Proposition 4.3.1 for counterfactual conditionals. The result showing equivalence between the minimal
and the limit version (Proposition 4.2.12) is, of course, very close to Proposition 3.10.19 for preferential structures.
Again, it reflects the importance of closure conditions, as things which are equivalent for formulas (and thus sets
of subsets closed under complementation) are not equivalent any more in the more general case of theories. This
result is not really surprising once we have seen the corresponding result for preferential structures. The lack of
finite characterization, however, came as quite a surprise to the author, and it is again a very nice illustration of
the importance of closure conditions of the domain. Given a rich enough domain, we can reflect a local hidden
result (comparison of distances) on a more distant one, and thus compare. Obviously, this result and its proof and
analysis are destined for the more advanced reader, who will prove his/her own results. The same applies to the
abovementioned equivalence result.

The main result on counterfactual conditionals has again two levels of reading. On the one side, it is a perhaps
somewhat surprising result about independent distances. On the other and perhaps deeper level, it illustrates the
fact, that as long as we are only interested in the things closest to us - which hide everything else from sight - we
have more liberty than if we look behind the screens. This way of seeing allows a lot of manipulation. Seen like
this, it is not surprising: if we blind ourselves, we see less clearly, or: shortsighted people do not see far enough.

The more advanced results and considerations are, in this Chapter 4, perhaps less well separated from the basic
ones, than in Chapter 3 on preferential structures.

We recall that the main cleavage in this Chapter is between the global approach to distance (theory revision) and
the local one (counterfactuals). (The results on theory update, also the local distance variant, are to be found in
the Chapter on sums.)

The lack of finite representability will reappear in several other occasions in this book. We have not grouped these
negative results together, as the techniques used for their demonstration are quite different in each case (apart from
the basic idea: construct arbitrarily big arbitrarily similar negative and positive examples). Their natural place is
with the corresponding positive results.

Recall that the case of not necessarily definability preserving structures is discussed in Chapter 5, where the common
approach for preferential structures and distance based revision will be elaborated. We conjecture, but have not
proved, that the strong negative result (absence of normal characterizations) holds for general, not neceessarily
definability preserving, distance based revision, too.

First, the basic definitions for distance based revision and distance based counterfactuals.

149

150 CHAPTER 4. DISTANCES

Given some set U, and a distance d on U, and A,B ⊆ U, let

(1) A | B := {b ∈ B : ∃ab ∈ A(∀a′ ∈ A, b′ ∈ B.d(ab, b) ≤ d(a′, b′))}. Thus, A | B is the set of B-elements (globally)
closest to A, and

(2) A ↑ B := {b ∈ B : ∃ab ∈ A(∀b′ ∈ B.d(ab, b) ≤ d(a′, b′))}. Thus, A ↑ B is the set of B-elements locally closest to
A.

Given these operations, we define revision (globally) by

T ∗ φ := Th(M(T) |M(φ)), and

the counterfactual φ > ψ by

m |= φ > ψ iff {m} |M(φ) ⊆M(ψ), where we distribute for model sets M as variant (2) dictates.

Note that in both cases, we are only interested in the closest elements, and this is all we see. This shortsightedness
has the positive consequence in the case of counterfactuals that we can manipulate the distances as done in Section
4.3, and the negative consequence in the case of revision that we cannot have a finite characterization (unless we
have sufficiently many ′′mirrors′′), resulting in lack of finite characterization (Proposition 4.2.11).

Now to details, and first to theory revision.

4.1.1 Theory Revision

Recall that we gave the main concepts and definitions of Theory Revision in Section 2.2.10.

Theory revision speaks about minimal change, so, it is natural to look for a distance based semantics, and in
hindsight, it is surprising that this had not been done earlier. The distance measures the change, and we look for
the closest situations measured by that distance, i.e. for those, which are minimally different from the original
situation. Perhaps not all changes are comparable, perhaps there is no ”best” situation by this measure (only an
infinite chain of ever better situations), these are possible complications.

The original AGM approach does not consider such ”limit” situations, this is encoded by the consistency postulate
(if T, φ are consistent, so will be T ∗ φ), comparability by the relatively strong axioms (K7) and (K8), which
together are rankedness, and rankedness says that all things are equal or comparable.

The consistency condition is a limit condition also in the technical sense, as its generalization leads naturally to
consider the limit approach, this time not in (ranked) preferential structures, but in the more complex structures
with distances. They are more complex, as the left point from which we measure can change now. We can then
hope to find a similar result as for ranked preferential structures, which shows that as long as we work just with
formulas, the limit and the minimal variant coincide - and, as a matter of fact, this is true.

Distance based revision goes beyond the AGM approach in a trivial but conceptually (and for applications) very
important point: it also imposes conditions on iterated revision, whereas the AGM revision conditions never change
the K, and so cannot say anything about iterated revision. We give an example for this extra expressivity: For
instance, if A′ is the set of A-elements closest to B, then the set of elements in B closest to A and to A′ are the
same - provided the distance is symmetrical.

This increased power is especially important if we want to put theory revision into the object language, to have
nestedness, boolean connectives, cooperation with other operators etc.

When we fix the left hand side, AGM revision corresponds exactly to rankedness, or, a distance. Thus, the author
had naively hoped that it might be possible to have separate sets of conditions for the right hand side, for the left
hand side, and one or two which fuse the two together, to make a (finite) set of conditions for variation on the left
and right, i.e. a full distance based revision. The negative result (no finite characterization is possible, Proposition
4.2.11) shows that this hope was indeed very naive, the enterprise is impossible.

We discuss now the results to be presented.

We first give the basic definitions, in particular what a distance based revision is to be:

4.1. INTRODUCTION 151

Given a distance d on the set of models, we define the revision based on this distance by

T ∗ φ := Th({m ∈M(φ) : d(M(T),m) ≤ d(M(T),m′) for all m′ ∈M(φ)})

where d(X,m) := min{d(x,m) : x ∈ X}.

Given some caveats, it is easy to see that theory revision so defined satisfies the AGM postulates. This is shown
in Fact 4.2.8 for completeness’ sake.

The formal results to be shown differentiate between various distances - symmetrical, not necessarily symmetrical,
respecting 0 etc. In the most general case, a distance is just a set totally ordered by some relation < (i.e. the set
of equivalence classes defined by a ranked set).

As usual, we first give an algebraic characterization of the associated choice functions, and turn to the logics part
only later.

The central definition, given a distance d, is thus in algebraic terms

X | Y := {y ∈ Y : d(X, y) ≤ d(X, y′) for all y′ ∈ Y }

the set of y ∈ Y, (globally) closest to X.

The symmetric case:

Before we start the completeness results, we give an example (Example 4.2.1) which shows that distances cannot
always be compared, provided they have no common starting (or end) point. This example first just seemed
somewhat annoying, as we have to ”fill gaps” in the construction of the relation in a completeness proof by
sufficiently judicious guessing (which is done by the abstract nonsense result 3.10.7 in Section 3.10.1). As a matter
of fact, its consequences are far more serious, they prevent a finite characterization, as will be shown in Proposition
4.2.11.

We then attack the completeness proof for symmetric distances. Its main condition is a very elegant loop condition
(due to M. Magidor):

(| S1) (Loop):

(X1 | (X0 ∪X2)) ∩X0 6= ∅,

(X2 | (X1 ∪X3)) ∩X1 6= ∅,

(X3 | (X2 ∪X4)) ∩X2 6= ∅,

. . . .

(Xk | (Xk−1 ∪X0)) ∩Xk−1 6= ∅

imply

(X0 | (Xk ∪X1)) ∩X1 6= ∅.

Its elegance is also its defect: in a certain way, it encodes too many things at the same time: It codes symmetry
by changing the starting point from left to right, it codes freedom from loops (or transitivity) in the order, and it
works with the main diagnostic for determining distances. Its other defect lies in its unlimited size. As we know
now, there is no real alternative: finite conditions will not suffice.

We turn now to the construction of the distance.

As the distance will be symmetrical, we define (in Definition 4.2.6):

Set ‖ A,B ‖≤‖ A,B′ ‖ iff (A | B ∪ B′) ∩ B 6= ∅,

set ‖ A,B ‖<‖ A,B′ ‖ iff ‖ A,B ‖≤‖ A,B′ ‖, but not ‖ A,B ‖≥‖ A,B′ ‖ .

We show a number of important properties in Fact 4.2.3, and define in Definition 4.2.7 an extension S of ≤ on the
‖ A,B ‖′ s, the distances between the different A, B, using the abstract nonsense result 3.10.7, and show that the
restriction to singletons is a symmetric distance in Fact 4.2.4, which generates the original operation | . The proofs
are quite straightforward.

152 CHAPTER 4. DISTANCES

The not necessarily symmetric case:

The not necessarily symmetric case is somwehat more complicated, and we present a characterization of the finite
case only. (The infinite case seems to need an additional limit condition on the left.)

We define a relation R (essentially) by:

Given an operation |, one defines a relation R| or R when there is no ambiguity on pairs of non-empty subsets of
U by: (A,B)R(A′, B′) iff one of the following two cases obtains:

(1) A = A′ and (A | B ∪B′) ∩B 6= ∅,

(2) B = B′ and (A ∪ A′ | B) 6= (A′ | B),

(see Definition 4.2.8), and consider then the following (complete) set of conditions in Proposition 4.2.5

(| 1) (A | B) ⊆ B,

(| A1) (A ∪ A′ | B) ⊆ (A | B) ∪ (A′ | B),

(| A2) If (A,B)R∗(A,B′), then (A | B) ⊆ (A | B ∪ B′),

(| A3) If (A,B)R∗(A′, B), then (A | B) ⊆ (A ∪A′ | B),

(| 2) If A ∩B 6= ∅, then A | B = A ∩ B,

(| A4) If (A,B)R∗(A′, B′) and A′ ∩ B′ 6= ∅, then A ∩ B 6= ∅. (R∗ is the transitive closure of R.)

The fact that the conditions are on R, and not directly on |, as might be expected (and as it would certainly be
nicer) reflects again the difficulty to observe pertinent results, therefore we treat R and its compositions R∗ as a
black box, whose operations we cannot observe directly on the domain.

The proof of completeness is a little involved. We first extend R as usual by our abstract nonsense result 3.10.7 to
a total preorder S, and consider the S-equivalence classes, and set d(A,B) := the S-equivalence class of (A,B).

We then show in Lemma 4.2.7: For any A,B d(A,B) = min{d(A, b) : b ∈ B}, and A | B = {b ∈ B : d(A, b) =
d(A,B)}, and then that A | B = A |d B.

The logical characterization:

We first show the importance of definability preservation, which means, in this context, of course, that M(T) |M(φ)
has again to be M(ψ) for some ψ. Example 4.2.3 shows that the translation of the main (loop) condition need not
hold when the structure is not definability preserving. It also shows that the AGM properties need not all hold
in this case. This example is very similar to the one for preferential structures, and illustrates the ”coarseness” of
logic - we might not detect small sets which are missing. The remedy, to be shown in Chapter 5 follows the same
strategy in both cases, i.e. to admit small sets of exceptions.

Apart from this problem, the logical characterization is quite straightforward, and more detailed comments are not
needed.

We now turn to two natural questions:

First, do we really need such complicated conditions as the loop condition to characterize distance based revision
when we can modify the right and left hand of the operator?

Second, is there a way to avoid the somewhat unnatural limit condition that X | Y 6= ∅ if X,Y 6= ∅? After all,
infinite approching chains of models might very well happen in the infinite case.

The answer to the first question is negative, and came as somewhat a surprise to the author, after having tried in
vain to find finite conditions.

The answer to the second question has two parts: Yes, it is possible, there is a natural extension of the definition
- which amounts to a limit version, just as in the preferential structure case -, and we give a characterization
of the general case, and, perhaps more importantly, if we just look at φ ∗ ψ (even if the language is infinite),
there is an equivalent structure in the minimal version. The strategy we follow is in close parallel to the one for

4.1. INTRODUCTION 153

ranked preferential structures, and we recommend to the reader to read first the part on the limit variant of ranked
preferential structures, as the situation is simpler there.

We present now these two problems in more detail.

First to the impossibility to find finite conditions (Section 4.2.4).

We can read the loop condition (roughly) as a transitivity condition: if x1 ≤ x2 ≤ . . . ≤ xn, then x1 ≤ xn.
Unfortunately, we cannot replace this with a condition of length two: if x ≤ y ≤ z, then x ≤ z. The reason is, that
we may well be able to see x ≤ y, and y ≤ z, but not be able to determine x ≤ z, as x ≤ z is ”hidden” behind closer
elements - see the Example 4.2.1 for an illustration. Thus, we cannot take ”shortcuts”, but have to write down
arbitrarily long chains of conditions. The idea is thus very simple, but we have to take a little care in writing it down.
We have to find examples of arbitrarily big size, which can only be described by arbitrarily big conditions. I.e. we
need arbitrarily much information to determine whether the structures are distance representable. In particular,
we have to exclude that ”good”, i.e. representable, structures can be differetiated from ”bad” structures by some
other bit of information than those long chains of x1 ≤ x2 ≤ . . . ≤ xn.

For this purpose, we construct arbitrarily big ”hamster wheels”, bad examples, which, by just one single change
can be transformed into good examples, which otherwise are totally identical to the bad case. So we need to know
all of the information to determine that the examples are bad ones. (The situation is slightly more complicated,
as we have to work with sets of elements, but the only interesting sets are small, i.e. have at most two elements.)
The main work to do is to show that the good and the bad examples really differ by just one bit of information
about the revision.

Note that the construction depends heavily on the fact that we might be unable to determine (relative) distances.
If the domain is sufficiently rich, we can mirror distances away from interfering elements, and determine them
indirectly - and finite characterization becomes possible. So, we have again a case where closure conditions of the
domain are crucial - this time not algebraic closure conditions, but richness and homogeneity of the domain.

We turn to the second problem, the limit condition discussed in Section 4.2.5. We give a short introduction to
the question, and then turn immediately to the equivalence problem. We show here that the logical version of the
completeness conditions (see Proposition 4.2.9) are satisfied for the limit approach to distance defined revision, as
long as we consider only revisions of the type φ ∗ ψ. The main property to show is the loop condition. For this,
we show Con(φ, φ′ ∗ (φ ∨ φ′′)) iff ∀A ∈ Λ(M(φ′),M(φ ∨ φ′′)).M(φ) ∩ A 6= ∅. But, if Λ is distance defined, this is
equivalent to: ∀x′ ∈M(φ′)∀y′ ∈M(φ ∨ φ′′)∃x ∈M(φ′)∃y ∈M(φ).d(x, y) ≤ d(x′, y′). The rest is easy.

4.1.2 Counterfactuals

The original paper by Lewis [Lew73] allowed that the metrics determining the distance of other points from each
point may be totally different metrics. This may very well be justified philosophically, mathematically it is a very
complicated structure. Of course, one single metric imposes conditions which need not hold if the metrics are
independent: For example, a single metric forces a ≺b c whenever b ≺a c and a ≺c b, since d(a, b) < d(a, c) =
d(c, a) < d(c, b) implies by the transitivity of < and symmetry of a metric that d(b, a) = d(a, b) < d(c, b) = d(b, c).
But such coherences need not exist if we have independent metrics. Thus, at first sight, the resulting structures
are quite different. We show that, indeed, they are not.

The idea is the following: As we are interested only in the closest worlds - or, more precisely, the counterfactual
semantics is defined only by what holds in the closest worlds -, everything behind the closest worlds is hidden from
view. We ”recreate” the world now as seen from each world in the original structure, by making as many copies
as necessary, and taking care to choose distances in a way that the situation as seen from other worlds is hidden
from view.

For instance, we begin arbitrarily with world w. We arrange the rest of the points around w just as w’s metric
dictates. Take now w′. Now, we arrange all worlds (new copies, more precisely) different from w′, just as w′ dictates,
but take care to make the distances smaller, so we do not see the old w and what we did around w. As we are only
interested in closest worlds, what we did for w is invisible. If w′′ is one of the new worlds (perhaps a new copy of

154 CHAPTER 4. DISTANCES

w), we repeat the same procedure: arrange everything around w′′ as w′′ likes to see it, with new copies, and again
smaller distances so we see neither the old w, nor the old w′ - they are too far away. Thus, the idea is very simple,
and we just have to take a little care that everything works as it is intended, i.e. there is no interference between
the different ”galaxies” we created.

In the end, we have to show that the same formulas with counterfactuals hold in the new and the old structure -
but this is then trivial.

4.1.3 Summary

We first show a number of results on distance based theory revision. More precisely, we consider for revising T
by φ the φ−models closest to the T-models as the models of T ∗ φ. We start by algebraic characterizations of the
symmetric and not necessarily symmetric case, for the latter we treat only the finite case, as the latter seems to
necessitate a second limit condition on the left. The symmetric case is described by a simple, elegant loop condition,
which, however, can be arbitrarily long. Attempts to find simpler conditions have failed, and for a reason: it can
be shown that we need infinite conditions, see below. The translation to logic is again straightforward, provided
we treat definability preserving structures.

We then show by a class of examples that we really need arbitrarily complex conditions. These examples show
that the difference between distance representable and not distance representable cases can be ”infinitely” small,
more precisely, we can find bigger and bigger ”bad” examples, which differ from ”good” ones just by one result of
revision, so the difference is comparatively arbitrarily small. Taking some care about the language results in the
proof of what we wanted to show.

We introduce again a limit version, very close to the limit version of ranked structures, and show that, for formulas
on the left, this version, which gets rid of a somewhat unnatural limit condition (there must be closest elements),
is again equivalent to the minimal variant presented above.

Finally, we show the positive counterpart of the negative result about finitary characterizations: for counterfactual
conditionals, we can fuse many independent metrics defining a semantics to one single metric. The price we have
to pay is a (large) number of copies. The reason it works is that anything which could cause trouble is hidden
behind closer elements.

Recommended reading:

The reader might start either with revision (Section 4.2) or Counterfactuals (Section 4.3), they are independent.
The section on counterfactuals should be read as a whole (or not at all), there is no natural first part. In the
section on revision, the reader should first read the algebraic part (Section 4.2.2), and there the introduction and
the symmetric variant. Next, he should perhaps read the logical characterization (Section 4.2.3), and only then
come back to the not necessarily symmetric part - but this can wait, the ”asymmetric” part is not needed for
any other results. The reader who has already read the limit variant of ranked structures, might now read the
limit variant of revision (Section 4.2.5). An, in the author’s opinion, interesting result is the one on lack of finite
characterizations (Section 4.2.4). The reader can read this part as soon as he or she has read the algebraic part on
revision, and as long as his or her memory on this part is still fresh.

4.2 Revision by symmetrical and not necessarily symmetric distance

4.2.1 Introduction

We characterize here distance based revision. We first take the purely algebraic approach, and only then turn to
logic. Again, we begin by the minimal variant, and discuss the limit variant only later. Again, both approaches are
equivalent for formulas, and diverge only for full theories. Problems of definability preservation pose themselves

4.2. REVISION BY SYMMETRICAL AND NOT NECESSARILY SYMMETRIC DISTANCE 155

again, and are treated with those of preferential structures later (see Chapter 5). There is, however, an impor-
tant difference to preferential structures: By the very definition (we look at closest elements), some information
might hide other information, unless the domain is sufficiently rich, see Example 4.2.1. Consequently, transitivity
is not always directly observable, resulting in complicated conditions, and a negative result: there is no finite
characterization (in a reasonable sense) of distance based revision.

4.2.2 The algebraic results

We give now first an abstract definition of a distance, and say what we mean by distance representation. As
usual, we will first give an algebraic representation result, and transform this result in a more or less straigtforward
manner only later to its logical counterpart. We then turn to the symmetric case, give an - in hindsight - important
example (Example 4.2.1) which shows that we cannot know everything, formulate the algebraic conditions for the
binary choice function |, construct a first relation comparing distances, show its main properties, and extend it to
a distance. The proof that this distance represents the function | is then easy. We then treat the not necessarily
symmetric case. We first define a relation R from the binary choice function |, formulate appropriate conditions
for this relation, and show that we can again recover | . Again, we extend R to construct the distance d, and show
that d does what it should.

4.2.2.1 Introduction and pseudo-distances

We give here the basic definition. For a first reading, the reader may assume that d is a normal distance, but
perhaps not symmetric.

We will base our semantics for revision on pseudo-distances between models. Pseudo-distances differ from distances
in that their values are not necessarily reals, no addition of values has to be defined, and symmetry need not hold.
All we need is a totally ordered set of values. If there is a minimal element 0 such that d(x, y) = 0 iff x = y, we
say that d respects identity. Pseudo-distances which do not respect identity have their interest in situations where
staying the same requires effort.

We first recollect:

Definition 4.2.1

A binary relation ≤ on X is a preorder, iff ≤ is reflexive and transitive. If ≤ is in addition total, i.e. iff ∀x, y ∈ X
x ≤ y or y ≤ x, then ≤ is a total preorder.

A binary relation < on X is a total order, iff < is transitive, irreflexive, i.e. x 6< x for all x ∈ X, and for all x, y ∈ X
x < y or y < x or x = y.

Remark 4.2.1

If ≤ is a total preorder on X, ≈ the corresponding equivalence relation defined by x ≈ y iff x ≤ y and y ≤ x, [x] the
≈ −equivalence class of x, and we define [x] < [y] iff x ≤ y, but not y ≤ x, then < is a total order on {[x] : x ∈ X}.

Definition 4.2.2

d : U × U → Z is called a pseudo-distance on U iff (d1) holds:

(d1) Z is totally ordered by a relation < .

If, in addition, Z has a < −smallest element 0, and (d2) holds, we say that d respects identity:

(d2) d(a, b) = 0 iff a = b.

If, in addition, (d3) holds, then d is called symmetric:

(d3) d(a, b) = d(b, a).

(For any a, b ∈ U.)

156 CHAPTER 4. DISTANCES

Let ≤ stand for < or = .

Note that we can force the triangle inequality to hold trivially (if we can choose the values in the real numbers):
It suffices to choose the values in the set {0} ∪ [0.5, 1], i.e. in the interval from 0.5 to 1, or as 0.

Definition 4.2.3

Given a pseudo-distance d : U × U → Z, let for A,B ⊆ U

A |d B := {b ∈ B : ∃ab ∈ A∀a′ ∈ A∀b′ ∈ B.d(ab, b) ≤ d(a′, b′)}

Thus, A |d B is the subset of B consisting of all b ∈ B that are closest to A. Note that, if A or B is infinite,
A |d B may be empty, even if A and B are not empty. A condition assuring non-emptiness will be imposed when
necessary. (The limit version gets rid of such non-emptiness conditions.)

The aim of this Section 4.2.2 is to characterize those operators |: P(U) × P(U) → P(U), for which there is a
pseudo-distance d, such that A | B = A |d B. We call such | representable:

Definition 4.2.4

An operation | is representable iff there is a pseudo-distance d : U × U → Z such that

(1) A | B = A |d B := {b ∈ B : ∃ab ∈ A∀a′ ∈ A∀b′ ∈ B(d(ab, b) ≤ d(a′, b′))}.

The following is the central definition, it describes the way a revision ∗d is attached to a pseudo-distance d on the
set of models.

Definition 4.2.5

T ∗d T ′ = Th(M(T) |d M(T ′)).

∗ is called representable iff there is a pseudo-distance d on the set of models s.t. T ∗ T ′ = Th(M(T) |d M(T ′)).

In the following two Sections, 4.2.2.2 and 4.2.2.3, we first present a result (Example 4.2.1) which shows that some
distances may be hidden by closer elements, and thus invisible. This fact has much deeper importance later on,
when we show that, in the general case, there is no finite characterization for distance based revision. We then
formulate in Proposition 4.2.2 the conditions for the binary choice function |, where the loop property is the central
one. This property is both elegant and nasty. Elegant, because it codes many things at the same time, and nasty,
because it is arbitrarily big. When trying to find smaller conditions, the author noted that this is impossible,
see Section 4.2.4. The main, and obvious step in the construction is in Definition 4.2.6, where we define (already
essentially) the distance relation. The auxiliary Fact 4.2.3 shows its main properties, and the relation is extended
in Definition 4.2.7 to the final distance. The proof that this distance represents | is now easy (Fact 4.2.4).

Note that the algebraic representation results we are going to demonstrate in this Section 4.2.2 are independent of
logic, and work for arbitrary sets U, not only for sets of models. On the other hand, if the (propositional) language
L is defined from infinitely many propositional variables, not all sets of models are definable by a theory: There are
X ⊆ ML s.t. there is no T with X = M(T). Moreover, we will consider only consistent theories. This motivates
now the following framework:

Let U 6= ∅, and let Y ⊆ P(U) contain all singletons, be closed under finite ∩ and finite ∪, ∅ 6∈ Y and consider an
operation |: Y × Y → Y . (For our representation results, finite ∩ suffices.)

We first characterize those operations | which can be represented by a symmetric pseudo-distance, and then those
representable by a not necessarily symmetric pseudo-distance.

Notation 4.2.1

For a ∈ U, X ∈ Y a | X will stand for {a} | X etc.

4.2. REVISION BY SYMMETRICAL AND NOT NECESSARILY SYMMETRIC DISTANCE 157

4.2.2.2 The representation results for the symmetric case

We work here with possibly infinite, but nonempty U.

We first note that even when the pseudo-distance is a real distance, the resulting revision operator |d does not
always permit to reconstruct the relations of the distances: revision is a coarse instrument to investigate distances.

Distances with common start (or end, by symmetry) can always be compared by looking at the result of revision:

a |d {b, b′} = b iff d(a, b) < d(a, b′),

a |d {b, b′} = b′ iff d(a, b) > d(a, b′),

a |d {b, b′} = {b, b′} iff d(a, b) = d(a, b′).

This is not the case with arbitrary distances d(x, y) and d(a, b), as the following example will show.

Example 4.2.1

We work in the real plane, with the standard distance, the angles have 120 degrees. a′ is closer to y than x is to
y, a is closer to b than x is to y, but a′ is farther away from b′ than x is from y. Similarly for b,b’. But we cannot
distinguish the situation {a, b, x, y} and the situation {a′, b′, x, y} through |d . (See Figure 4.2.1.)

Proof:

Seen from a, the distances are in that order: y,b,x.

Seen from a′, the distances are in that order: y, b′, x.

Seen from b, the distances are in that order: y,a,x.

Seen from b′, the distances are in that order: y, a′, x.

Seen from y, the distances are in that order: a/b,x.

Seen from y, the distances are in that order: a′/b′, x.

Seen from x, the distances are in that order: y,a/b.

Seen from x, the distances are in that order: y, a′/b′.

Thus, any c |d C will be the same in both situations (with a interchanged with a′, b with b′). The same holds for
any X |d C where X has two elements.

Thus, any C |d D will be the same in both situations, when we interchange a with a′, and b with b′. So we cannot
determine by |d whether d(x, y) > d(a, b) or not. 2

Proposition 4.2.2

Let U 6= ∅, Y ⊆ P(U) be closed under finite ∩ and finite ∪, ∅ 6∈ Y .

Let A,B,Xi ∈ Y .

Let |: Y × Y → Y , and consider the conditions

(| 1) A | B ⊆ B

(| 2) A ∩ B 6= ∅ → A | B = A ∩ B

(| S1) (Loop): (X1 | (X0 ∪ X2)) ∩ X0 6= ∅, (X2 | (X1 ∪ X3)) ∩ X1 6= ∅, (X3 | (X2 ∪ X4)) ∩ X2 6= ∅,
(Xk | (Xk−1 ∪X0)) ∩Xk−1 6= ∅ imply (X0 | (Xk ∪X1)) ∩X1 6= ∅.

(a) | is representable by a symmetric pseudo-distance d : U × U → Z iff | satisfies (| 1) and (| S1).

(b) | is representable by an identity respecting symmetric pseudo-distance d : U × U → Z iff | satisfies (| 1), (| 2),
and (| S1).

158 CHAPTER 4. DISTANCES

Figure 4.2.1

�
�
��

A
A
AA

s s

s

s

x y

a

b

�
�
�
�
�
�
�

A
A
A
A
A
A
A

s s

s

s

x y

a′

b′

Note that (| 1) corresponds to (∗2), (| 2) to (∗3), (∗0) will hold trivially,

(∗1) holds by definition of Y and |, (∗4) will be a consequence of representation. (| S1) corresponds to: d(X1, X0) ≤
d(X1, X2), d(X2, X1) ≤ d(X2, X3), d(X3, X2) ≤ d(X3, X4) ≤ . . .≤ d(Xk, Xk−1) ≤ d(Xk, X0) → d(X0, X1) ≤
d(X0, Xk), and, by symmetry, d(X0, X1) ≤ d(X1, X2) ≤ . . .≤ d(X0, Xk)→ d(X0, X1) ≤ d(X0, Xk), i.e. transitivity,
or to absence of loops involving < .

Remark:

The loop condition is simple (always fixed on one side) for the following reason: In the classical, observable (!), 2x2
case, A = {a, a′}, B = {b, b′}, d(a′, b′) < d(a, b) decomposes into: d(b′, a) > d(b′, a′) = d({a, a′}, b′) < d({a, a′}, b) =
d(b, a).

We first show the hard direction via a number of auxiliary definitions and lemmas (up to Fact 4.2.4). We assume
all A,B etc. to be in Y , and (| 1), (| S1) to hold from now on.

We define first:

Definition 4.2.6

Set ‖ A,B ‖≤‖ A,B′ ‖ iff (A | B ∪ B′) ∩ B 6= ∅,

set ‖ A,B ‖<‖ A,B′ ‖ iff ‖ A,B ‖≤‖ A,B′ ‖, but not ‖ A,B ‖≥‖ A,B′ ‖ .

‖ A,B ‖ is to be read as the pseudo-distance between A and B or between B and A. Recall that the pseudo-distance
will be symmetric, so ‖ . . . ‖ operates on the unordered pair {A,B}. Note that A | B 6= ∅, by definition of the
function | .

Let ≤∗ be the transitive closure of ≤, we write also <∗ if it involves < . Write ‖ a,B ‖ for ‖ {a}, B ‖ etc.

The loop condition reads in the ‖ −notation as follows: ‖ X0, X1 ‖≤‖ X2, X1 ‖≤‖ X2, X3 ‖≤‖ X4, X3 ‖≤ . . . ≤‖
Xk, Xk−1 ‖≤‖ Xk, X0 ‖ → ‖ X0, X1 ‖≤‖ X0, Xk ‖

4.2. REVISION BY SYMMETRICAL AND NOT NECESSARILY SYMMETRIC DISTANCE 159

Fact 4.2.3

(1) ‖ A,B ‖6≤‖ A,B′ ‖ iff ‖ A,B′ ‖<‖ A,B ‖ .

(2) B′ ⊆ B → ‖ A,B ‖≤‖ A,B′ ‖ .

(3) There are no cycles of the forms ‖ A,B ‖≤‖ A,B ′ ‖≤ . . . ≤‖ A,B′′ ‖≤‖ A,B ‖ or ‖ A,B ‖≤‖ A,B′ ‖≤
. . . ≤‖ A′′, B ‖≤‖ A,B ‖ involving < . (The difference between the two cycles is that the first contains possibly
only variations on one side, of the form ‖ A,B′′ ‖≤‖ A,B ‖≤‖ A,B′ ‖, the second one possibly only alternating
variations, of the form ‖ A′′, B ‖≤‖ A,B ‖≤‖ A,B′ ‖ .).

(4) b ∈ A | B → ‖ A, b ‖≤‖ A,B ‖ .

(5) b 6∈ A | B, b ∈ B → ‖ A,B ‖<‖ A, b ‖ .

(6) ‖ A, b ‖≤∗‖ A,B ‖, b ∈ B → b ∈ A | B . . .

(7) b ∈ A | B, ab ∈ b | A, ab ∈ A′ ⊆ A implies (a) b ∈ A′ | B, (b) A′ | B ⊆ A | B . . .

(8) b ∈ A | B, ab ∈ b | A, a′ ∈ A, b′ ∈ B → ‖ ab, b ‖≤∗‖ a′, b′ ‖ .

(9) b ∈ B, b 6∈ A | B, b′ ∈ A | B, ab′ ∈ b′ | A, a ∈ A. Then ‖ ab′ , b′ ‖<∗‖ a, b ‖ .

If (| 2) holds, then

(10) A ∩ B 6= ∅ → ‖ A,B ‖≤∗‖ A′, B′ ‖ .

(11) A ∩ B 6= ∅, A′ ∩ B′ = ∅ → ‖ A,B ‖<∗‖ A′, B′ ‖ .

Proof:

(1) and (2) are trivial.

(3) We prove both variants simultaneously. Case 1, length of cycle = 1 : ‖ A,B ‖<‖ A,B ‖, so (A | B) ∩ B = ∅,
contradiction. Case 2: length > 1 : Let e.g. ‖ A0, B0 ‖≤‖ A0, B1 ‖≤ . . . ≤‖ A0, Bk ‖<‖ A0, B0 ‖ be such a
cycle. If the cycle is not yet in the form of the loop condition, we can build a loop as in the loop condition by
repeating elements, if necessary. E.g.: ‖ A0, B0 ‖≤‖ A0, B1 ‖≤‖ A0, B2 ‖ can be transformed to ‖ A0, B0 ‖≤‖
A0, B1 ‖≤by (2)‖ A0, B1 ‖≤‖ A0, B2 ‖ . By Loop, we conclude ‖ A0, B0 ‖≤‖ A0, Bk ‖, contradicting (1).

(4) and (5) are trivial.

(6) b 6∈ A | B →by (5)‖ A,B ‖<‖ A, b ‖, contradicting ‖ A, b ‖≤∗‖ A,B ‖ by (3).

(7) (a) By (6), it suffices to show that ‖ A′, b ‖≤∗‖ A′, B ‖ . But ‖ A′, b ‖≤by (2)‖ ab, b ‖≤
∗
(4) twice

‖ A,B ‖≤by (2)‖

A′, B ‖ .

(b) Let b′ ∈ A′ | B, we show b′ ∈ A | B. By (6), it suffices to show ‖ A, b′ ‖≤∗‖ A,B ‖: ‖ A, b′ ‖≤(2)‖ A
′, b′ ‖≤(4)‖

A′, B ‖≤∗
(2) twice

‖ ab, b ‖≤∗
(4) twice

‖ A,B ‖ .

(8) ‖ ab, b ‖≤∗‖ A,B ‖≤∗‖ a′, b′ ‖ .

(9) ‖ ab′ , b′ ‖≤∗
(4) twice

‖ A,B ‖<(5)‖ A, b ‖≤(2)‖ a, b ‖ .

(10) ‖ A,B ‖≤‖ A,B∪B′ ‖, as (A | B∪B′)∩B 6= ∅, by A∩B ⊆ A | B∪B′. Likewise ‖ A,B∪B′ ‖≤‖ A∪A′, B∪B′ ‖ .
Moreover, ‖ A ∪ A′, B ∪ B′ ‖≤‖ A′, B′ ‖ by (2).

(11) We show first that A∩B 6= ∅, A∩B′ = ∅ implies ‖ A,B ‖<‖ A,B′ ‖: A | B ∪B′ = A∩ (B ∪B′) = A∩B ⊆ A,
so (A | B ∪ B′) ∩ B′ = ∅. Thus, ‖ A,B ‖≤∗

by (10)‖ A
′, A′ ‖<‖ A′, B′ ‖ .

2

We define:

Definition 4.2.7

160 CHAPTER 4. DISTANCES

Let S, by Lemma 3.10.7, be a total preorder on {‖ A,B ‖: A,B ∈ Y} extending ≤ s.t. ‖ A,B ‖ S ‖ A′, B′ ‖ and
‖ A′, B′ ‖ S ‖ A,B ‖ imply ‖ A,B ‖≤∗‖ A′, B′ ‖ .

Let ‖ A,B ‖≈‖ A′, B′ ‖ iff ‖ A,B ‖ S ‖ A′, B′ ‖ and ‖ A′, B′ ‖ S ‖ A,B ‖, and [‖ A,B ‖] be the set of
≈ −equivalence classes and define [‖ A,B ‖] < [‖ A′, B′ ‖] iff ‖ A,B ‖ S ‖ A′, B′ ‖ but not ‖ A′, B′ ‖ S ‖ A,B ‖ .
This is a total order on {[‖ A,B ‖] : A,B ∈ Y}. Define d(A,B) := [‖ A,B ‖] for A,B ∈ Y .

If (| 2) holds, let 0 := [‖ A,A ‖] for any A. This is then well-defined by Fact 4.2.3, (10).

Note that by abuse of notation, we use ≤ also between equivalence classes.

Fact 4.2.4

(1) The restriction of d as just defined to singletons is a symmetric pseudo-distance; if (| 2) holds, then d respects
identity.

(2) A | B = A |d B.

Proof:

(1)

(d1) Trivial. If [‖ b, c ‖] < [‖ a, a ‖], then ‖ b, c ‖≤∗‖ a, a ‖, but not ‖ a, a ‖≤∗‖ b, c ‖, contradicting Fact 4.2.3, (10).

(d2) d(a, b) = d(a, a) iff ‖ a, b ‖≤∗‖ a, a ‖ iff a = b by Fact 4.2.3, (10) and (11).

(d3) [‖ a, b ‖] ≤ [‖ b, a ‖] is trivial.

(2)

′′ ⊆′′: Let b ∈ A | B. Then there is ab ∈ b | A. By Fact 4.2.3, (8), ‖ ab, b ‖≤∗‖ a′, b′ ‖ for all a′ ∈ A, b′ ∈ B. So
d(ab, b) ≤ d(a′, b′) for all a′ ∈ A, b′ ∈ B and b ∈ A |d B.
′′ ⊇′′: Let b ∈ B, b 6∈ A | B. Take b′ ∈ A | B, ab′ ∈ b′ | A, a ∈ A. Then by Fact 4.2.3, (9) ‖ ab′ , b′ ‖<∗‖ a, b ‖, so
b 6∈ A |d B.

2

It remains to show the easy direction of Proposition 4.2.2.

All conditions but (| S1) are trivial. Define for two sets A,B 6= ∅ d(A,B) := d(ab, b), where b ∈ A |d B, and ab ∈
b |d A. Then d(A,B) = d(B,A) by d(a, b) = d(b, a) for all a,b. Loop amounts thus to d(X1, X0) ≤ . . . ≤ d(Xk , X0)
→ d(X0, X1) ≤ d(X0, Xk), which is now obvious.

2 (Proposition 4.2.2)

4.2.2.3 The representation result for the finite not necessarily symmetric case

We first give an example, which illustrates the expressive weakness of a not necessarily symmetric distance. We
then turn to the representation problem. Given an operation |, we define again a relation, R (Definition 4.2.8), and
formulate the representation conditions (mostly for R, not for |) in Proposition 4.2.5. The representation proof
proceeds then via two auxiliary Lemmas (4.2.6 and 4.2.7), extending again R to define d.

Note that we work here with finite U only, Y will be P(U)− {∅}.

Example 4.2.2

This example, illustrated in Figure 4.2.2, shows that we cannot find out, in the non symmetric case, which of the

4.2. REVISION BY SYMMETRICAL AND NOT NECESSARILY SYMMETRIC DISTANCE 161

Figure 4.2.2

Case 2:

- -

�

?

6

-� -�s s s s s

0 1 1.1 16 20

a′ a b b′

Case 1:

s s s s

0 1 16 20

a a′ b b′

elements a, a′ is closest to the the set {b, b′} (we look from a/a’ to {b, b′}). In the first case, it is a′, in the second
case a. Yet all results about revision stay the same.

In the first case, we can take the ”road” in both directions, in the second case, we have to follow the arrows. (For
simplicity, the vertical parts have length 0.) Otherwise, distances are as indicated by the numbers, so e.g. in the
second case, from a′ to a it is 1, from a to a′ 1.2. For any X,Y ⊆ {a, a′, b, b′} X | Y will be the same in both cases,
but, seen from a or a′, the distance to {b, b′} is closer from a′ in the first case, closer from a in the second.

The characterization of the not necessarily symmetric case presented in the following does not seem perhaps very
elegant at first sight, but it is straightforward and very useful in the search for more elegant characterizations of
similar operations. For our characterization a definition is necessary. It associates a binary relation between pairs
of non-empty subsets of U : intuitively, (A,B)R|(A

′, B′) may be understood as meaning that the pseudo-distance
between A and B is provably smaller than or equal to that between A′ and B′. The main idea of the representation
theorem is to define a relation (the relation R| of Definition 4.2.8) that describes all inequalities we know must hold
between pseudo-distances, and require that the consequences of those inequalities are upheld (conditions (| A2)
and (| A3) of Proposition 4.2.5). The proof of the theorem shows that Definition 4.2.8 was comprehensive enough.

Definition 4.2.8

Given an operation |, one defines a relation R| on pairs of non-empty subsets of U by: (A,B)R|(A
′, B′) iff one of

the following two cases obtains:

(1) A = A′ and (A | B ∪B′) ∩B 6= ∅,

(2) B = B′ and (A ∪ A′ | B) 6= (A′ | B),

If the pseudo-distance is to respect identity, we also consider a third case:

(3) A ∩ B 6= ∅.

Definition 4.2.8 can be written as:

(1) (A | B ∪ B′) ∩ B 6= ∅ ⇒ (A,B)R|(A,B
′),

(2) (A ∪A′ | B) 6= (A′ | B) ⇒ (A,B)R|(A
′, B),

162 CHAPTER 4. DISTANCES

(3) A ∩ B 6= ∅ ⇒ (A,B)R|(A
′, B′).

In the sequel we shall write R instead of R|.

As usual, we shall denote by R∗ the reflexive and transitive closure of R.

Notice also that we do not require that the pseudo-distance between A and B be less or equal than that between
A′ and B′ if A′ ⊆ A and B′ ⊆ B, as one could expect. In fact, a theorem similar to Proposition 4.2.5 below may
be proved with a definition of R that includes a fourth case: (A,B)R(A′, B′) if A′ ⊆ A and B′ ⊆ B, and its proof
is slightly easier, but we prefer to prove the stronger theorem. Notice also that, in order to avoid the fourth case
just mentioned, the conclusion of case (2) is (A,B)R|(A

′, B), and not the seemingly stronger but in fact weaker in
the absence of the fourth case mentioned above: (A,B)R|(A ∪ A

′, B).

We may now formulate our main technical result. Condition (| A1) expresses a property of Disjunctive Rationality
(see [KLM90], [LM92], [Fre93]) for the left-hand-side argument of the operation | .

Proposition 4.2.5

Consider the following conditions:

(| 1) (A | B) ⊆ B,

(| A1) (A ∪ A′ | B) ⊆ (A | B) ∪ (A′ | B),

(| A2) If (A,B)R∗(A,B′), then (A | B) ⊆ (A | B ∪ B′),

(| A3) If (A,B)R∗(A′, B), then (A | B) ⊆ (A ∪A′ | B),

(| 2) If A ∩B 6= ∅, then A | B = A ∩ B,

(| A4) If (A,B)R∗(A′, B′) and A′ ∩ B′ 6= ∅, then A ∩ B 6= ∅.

(a) An operation |: Y×Y → Y is representable by a pseudo-distance iff it satisfies the conditions (| 1), (| A1)−(| A3)
for any non-empty sets A,B ⊆ U, where the relation R is generated by cases (1) and (2) of Definition 4.2.8.

(b) An operation |: Y×Y → Y is representable by an identity respecting pseudo-distance iff it satisfies the conditions
(| 1), (| 2), (| A1)− (| A4) for any non-empty sets A,B ⊆ U, where the relation R is generated by cases (1) - (3) of
Definition 4.2.8.

Proof:

First, we shall deal with the soundness part of the theorem, and then with the more challenging completeness part.
We prove (a) and (b) together.

Suppose, then, that | is representable by a pseudo-distance. The function d acts on pairs of elements of U, and it
may be extended to a function on pairs of non-empty subsets of U in the usual way: d(A,B) = min{d(a, b) : a ∈
A, b ∈ B}.

Then Equation (1) in Definition 4.2.4, defining representability, may be written as:

(3) A | B = {b ∈ B : d(A, b) = d(A,B)}.

We must now show that the conditions of Proposition 4.2.5 hold.

Condition (| 1) is obvious.

Condition (| A1) holds since d(A ∪ A′, B) = min{d(A,B), d(A′, B)}.

Considering Definition 4.2.4 and the different cases of Definition 4.2.8, we shall see that (A,B)R(A′, B′) implies
d(A,B) ≤ d(A′, B′). Case 1 is obvious. Let us treat case (2). Clearly d(A ∪ A′, B) = min{d(A′, B), d(A,B)}.
We shall show that if d(A′, B) < d(A,B), then A ∪ A′ | B = A′ | B. Suppose d(A′, B) < d(A,B). Then,
d(A ∪ A′, B) = d(A′, B) < d(A,B). Therefore A ∪ A′ | B = A′ | B. Case 2 has been taken care of. If d respects
identity, Case 3 is obvious. We conclude that (A,B)R∗(A′, B′) implies that d(A,B) ≤ d(A′, B′). Condition (| A2)
holds because d(A,B) ≤ d(A,B′) implies d(A,B∪B′) = d(A,B). Condition (| A3) holds because d(A,B) ≤ d(A′, B)
implies d(A ∪ A′, B) = d(A,B).

4.2. REVISION BY SYMMETRICAL AND NOT NECESSARILY SYMMETRIC DISTANCE 163

It remains to show that (| 2) and (| A4) follow from respect of identity:

Condition (| 2) holds because A | B = {b ∈ B : d(A, b) = d(A,B) = 0} if A∩B 6= ∅. Condition (| A4) holds because
d(A,B) ≤ d(A′, B′) = 0 implies d(A,B) = 0.

For the other direction, we work, unless stated otherwise, in the base situation, i.e. where at least conditions (| 1),
(| A1)− (| A3) hold, and the relation R is generated by at least cases (1) and (2) of Definition 4.2.8.

In our proof, a number of lemmas will be needed. These lemmas will be presented when needed, and their proof
inserted in the midst of the proof of Proposition 4.2.5.

First, a simple result, analogous to the (OR) rule.

Lemma 4.2.6

For any sets A,A′, B, (A | B) ∩ (A′ | B) ⊆ A ∪ A′ | B.

Proof:

Without loss of generality we may assume that A | B 6= A ∪A′ | B. Then (A′, B)R(A,B) by case (2) of Definition
4.2.8, and A′ | B ⊆ A ∪ A′ | B by condition (| A3) of Proposition 4.2.5. 2

We consider the set Y × Y and the binary relation R on this set defined from | by Definition 4.2.8. By Lemma
3.10.7, R may be extended to a total preorder S satisfying:

(4) xSy, ySx ⇒ xR∗y.

Let Z be the totally ordered set of equivalence classes of Y × Y defined by the total preorder S. The function d
sends a pair of subsets A, B to its equivalence class under S.

We shall define d(a, b) as d({a}, {b}). Notice that we have first defined a pseudo-distance between subsets of U, and
then a pseudo-distance between elements of U. It is only the pseudo-distance between elements that is required
by the definition of representability. The pseudo-distance between subsets just defined must be used with caution
because it does not satisfy the property: d(A,B) = min{d(a, b) : a ∈ A, b ∈ B}. It satisfies half of it, as stated in
Lemma 4.2.7 below.

Clearly, (A,B)R(A′, B′) implies d(A,B) ≤ d(A′, B′). Equation (4) also implies that if d(A,B) = d(A′, B′), then
(A,B)R∗(A′, B′).

The following argument prepares respect of identity. Suppose that | satisfies (| 2) and (| A4) too, and that R was
defined including case (3) of Definition 4.2.8. Defining 0 := d(A,A) for any A ∈ Y , we see that

(a) 0 is well-defined: By definition, (A,A)R(B,B) for any A,B ∈ Y .

(b) there is no d(B,C) < 0 : By definition again, (A,A)R(B,C).

(c) d(A,B) = 0 iff A ∩ B 6= ∅ : A ∩ B 6= ∅ implies (A,B)R(A,A), so d(A,B) = 0. d(A,B) = 0 implies
(A,B)S(A,A)S(A,B), so (A,B)R∗(A,A), so A ∩ B 6= ∅ by (| A4).

The next lemma shows that our pseudo-distance d behaves nicely as far as its second argument is concerned.

Lemma 4.2.7

For any A,B d(A,B) = min{d(A, b) : b ∈ B}

and

(5) A | B = {b ∈ B : d(A, b) = d(A,B)}.

Proof:

164 CHAPTER 4. DISTANCES

(Remember the elements of Y are non-empty.) Suppose b ∈ B. Since (A | B ∪ {b}) ∩ B 6= ∅ by condition (| 1) of
Proposition 4.2.5, (A,B)R(A, b) by case (1) of Definition 4.2.8, and therefore d(A,B) ≤ min{d(A, b) : b ∈ B}. If
b ∈ A | B, then (A | B)∩ {b} 6= ∅ and, by Definition 4.2.8, case (1), (A, b)R(A,B) and therefore d(A, b) = d(A,B).
We have shown that the left hand side of Equation (5) is a subset of the right hand side. Since A | B is not
empty there is a b ∈ A | B and, by the previous remark, d(A,B) = d(A, b) and therefore we conclude that
d(A,B) = min{d(A, b) : b ∈ B}.

To see that the right hand side of Equation (5) is a subset of the left hand side, notice that d(A,B) = d(A, b)
implies (A, b)R∗(A,B) and therefore, by condition (| A2) of Proposition 4.2.5, A | b ⊆ A | B and b ∈ A | B. 2

To conclude the proof of (a), we must show that Equation (1) of Definition 4.2.4 holds. Suppose, first, that b ∈ B,
a ∈ A and d(a, b) ≤ d(a′, b′) for any a′ ∈ A, b′ ∈ B. By Lemma 4.2.7, b ∈ a | B and d(a,B) ≤ d(a′, B), for any
a′ ∈ A.

We want to show now that b ∈ A | B. We will show that, for any a′ ∈ A, b ∈ {a, a′} | B. One, then, concludes
that b ∈ A | B by Lemma 4.2.6, remembering that U is finite. Since b ∈ a | B, we may, without loss of generality,
assume that a | B 6= {a, a′} | B. By case (2) of Definition 4.2.8, d(a′, B) ≤ d(a,B). But we already noticed that
d(a,B) ≤ d(a′, B). We can therefore conclude that d(a,B) = d(a′, B), so (a,B)R∗(a′, B), a | B ⊆ {a, a′} | B and
finally that b ∈ {a, a′} | B. We have shown that the right hand side of Equation (1) is a subset of the left hand
side.

We proceed to show that the left hand side of Equation (1) is a subset of its right hand side.

Suppose that b ∈ A | B. By condition (| 1) of Proposition 4.2.5, b ∈ B. We want to show that there exists an a ∈ A
such that d(a, b) ≤ d(a′, b′) for any a′ ∈ A, b′ ∈ B. Since the set U is finite, it is enough to prove that, changing
the order of the quantifiers:

(6) ∀a′ ∈ A, b′ ∈ B, ∃a ∈ A such that d(a, b) ≤ d(a′, b′).

Indeed, if Equation (6) holds, we get some a ∈ A for every pair a′, b′, and we may take the a for which d(a, b) is
minimal: it satisfies the required condition. Since A =

⋃
{{a′, x} : x ∈ A} (the right-hand side is a finite union)

and b ∈ A | B, by condition (| A1) of Proposition 4.2.5, there is some x ∈ A such that b ∈ {a′, x} | B. We
distinguish two cases. First, if b ∈ a′ | B, by Lemma 4.2.7, d(a′, b) ≤ d(a′, b′) and we may take a = a′. Second,
suppose that b 6∈ a′ | B. We notice that, since b ∈ {a′, x} | B, condition (| A1) of Proposition 4.2.5 implies that
b ∈ x | B. But b 6∈ a′ | B also implies that {a′, x} | B 6= a′ | B. By Definition 4.2.8, case (2), (x,B)R(a′, B) and
d(x,B) ≤ d(a′, B). But, by Lemma 4.2.7, we have d(x, b) ≤ d(x,B) (since b ∈ x | B) and d(a′, B) ≤ d(a′, b′). We
conclude that d(x, b) ≤ d(a′, b′), and we can take a = x. This concludes the proof of (a).

It remains to show the rest of (b), respect of identity, i.e. that A∩B 6= ∅ implies A | B = A∩B, under the stronger
prerequisites. Let A ∩ B 6= ∅. Then for b ∈ B d(A,B) = 0 = d(A, b) iff b ∈ A. So by Equation (5) A | B = A ∩ B.

2 (Proposition 4.2.5)

4.2.3 The logical results

4.2.3.1 Introduction

The translation of the algebraic results is, as usual, straigthforward, if we assume definability preservation (see
Definition 4.2.9). The situation without definability preservation is treated below in Chapter 5. In the proofs, we
make heavy and tacit use of classical completeness.

We work now in (propositional) logic.

Definition 4.2.9

4.2. REVISION BY SYMMETRICAL AND NOT NECESSARILY SYMMETRIC DISTANCE 165

By abuse of language, a pseudo-distance d is called definability preserving iff |d is.

d is called consistency preserving iff M(T) |d M(T ′) 6= ∅ for consistent T,T’.

The role of definability preservation in the context of preferential models is discussed in Chapter 5 below, [ALS99]
discusses a similar problem in the revision of preferential databases, and its solution. This solution necessitates
much more complicated conditions, for this reason, we have not adopted it here.

Note that |= T ↔ Th(M(T)), and T = Th(M(T)) if T is deductively closed. Moreover, X = M(Th(X)) if there
is some T s.t. X = M(T), so if the operation | is definability preserving, and T ∗ T ′ = Th(M(T) | M(T ′)), then
M(T ∗ T ′) = M(T) |M(T ′).

The trivial Fact 4.2.8 shows that, given definability preservation, and some additional easy caveats, the AGM
postulates will hold in distance defined theory revision.

Fact 4.2.8

A distance based revision satisfies the AGM postulates provided:

(1) it respects identity, i.e. d(a, a) < d(a, b) for all a 6= b,

(2) it satisfies a limit condition: minima exist,

(3) it is definability preserving.

(It is trivial to see that the first two are necessary, and Example 4.2.3 (2) shows the necessity of (3). In particular,
(2) and (3) will hold for finite languages.)

Proof:

We use | to abbreviate |d . As a matter of fact, we show slightly more, as we admit also full theories on the right
of ∗.

(K ∗1), (K ∗2), (K ∗6) hold by definition, (K ∗3) and (K ∗4) as d respects identity, (K ∗5) by existence of minima.

It remains to show (K ∗ 7) and (K ∗ 8), we do them together, and show: If T ∗ T ′ is consistent with T ′′, then
T ∗ (T ′ ∪ T ′′) = (T ∗ T ′) ∪ T ′′.

Note that M(S ∪ S′) = M(S) ∩ M(S′), and that M(S ∗ S′) = M(S) | M(S′). (The latter is only true if |
is definability preserving.) By prerequisite, M(T ∗ T ′) ∩ M(T ′′) 6= ∅, so (M(T) | M(T ′)) ∩ M(T ′′) 6= ∅. Let
A := M(T), B := M(T ′), C := M(T ′′). ′′ ⊆′′: Let b ∈ A | (B ∩ C). By prerequisite, there is b′ ∈ (A | B) ∩ C.
Thus d(A, b′) ≥ d(A,B ∩ C) = d(A, b). As b ∈ B, b ∈ A | B, but b ∈ C, too. ′′ ⊇′′: Let b′ ∈ (A | B) ∩ C. Thus
d(A, b′) = d(A,B) ≤ d(A,B ∩ C), so by b′ ∈ B ∩ C b′ ∈ A | (B ∩ C). We conclude M(T) | (M(T ′) ∩M(T ′′)) =
(M(T) |M(T ′)) ∩M(T ′′), thus that T ∗ (T ′ ∪ T ′′) = (T ∗ T ′) ∪ T ′′.

2

4.2.3.2 The symmetric case

We consider the following conditions for a revision function ∗ defined for arbitrary consistent theories on both sides,
and thus a slight extension of the AGM framework.

(∗0) If |= T ↔ S, |= T ′ ↔ S′, then T ∗ T ′ = S ∗ S′,

(∗1) T ∗ T ′ is a consistent, deductively closed theory,

(∗2) T ′ ⊆ T ∗ T ′,

(∗3) If T ∪ T ′ is consistent, then T ∗ T ′ = T ∪ T ′,

166 CHAPTER 4. DISTANCES

(∗S1) Con(T0, T1 ∗ (T0 ∨T2)), Con(T1, T2 ∗ (T1∨T3)), Con(T2, T3 ∗ (T2 ∨T4)) . . .Con(Tk−1, Tk ∗ (Tk−1 ∨T0)) imply
Con(T1, T0 ∗ (Tk ∨ T1)).

The following Example 4.2.3 (1) shows that, in general, a revision operation defined on models via a pseudo-distance
by T ∗ T ′ := Th(M(T) |d M(T ′)) will not satisfy (∗S1), unless we require |d to preserve definability. But this is
not proper to our new condition (∗S1), the same happens to the original AGM postulates, as essentially the same
Example 4.2.3 (2) shows.

To see this, we summarize the AGM postulates (K ∗ 7) and (K ∗ 8) in (∗4) :

(∗4) If T ∗ T ′ is consistent with T ′′, then T ∗ (T ′ ∪ T ′′) = (T ∗ T ′) ∪ T ′′.

(∗4) may fail in the general infinite case without definability preservation.

Example 4.2.3

Consider an infinite propositional language L.

Let X be an infinite set of models, m, m1, m2 be models for L. Arrange the models of L in the real plane s.t. all
x ∈ X have the same distance < 2 (in the real plane) from m, m2 has distance 2 from m, and m1 has distance 3
from m.

Let T, T1, T2 be complete (consistent) theories, T ′ a theory with infinitely many models, M(T) = {m}, M(T1) =
{m1}, M(T2) = {m2}. The two variants diverge now slightly:

(1) M(T ′) = X ∪ {m1}. T, T ′, T2 will be pairwise inconsistent.

(2) M(T ′) = X ∪ {m1,m2}, M(T ′′) = {m1,m2}.

Assume in both cases Th(X) = T ′, so X will not be definable by a theory.

Now for the results:

Then M(T) |M(T ′) = X, but T ∗ T ′ = Th(X) = T ′.

(1) We easily verify Con(T, T2 ∗ (T ∨ T)), Con(T2, T ∗ (T2 ∨ T1)), Con(T, T1 ∗ (T ∨ T)), Con(T1, T ∗ (T1 ∨ T ′)),
Con(T, T ′ ∗ (T ∨ T)), and conclude by Loop (i.e. (∗S1)) Con(T2, T ∗ (T ′ ∨ T2)), which is wrong.

(2) So T ∗ T ′ is consistent with T ′′, and (T ∗ T ′) ∪ T ′′ = T ′′. But T ′ ∪ T ′′ = T ′′, and T ∗ (T ′ ∪ T ′′) = T2 6= T ′′,
contradicting (∗4).

2

We finally have

Proposition 4.2.9

Let L be a propositional language.

(a) A revision operation ∗ is representable by a symmetric consistency and definability preserving pseudo-distance
iff ∗ satisfies (∗0)− (∗2), (∗S1).

(b) A revision operation ∗ is representable by a symmetric consistency and definability preserving, identity respect-
ing pseudo-distance iff ∗ satisfies (∗0)− (∗3), (∗S1).

Proof:

We prove (a) and (b) together.

For the first direction, let Y := {M(T) : T a consistent L − theory}, and define M(T) |M(T ′) := M(T ∗ T ′).

By (∗0), this is well-defined, | is obviously definability preserving, and by (∗1), M(T) |M(T ′) ∈ Y .

We show the properties of Proposition 4.2.2.

4.2. REVISION BY SYMMETRICAL AND NOT NECESSARILY SYMMETRIC DISTANCE 167

(| 1) holds by (∗2), if (∗3) holds, so will (| 2). (| S1) holds by (∗S1) : E.g. (M(T1) | (M(T0)∪M(T2)))∩M(T0) 6= ∅
iff (M(T1) |M(T0∨T2))∩M(T0) 6= ∅ iff (by definition of |) M(T1∗(T0∨T2))∩M(T0) 6= ∅ iff Con(T1 ∗(T0∨T2), T0).
By Proposition 4.2.2, | can be represented by an - if (| 2) holds, identity respecting - symmetric pseudo-distance
d, so M(T ∗ T ′) = M(T) | M(T ′) = M(T) |d M(T ′), and Th(M(T ∗ T ′)) = Th(M(T) |d M(T ′)). As T ∗ T ′ is
deductively closed, T ∗ T ′ = Th(M(T ∗ T ′)).

Conversely, define T ∗ T ′ := Th(M(T) |d M(T ′)). We use Proposition 4.2.2. (∗0) and (∗1) will trivially hold.
By (| 1), (∗2) holds, if (| 2) holds, so will (∗3). As above, we see that (∗S1) holds by (| S1), where now
(M(T1) |d M(T0 ∨ T2)) ∩M(T0) 6= ∅ iff M(T1 ∗ (T0 ∨ T2)) ∩M(T0) 6= ∅ by definability preservation. 2

4.2.3.3 The finite not necessarily symmetric case

Recall that we work here with a language defined by finitely many propositional variables.

For the not necessarily symmetric case, we consider the following conditions for a revision function ∗ defined for
arbitrary consistent theories on both sides.

(∗0) If |= T ↔ S, |= T ′ ↔ S′, then T ∗ T ′ = S ∗ S′,

(∗1) T ∗ T ′ is a consistent, deductively closed theory,

(∗2) T ′ ⊆ T ∗ T ′,

(∗3) If T ∪ T ′ is consistent, then T ∗ T ′ = T ∪ T ′,

(∗A1) (S ∨ S′) ∗ T ` (S ∗ T) ∨ (S′ ∗ T),

(∗A2) If (S, T)R∗(S, T ′), then S ∗ T ` S ∗ (T ∨ T ′),

(∗A3) If (S, T)R∗(S′, T), then S ∗ T ` (S ∨ S′) ∗ T,

(∗A4) If (S, T)R∗(S′, T ′) and Con(S′, T ′), then Con(S, T).

Where the relation R is defined by

(1) If Con(S ∗ (T ∨ T ′), T), then (S, T)R(S, T ′),

(2) If (S ∨ S′) ∗ T 6= S′ ∗ T, then (S, T)R(S′, T),

and, in the identity respecting case, in addition by

(3) If Con(S, T), then (S, T)R(S ′, T ′).

Note that by finiteness, any pseudo-distance is automatically definability preserving. We have

Proposition 4.2.10

Let L be a finite propositional language.

(a) A revision operation ∗ is representable by a consistency preserving pseudo-distance iff ∗ satisfies (∗0) − (∗2),
(∗A1)− (∗A3), where the relation R is defined from the first two cases.

(b) A revision operation ∗ is representable by a consistency preserving, identity respecting pseudo-distance iff ∗
satisfies (∗0)− (∗3), (∗A1)− (∗A4), where the relation R is defined from all three cases.

Proof:

We show (a) and (b) together.

We first note: If T ∗T ′ = Th(M(T) |M(T ′)), then by definability preservation in the finite caseM(T ∗T ′) = M(T) |
M(T ′), so (M(S) |M(T)∪M(T ′))∩M(T) 6= ∅ ⇔ Con(S∗(T∨T ′), T) and (M(S)∪M(S′)) |M(T) 6= M(S′) |M(T)
⇔ (S ∨ S′) ∗ T 6= S′ ∗ T. Thus, the relation R defined in Definition 4.2.8 between sets of models, and the relation
R as just defined between theories correspond.

168 CHAPTER 4. DISTANCES

For the first direction, let Y := {M(T) : T a consistent L − theory}, and define M(T) |M(T ′) := M(T ∗ T ′).

By (∗0), this is well-defined, and by (∗1), M(T) |M(T ′) ∈ Y .

We show the properties of Proposition 4.2.5.

(| 1) holds by (∗2).

(| A1) : We show (M(S) ∪ M(S ′)) | M(T) ⊆ (M(S) | M(T)) ∪ (M(S ′) | M(T)). By (∗A1), (S ∨ S ′) ∗ T `
(S ∗ T)∨ (S′ ∗ T), so (M(S) ∪M(S′)) |M(T) = M(S ∨ S′) |M(T) = M((S ∨ S′) ∗ T) ⊆ M(S ∗ T)∪M(S′ ∗ T) =
(M(S) |M(T)) ∪ (M(S′) |M(T)).

For (| A2) : Let (M(S),M(T))R∗(M(S),M(T ′)), so by the correspondence between the relation R between sets of
models, and the relation R between theories, (S, T)R∗(S, T ′), so by (∗A2) S ∗ T ` S ∗ (T ∨ T ′), so M(S) | M(T)
⊆ M(S) | (M(T) ∪M(T ′)).

(| A3) : Similar, using (∗A3). If ∗ satisfies (∗3) and (∗A4) and R is also generated by case (3), then (| 2) and (| A4)
will hold by similar arguments.

Thus, by Proposition 4.2.5, there is an (identity respecting) pseudo-distance d representing |, M(T ∗T ′) = M(T) |d
M(T ′) holds, so by deductive closure of T ∗ T ′ T ∗ T ′ = Th(M(T) |d M(T ′)).

Conversely, define T ∗T ′ := Th(M(T) |d M(T ′)). We use again Proposition 4.2.5. (∗0) and (∗1) will trivially hold.
The proof of the other properties closely follows the proof in the first direction. 2

4.2.4 There is no finite characterization

We show here that no finite normal characterization of distance defined revision is possible.

We work on the algebraic side. The crucial example (Example 4.2.4), can be chosen arbitrarily big. We take
care that the important revision results are isolated, i.e. that they have no repercussion on other results. For
this purpose, we use the property that closer elements hide those farther away, as was shown already in Example
4.2.1. As a result, we obtain structures which are trivially not distance definable, but changing just one bit of
information makes them distance definable. Consequently, in the limit, the amount of information distinguishing the
representable and the not representable case becomes arbitrarily small, and we need arbitrarily much information
to describe the situation. This is made formal in Proposition 4.2.11.

We will have to modify the general framework described in Section 1.6.2 a little, but the main idea is the same.
First, we recall the positive result.

We have characterized revision representable by distance. The crucial condition was a loop condition, of the type:
if d(a1, b1) ≤ d(a2, b2) ≤ . . . ≤ d(an, bn), then d(a1, b1) ≤ d(an, bn).

We always thought that this condition has, despite its elegance, an ugly aspect, as it more or less directly expresses
- and with arbitrary length - what we want, a loop-free order representing revision. We just did not think hard
enough to find better conditions, the author felt, and tried to find better ones - without success, but with a reason:

There are no better conditions, and we can prove it.

We construct a class of examples, which provides for all n ∈ ω a Y (n) which is not representable by distances, and
for all a1, . . . , an in Y (n) a structure X which is representable by distances and agrees with Y (n) on a1, . . . , an.
We call the distance representable examples ”legal”, and the other ones ”illegal”.

For didactic reasons, we develop the construction from the end. The problem is to construct revision formalisms
which can be transformed by a very minor change from an illegal to a legal case. Thus, the problem is to construct
legal examples sufficiently close to illegal ones, and, for this, we have to define a distance. We will define legal
structures where the crucial property (freedom from loops) can be isolated from the rest of the information by
suitable choice of distances. It will then suffice to change just one bit of information to obtain an illegal example,
which can be transformed back to a legal one by changing again one bit of the important information (not necessarily

4.2. REVISION BY SYMMETRICAL AND NOT NECESSARILY SYMMETRIC DISTANCE 169

the same one).

Example 4.2.4

(Hamster wheels)

Recall the remark that any distance with values in {0}∪ [0.5, 1] automatically respects the ∆−inequality - [x, y] is
the usual (closed) interval. (As J. Arcamone remarked, multiplying with a factor > 0 preserves this property.)

Fix n sufficiently big (> 4 or s.t. the like should do). d will be the (symmetrical) distance to be defined now.

Take {ai : 1 ≤ i ≤ n} ∪ {bi : 1 ≤ i ≤ n} and join them (separately) in two ”wheels”, s.t. a1 is between an and a2

etc.

Let d(ai, aj) := d(bi, bj) := 1 for any i 6= j, and d(x, x) = 0 for all x.

Call bi the opposite of ai, bi−1 and bi+1 (all modulo n) the 1-opposite of ai, and bi−2 and bi+2 the 2-opposite of ai,
etc.

Let d(ai, bj) := 1.9 if bj is the 1-opposite of ai, and d(ai, bj) := 1.1 if bj is the k-opposite of ai for k > 1.

Choose d(ai, bi) ∈ [1.2, 1.8] arbitrarily. We call this the ”choices”.

Look now at A | B (the set of closest elements in B, seen from A). We show that almost all A,B give the same
results, independent of the choices of d(ai, bi).

The case A ∩ B 6= ∅ is trivial.

If there is some ai ∈ A, and some aj ∈ B, then A | B will contain all aj ∈ B. Likewise for bi, bj . In these cases, the
distance 1 makes all other cases invisible.

Let now A = {ai : i ∈ I}, and B = {bj : j ∈ J}. (A = {bi} etc. is symmetrical.)

Case 1: A = {ai}. Then in all choices the k-opposites, k > 1, have precedence over the opposites over the
1-opposites, the result does not depend on the choices.

Case 2: A contains at least 3 ai. Assume that B contains at least 2 bj . If not, we are in Case 1. In this case, one
bj is k-opposite, k > 1, and this decides, independent from the choices of the d(ai, bi).

Case 3: A = {ai, aj}. By Cases 1 and 2 and symmetry, the only interesting case is where B = {bl, bm}. If j 6= i+1,
then bl or bm are k-opposites, k > 1, and the outcome is the same for all choices.

So, finally, all revision information which allows to differentiate between the different choices is of the type
{ai, ai+1} | {bi, bi+1} - and they do it, e.g. {ai, ai+1} | {bi, bi+1} = {bi} iff d(ai, bi) < d(ai+1, bi+1).

But, to see whether we have a legal situation, e.g. of the type d(ai, bi) = d(aj , bj) for all i,j, or an illegal one of
the type d(a1, b1) < d(a2, b2) < . . . < d(an, bn) < d(a1, b1), which cannot be represented by a distance, we need the
whole chain of n pieces of information. This is easy, just construct a legal case for any smaller set of information.

More precisely, define a revision operator | as above for all but the crucial sets. The construction indicates how to
define a distance which generates these results. For the illegal case, add now a loop, by working with the crucial
cases. This operator cannot be generated by a distance. But omitting one step of the loop results in a structure
which is distance definable. As we took care to isolate the crucial cases from the rest, the other results stay
unchanged. Consequently, all sufficiently small formulas (below the upper bound) are valid (or not) in both cases.

We make this formal in the following Proposition 4.2.11.

2

We now have:

Proposition 4.2.11

No small (finite) characterization of distance representable revision is possible.

170 CHAPTER 4. DISTANCES

Discussion and proof:

This case is slightly complicated by the fact that we do not only speak about elements, but also about sets, but
those that count are small, they have exactly 2 elements.

Let φ now be a characterization of distance representable revision structures with a purely universal formula
φ = ∀x1, . . . , xkφ

′(x1, . . . , xk), where φ contains set expressions (involving ⊆, ∩, ∪, -, and ∈), as well as the
function |, as well as perhaps the constants U, ∅, and φ′ is quantifier free.

We consider now the number of ”relevant” elements involved in deciding validity of the formula in legal and illegal
examples. Consider first the simple case where φ contains no nested | operators, say n such operators. Consider the
Hamster wheelW of sizem := 4∗n+1.By hypothesis, for some parameters ci (sets or elements)W |= ¬φ′[c1, . . . , ck].
Let a1, . . . , am−1 be the elements of crucial (i.e. 2-element) arguments of |, appearing in φ′[c1, . . . , ck] (where some
ai, aj may be equal), and take the legal structure L, which agrees with W on all a1, . . . , am−1, even for 2-element
arguments of |, (but differs on am). As all set operators evaluate the same way in W and L, as well as all | operators
where at least one argument has cardinality other than 2, and L agrees with W also on the a1, . . . , am−1 elements,
L |= ¬φ[c1, . . . , ck], a contradiction. Consider now the case where there are nested |′ s, up to depth s, and assume
each level has at most r | operators. Consider now e.g. level 2 | operators. Their arguments may depend on the
result of level 1 | operators, e.g. in the form A | (B − (C | D)). Thus, again 4 ∗ r new elements may be involved,
but, if the level 1 | evaluate in both structures the same way, there are no more involved. (Otherwise, this might
depend on the (4 ∗ r)2 possible outcomes of the level 1 | operators, we would have to consider 4 ∗ r ∗ (4 ∗ r)2 cases.)
Thus, just as in the flat case, we have to consider 4∗r∗s elements, which might take a crucial role in the evaluation
of φ′[c1, . . . , ck]. Let then m := 4 ∗ r ∗ s+1, and continue as in the flat case. By induction, we see that the outcome
of the level 1 | operators is the same in W and L, and so on to the highest level.

Note that the upper bound m depends on φ, and not on W or the ci - though the number of elements really
involved may be smaller and depend on W and the ci. Thus, given φ, we find uniform m, and then choose W, and
find ci, and then choose L (the actual L depends on the ci, but it is one of the L(W)).

Now, we are finished: W |= ¬φ′[c1, . . . , ck], so L |= ¬φ′[c1, . . . , ck], so L |= ¬φ, i.e. L |= ¬∀x1, . . . , xkφ
′(x1, . . . , xk),

a contradiction. 2

Analysis of the example:

The problem is that we cannot always see directly by revision that, if d(a, b) < d(c, e) < d(f, g), then d(a, b) <
d(f, g). (Other distances might get in our way.) If we could, we could have done with a rule of length 3, expressing
transitivity, grouping long paths together. Revision is too coarse, too blind, if you like.

But also a sufficiently rich domain could have helped: If we had enough points, sufficiently far from each other, we
could e.g. see directly by revision that d(a, b) = d(a′, b′), and d(a′, b′) < d(f, g) for suitable a′, b′. This amounts to
having ”mirrors” which reflect the situation, and which are far enough not to intervene with close elements.

We may also say that the domain lacks coherence, so changes in one place - from a counterexample to an example
- do not propagate to other places, and we have arbitrarily many degrees of freedom. Having enough elements,
sufficiently distant, provides the ”glue” of coherence.

Real distances, the structure we want to represent with, however, being more abstract, allow more substitution,
and force thus more coherence. This difference in coherence is perhaps the deeper reason why we need complicated
conditions for representation.

4.2. REVISION BY SYMMETRICAL AND NOT NECESSARILY SYMMETRIC DISTANCE 171

4.2.5 The limit case

4.2.5.1 Introduction

Analogous to the case of ranked structures, we show how to characterize the limit variant of distance based revision,
and, perhaps most importantly, show that, as long as we consider revisions of the form φ ∗ ψ, the limit version
is equivalent to the minimal version. The technique is the same as for ranked preferential structures. We first
indicate how to reflect the limit case down to the minimal case using pairs of elements, and then to beam the
resulting structure up to the limit and infinite case. We then show that the limit version for formulas has the
logical properties of the minimal case, thus a limit distance structure is equivalent to a minimal distance structure
- with, perhaps, a different distance. Essential are, here again, closure properties of the domain.

Recall that the limit version frees us from the necessity of the existence of closest elements, i.e. essentially from
the absence of infinite chains of ever closer elements.

We remind the reader of the general remarks on the proof strategy for the limit case of ranked structures in Section
3.10.3.1.

In the revision case, we have to reflect down to the finite case on the left, too. This is not necessary in the
preferential case, as the ”point of reference” is an ”imaginary” point outside the structure (which, in addition, does
not change). The essential point is now: Given two sets X and Y, we are interested in systems of points in Y,
which are closer and closer to X. So, on the right, we compare d(X, y) with d(X, y′), but, X may itself be infinite
and getting closer and closer to Y without a minimum. Now, if d(X, y) < d(X, y′), then there is a ”witness” x ∈ X
which shows this, i.e. ∃x ∈ X s.t. ∀x′ ∈ X d(x, y) < d(x′, y′) :

d(X, y) < d(X, y′) iff there is x ∈ X s.t. ∀x′ ∈ X d(x, y) < d(x′, y′) - such x will be called a witness for
d(X, y) < d(X, y′)

So, we are again down to 4 elements, x, y, x′, y′. Thus, considering sets of the type {x, x′} on the left, {y, y′} on
the right, we can determine the distance - if there is one, and there will be one, given the necessary properties for
the finite case - which will do the job in the limit (infinite) case, too. But, as long as we consider finite sets, we
can use the hypothesis A | B 6= ∅, if A,B 6= ∅, and thus the results in Sections 4.2.2 and 4.2.3. So, it suffices to
express the conditions for the finite case, and to make sure that they cooperate with the infinite case. This is the
central condition which allows reflection down to the finite case.

Thus, we will consider systems Λ(X,Y), where

Λ(X,Y) ⊆ P(Y)

Given a distance d, such Λ(X,Y) will be ∅ 6= {y ∈ Y : d(X, y) ≤ r} for some r (alternatively: d(X, y) < r), or, more
generally, for X which get themselves ever closer, ∅ 6= {y ∈ Y : ∃x ∈ X.d(x, y) ≤ r} (< r respectively). Note that
for X,Y 6= ∅ any A ∈ Λ(X,Y) is non-empty, too, as we do not choose r too small, and that for A,A′ ∈ Λ(X,Y)
A ⊆ A′ or A′ ⊆ A. The logical side is then defined by: φ ∈ T ∗ T ′ iff there is A ∈ Λ(M(T),M(T ′)) s.t. A |= φ. By
compactness and inclusion, T ∗ T ′ is consistent (if T and T ′ are) and deductively closed.

We leave it to the reader to fill in the details, and, after a short remark on the logics involved, concentrate on the
fact that the new definition reduces to the minimal version, as long as we limit ourselves to formula defined sets.

4.2.5.2 Remarks on the logics of the revision limit case

This case is particularly complicated, and we just give a rough sketch how to treat it. We combine the ideas about
the algebraic situation of the limit revision case, and those from the logics of the ranked limit case. More precisely,
we first restrict our attention to theories with two models on the right (as above), then look at the witnesses
on the left (as in the algebraic limit case of revision), and thus construct the distance. Sufficiently strong, but
straightforward, conditions on both sides will assure that the constructed distance is compatibel with the results
for theories with infinitely many models.

172 CHAPTER 4. DISTANCES

4.2.5.3 Equivalence of the minimal and the limit case for formulas

We show here that the logical properties of the limit variant for formulas satisfy the conditions for representability
in the much simpler minimal variant. The following proposition is thus a trivialization result.

Proposition 4.2.12

The limit variant of a symmetrical distance defined revision is equivalent to the minimal variant, as long as we
consider formulas (and not full theories) on the left.

Proof:

We show that the conditions of Proposition 4.2.9 are satisfied for the distance defined limit version. Consequently,
the limit version is equivalent to the minimal version (with, perhaps, a different distance).

The non-trivial condition to show is Loop:

Con(φ0, φ1 ∗ (φ0 ∨ φ2)), Con(φ1, φ2 ∗ (φ1 ∨ φ3)), Con(φ2, φ3 ∗ (φ2 ∨ φ4)), . . . , Con(φk−2, φk−1 ∗ (φk−2 ∨ φk)),
Con(φk−1, φk ∗ (φk−1 ∨ φ0)) imply Con(φ1, φ0 ∗ (φk ∨ φ1)).

First, we have M(φ) ∩ A 6= ∅ iff Con(φ, Th(A)) : ¬Con(T, T ′) → M(T) ∩M(T ′) = ∅, thus ¬Con(φ, Th(A)) →
M(φ) ∩M(Th(A)) = ∅ → M(φ) ∩ A = ∅. Conversely, A ∩ M(φ) = ∅ → ∀a ∈ A.a |= ¬φ → ¬φ ∈ Th(A) →
¬Con(Th(A), φ). (Usually, A ∩ B = ∅ → ¬Con(Th(A), Th(B)) is false, we use here the fact that φ is a formula.)

Second, if a logic is defined with a nested system X of model sets, i.e. T ∼| φ iff there is X ∈ X s.t. X |= φ, then

Con(T ′, T) iff for all X ∈ X Con(T ′, Th(X)).

Consequently, Con(φ, φ′ ∗ (φ ∨ φ′′)) iff ∀A ∈ Λ(M(φ′),M(φ ∨ φ′′)).Con(φ, Th(A)) iff ∀A ∈ Λ(M(φ′),M(φ ∨
φ′′)).M(φ) ∩A 6= ∅.

But, if Λ is distance defined, this is equivalent to: ∀x′ ∈ M(φ′)∀y′ ∈ M(φ ∨ φ′′)∃x ∈ M(φ′)∃y ∈ M(φ).d(x, y) ≤
d(x′, y′).

We now show the loop condition using the reformulated properties.

Let then xk ∈ M(φk) ∪M(φ1), x0 ∈ M(φ0). We have to find x′1 ∈ M(φ1) x
′
0 ∈ M(φ0) s.t. d(x′0, x

′
1) ≤ d(x0, xk).

If xk ∈ M(φ1), we are done. So suppose xk ∈ M(φk). By Con(φk−1, φk ∗ (φk−1 ∨ φ0)), there are x′k ∈ M(φk)
and xk−1 ∈ M(φk−1) s.t. d(xk−1, x

′
k) ≤ d(x0, xk). By Con(φk−2, φk−1 ∗ (φk−2 ∨ φk)), there are x′k−1 ∈ M(φk−1)

and xk−2 ∈ M(φk−2) s.t. d(xk−2, x
′
k−1) ≤ d(xk−1, x

′
k), etc., until, finally, by Con(φ0, φ1 ∗ (φ0 ∨ φ2)), there are

x′0 ∈ M(φ0), x
′
1 ∈ M(φ1) s.t. d(x′0, x

′
1) ≤ d(x1, x

′
2), and we have d(x′0, x

′
1) ≤ d(x1, x

′
2) ≤ . . .≤ d(xk−2, x

′
k−1) ≤

d(xk−1, x
′
k) ≤ d(x0, xk). 2

4.3 Local and global metrics for the semantics of counterfactuals

4.3.1 Introduction

We have seen above that the ”trees can hide the forest”, seeing only closest elements can have the consequence that
there is no finite characterization, provided the universe is not sufficiently rich to allow seeing hidden elements in a
mirror. We shall see now that such properties can also have positive effects, in the sense that they enable a uniform
metric for counterfactual conditionals - provided we accept copies of models. The trick is to hide everything which
might disturb the picture behind closer elements, and as we see only the closest ones, they disappear from sight.

Overview:

4.3. LOCAL AND GLOBAL METRICS FOR THE SEMANTICS OF COUNTERFACTUALS 173

After introductory definitions, we formulate the main result (Proposition 4.3.1), and give an outline of its proof.
We then give the formal proof via a number of auxiliary Lemmata (Lemma 4.3.2, 4.3.3, 4.3.4). We append a small
new result (Proposition 4.3.5), as corollary, combining Proposition 4.3.1 with Proposition 4.2.12, to show that the
limit approach for counterfactuals is equivalent with the minimal approach.

General Perspective:

Our main result (Proposition 4.3.1) shows that the language of counterfactual conditionals cannot distinguish
between models in which the distance (or closeness) of worlds is defined by several metrics - in the extreme case by
a distinct metric for each world - and models where distance is defined by a single global metric. More precisely,
we show that for each model of the first kind, one can construct a model of the second kind in which exactly the
same formulas of the language of counterfactual conditionals hold. The proof makes essential use of the fact that,
by the very definition of the truth of the conditional φ => ψ in a single world in terms of ”closest worlds where φ
holds”, the closest φ−worlds ”fence off” all more distant worlds where φ may also hold - all we ”see” is the closest,
inner layer of φ−worlds surrounding the given world.

It may be argued that for at least some models the relations should be left totally independent of each other, for
”closeness” as seen from the standpoint of one possible world need have little in common with closeness as seen
from another world. Now, in such a model, there will not exist any common (or global) metric d that determines
it in the sense that for all worlds x,y,a in the model, x ≺a y iff d(a, x) < d(a, y). For whereas the relations of such
a model are quite independent of each other, the existence of such a global d creates connections. For example, it
forces a ≺b c whenever b ≺a c and a ≺c b, since d(a, b) < d(a, c) = d(c, a) < d(c, b) implies by the transitivity of <
over the reals and symmetry of a metric that d(b, a) = d(a, b) < d(c, b) = d(b, c).

4.3.1.1 Basic definitions

Definition 4.3.1

Let L be a propositional language for counterfactual conditionals, with primitive connectives ¬, ∧, =>, and let W
be a fixed set of ”possible worlds”, such that each a ∈ W is associated with a classical model ma for L (not all
models for L need occur, and some may occur more than once).

For each a ∈ W let a relation ≺a over W be given. Then, W :=< W, {≺a: a ∈ W} > defines a model for
counterfactual conditionals as follows (by simultaneous induction for a |=W φ, [[φ]] , Uφ(a) on the complexity of φ).
For all a ∈ W, φ, ψ ∈ L:

a) When φ is a propositional variable, a |=W φ :↔ ma |= φ (remember: ma is a classical model)

a |=W ¬φ :↔ a 6|=W φ

a |=W φ ∧ ψ :↔ a |=W φ and a |=W ψ

a |=W φ => ψ :↔ Uφ(a) ⊆ [[ψ]]

b) [[φ]] := {a ∈W : a |=W φ}

c) Uφ(a) := {x ∈ [[φ]] : ¬∃y ∈ [[φ]] .y ≺a x} (thus, Uφ(a) is the set of φ−worlds closest to a)

d) Finally, we define as usual: W |= φ :↔ [[φ]] = W

Strictly speaking, we should index [[.]] and U by W , but this will be done only when needed for clarity.

Definition 4.3.2

We say that ≺a is determined by a metric da on W, iff for all x, y ∈W x ≺a y ↔ da(a, x) < da(a, y). We say that
all ≺a for a ∈W are determined by a common metric d iff for all a, x, y ∈ W, x ≺a y ↔ d(a, x) < d(a, y).

174 CHAPTER 4. DISTANCES

4.3.2 The results

We state right away the main result of Section 4.3.

Proposition 4.3.1

Let W =< W, {≺a: a ∈ W} > be a model for counterfactual conditionals such that each ≺a is determined by a
metric da on W. Then there is a model X =< X, {≺x: x ∈ X} > for counterfactuals and a metric d on X such
that:

(1) W and X validate exactly the same formulae of the language of counterfactual conditionals, indeed:

For all a ∈ W there is xa ∈ X such that for all φ ∈ L a |=W φ iff xa |=X φ.

and

For all x ∈ X there is ax ∈W such that for all φ ∈ L x |=X φ iff ax |=W φ.

(2) Each ≺x is determined by the common metric d.

Remark: X will be ranked and respect 0, as all ≺x are determined by a metric.

The construction used to prove Proposition 4.3.1 is somewhat complex. For this reason, we first give an outline
sketch, and then the formal details.

4.3.2.1 Outline of the construction for Proposition 4.3.1

Given a model with set W of worlds and relations ≺a, each of which is determined by a metric da, we take the
worlds in W and put them ”very far from each other”. For each world a ∈ W, we make copies of all the other
worlds in W, and put those copies in a cluster relatively close to a, ordered among themselves by the relation ≺a .
Each such cluster is like a galaxy, with the separate galaxies far apart. This construction is iterated ω many times.
Thus if b is in the cluster around a, we make fresh copies of all the other worlds and subcluster them tightly around
b, internally ordered by the relation ≺b and all very close to b compared to their distance from anything outside
the subcluster. And so on, ω many times.

To give this rough idea precise content, we shall take the elements of the metric space to be finite sequences of
elements from W - for simplicity of construction, all beginning with some fixed element ∗ 6∈ W (Definition 4.3.4).
The propositional properties of such a sequence will be inherited from its last element (see ”Construction”, (d)).
The distance between two sequences is measured by ”climbing” from the common intial segment to both ends and
adding up the distances encountered on the way (Definition 4.3.4). Those latter distances depend on the position in
the sequence - the later the position, the smaller the distance - but will preserve the relative sizes (′′Construction′′,
(b)).

More precisely, as we are interested only in the comparison of distances, we define two metrics to be equivalent,
d ∼ d′, iff the resulting relations are the same (see Definition 4.3.3). Lemma 4.3.2, the proof of which is a
straightforward construction from elementary calculus, says that we can choose the range of a metric almost ad
libitum: For any metric d and any constant c > 0, there is an equivalent metric d′ such that d′(x, x′) = 0 or
3
4c ≤ d

′(x, x′) ≤ c for all x,x’. We use this result to make distances ever smaller along the sequences - but not too
small - preserving the relative arrangement of worlds.

The main consequences of this construction are:

(1) the set U(s) of sequences closest to a sequence s consists of s and its continuations by one further element
(Lemma 4.3.4, (a)), and:

(2) U(s) is arranged in the same way as the old universe was, as seen from the last element of s (Lemma 4.3.4,
(b)).

It is then straightforward to show that s (in the new universe) and its last element (in the old universe) satisfy
exactly the same formulae in the language of counterfactual conditionals (Lemma 4.3.4, (c)).

4.3. LOCAL AND GLOBAL METRICS FOR THE SEMANTICS OF COUNTERFACTUALS 175

4.3.2.2 Detailed proof of Proposition 4.3.1

Definition 4.3.3

Two metrics d, d′ : XxX → < are called equivalent (d ∼ d′) iff d(a, b) < d(c, e) ↔ d′(a, b) < d′(c, e) for all
a, b, c, e ∈ X.

Lemma 4.3.2

For each c > 0 and metric d : XxX → <, there is d′ ∼ d such that range(d′) ⊆ {0}∪ [c ∗ 3
4 , c]. (For readability, we

use ∗ for ordinary multiplication.)

Proof (elementary, but tedious):

We first show the following:

(a) Let f : [0,∞) ⊆ < → < be such that for all a,b,c

1) f(a) ≥ 0

2) f is monotonic, i.e. a ≤ b→ f(a) ≤ f(b)

3) f is not concave, i.e. if a < b < c, then f(b)−f(a)
b−a ≥ f(c)−f(b)

c−b .

Then a ≤ b+ c → f(a) ≤ f(b) + f(c).

Proof of (a):

By a ≤ b+c and monotony, f(a) ≤ f(b+c), we show f(b+c) ≤ f(b)+f(c). If b = 0, then f(b+c) = f(c) ≤ f(b)+f(c)

by f(x) ≥ 0. So assume b > 0. If b = c, then f(b+c)−f(b)
b

≤ f(b)−f(0)
b

, so f(b + c) ≤ 2 ∗ f(b) − f(0) ≤ 2 ∗ f(b).

So assume without loss of generality 0 < b < c. Then f(c+b)−f(c)
b

≤ f(c)−f(b)
c−b ≤ f(b)−f(0)

b
, so f(c + b) − f(c) ≤

f(b)− f(0) ≤ f(b) .

(b) If f satisfies the conditions of (a), and f(x) = 0 iff x = 0, and d : XxX → < is a metric, then so is
f © d : XxX → <.

Proof of (b):

1) f © d(x, y) = 0 ↔ d(x, y) = 0 ↔ x = y.

2) d(x, z) ≤ d(x, y) + d(y, z) implies by the above f © d(x, z) ≤ f © d(x, y) + f © d(y, z).

(c) If f satisfies the conditions of (b), and is in addition strictly monotone, i.e. a < b → f(a) < f(b), and
d : XxX → < is a metric, then f © d is a metric equivalent to d. (Obvious)

The following functions satisfy the conditions of (b):

1) for c > 0 let fc(x) := c ∗ x 2) for c ≥ 0, let gc(x) :=
{

0 iff x = 0
x+ c iff x > 0

3) Let h(x) :=

{
x iff 0 ≤ x ≤ 1
2 - 1

x
iff 1 < x.

So d′ defined by d′ := fc© f 1
8
© g6© h© d will be a metric as desired. 2

Definition 4.3.4

(a) Let, for any finite sequence s =< s0 . . . sn >, l(s) be its length, and s∞ its last element. Let W be any set, and
assume without loss of generality ∅ 6∈W (if not, take e.g. W instead of ∅).

Consider X := {s: s =< s0 . . . sn > is a finite sequence in W ∪ {∅} such that 1.) 2 ≤ l(s), 2.) s0 = ∅, 3.) for

176 CHAPTER 4. DISTANCES

0 < i < l(s) si ∈ W, 4.) s contains no direct repetitions, i.e. for 0 < i < l(s)− 1 si 6= si+1 - but e.g. si = si+2 is
permitted}

We use the following notation: For s, t ∈ X, let the root of s and t be the maximal common initial segment of s
and t, denoted s ↑ t. By condition 2.) above, s ↑ t will contain at least ∅. For s ∈ X, a ∈ W let < s; a > be the
sequence resulting from appending a to s. For i ≤ l(s), let sdi :=< s0 . . . si−1 > .

(b) For each s ∈ X let a metric ds : WxW → <, and for s =< ∅ > let a metric ds : (W ∪ {∅})x(W ∪ {∅})→ < be
defined. For s ∈ X and 0 ≤ i < l(s)− 1 let δ(s, i) := dsdi+1(si, si+1).

(Note: As direct repetitions are not allowed, δ(s, i) > 0.)

(c) We define d : XxX → < by d(s, t) :=




0 iff s = t
Σ{δ(s, i) : l(s ↑ t)− 1 ≤ i < l(s)− 1} + otherwise
Σ{δ(t, i) : l(s ↑ t)− 1 ≤ i < l(t)− 1}

(If s is an initial segment of t, the first sum is 0, etc).

Lemma 4.3.3

d as just defined in (c) is a metric on X.

Proof:

1. d(s, t) ≥ 0

2. d(s, s) = 0

3. d(s, t) = d(t, s)

4. d(s, t) > 0 for s 6= t are all trivial (note that we do not allow direct repetitions).

5. d(s, u) ≤ d(s, t) + d(t, u): There is not much to show: A look at the different cases l(s ↑ t) < or = or > l(s ↑ u)
will give the result. 2

The construction of the metric space X ′:

Recall that the original structure W was given by W and a metric da for each a ∈W.

(a) Define X as in Definition 4.3.4 (a) from W.

(b) Choose by Lemma 4.3.2 for each s ∈ X a metric ds on W such that

1. 3
4 ∗

1
2l(s) ≤ ds(x, y) ≤

1
2l(s) for all x, y ∈ W , x 6= y

2. ds is equivalent to ds∞ .

Moreover, for s =< ∅ >, define d<∅> : (W ∪ {∅})x(W ∪ {∅})→ < by d<∅>(x, y) :=
{

0 iff x = y
1 otherwise

(c) Define a metric d on X as in Definition 4.3.4 (c) from the individual

metrics ds on W (or W ∪ {∅}), and let u ≺s t :↔ d(s, u) < d(s, t). For s ∈ X, let U(s) := {< s;x >: x ∈ W}∪ {s}.

(d) Finally, construct a model for counterfactuals from X : Set X :=< X, {≺s: s ∈ X} > and define classical
validity at s as at s∞: s |=X φ :↔ s∞ |=W φ for classical φ.

Lemma 4.3.4

4.3. LOCAL AND GLOBAL METRICS FOR THE SEMANTICS OF COUNTERFACTUALS 177

(a) U(s) contains the elements closest to s, more precisely: for t ∈ U(s) and u ∈ X − U(s) d(s, t) < d(s, u).

(b) For < s; a >,< s; a′ >∈ U(s), we have < s; a >≺s< s; a′ > ↔ a ≺s∞ a′

(c) W and X are logically equivalent in the language L of counterfactuals: for all s ∈ X, φ ∈ L s |=X φ ↔
s∞ |=W φ.

Proof:

(a) Let n := l(s). Note that for all t ∈ U(s) d(s, t) ≤ 1
2n . Let u 6∈ U(s).

Case 1: s is an initial segment of u, with l(u) > l(s) + 1: d(u, s) ≥ dudn(un−1, un) + dudn+1(un, un+1) ≥
3
4 ∗

1
2n +

3
4 ∗

1
2n+1 = 9

4 ∗
1

2n+1 >
1
2n .

Case 2: u is an initial segment of s: d(u, s) ≥ d(sdn− 1, s) = dsdn−1(sn−2, sn−1) ≥
3
4 ∗

1
2n−1 >

1
2n .

Case 3: Neither s nor u is an initial segment of the other: Then d(u, s) > d(sdn− 1, s).

(b) < s; a >≺s< s; a′ > :↔ d(s,< s; a >) < d(s,< s; a′ >) ↔ ds(s∞, a) < ds(s∞, a
′) ↔ ds∞(s∞, a) < ds∞(s∞, a

′)
↔ a ≺s∞ a′.

(c) We show by a straightforward simultaneous induction on the complexity of φ:

(1) for all s ∈ X, φ ∈ L, we have s |=X φ ↔ s∞ |=W φ

(2) If s 6|=X φ, then UX ,φ(s) = {< s; a >: a ∈ UW,φ(s∞)}.

(1) φ is a propositional variable: trivial by prerequisite. The cases φ = ¬ψ and φ = ψ ∧ σ are straightforward.
Consider now φ = ψ => σ, then s |=X ψ => σ :↔ UX ,ψ(s) ⊆ [[σ]]X and s∞ |=W ψ => σ :↔ UW,ψ(s∞) ⊆ [[σ]]W .

Case 1: s |=X ψ. Then by induction hypothesis s∞ |=W ψ, and s |=X ψ => σ iff s |=X σ iff s∞ |=W σ iff
s∞ |=W ψ => σ.

Case 2: s 6|=X ψ: ′′ →′′: Let t′ ∈ UW,ψ(s∞) → (by induction hypothesis) < s; t′ >∈ UX ,ψ(s) → (by prerequisite)
< s; t′ >|=X σ → (by induction hypothesis) t′ |=W σ. ′′ ←′′: Let t ∈ UX ,ψ(s) → (by induction hypothesis)
t =< s; t′ > and t′ ∈ UW,ψ(s∞) → (by prerequisite) t′ |=W σ → (by induction hypothesis) t |=X σ.

(2) Let t ∈ UX ,φ(s). We first show t ∈ U(s): Note that < s; t∞ >|=X φ by (1), and if t 6∈ U(s), then < s; t∞ >≺s t
by (a). So t =< s; a > for some a ∈ W. As t |=X φ, by (1) a |=W φ, so a ∈ [[φ]]W . If a 6∈ UW,φ(s∞), there must be
some a′ ≺s∞ a such that a′ |=W φ, but then < s; a′ >|=X φ by (1), and < s; a′ >≺s< s; a > by

(b).

Conversely, let a ∈ UW,φ(s∞), then < s; a >∈ U(s), < s; a >|=X φ by (1). Suppose now that there is t ≺s< s; a >,
t |=X φ, then by (1) and (a), t =< s; a′ > for some a′ ∈W, and a′ |=W φ, but then a′ ≺s∞ a by (b), contradiction.

2 (Lemma 4.3.4)

Clearly by construction X is a set and the ≺x are ranked and respect 0 for all x ∈ X. By Lemma 4.3.3, d is a metric
on X, and by Lemma 4.3.4,W and X validate exactly the same formulae of conditional logic. So Proposition 4.3.1
is proven.

2 (Proposition 4.3.1)

4.3.2.3 The limit variant

We conclude this Section on Counterfactuals with the following result: It might well be that Con(φ), but that,
seen from m, there is no nearest φ−model. In this case, the standard definition of counterfactuals trivializes to
m |= φ > ⊥.

178 CHAPTER 4. DISTANCES

There is an obvious way out: We do not consider the closest φ−worlds, but say that m |= φ > ψ iff ”from a certain
distance onward, the closer we get to m in the set of φ−models, ψ will always hold”. This is just the analogue of
the limit variant for ranked preferential models, and we will call it the limit variant of the counterfactual semantics.

We now have the following nice result:

Proposition 4.3.5

The limit variant of the counterfactual semantics is equivalent to the minimal variant - provided we start with one
copy each, and admit in the result many copies, and we do not have too many models to put into the reals.

Proof:

(Sketch) Start with the original structure and the limit approach. Fix m. Then the result on the limit variant for
ranked structures applies (we consider formulas on the left), so, for this m, there is a minimal variant equivalent
to the limit one. Do this for all m. Finally glue the resulting structures together to have one metric, with the
technique described above. The final construction will have the same logical properties as the original one. 2

(We do not know whether we can immediately create an equivalent minimal variant without using additional copies.
This seems to be an open problem.)

Chapter 5

Definability preservation

5.1 Introduction

5.1.1 The problem

Many representation results for nonmonotonic and similar logics are valid only under certain restrictions. E.g.
theories have to be equivalent to single formulas, or certain operators on the model sets have to preserve definability,
i.e. applying the operator to the set of models of a theory has to result in the set of models of another theory.
We address here this problem, show how to solve it, but will also show that, sometimes, such solutions will be
necessarily different from normal characterizations - they have to speak about arbitrary sets of conditions.

The results presented in Sections 3.4 and 4.2.3 (and in [FL94], [Sch92], [Sch96-1], [Sch00-1], and [LMS01]) were
all under the caveat that the operators µ and | were definability preserving: If M(T) is the set of (propositional)
models of a theory T, then µ(M(T)) has to be again exactly the set of models of some theory T ′. Likewise, for
model sets M(S) and M(T) M(S) | M(T) has to be again exactly the set of models of some theory T ′. In the
finite case, this will of course trivially hold, but not necessarily in the infinite case. The language of logic is too
coarse to describe all possible operators. Counterexamples to the usual characterizations when definability is not
preserved were given in [Sch92] and [LMS01], and are repeated here (see Example 5.1.2 below and Example 4.2.3).

Recall that a function f : P(ML)→ P(ML) is called definability preserving iff f(M(T)) = M(T ′) for some theory
T ′. In the finite case, this condition holds trivially, as all sets of models are definable by a theory (even a formula).
In the infinite case, this need not be the case, as the following, perhaps simplest, example shows:

Example 5.1.1

Let m be any L−model of an infinite language L. Then ML − {m} is not definable, as shown in Fact 1.6.2. Thus,

if we define f by f(ML) := ML−{m}, and f(X) := X for any other set X
⊂

6= ML, f is not definability preserving. 2

The problem is now, that, when we translate f back into logic, by defining F (T) := Th(f(M(T))), we do not ”see”
the missing m any more - we just see identity. Of course, there cannot be many such exceptions from identity -
otherwise we would see them again on the logics side. Such exceptions can blur the picture, in the sense that a
structure might behave well ”grosso modo”, just as any definability preserving structure does, but still there might
be ”small” sets of exceptions. Yet, in cardinality, such ”small” sets might be arbitrarily big - this just depends on
the size of the language.

Finally, a remark on history and terminology: In [KLM90], definability preservation is called ”fullness”. The
author first described the problem in the context of preferential structures in his [Sch92], and it reappeared in the

179

180 CHAPTER 5. DEFINABILITY PRESERVATION

joint paper [LMS01] on revision. Yet, in the author’s opinion, the importance of definability preservation has been
largely neglected so far, and the present Chapter (and the related paper [Sch00-2]) are, to his knowledge, the first
more systematic treatments of the problem.

We will conclude this introduction in Section 5.1.4 with a remark on definability preservation in modal logic, which
shows that local evaluation can circumvent the problem.

We now describe shortly the positive results of Chapter 5, and then turn to the negative one.

The positive results of Chapter 5:

We characterize in this Chapter not necessarily definability preserving operators, first for preferential structures,
then for distance based revision. The basic idea is the same in both cases. We approximate a given choice function
or set operator up to a (logically) small set of exceptions. Suppose that T ′ = Th(µ(M(T))), the set of formulas
valid in the minimal models of T. If µ is definability preserving, then M(T ′) = µ(M(T)), and there is no model m
of T ′ s.t. there is some model m′ of T with m′ ≺ m. If µ is not definability preserving, there might be a model m
of T ′, not in µ(M(T)) and thus a model m′ of T s.t. m′ ≺ m. But there may not be many such models m, many in
the sense that there is φ s.t. T ′ 6` φ, T ′ 6` ¬φ, and M(T ∪ {φ}) consists of such models - otherwise µ(M(T)) |= ¬φ.
In this sense, the set of such exceptional models is small. Small sets of exceptions can thus be tolerated, they
correspond to the coarseness of the underlying language, which cannot describe all sets of models.

We make this formal, and show two new representation results, one for smooth preferential structures, the other
for distance based revision, valid in the absence of such preservation. The solution is, roughly, to admit small
sets of exceptions to the usual representation results. We also give a new proof to the case of general preferential
structures without definability preservation, already solved in [Sch00-2], following now the same strategy as in the
other cases, i.e. re-using central parts of the proofs for the definability preserving case. The technique is quite
similar in the cases we describe, so it can certainly be re-applied in other situations, too.

It is in a way ironical that we find formal laws of representation with small sets of exceptions in a domain where
we formalize reasoning with and about exceptions.

We now give the reader a concrete example of what can happen to the laws we have investigated so far, when
definability preservation is not true any more.

The strategy to patch our previews results will be described in Section 5.1.2.

Example 5.1.2

(This example was shown in [Sch92].)

The example shows that the old condition (PR) may fail in models which are not definability preserving.

Let v(L) := {pi : i ∈ ω}, n, n′ ∈ ML be defined by n |= {pi : i ∈ ω}, n′ |= {¬p0} ∪ {pi : 0 < i < ω}. (1) Let
M :=< ML,≺> where only n ≺ n′, i.e. just two models are comparable. Let µ := µM, and ∼| be defined as usual
by µ.

Set T := ∅, T ′ := {pi : 0 < i < ω}. We have MT = ML, µ(MT) = ML − {n
′}, MT ′ = {n, n′}, µ(MT ′) = {n}.

So by the result of Example 5.1.1, M is not dp, and, furthermore, T = T , T ′ = {pi : i < ω}, so p0 ∈ T ∪ T ′, but

T ∪ T ′ = T ∪ T ′ = T ′, so p0 6∈ T ∪ T ′, contradicting (PR). 2

When we work with just formulas (no real theories), some problems with definability preservation will probably
not pose themselves: Let f(M(φ)) be some set which is not definable, and M(T ′) its closure. Then, we can find a
theory T s.t. M(T) ⊆M(T ′)− f(M(φ)). But there is no such formula ψ, if there were such, then M(T ′)∩M(¬ψ)
were to contain f(M(φ)), a contradiction. So, examples showing s.t. with the small set of exceptions cannot be
captured - as a matter of fact, any ψ s.t. M(ψ) ∩ (M(T ′) − f(M(φ))) 6= ∅, will have M(ψ) ∩ f(M(φ)) 6= ∅, too.
This will probably work in many cases, where we construct counterexamples with such sets M(T ′)− f(M(φ)). It

5.1. INTRODUCTION 181

is thus tempting to conjecture: As long as we consider just model sets definable by a formula, there is no difference
between definability preserving and not definability preserving structures, more precisely: If an axiomatization A
characterizes the definability preserving instances of a certain class C of structures, then the same A will characterize
all instances of C - be they definability preserving or not -, as long as we restrict ourselves to sets definable by a
single formula as argument. But this is wrong, as the following trivial, though very artificial, example shows:

Example 5.1.3

Fix some arbitrary x ∈ U = ML for some infinite language L. Define f(X) :=




X
or
U − {x}

Let C be the class of all structures whose choice function obeys this law. Obviously, the law T = T defines the

definability preserving structures, but not the other ones. But the law φ = φ is not any better. 2

The negative result of Chapter 5:

We will use ”small” sets of exceptions to solve the representation problem. Yet, as mentioned above, such small
sets can be arbitrarily big in cardinality. This has a negative consequence: We cannot describe general, preferential
structures without definability preservation by normal logical means, even if we admit infinite expressions - but
bounded in size in advance by some fixed cardinal. The necessary size depends on the language. Our characteriza-
tions use arbitrary unions, and are thus not bounded in cardinality. To prove the negative result, we construct a
logic which is ”almost” preferential, and show that we really use only a small fragment of the structure, and that
this fragment can also be obtained in a true preferential structure. This negative result extends then trivially to
the general limit variant, which, in non-trivial cases, is not definability preserving - see Fact 3.4.6 for precision and
details.

We now describe the remedy in more detail.

5.1.2 The remedy

We first define what a ”small” subset is - in purely algebraic terms. There will be no particular properties (apart
from the fact that small is downward closed), as long as we do not impose any conditions on Y . (Intuitively, Y is
the set of theory definable sets of models.)

Let Y ⊆ P(Z). If B ∈ Y , A ⊆ B is called a small subset of B iff there is no X ∈ Y , B − A ⊆ X
⊂
6= B. If Y is

closed under arbitrary intersections, Z ∈ Y , A ⊆ Z, Ã will be the smallest X ∈ Y with A ⊆ X - the closure, hull,
or whatever you like. In the intended application, Ã is M(Th(A)), see Definition 5.1.1.

We will show that our laws hold up to such small sets of exceptions. This is reflected e.g. in condition (PR) for
preferential structures without definability preservation:

(∼| 4) Let T, Ti, i ∈ I be theories s.t. ∀i Ti ` T, then there is no φ s.t. φ 6∈ T andM(T∪{¬φ}) ⊆
⋃
{M(Ti)−M(Ti) :

i ∈ I} (see Conditions 5.2.4),

by the non-existence of φ - which corresponds to the non-existence of intermediate definable subsets. Note that I
may be arbitrary big, this depends on the size of the language.

Note that we could also have shown our basic results immediately for the situation without definability preservation,
covering the simpler case by the condition that µ = µ′ etc., but, we think, this would have blurred the picture too
much and for too long.

182 CHAPTER 5. DEFINABILITY PRESERVATION

The problem and the remedy for preferential structures and distance based revision are very similar. We begin
with

5.1.2.1 Preferential structures

We present now the technique used to show the results in outline. They are, literally and abstractly, very close to
those used to obtain the results for the definability preserving case.

Let Y := DL. For an arbitrary, i.e. not necessarily definability preserving, preferential structure Z of L−models,
let for X ∈ Y

µ′
Z(X) := µZ(X) - {x : ∃Y ∈ Y , Y ⊆ X, x ∈ Y − µ(Y)} = {x ∈ X : ¬∃Y ∈ Y(Y ⊆ X and x ∈ Y − µZ(Y)} (see

Definition 5.2.2). µ′ (we omit the index Z , when this does not create any ambiguity), and its adequate modification
for the smooth case, are the central definitions, and will replace µ in the technical development.

Note that, µ(X) = ˜µ′(X), i.e. that µ(X)− µ′(X) is small, and, if Z is definability preserving, then µ′ = µ.

For representation, we consider now the Conditions 5.2.2:

(µ∅) U 6= ∅ → µ(U) 6= ∅,

(µ ⊆) µ(U) ⊆ U,

(µ2) µ(U)− µ′(U) is small, where µ′(U) := {x ∈ U : ¬∃Y ∈ Y(Y ⊆ U and x ∈ Y − µ(Y))}

(µ2s) µ(U)− µ′(U) is small, where µ′(U) := {x ∈ U : ¬∃U ′ ∈ Y(µ(U ∪ U ′) ⊆ U and x ∈ U ′ − µ(U ′))}

(µCUM) µ(X) ⊆ Y ⊆ X → µ(X) = µ(Y)

for X,Y, U ∈ Y .

and show that they - (µ ⊆) and (µ2) in the general case, (µ∅), (µ ⊆), (µ2s), (µCUM) in the smooth case - imply
a list of properties for µ′ and H(U) :=

⋃
{X ∈ Y : µ(X) ⊆ U}, described in Conditions 5.2.1 and 5.2.3. This is

shown in Fact 5.2.2 and Fact 5.2.6.

We then show that such µ′ can be represented by a (general or smooth) preferential structure, which can be
chosen transitive. The strategy and execution is largely the same as for the definability preserving case. For the
general case, this is formulated in Proposition 5.2.4, subsequent to an auxiliary lemma Fact 5.2.3. For the smooth
case, this is formulated in Proposition 5.2.7. The proof of the transitive case is again verbatim the same as for
the definability preserving case. The first part, i.e. representation without transitivity, is done by an alternative
construction, hinted at in Section 3.3, in Construction 5.2.1 and Fact 5.2.8.

It remains to replace, better approximate, µ′ by µ to obtain representation, we can do this, as they differ only by
small sets. E.g., in the general case, we obtain by putting our results together, Proposition 5.2.5:

Let Z be an arbitrary set, Y ⊆ P(Z), µ : Y → Y , Y closed under arbitrary intersections and finite unions, and
∅, Z ∈ Y , and let .̃ be defined wrt. Y .

(a) If µ satisfies (µ ⊆) and (µ2), then there is a transitive preferential structure Z over Z s.t. for all U ∈ Y

µ(U) = ˜µZ(U).

(b) If Z is a preferential structure over Z and µ : Y → Y s.t. for all U ∈ Y µ(U) = ˜µZ(U), then µ satisfies
(µ ⊆)− (µ2).

In the smooth case, we obtain a similar result (Proposition 5.2.9), the final proof is only slightly more complicated.

We turn to the logical counterpart.

The conditions are a little annoying, as we write down ”small set of exceptions”, or conditions like (µ2) above in
all logical detail. The proofs, however, are straightforward, even if they cover some pages.

5.1. INTRODUCTION 183

5.1.2.2 Theory revision

Just as we have approximated µ by µ′ for preferential structures, we approximate | by |′ for revision. We consider

|′ s.t. A | B = Ã |′ B, formulate suitable conditions for |′, in particular a loop condition (see Conditions 5.3.1),
show that |′ can be represented by a distance (Proposition 5.3.1, using the result on definability preserving distance
based revision) and obtain an analogue of above Proposition 5.2.5 in Proposition 5.3.2, which describes the back
and forth between | and |′ . The logical Conditions 5.3.2 describe the logical situation, Proposition 5.3.3 is the
logical counterpart of Proposition 5.3.2.

The techniques are the same as those for the preferential case.

5.1.2.3 Summary

We show that definability preservation is an important property, the lack of which can make important laws fail.
If we do not have definability preservation, we can still have (essentially) our old laws, we just have to admit small
sets of exceptions - where small is relative to the expressiveness of classical propositional logic (in the infinite case,
in the finite case, there is no problem).

We thus make precise what a small set is in the context of propositional logic. Of course, this is close to the
concept of small set and exceptions in the rest of the book, but it is used in a special situation, if you like
bombastic expressions, on the meta-level.

We then examine operators µ′ and |′ sufficiently close to µ and | respectively, to inherit still many of their properties,
and show that these operators can be represented by a preference relation (a distance respectively). We then play
the situation back to the original, very similar, µ and | . ”Sufficiently close” has a somewhat nasty translation into
logic, which makes the logical conditions cumbersome - and a usual characterization impossible, see Section 5.2.3.

Recommended reading:

The reader should first get familiar with the operation .̃ and consider the relation between µ and µ′.

We then suggest to follow the details of the general preferential case, the logical part included. This contains the
main ideas.

He/she may then read the negative results in Section 5.2.3, which show that we are necessarily far from usual
characterizations.

The rest of the Chapter can then be read in any order.

We now give the basic definitions, and recall the corresponding representation results for definability preserving
choice functions from Sections 3.4 and 4.2.3. We then discuss in detail the formal development to be presented in
Sections 5.2 and 5.3.

5.1.3 Basic definitions and results

5.1.3.1 General part

Definition 5.1.1

Let Y ⊆ P(Z) be given.

(1) For B ∈ Y , we call A ⊆ B a small subset of B (and B-A dense in B) iff there is no X ∈ Y s.t. B−A ⊆ X ⊂ B.

(2) If Y is closed under arbitrary intersections, Z ∈ Y , and A ⊆ Z, Ã will be the smallest X ∈ Y with A ⊆ X.

Intuitively, Y is DL, and Ã = M(Th(A)).

184 CHAPTER 5. DEFINABILITY PRESERVATION

Fact 5.1.1

If Y ⊆ P(Z) is closed under arbitrary intersections and finite unions, Z ∈ Y , X, Y ⊆ Z, then condition

(1) X̃ ∪ Y = X̃ ∪ Ỹ

holds.

Proof:

Let Y(U) := {X ∈ Y : U ⊆ X}. If A ∈ Y(X ∪Y), then A ∈ Y(X) and A ∈ Y(Y), so X̃ ∪ Y ⊇ X̃ ∪ Ỹ . If A ∈ Y(X)

and B ∈ Y(Y), then A ∪ B ∈ Y(X ∪ Y), so X̃ ∪ Y ⊆ X̃ ∪ Ỹ . 2

Recall the following central definitions:

Definition 5.1.2

A preferential structure Z is called definability preserving (for some fixed language L) iff for all L−theories T
µZ(M(T)) = M(T ′) for some L−theory T ′.

Definition 5.1.3

A binary function | on the sets of models of some logic is called definability preserving iff M(T) |M(T ′) is again the
set of models of some theory S for all theories T, T ′. By abuse of language, a pseudo-distance d is called definability
preserving iff |d is.

5.1.3.2 Discussion of the technical development

We first describe our approach in the case of general preferential structures. For simplicity, we neglect the use of

multiple copies of models. IfM is not a definability preserving preferential model, and if T is the set of consequences

of T in M, not all models of T need be minimal in the set of models of T. Thus, in such a structure, M(T) may

contain non-minimal elements m, which we may identify through some T ′ s.t. T ′ ` T, m |= T ′, m 6|= T ′, i.e.
m ∈ M(T ′), but m 6∈ µ(M(T ′)). We eliminate these from µ, and consider µ′(M(T)) := µ(M(T)) - {m : ∃T ′ s.t.

T ′ ` T, m ∈ M(T ′)− µ(M(T ′))}. If we set Y := DL, we have µ : Y → Y , µ′ : Y → P(Z), and µ(U) = µ̃′(U). To

summarize, given a preferential structure, we have µ and µ′ as defined above, and µ(U) ⊆ U and µ(U) = µ̃′(U)
will hold. Conversely, given such µ and µ′, we can show that µ′ satisfies the conditions

(µ′ ⊆) µ′(U) ⊆ U

and

(µ′2) x ∈ µ′(U), x ∈ Y − µ′(Y) → Y 6⊆ U.

But such µ′ can be represented by a preferential structure (see Proposition 5.2.4), i.e. there is Z s.t. µ′(U) = µZ(U)

for all U ∈ Y , and thus µ(U) = µ̃′(U) = ˜µZ(U), the representation result we were looking for. If we examine the
completeness proof for the definability preserving case, we see that we did use exactly the same properties, i.e.
µ(U) ⊆ U and x ∈ µ(U), x ∈ Y − µ(Y) → Y 6⊆ U of µ to construct a representing preferential structure for µ.
The only difference is that µ : Y → Y , and µ′ : Y → P(Z), but the proof does not use the fact that µ(U) ∈ Y
for U ∈ Y . Consequently, we can use verbatim the same proof to show representation of µ′, as we used to show
representation of µ in the definability preserving case.

The cases of smooth preferential structures and distance based revision are analogous:

Given a smooth preferential structure, we define again µ′ from µ (in a slightly different way to take care of the
”semi-transitivity” of smooth structures), show that µ and µ′ have certain properties, which, conversely, suffice to
construct a representing structure. Again, we first show that µ′ has the properties we needed for µ to construct a

5.1. INTRODUCTION 185

representing structure in the definability preserving case, so we can again use the main part of the old proof for
the definability preserving case.

A distance d on a set U defines a revision operator ∗ by T ∗ T ′ := Th(M(T) | M(T ′)), where A | B is the set of
elements of B, closest to the set A. If | is definability preserving, we have |: Y × Y → Y . If not, we define again
|′: Y ×Y → P(U), by A |′ B := {b ∈ B : ∀B′ ∈ Y(B′ ⊆ B, b ∈ B′ → b ∈ A | B′)} (see Proposition 5.3.2). We show
that any operator | defined by a distance, and |′ defined this way from | have certain conditions, which, conversely,
suffice to construct a representing distance. Again, the proof works via showing that |′ has properties which | has
in the definability preserving case, and which were used (and sufficient) to prove representation of | in the latter
case.

Those parts of the proofs for the definability preserving cases which we can re-use verbatim are omitted and the
reader is referred to Sections 3.2, 3.3, 3.4, 4.2.2, 4.2.3 for details. We will also give a simple and complete proof for
the non-transitive, smooth case, hinted at in Section 3.3, which is contained in Fact 5.2.6, Construction 5.2.1, and
Fact 5.2.8.

The logical parts follow closely the development in Sections 3.4 and 4.2.3.

Comments on the negative result:

We discuss now the negative result, that there is no normal characterization of general preferential structures
possible. (In all likelihood, a similar result will also hold for general revision.)

Let κ be any infinite cardinal. We show that there is no characterization Φ of general (i.e. not necessarily definability
preserving) preferential structures which has size ≤ κ. We suppose there were one such characterization Φ of size
≤ κ, and construct a counterexample.

We take the language L defined by pi : i < κ.

The idea of the proof is very simple. We show that it suffices to consider for any given instantiation of Φ ≤ κ many
pairs m ≺ m− in a case not representable by a preferential structure, and that ≤ κ many such pairs give the same
result in a true preferential structure. Thus, every instantiation is true in an ”illegal” and a ”legal” example, so Φ
cannot discern between legal and illegal examples. The main work is to show that ≤ κ many pairs suffice in the

illegal example. This is, again, in principle, easy, we show that there is a ”best” set of size ≤ κ which calculates T
for all T considered in the instantiation.

For any model m with m |= p0, let m− be exactly like m with the exception that m− |= ¬p0.

Define the logic ∼| as follows in two steps:

(1) Th({m,m−}) := Th({m}) (Speaking preferentially, m ≺ m−, for all such m, m−, this will be the entire relation.
The relation is thus extremely simple, ≺ −paths have at most length 1, so ≺ is automatically transitive.)

We now look at (in terms of preferential models only some!) consequences:

(2) T := Th (
⋂
{M(Th(M(T)−A)) : card(A) ≤ κ, A ⊆M(T), ∀n(n ∈ A → n = m− and m,m− ∈M(T))}).

This, without the size condition, would be exactly the preferential consequence of part (1) of the definition, but
this logic as it stands is not preferential.

Suppose there were a characterization of size ≤ κ. It has to say ”no” for at least one instance of the universally
quantified condition Φ. We will show that we find a true preferential structure where this instance of Φ has the same
truth value, a contradiction. For this, we consider the preferential structure where we do not make all m ≺ m−,
but only the κ many of them we have used in the instance of Φ. We will see that the expression Φ still fails with
our instances.

5.1.4 A remark on definability preservation and modal logic

We discuss here very briefly definability preservation problems in the context of classical modal logic.

186 CHAPTER 5. DEFINABILITY PRESERVATION

Set f(X) := {y ∈ U : ∀z.yRz → z ∈ X} - i.e. (almost) the inverse image of R or 2, as used by modal logic.

Set T ∼| φ iff f(M(T)) |= φ.

Fact 5.1.2

(1) If ∀x∃y(xRy), then f(∅) = ∅.

(2) f(A ∩ B) = f(A) ∩ f(B)

(3) Th(M(T)∩M(T ′)) = T ∪ T ′

(4) If f is definability preserving, then T ∪ T ′ = T ∪ T ′.

Proof:

(1) trivial

(2) x ∈ f(A ∩ B) ↔ ∀y(xRy → y ∈ A ∩B) ↔ ∀y(xRy → y ∈ A) ∧ ∀y(xRy → y ∈ B) ↔ x ∈ f(A) ∧ x ∈ f(B).

(3) M(T) ∩M(T ′) = M(T ∪ T ′), so Th(M(T) ∩M(T ′)) = Th(M(T ∪ T ′)) = T ∪ T ′

(4) f(M(T ∪ T ′)) = f(M(T) ∩M(T ′)) = f(M(T)) ∩ f(M(T ′)) = (by definability preservation) M(T0) ∩M(T ′
0)

for some T0, T
′
0, so T ∪ T ′ = Th(f(M(T ∪ T ′))) = Th(M(T0) ∩M(T ′

0)) = T0 ∪ T ′
0 = T ∪ T ′. 2

Consider now the following

Example 5.1.4

The language: p, q, pi, i < ω. For any model m and propositional variable r, let mr be the same model as m, only
r has the opposite value.

The relation: for any q-model m mRmq - i.e. a q-model is in R-relation with the analog ¬q−model. Let n |=
p,¬q, pi, all i, and M ′ := M(¬q)−{n}. Let n be in R-relation with all p∧ q−models, and all m ∈M ′ in R-relation
will all ¬p ∧ q−models.

Then f(∅) = ∅ holds, f(M(p ∧ q)) = {n}, f(M(¬p ∧ q)) = M ′, M({p ∧ q} ∪ {¬p ∧ q}) = ∅, so {p ∧ q} ∪ {¬p ∧ q}

= Th(∅) = L. On the other hand, {p ∧ q} = Th({n}) and {¬p ∧ q} = ¬q, so {p ∧ q} ∪ {¬p ∧ q} = Th({n}).
Consequently, (4) above does not hold, and the definability preservation property can also be felt in the context
of classical modal logic. 2

Comments:

(1) The definability problem occurs here already with formulas, we do not need full theories to see the problem.

(2) In modal logic, the local evaluation prevents definability preservation problems, as we do not look at M(Th(X)),
but work directly with single models, thus, we do not see the ”blurring” effect between X and M(Th(X)).

5.2. PREFERENTIAL STRUCTURES 187

5.2 Preferential structures

5.2.1 The algebraic results

5.2.1.1 The conditions

We define in this introductory part first the hull H, and then two versions of the approximation µ′ to µ (for the
general and the smooth case), formulate the Conditions 5.2.2, which we will use for characterization. We then give
another set of conditions, Conditions 5.2.3, which, as we will show, are implied by the first set.

Let in the following Y ⊆ P(Z) be closed under arbitrary intersections and finite unions, ∅, Z ∈ Y , and .̃ be defined
wrt. Y . So Fact 5.1.1 holds. Let µ : Y → Y . Smoothness will be wrt. Y .

Definition 5.2.1

Define H : Y → P(Z) by H(U) :=
⋃
{X ∈ Y : µ(X) ⊆ U} for U ∈ Y .

Condition 5.2.1

(H1) U ⊆ H(U),

(H2) U ⊆ U ′ → H(U) ⊆ H(U ′)

for U,U ′ ∈ Y .

Fact 5.2.1

Conditions (H1) and (H2) hold for H as defined in Definition 5.2.1, if µ(U) ⊆ U. 2

We will define for U ∈ Y in the general case:

µ′(U) := {x ∈ U : ¬∃Y ∈ Y(Y ⊆ U and x ∈ Y − µ(Y))}

and in the smooth case:

µ′(U) := {x ∈ U : ¬∃U ′ ∈ Y(µ(U ∪ U ′) ⊆ U and x ∈ U ′ − µ(U ′))}.

Note that even if U ∈ Y , µ′(U) is not necessarily in Y .

µ(U) − µ′(U) will be required to be small. Consider first the general case: Any x ∈ Y ⊆ U s.t. x ∈ Y − µ(Y)
cannot be minimal in U, as any element smaller than x and in Y, will also be present in U. (This is the fundamental
condition for preferential structures, see Proposition 3.2.2.) If µ is definability preserving, no exceptions are possible.
Consider now the smooth case: If x ∈ U ′ − µ(U ′), then x cannot be minimal in U ′, and for the same reason, not
in U ∪ U ′. But, if µ(U ∪U ′) ⊆ U, then, by smoothness, there must be y minimal in U ∪ U ′, i.e. in U, smaller than
x, so x is not minimal in U. This captures the ”semi-transitivity” of smooth structures, which can perhaps best be
described by the following simple situation: If x ∈ X is not minimal in X, then there is y < x, y ∈ X. Suppose that
y is not minimal either, but there is z < y, z minimal in X. Then z < x need not hold, but there will be z ′ < x,
z′ minimal in X. If there is just one minimal element in X, then we have full transitivity, we only have ”almost”
transitivity.

We will consider the following conditions for µ, µ′, and H :

Condition 5.2.2

(µ∅) U 6= ∅ → µ(U) 6= ∅,

(µ ⊆) µ(U) ⊆ U,

(µ2) µ(U)− µ′(U) is small, where µ′(U) := {x ∈ U : ¬∃Y ∈ Y(Y ⊆ U and x ∈ Y − µ(Y))}

188 CHAPTER 5. DEFINABILITY PRESERVATION

(µ2s) µ(U)− µ′(U) is small, where µ′(U) := {x ∈ U : ¬∃U ′ ∈ Y(µ(U ∪ U ′) ⊆ U and x ∈ U ′ − µ(U ′))}

(µCUM) µ(X) ⊆ Y ⊆ X → µ(X) = µ(Y)

for X,Y, U ∈ Y .

Note that (µ2) contains essentially the fundamental conditionX ⊆ Y → µ(Y)∩X ⊆ µ(X) of preferential structures.
To see this, it suffices to take ∅ as the only small set, or µ(U) = µ′(U).

Condition 5.2.3

(µ′ ⊆) µ′(U) ⊆ U,

(µ′2) x ∈ µ′(U), x ∈ Y − µ′(Y) → Y 6⊆ U,

(µ′∅) U 6= ∅ → µ′(U) 6= ∅,

(µ′4) µ′(U ∪ Y)−H(U) ⊆ µ′(Y),

(µ′5) x ∈ µ′(U), x ∈ Y − µ′(Y) → Y 6⊆ H(U),

(µ′6) Y 6⊆ H(U) → µ′(U ∪ Y) 6⊆ H(U)

for Y, U ∈ Y .

Note that (µ′5) implies (µ′2) if (H1) holds.

Outline of the proofs:

In both cases, i.e. the general and the smooth case, we follow the same strategy: First, we show from the conditions
on µ - (µ ⊆), (µ2) in the general case, (µ∅), (µ ⊆), (µ2s), (µCUM) in the smooth case - that certain conditions
hold for µ′ (and for H in the smooth case) - (µ′ ⊆), (µ′2) in the general case, (µ′ ⊆), (µ′∅), (µ′4) − (µ′6) in the
smooth case. We then show that any µ′ : Y → P(Z) satisfying these conditions can be represented by a (smooth)
preferential structure Z , and that the structure can be chosen transitive. As the proof for the not necessarily
transitive case is easier, we do this proof first, and then the transitive case. The basic ideas are mostly the same
as those used in Sections 3.2 and 3.3. Finally, we show that if Z is a [smooth] preferential structure, (µ ⊆), (µ2)
[(µ∅), (µ ⊆), (µ2s), (µCUM) in the smooth case] will hold for µ̃Z . Moreover, if µ′ was defined from µ as indicated,
and if in addition (µ2) [or (µ2s)] holds, then µ = µ̃Z . Putting all these things together results in representation
results for the general and the smooth case.

Our basic idea to construct representing preferential structures is to consider (modifications of) the following
construction: X := {< x, f >: x ∈ Z ∧ f ∈ Πx}, < x′, f ′ >≺< x, f > :↔ x′ ∈ ran(f), and Z :=< X ,≺> . where
Πx := Π{Y ∈ Y : x ∈ Y − µ′(Y)} - see Sections 3.2 and 3.3.

5.2.1.2 The general case

We show here the representation result for the general (and transitive) case (Proposiiton 5.2.5). It is an easy
consequence of the main auxiliary result, Proposition 5.2.4, which has verbatim the same proof as the corresponding
result for definability preserving preferential structures (Propositions 3.2.2 and 3.2.4).

Definition 5.2.2

µ′(U) := {x ∈ U : ¬∃Y ∈ Y(Y ⊆ U and x ∈ Y − µ(Y))}

Fact 5.2.2

Let µ′ be defined as in Definition 5.2.2, then:

(a) (µ′ ⊆) and (µ′2) hold,

(b) µ′(U) ⊆ µ(U).

5.2. PREFERENTIAL STRUCTURES 189

Proof:

(a) (µ′ ⊆) is trivial. For (µ′2) : If x ∈ Y − µ′(Y), then, by definition, there is Y ′ ∈ Y , Y ′ ⊆ Y and x ∈ Y ′ − µ(Y ′).
If, in addition, Y ⊆ U, then Y ′ ⊆ U, so x 6∈ µ′(U).

(b) Take Y := U. 2

In preparation of the proof of Proposition 5.2.4, we show the following Fact 5.2.3. The rest of the proof is verbatim
the same as the proof of Propositions 3.2.2 and 3.2.4, and the reader is referred there.

Set Yx := {Y ∈ Y : x ∈ Y − µ′(Y)} and Πx := ΠYx.

Fact 5.2.3

If µ′ satisfies (µ′ ⊆) and (µ′2), then x ∈ µ′(U) ↔ x ∈ U ∧ ∃f ∈ Π{Y ∈ Y : x ∈ Y − µ′(Y)}.ran(f) ∩ U = ∅.

Proof:

′′ →′′: x ∈ µ′(U) → x ∈ U by (µ′ ⊆). Let x ∈ µ′(U), Y ∈ Y , x ∈ Y − µ′(Y), then Y 6⊆ U by (µ′2), so there is
f ∈ Πx.ran(f) ∩ U = ∅.
′′ ←′′: x 6∈ µ′(U), x ∈ U implies ∃Y ∈ Y(Y ⊆ U, x ∈ Y − µ(Y)), so by Fact 5.2.2, (b) ∃Y ⊆ U.Y ∈ Yx, so for all
f ∈ Πx ran(f) ∩ U 6= ∅. 2

Proposition 5.2.4

(a) If µ′ satisfies (µ′ ⊆) and (µ′2), then there is a preferential structure Z over Z s.t. µ′ = µZ .

(b) Z can be chosen transitive.

The proof is the same as the proof of Propositions 3.2.2 and 3.2.4. 2

Proposition 5.2.5

Let Z be an arbitrary set, Y ⊆ P(Z), µ : Y → Y , Y closed under arbitrary intersections and finite unions, and
∅, Z ∈ Y , and let .̃ be defined wrt. Y .

(a) If µ satisfies (µ ⊆), (µ2), then there is a transitive preferential structure Z over Z s.t. for all U ∈ Y µ(U) =
˜µZ(U).

(b) If Z is a preferential structure over Z and µ : Y → Y s.t. for all U ∈ Y µ(U) = ˜µZ(U), then µ satisfies (µ ⊆),
(µ2).

Proof:

(a) Let µ satisfy (µ ⊆), (µ2). µ′ as defined in Definition 5.2.2 and in (µ2) satisfies properties (µ′ ⊆), (µ′2) by
Fact 5.2.2. Thus, by Proposition 5.2.4, there is a transitive structure Z over Z s.t. µ′ = µZ , but by (µ2)

µ(U) = µ̃′(U) = ˜µZ(U) for U ∈ Y .

(b) (µ ⊆) : µZ(U) ⊆ U, so by U ∈ Y µ(U) = ˜µZ(U) ⊆ U.

(µ2) : If (µ2) is false, there is U ∈ Y s.t. for U ′ :=
⋃
{Y ′ − µ(Y ′) : Y ′ ∈ Y , Y ′ ⊆ U} ˜µ(U)− U ′ ⊂ µ(U). By

µZ(Y ′) ⊆ µ(Y ′), Y ′− µ(Y ′) ⊆ Y ′−µZ(Y ′). No copy of any x ∈ Y ′−µZ(Y ′) with Y ′ ⊆ U, Y ′ ∈ Y can be minimal

190 CHAPTER 5. DEFINABILITY PRESERVATION

in ZdU. Thus, by µZ(U) ⊆ µ(U), µZ(U) ⊆ µ(U)− U ′, so ˜µZ(U) ⊆ ˜µ(U)− U ′ ⊂ µ(U), contradiction. 2

5.2.1.3 The smooth case

The main result here is Proposition 5.2.9. It is a direct and easy consequence of Proposition 5.2.7. The construction
in the proof of part (a) of Proposition 5.2.7 is an adaptation of a simplification hinted at in Section 3.3. It uses
the properties of µ′ demonstrated in Fact 5.2.6, in particular validity of the Conditions 5.2.3. Part (b) has again
verbatim the same proof as the corresponding result for definability preserving smooth and transitive structures.

Generally, in smooth preferential structures µ(U) may be empty, even if U is not - it suffices to consider the trivial
empty structure as an example. This introduces unnecessary and rather uninteresting complications. To avoid
this, we shall assume that U 6= ∅ → µ(U) 6= ∅, and the structures < X ,≺> considered will be over Z, i.e. for all
z ∈ Z there is some < z, i >∈ X .

Definition 5.2.3

µ′(U) := {x ∈ U : ¬∃U ′ ∈ Y(x ∈ U ′ − µ(U ′) and µ(U ∪ U ′) ⊆ U)}.

Fact 5.2.6

Let µ satisfy (µ∅), (µ ⊆), (µ2s), (µCUM) and H and µ′ be defined from µ as in Definitions 5.2.1 and 5.2.3 (and
(µ2s)). Let A,B,U, U ′, X, Y,Ai for i ∈ I be elements of Y . Then:

(1) µ(U ∪ U ′) ⊆ U ↔ µ(U ∪ U ′) = µ(U),

(2) µ′(U) ⊆ µ(U), and µ′(U) ⊆ U,

(3) µ(A ∪B) ⊆ µ(A) ∪ µ(B),

(4) µ′(U) ⊆ U ′ ↔ µ(U) ⊆ U ′,

(5) if
⋃
{Ai : i ∈ I} ∈ Y , and for all i µ(U ∪ Ai) ⊆ U, then µ(U ∪

⋃
Ai) ⊆ U,

(6) we can define equivalently H(U) via µ′,

(7) X ⊆ Y, µ(X ∪ U) ⊆ X → µ(Y ∪ U) ⊆ Y,

(8) X ⊆ Y, x ∈ X, x 6∈ µ′(X) → x 6∈ µ′(Y),

(9) µ′(X) ⊆ Y ⊆ X → µ′(X) = µ′(Y),

(10) X 6= ∅ → µ′(X) 6= ∅,

(11) µ′(A1 ∪ A2) ⊆ µ′(A1) ∪ µ′(A2),

(12) µ′(U ∪ Y)−H(U) ⊆ µ′(Y),

(13) U ⊆ A, µ′(A) ⊆ H(U) → µ′(A) ⊆ U,

(14) µ′(Y) ⊆ H(U) → Y ⊆ H(U) and µ′(U ∪ Y) = µ′(U),

(15) if Y ⊆ H(U), then µ(U ∪ Y) ⊆ U,

(16) x ∈ µ′(U), x ∈ Y − µ′(Y) → Y 6⊆ H(U),

(17) Y 6⊆ H(U) → µ′(U ∪ Y) 6⊆ H(U).

Proof:

(1) µ(U ∪ U ′) ⊆ U ⊆ U ∪ U ′ →(µCUM) µ(U ∪ U ′) = µ(U).

(2) µ′(U) ⊆ U by definition. If x ∈ U − µ(U), take U ′ := U in the definition of µ′(U), this shows x 6∈ µ′(U).

5.2. PREFERENTIAL STRUCTURES 191

(3) By definition of µ′, we have µ′(A ∪ B) ⊆ A ∪ B, µ′(A ∪ B) ∩ (A− µ(A)) = ∅, µ′(A ∪ B) ∩ (B − µ(B)) = ∅, so
µ′(A ∪ B) ∩ A ⊆ µ(A), µ′(A ∪ B) ∩ B ⊆ µ(B), and µ′(A ∪ B) ⊆ µ(A) ∪ µ(B). By the prerequisites about µ and
Y , µ(A) ∪ µ(B) ∈ Y . Moreover, by (2) µ′(A ∪ B) ⊆ µ(A ∪ B), so µ′(A ∪ B) ⊆ (µ(A) ∪ µ(B)) ∩ µ(A ∪ B), but if
µ(A ∪ B) 6⊆ µ(A) ∪ µ(B), then (µ(A) ∪ µ(B)) ∩ µ(A ∪ B) ⊂ µ(A ∪ B), contradicting (µ2s).

(4) ′′ ←′′ by (2). ′′ →′′: By (µ2s), µ(U) − µ′(U) is small, so there is no X ∈ Y s.t. µ′(U) ⊆ X ⊂ µ(U). If there
were U ′ ∈ Y s.t. µ′(U) ⊆ U ′, but µ(U) 6⊆ U ′, then for X := U ′ ∩ µ(U) ∈ Y , µ′(U) ⊆ X ⊂ µ(U), contradiction.

(5) Set Ui := U ∪Ai. Then µ(U ∪
⋃
Ai∪Ui) = µ(U ∪

⋃
Ai) ⊆ U ∪

⋃
Ai, so for all i (Ui−µ(Ui))∩µ′(U ∪

⋃
Ai)) = ∅

by definition of µ′. But (U ∪Ai)−µ(U ∪Ai) ⊇ Ai−U, so (Ai−U)∩µ′(U ∪
⋃
Ai) = ∅ for all i, so µ′(U ∪

⋃
Ai) ⊆ U,

so by (4) µ(U ∪
⋃
Ai) ⊆ U.

(6) By (4) (note that U ∈ Y).

(7) µ(Y ∪ U) = µ(Y ∪X ∪ U) ⊆(3) µ(Y) ∪ µ(X ∪ U) ⊆ Y ∪X = Y.

(8) By (7) and the definition of µ′.

(9) ′′ ⊆′′: Let x ∈ µ′(X), so x ∈ Y, and x ∈ µ′(Y) by (8). ′′ ⊇′′: Let x ∈ µ′(Y), so x ∈ X. Suppose x 6∈ µ′(X), so
there is U ′ ∈ Y s.t. x ∈ U ′ − µ(U ′) and µ(X ∪U ′) ⊆ X. Note that by µ(X ∪U ′) ⊆ X and (1), µ(X ∪ U ′) = µ(X).
Now, µ′(X) ⊆ Y, so by (4) µ(X) ⊆ Y, thus µ(X ∪U ′) = µ(X) ⊆ Y ⊆ Y ∪U ′ ⊆ X ∪U ′, so µ(Y ∪U ′) = µ(X ∪U ′) =
µ(X) ⊆ Y, so x 6∈ µ′(Y), contradiction.

(10) By (µ∅), ∅ ∈ Y , and (µ2s).

(11) Let e.g. x ∈ A2, x 6∈ µ′(A2), so by (8) x 6∈ µ′(A1 ∪ A2).

(12) Suppose x ∈ µ′(U ∪ Y) − H(U), x 6∈ µ′(Y). As x 6∈ H(U), x 6∈ U, so x ∈ Y, so by (8) x 6∈ µ′(U ∪ Y),
contradiction.

(13) Suppose there is x ∈ H(U)−U, x ∈ µ′(A). Then there is B with x ∈ B − µ(B) and µ(B) ⊆ U. But
µ(A ∪ B) ⊆(3) µ(A) ∪ µ(B) ⊆ A ∪ U ⊆ A, so x 6∈ µ′(A), contradiction.

(14) Let µ′(Y) ⊆ H(U), then by µ′(U) ⊆ H(U) and (11) µ′(U ∪ Y) ⊆ µ′(U) ∪ µ′(Y) ⊆ H(U), so by (13)
µ′(U ∪ Y) ⊆ U, so by (4) µ(U ∪ Y) ⊆ U and U ∪ Y ⊆ H(U). Moreover, µ′(U ∪ Y) ⊆ U ⊆ U ∪ Y so by (9)
µ′(U ∪ Y) = µ′(U).

(15) Let H(U) =
⋃
{Ai : i ∈ I} with Ai ∈ Y , µ(Ai) ⊆ U, so Y =

⋃
{Y ∩ Ai : i ∈ I}. By µ(Ai) ⊆ U and (3),

µ(Ai ∪ U) ⊆ µ(Ai) ∪ µ(U) ⊆ U. So µ(U ∪ Ai) ⊆ U ⊆ U ∪ (Y ∩ Ai) ⊆ U ∪ Ai, so by (µCUM) µ(U ∪ (Y ∩ Ai)) =
µ(U ∪ Ai) ⊆ U for all i. So by (5) µ(U ∪ Y) ⊆ U.

(16) Suppose Y ⊆ H(U), so by (15) µ(U∪Y) ⊆ U. By definition of µ′, there is Y ′ s.t. x ∈ Y ′−µ(Y ′), µ(Y ∪Y ′) ⊆ Y.
Now, µ(U ∪ Y ∪ Y ′) ⊆(3) µ(U ∪ Y) ∪ µ(Y ′) ⊆ U ∪ Y ′ ⊆ U ∪ Y ∪ Y ′, so µ(U ∪ Y ′) = µ(U ∪ Y ∪ Y ′). Moreover,
µ(U ∪ Y ∪ Y ′) ⊆ µ(U) ∪ µ(Y ∪ Y ′) ⊆ U ∪ Y ⊆ U ∪ Y ∪ Y ′, so µ(U ∪ Y ′) = µ(U ∪ Y ∪ Y ′) = µ(U ∪ Y) ⊆ U, so
x 6∈ µ′(U).

(17) µ′(U ∪ Y) ⊆ H(U) →(14) U ∪ Y ⊆ H(U).

2

In the following Proposition 5.2.7, we first construct a not necessarily transitive structure, which contains many
elements of the somewhat more difficult construction for the transitive case, and then address the transitive
construction.

Proposition 5.2.7

Let µ′ : Y → P(Z) and H : Y → P(Z) be two operations satisfying (H1) and (H2) of Conditions 5.2.1, and (µ′ ⊆),
(µ′∅), (µ′4)− (µ′6). Then

(a) there is a smooth preferential structure Z over Z s.t. µ′ = µZ ,

(b) Z can be chosen transitive.

192 CHAPTER 5. DEFINABILITY PRESERVATION

Proof:

The proof of part (b) is verbatim the same as the proof of Proposition 3.3.8, and the reader is referred there.

(a)

The following Construction 5.2.1 and Fact 5.2.8 are adaptations of the simplified construction hinted at, but not
carried out in Section 3.3 for the smooth, but not necessarily transitive case.

Construction 5.2.1

Let U ∈ Y .

1. Let x ∈ µ′(U), x ∈ Z. Construct for this x and U :

{< x, f, U >: f ∈ Π{µ′(U ∪ Y)−H(U) : x ∈ Y 6⊆ H(U), Y ∈ Y} }.

2. Let x ∈ Z be arbitrary. Construct for this x (independent from U):

{< x, f, 0 >: f ∈ Π{µ′(Y) : x ∈ Y, Y ∈ Y} }.

3. Let < x, f, U >�< y, g, V > :↔ y ∈ ran(f),

let < x, f, 0 >�< y, g, V > :↔ y ∈ ran(f).

(No < x, f, 0 > will be smaller than any other element.)

We note:

Fact 5.2.8

(1) If Y 6⊆ H(U), then µ′(U ∪ Y)−H(U) 6= ∅, so in Construction 5.2.1, 1., there is always some f (which may be
∅),

(2) < x, f, U >�< y, g, V > → y 6∈ H(U),

(3) < x, f, U > is Z−minimal in ZdU,

(4) no < x, f, 0 > is Z−minimal in any U,

(5) smoothness is respected for the elements of the form < x, f, U >,

(6) smoothness is respected for the elements of the form < x, f, 0 >,

(7) µ′ = µZ .

Proof of Fact 5.2.8:

(1): Trivial by (µ′6).

(2), (3): trivial, the latter by (H1).

(4): Let x ∈ Y, then µ′(Y) 6= ∅ by (µ′∅), take y ∈ ran(f) ∩ µ′(Y), then there is < y, g, Y >, and < x, f, 0 >�<
y, g, Y > .

(5) Fix < x, f, U >, let x ∈ A ∈ Y . Case 1: A ⊆ H(U). If < y, g, V >≺< x, f, U >, then y 6∈ A, so < x, f, U > is
minimal in ZdA. Case 2: A 6⊆ H(U). Then A is one of the Y considered, take y ∈ ran(f)∩(µ′(U ∪A)−H(U)), then
y ∈ µ′(A) ⊆ A by (µ′4) and (µ′ ⊆). Consider the construction for y, U ∪A, take g ∈ Π{µ′(U ∪A∪Y)−H(U ∪A) :
y ∈ Y 6⊆ H(U ∪ A)}, then < y, g, U ∪ A > is minimal in ZdU ∪ A by (3), so by y ∈ A minimal in ZdA, and
< y, g, U ∪ A >≺< x, f, U > .

(6) Fix < x, f, 0 >, let x ∈ A. Take y ∈ ran(f) ∩ µ′(A), then any < y, g, A > is minimal in ZdA by (3) and
< y, g, A >≺< x, f, 0 > .

(7) ′′ ⊆′′: x ∈ µ′(U) → any < x, f, U > is minimal in ZdU. ′′ ⊇′′: Let x ∈ U − µ′(U). No < x, f, 0 > is minimal
in ZdU. Consider now some < x, f, V >, x ∈ µ′(V), V ∈ Y , so f ∈ Π{µ′(V ∪ Y) − H(V) : x ∈ Y 6⊆ H(V),
Y ∈ Y}. As x ∈ U − µ′(U), U 6⊆ H(V) by (µ′5), so U was considered as one of the Y, so ran(f) ∩ µ′(U) 6= ∅, as

5.2. PREFERENTIAL STRUCTURES 193

µ′(V ∪ U)−H(V) ⊆ µ′(U) by (µ′4), so any < y, g, U > with y ∈ ran(f) ∩ µ′(U) will be smaller than < x, f, V >
and in ZdU.

2 (Fact 5.2.8 and Proposition 5.2.7)

Proposition 5.2.9

Let Z be an arbitrary set, Y ⊆ P(Z), µ : Y → Y , Y closed under arbitrary intersections and finite unions, and
∅, Z ∈ Y , and let .̃ be defined wrt. Y .

(a) If µ satisfies (µ∅), (µ ⊆), (µ2s), (µCUM), then there is a transitive smooth preferential structure Z over Z s.t.

for all U ∈ Y µ(U) = ˜µZ(U).

(b) If Z is a smooth preferential structure over Z and µ : Y → Y s.t. for all U ∈ Y µ(U) = ˜µZ(U), then µ satisfies
(µ∅), (µ ⊆), (µ2s), (µCUM).

Proof:

(a) If µ satisfies (µ∅), (µ ⊆), (µ2s), (µCUM), then µ′ and H as defined from µ in Definition 5.2.1 and 5.2.3 (and
(µ2s)) satisfy properties (H1), (H2), (µ′ ⊆), (µ′∅), (µ′4)− (µ′6) by Fact 5.2.1 and Fact 5.2.6, (2), (10), (12), (16),
(17). Thus, by Proposition 5.2.7, there is a smooth transitive preferential structure Z over Z s.t. µ′ = µZ , but by

(µ2s) µ(U) = µ̃′(U) = ˜µZ(U).

(b) (µ∅) : If U 6= ∅, U ∈ Y , then there is < x, i >∈ X , x ∈ U. If < x, i > is minimal in ZdU, µZ(U) 6= ∅. If
not, there is by smoothness < x′, i′ >≺< x, i >, x′ ∈ U, < x′, i′ > minimal in ZdU, and again µZ(U) 6= ∅. But
µZ(U) ⊆ µ(U).

(µ ⊆) : µZ(U) ⊆ U → µ(U) = ˜µZ(U) ⊆ U by U ∈ Y .

(µ2s) : If (µ2s) fails, then there is U ∈ Y s.t. for U ′ :=
⋃
{Y ′−µ(Y ′) : Y ′ ∈ Y , µ(U∪Y ′) ⊆ U} ˜µ(U)− U ′ ⊂ µ(U). By

µZ(Y ′) ⊆ µ(Y ′), Y ′−µ(Y ′) ⊆ Y ′−µZ(Y ′). But no copy of any x ∈ Y ′−µZ(Y ′) with µZ(U ∪Y ′) ⊆ µ(U ∪Y ′) ⊆ U
can be minimal in ZdU : As x ∈ Y ′ − µZ(Y ′), if < x, i > is any copy of x, then there is < y, j >≺< x, i >,
y ∈ Y ′. Consider now U ∪ Y ′. As < x, i > is not minimal in ZdU ∪ Y ′, by smoothness of Z there must be
< z, k >≺< x, i >, < z, k > minimal in ZdU ∪ Y ′. But all minimal elements of ZdU ∪ Y ′ must be in ZdU,
so there must be < z, k >≺< x, i >, z ∈ U, thus < x, i > is not minimal in ZdU. Thus by µZ(U) ⊆ µ(U),

µZ(U) ⊆ µ(U)− U ′, so ˜µZ(U) ⊆ ˜µ(U)− U ′ ⊂ µ(U), contradiction.

(µCUM) : Let µ(X) ⊆ Y ⊆ X. Now µZ(X) ⊆ ˜µZ(X) = µ(X), so by smoothness of Z µZ(Y) = µZ(X), thus

µ(X) = ˜µZ(X) = ˜µZ(Y) = µ(Y). 2

5.2.2 The logical results

We turn to (propositional) logic.

The main result here is Proposition 5.2.11. Fact 5.2.10 shows some trivial but useful properties. The conditions are
formulated or recalled in Conditions 5.2.4, the auxiliary Lemma 5.2.12 is the main step in the proof of Proposition
5.2.11.

Fact 5.2.10

Let µ : DL →DL, and T = Th(µ(M(T))) for all theories T. Then:

(0) µ(M(T)) = M(T),

194 CHAPTER 5. DEFINABILITY PRESERVATION

(1) M(T ∨ T ′) = M(T) ∪M(T ′),

(2) Th(X ∪ Y) = Th(X) ∨ Th(Y),

(3) If Ũ := M(Th(U)), then X̃ ∪ Y = X̃ ∪ Ỹ for X,Y ∈ DL,

(4) µ(M(T) ∪M(T ′)) ⊆M(T) ⇔ T ⊆ T ∨ T ′,

(5) M(T ∨ T ′) ⊆M(T ∨ T ′) ⇔ T ∨ T ′ ⊆ T ∨ T ′.

Proof:

(0) By prerequisite, there is T ′ s.t. µ(M(T)) = M(T ′), so Th(M(T ′)) = T , so µ(M(T)) = M(T ′) = M(T).

(1) If e.g. m ∈ M(T), then m |= T, so m |= T ∨ T ′. If m 6∈ M(T), m 6∈ M(T ′), then there are φ ∈ T, φ′ ∈ T ′,
m 6|= φ, m 6|= φ′, so m 6|= φ ∨ φ′ and m 6∈M(T ∨ T ′).

(2) ′′ ⊇′′: Let σ ∈ Th(X)∨Th(Y), so σ = φ∨ψ, X |= φ, Y |= ψ, so X ∪Y |= σ, and σ ∈ Th(X∪Y), but Th(X∪Y)
is deductively closed. ′′ ⊆′′: X ∪ Y |= φ → X |= φ, Y |= φ → φ ∨ φ ∈ Th(X) ∨ Th(Y) → φ ∈ Th(X) ∨ Th(Y).

(3) Trivial by Fact 5.1.1.

(4) M(T ∨ T ′) =(0) µ(M(T ∨ T ′)) =(1) µ(M(T) ∪M(T ′)). So µ(M(T) ∪M(T ′)) ⊆ M(T) iff M(T ∨ T ′) ⊆ M(T)

iff T ⊆ T ∨ T ′ (as T ∨ T ′ is deductively closed).

(5) M(T ∨ T ′) ⊆M(T ∨ T ′) ⇔ T ∨ T ′ ⊆ T ∨ T ′, again as T ∨ T ′ is deductively closed.

2

We work now in Y := DL, so Ũ = M(Th(U)) for U ⊆ML and (1) in Fact 5.1.1 will hold.

Condition 5.2.4

(CP) Con(T) → Con(T),

(LLE) T = T ′ → T = T ′,

(CCL) T is classically closed,

(SC) T ⊆ T ,

(∼| 4) Let T, Ti, i ∈ I be theories s.t. ∀i Ti ` T, then there is no φ s.t. φ 6∈ T andM(T∪{¬φ}) ⊆
⋃
{M(Ti)−M(Ti) :

i ∈ I},

(∼| 4s) Let T, Ti, i ∈ I be theories s.t. ∀i T ⊆ Ti ∨ T , then there is no φ s.t. φ 6∈ T and M(T ∪ {¬φ}) ⊆⋃
{M(Ti)−M(Ti) : i ∈ I},

(∼| 5) T ∨ T ′ ⊆ T ∨ T ′,

(CUM) T ⊆ T ′ ⊆ T → T = T ′

for all T, T ′, Ti.

Note:

Condition (CP) is auxiliary and corresponds to the non-emptiness condition (µ∅) of µ in the smooth case: U 6= ∅
→ µ(U) 6= ∅ - or to the fact that all models occur in the structure.

Proposition 5.2.11

Let ∼| be a logic for L. Then:

5.2. PREFERENTIAL STRUCTURES 195

(a.1) If M is a classical preferential model over ML and T = Th(µM(M(T))), then (LLE), (CCL), (SC), (∼| 4)
hold for the logic so defined.

(a.2) If (LLE), (CCL), (SC), (∼| 4) hold for a logic, then there is a transitive classical preferential model over ML

M s.t. T = Th(µM(M(T))).

(b.1) If M is a smooth classical preferential model over ML and T = Th(µM(M(T))), then (CP), (LLE), (CCL),
(SC), (∼| 4s), (∼| 5), (CUM) hold for the logic so defined.

(b.2) If (CP), (LLE), (CCL), (SC), (∼| 4s), (∼| 5), (CUM) hold for a logic, then there is a smooth transitive

classical preferential modelM over ML s.t. T = Th(µM(M(T))).

The proof is an easy consequence of Propositions 5.2.5, 5.2.9, and Lemma 5.2.12, and will be shown after the proof
of the latter.

Lemma 5.2.12

(a) If µ : DL → DL satisfies (µ ⊆), (µ2) (for Y = DL), then ∼| defined by T := Th(µ(M(T))) satisfies (LLE),
(CCL), (SC), (∼| 4).

(b) If µ : DL → DL satisfies (µ∅), (µ ⊆), (µ2s), (µCUM) (for Y = DL), then ∼| defined by T := Th(µ(M(T)))
satisfies (CP), (LLE), (CCL), (SC), (∼| 4s), (∼| 5), (CUM).

(c) If ∼| satisfies (LLE), (CCL), (SC), (∼| 4), then there is µ : DL → DL such that T = Th(µ(M(T))) for all T
and µ satisfies (µ ⊆), (µ2) (for Y = DL).

(d) If ∼| satisfies (CP), (LLE), (CCL), (SC), (∼| 4s), (∼| 5), (CUM), then there is µ : DL → DL such that

T = Th(µ(M(T))) for all T and µ satisfies (µ∅), (µ ⊆), (µ2s), (µCUM) (for Y = DL).

Proof:

We show (a) and (b) together.

Let T = Th(µ(M(T))), thus by Fact 5.2.10, (0) µ(M(T)) = M(T).

(CP): Con(T) → M(T) 6= ∅ → (by (µ∅)) µ(M(T)) 6= ∅ → Con(T).

(LLE): If T = T ′, then M(T) = M(T ′), so µ(M(T)) = µ(M(T ′)), and T = T ′.

(CCL) is trivial by definition, and (SC) is trivial by (µ ⊆).

(∼| 4) : Suppose there are T, Ti s.t. ∀i ∈ I Ti ` T and φ s.t. φ 6∈ T , andM(T∪{¬φ}) ⊆X :=
⋃
{M(Ti)−M(Ti) : i ∈

I}. Then M(T)−X ⊆ M(T ∪ {φ}) ⊂ M(T), by φ 6∈ T . Now M(T) = µ(M(T)), and X =
⋃
{M(Ti)− µ(M(Ti)) :

i ∈ I} ⊆
⋃
{M(T ′) − µ(M(T ′)) : T ′ ` T} =

⋃
{M(T ′) − µ(M(T ′)) : M(T ′) ⊆ M(T)}. Thus µ′(M(T)) =

µ(M(T)) −
⋃
{M(T ′) − µ(M(T ′)) : M(T ′) ⊆ M(T)} ⊆ µ(M(T)) − X = M(T) − X ⊆ M(T ∪ {φ}) ⊂ M(T) =

µ(M(T)), contradicting (µ2).

(∼| 4s) : The proof is almost the same as for (∼| 4). Suppose there are T, Ti s.t. ∀i ∈ I T ⊆ T ∨ Ti and φ s.t.

φ 6∈ T , and M(T ∪ {¬φ}) ⊆ X :=
⋃
{M(Ti)−M(Ti) : i ∈ I}. Then M(T)−X ⊆ M(T ∪ {φ}) ⊂ M(T), by φ 6∈ T .

Now M(T) = µ(M(T)), and X =
⋃
{M(Ti) − µ(M(Ti)) : i ∈ I} ⊆

⋃
{M(T ′) − µ(M(T ′)) : T ′ s.t. T ⊆ T ∨ T ′}

= (by Fact 5.2.10, (4))
⋃
{M(T ′) − µ(M(T ′)) : T ′ s.t. µ(M(T) ∪M(T ′)) ⊆ M(T)}. Thus µ′(M(T)) = µ(M(T))

-
⋃
{M(T ′) − µ(M(T ′)) : T ′ s.t. µ(M(T) ∪M(T ′)) ⊆ M(T)} ⊆ µ(M(T)) − X = M(T) − X ⊆ M(T ∪ {φ}) ⊂

M(T) = µ(M(T)), contradicting (µ2s).

(∼| 5) :M(T ∨ T ′) = µ(M(T∨T ′)) = µ(M(T)∪M(T ′)) ⊆ (by Fact 5.2.6, (3)) µ(M(T))∪µ(M(T ′)) =M(T)∪M(T ′)

= M(T ∨ T ′), so T ∨ T ′ ⊆ T ∨ T ′ by Fact 5.2.10, (5).

(CUM): T ⊆ T ′ ⊆ T → µ(M(T)) = M(T) ⊆ M(T ′) ⊆ M(T) →(µCUM) µ(M(T ′)) = µ(M(T)) → T = T ′.

196 CHAPTER 5. DEFINABILITY PRESERVATION

We now show (c) and (d) together:

Let ∼| satisfy the mentioned properties. We define µ : DL → DL, show T = Th(µ(M(T))), and that the
corresponding properties for µ hold.

Set µ(M(T)) := M(T) for all T. If M(T) = M(T ′), then T = T ′, thus T = T ′ by (LLE), so M(T) = M(T ′), and

µ is well-defined. As T is classically closed, Th(M(T)) = T , so T = Th(µ(M(T))), and Fact 5.2.10 holds.

(µ∅) is trivial by (CP), so is (µ ⊆) by (SC).

(µ2) : Suppose there were U ∈ DL s.t.
⋃
{U ′ − µ(U ′) : U ′ ∈ DL, U

′ ⊆ U} ∩ µ(U) is not a small (in DL)

subset of µ(U). Let U = M(T), U ′ = M(T ′). So µ(U) = M(T). Then there must be some X ∈ DL with

µ(U) −
⋃
{U ′ − µ(U ′) : U ′ ∈ DL, U

′ ⊆ U} ⊆ X ⊂ µ(U). So there must be some φ 6∈ T with X ⊆ M(T ∪ {φ}), so

M(T ∪ {¬φ}) ⊆
⋃
{M(T ′)−M(T ′) : T ′ ` T}, contradicting (∼| 4).

(µ2s) : (This is alsmost the same proof as for (µ2).) Suppose there were U ∈ DL s.t.
⋃
{U ′ − µ(U ′) : U ′ ∈

DL, µ(U ∪U ′) ⊆ U} ∩ µ(U) is not a small (in DL) subset of µ(U). Let U = M(T), U ′ = M(T ′). So µ(U) = M(T).
Then there must be some X ∈ DL with µ(U) -

⋃
{U ′ − µ(U ′) : U ′ ∈ DL, µ(U ∪ U ′) ⊆ U} ⊆ X ⊂ µ(U). So

there must be some φ 6∈ T with X ⊆ M(T ∪ {φ}), so M(T ∪ {¬φ}) ⊆
⋃
{M(T ′) −M(T ′) : T ′ s.t. T ⊆ T ∨ T ′},

contradicting (∼| 4s).

(µCUM) : M(T) = µ(M(T)) ⊆M(T ′) ⊆M(T) → T ⊆ T ′ ⊆ T →(CUM) T = T ′ → µ(M(T)) = M(T) = M(T ′) =
µ(M(T ′)).

2

Proof of Proposition 5.2.11:

We show (a.1) and (b.1) together.

Let for some [smooth] classical preferential model M over ML T = Th(µM(M(T))) for all T. For the function

µ : DL → DL defined by µ(M(T)) := M(T) ˜µM(M(T)) = µ(M(T)) (in DL) holds, so by Proposition 5.2.5
(b) [5.2.9 (b)] µ satisfies (µ ⊆), (µ2) [(µ∅), (µ ⊆), (µ2s), (µCUM)]. Thus, by Lemma 5.2.12, ∼| ′ defined by

T
′

:=Th(µ(M(T))) satisfies (LLE), (CCL), (SC), (∼| 4) [(CP), (LLE), (CCL), (SC), (∼| 4s), (∼| 5), (CUM)], but

T
′

=Th(µ(M(T)))=Th(M(T)) = T , as T is deductively closed.

We now show (a.2) and (b.2) together.

Let ∼| satisfy (LLE), (CCL), (SC), (∼| 4) [(CP), (LLE), (CCL), (SC), (∼| 4s), (∼| 5), (CUM)]. By Lemma 5.2.12,

there is µ : DL → DL s.t. T = Th(µ(M(T))) and µ satisfies (µ ⊆), (µ2) [(µ∅), (µ ⊆), (µ2s), (µCUM)]. So
by Proposition 5.2.5 (a) [5.2.9 (a)], there is a [smooth] transitive classical preferential model M over ML s.t.

µ(M(T)) = ˜µM(M(T)) for all T, so T = Th(µ(M(T))) = Th(µM(M(T))). 2

5.2.3 The general case and the limit version cannot be characterized

Introduction:

We show in this Section more than what the headline announces:

• general, not necessarily definability preserving preferential structures,

• the general limit version of preferential structures,

5.2. PREFERENTIAL STRUCTURES 197

• not necessarily definability preserving ranked preferential structures,

• the limit version of ranked preferential structures,

• general, not necessarily definability preserving distance based revision,

• the general limit version of distance based revision

all have no ”normal” characterization by logical means of any size.

The limit version will in all cases be a trivial consequence of the minimal version: On the one hand, the constructed
structures will give the same results in the minimal and the limit reading (this is due to the simplicity of the relation,
where paths will have length at most 1). On the other hand, the logics we define will not be preferentially or distance
representable in both readings - this is again trivial.

We have seen that distance based revision has no finite characterization, but a countable set of finite conditions
suffices, as transitivity speaks about arbitrarily long finite chains. The case of not necessarily definability preserving
preferential structures (and, as a consequence, of the limit version of preferentials structures) is much worse, as we
will see now in Proposition 5.2.15. This proposition shows that there is no normal characterization of any size of
general preferential structures, and consequently of the limit variant.

As said in Section 2.3.1, this negative result, together with the reductory results of Sections 3.4.1 and 3.10.3, casts
a heavy doubt on the utility of the limit version as a reasoning tool. It seems either hopelessly, or unnecessarily,
complicated. But it seems useful as a tool for theoretical investigations, as it separates finitary from infinitary
versions, see Section 3.4.1.

A similar result is shown in Proposition 5.2.16 for not necessarily definability preserving ranked structures, and in
Proposition 5.2.17 for not necessarily definability preserving distance based revision. It was at first sight a little
surprising to the author that the generally simpler ranked case revealed itself as more difficult. But a second
look shows why: In a ranked structure, we cannot only take pairs of the relation away, as we do in the proof of
Proposition 5.2.15 for the general case, we then also have to put new pairs in, in order to keep the structure ranked.
Still, the same technique works with some modifications. The result on revision is then a simple corollary of the
ranked case. For this reason, we treat the revision case here, too, instead of e.g. in Section 5.3.

We first introduce some notation and simple facts, which will be used throughout this Section 5.2.3. We then state
the technical Lemma 5.2.14, which shows that for each theory T in our language of size κ whose set of consequences

T is defined in a certain way, there is an ”optimal” model set AT of size ≤ κ which generates T . This Lemma might
also prove useful in other contexts, so it has some interest on its own. The reader should look first at the proof
of Proposition 5.2.15, and only then at that of Proposition 5.2.16, not only is the former simpler, but we also use
small facts from the former in the latter. Proposition 5.2.17 is an easy corollary to Proposition 5.2.16, as revision
is essentially rankedness with mobile left hand side. We will take care that all non-trivial cases involve just one
left hand point.

The reader may perhaps best skip the Lemma 5.2.14 and its proof, retain the intuitive idea just described, read
the Propositions and their proofs, and come back to Lemma 5.2.14 afterwards.

Notation 5.2.1

(1) We will always work in a propositional language L with κ many (κ an infinite cardinal) propositional variables
pi : i < κ. As p0 will have a special role, we will set p := p0. In the revision case, we will use another special
variable, which we will call q. (This will just avoid excessive indexing.)

(2) In all cases, we will show that there is no normal characterization of size ≤ κ. As κ was arbitrary, we will
have shown the results. We will always assume that there is such a characterization Φ of size κ, and derive a
contradiction. For this purpose, we construct suitable logics which are not representable, and show that for any
instantiation of Φ (i.e. with at most κ theories T or formulas φ) in these logics, we find a ”legal” structure where
these instances have the same value as in the original logic, a contradiction to the assumed discerning power of
Φ. (By hypothesis, at least one instance has to have negative value in the not representable logics, but then it

198 CHAPTER 5. DEFINABILITY PRESERVATION

has the same negative value in a legal structure, a contradiction.) To simplify notation, we assume wlog. that
the characterization works with theories only, as we can always replace a formula φ by the theory {φ} etc. The
structures to be constructed depend of course on the particular instantiation of Φ, a set of theories of size ≤ κ, we
will denote this set T , and construct the structures from T and the ”illegal” original logic.

(3) Given any model set X ⊆ML, we define again X̃ := M(Th(X)) - the closure of X in the standard topology.

We then have:

Fact 5.2.13

(1) X ⊆ X̃.

(2) Let T be any L−theory, and A ⊆ML, then ˜M(T)−A = M(T ∪TA) for some TA. Of course, TA may be empty

or a subset of T , if ˜M(T)−A = M(T). Thus, for X ⊆ P(ML)
⋂
{ ˜M(T)−A : A ∈ X} =

⋂
{M(T ∪ TA) : A ∈ X}

= M(
⋃
{T ∪ TA : A ∈ X}) for suitable TA.

(3) If ˜M(T)−A 6= M(T), then Th(M(T)−A)
⊃
6= T , so ˜M(T)−A = M(T ∪ TA) for some TA s.t. T 6` TA.

(Trivial).

2

We now state and prove our main technical Lemma.

Lemma 5.2.14

Let L be a language of κ many (κ an infinite cardinal) propositional variables.

Let a theory T be given, ET ⊆ {X ⊆ML : card(X) ≤ κ} be closed under unions of size ≤ κ and subsets, and T be

defined by T := Th(
⋂
{ ˜M(T)−A : A ∈ ET }).

Then there is an (usually not unique) ”optimal” AT ∈ ET s.t.

(1) T = Th(M(T)−AT),

(2) for all A ∈ ET ˜M(T)−AT ⊆ ˜M(T)−A.

Proof:

Before we give the details, we describe the (simple) idea. The proof shows essentially how to do the right counting.

We cannot work directly with the A ∈ ET , and take the union, there might be too many of them, and the resulting

set too big. But they give mostly the same results ˜M(T)−A, and there are not very many interesting ones of

them, or of their corresponding theories: To each A corresponds a theory TA with ˜M(T)−A = M(T ∪ TA). As
we are only interested in those A or TA which change M(T), we will successively add formulas to some initial TA,

until we have found a maximal TA′ s.t. T = Th(M(T ∪TA′), and A′ will be the AT . Thus, we work neither directly
with all A, nor with all TA, but count formulas, and there are only ≤ κ many of them. We will then take the union
AT of the corresponding A (i.e. which add new formulas), this will have size ≤ κ again.

Now the details.

By Fact 5.2.13,
⋂
{ ˜M(T)−A : A ∈ ET } = M(

⋃
{T ∪ TA : A ∈ ET }), so T = Th(M(

⋃
{T ∪ TA : A ∈ ET })) =⋃

{T ∪ TA : A ∈ ET } for suitable TA.

We have to show that we can obtain T with one single AT ∈ ET , i.e. T = Th(M(T)−AT).

Let E := ET , and let Ψi be an (arbitrary) enumeration of {TA : A ∈ E}.

5.2. PREFERENTIAL STRUCTURES 199

We define an increasing chain Γi : i ≤ µ (µ ≤ κ) of sets of formulas by induction, and show that for each Γi there

is Ai ∈ E s.t. ˜M(T)−Ai = M(T ∪ Γi), and T = T ∪
⋃
{Γi : i ≤ µ}.

Γ0 := Ψ0.

Γi+1 := Γi ∪ Ψj , where Ψj is the first Ψl 6⊆ Γi - if this does not exist, as Γi contains already all Ψl, we stop the
construction.

Γλ :=
⋃
{Γi : i < λ} for limits λ.

Note that the chain of Γ′s has length ≤ κ, as we always add at least one of the κ many formulas of L in the
successor step (and the construction will stop at a successor step).

We show ˜M(T)−Ai = M(T ∪ Γi) by induction.

By construction,

˜M(T)−A0 = M(T ∪ Γ0) − where A0 ∈ E is one of the A ∈ E which correspond to Ψ0 (usually, there are many
of them).

Suppose ˜M(T)−Ai = M(T∪Γi) by induction, and ˜M(T)−Aj = M(T∪Ψj). Then M(T)−(Ai∪Aj) |= T∪Γi∪Ψj ,

so there is a subset Ai+1 of Ai ∪ Aj , thus of size ≤ κ, and Ai+1 ∈ E , s.t. ˜M(T)−Ai+1 = M(T ∪ Γi ∪ Ψj) =
M(T ∪ Γi+1), as Γi+1 = Γi ∪Ψj .

Suppose ˜M(T)−Ai = M(T ∪ Γi) for i < λ ≤ κ by induction. Then M(T)−
⋃
{Ai : i < λ} |= T ∪

⋃
{Γi : i < λ},

so there is a subset Aλ of
⋃
{Ai : i < λ}, i.e. of size ≤ κ, and Aλ ∈ E , s.t. ˜M(T)−Aλ = M(T ∪

⋃
{Γi : i < λ}) =

M(T ∪ Γλ).

This is also true for the last element Γµ, as the entire chain has length ≤ κ. Consequently, there is AT := Aµ ∈ E

s.t. ˜M(T)−AT = M(T ∪ Γµ) = M(T), as T =
⋃
{T ∪ TA : A ∈ E} and Γµ =

⋃
{TA : A ∈ E}, and for each A ∈ E

˜M(T)−A ⊇ ˜M(T)−AT , and T = Th(˜M(T)−AT) = Th(M(T) − AT), as Γµ contains all Ψ corresponding to
some A ∈ E . Thus, (1) and (2) hold.

(Loosely speaking, AT := Aµ is a maximal element of ET , more precisely, its Ψ is maximal. The important fact is
that such AT exists, and still has size ≤ κ.)

2

Proposition 5.2.15

(1) There is no ”normal” characterization of any fixed size of not necessarily definability preserving preferential
structures.

(2) There is no ”normal” characterization of any fixed size of the general limit variant of preferential structures.

Proof:

Before we begin the proof, we point out that the ”small sets of exceptions” we speak about in this Chapter 5
can be arbitrarily big unions of exceptions, this depends essentially on the size of the language. So there is no
contradiction in our results. If you like, the ”small” of the ”small sets of exceptions” is relative, the κ discussed
here is absolute.

(2) It is easy to see that (2) is a consequence of (1): Any minimal variant of suitable preferential structures can
also be read as a degenerate case of the limit variant: There is a smallest closed minimizing set, so both variants
coincide. This is in particular true for the structurally extremely simple cases we consider here - the relation will
be trivial, as the paths in the relation have length at most 1, we work with quantity. On the other hand, it is easily
seen that the logic we define first is not preferential, neither in the minimal, nor in the limit reading.

200 CHAPTER 5. DEFINABILITY PRESERVATION

Proof of (1):

Let then κ be any infinite cardinal. We show that there is no characterization of general (i.e. not necessarily
definability preserving) preferential structures which has size ≤ κ. We suppose there were one such characterization
Φ of size ≤ κ, and construct a counterexample.

The idea of the proof is very simple. We show that it suffices to consider for any given instantiation of Φ ≤ κ many
pairs m ≺ m− in a case not representable by a preferential structure, and that ≤ κ many such pairs give the same
result in a true preferential structure for this instantiation. Thus, every instantiation is true in an ”illegal” and a
”legal” example, so Φ cannot discern between legal and illegal examples. The main work is to show that ≤ κ many
pairs suffice in the illegal example. This was done in Lemma 5.2.14.

We first note some auxiliary facts and definitions, and then define the logic, which, as we show, is not representable
by a preferential structure. We then use the union of all the ”optimal” sets AT guaranteed by Lemma 5.2.14 to

define the preferential structure, and show that in this structure T for T ∈ T is the same as in the old logic, so the
truth value of the instantiated expression is the same.

Writing down all details properly is a little complicated.

As any formula φ in the language has finite size, φ uses only a finite number of variables, so φ has 0 or 2κ different
models.

For any model m with m |= p, let m− be exactly like m with the exception that m− |= ¬p. (If m 6|= p, m− is not
defined.)

Let A := {X ⊆M(¬p) : card(X) ≤ κ}. For given T, let AT := {X ∈ A : X ⊆M(T) ∧ ∀m− ∈ X.m ∈M(T)}. Note

that AT is closed under subsets and under unions of size ≤ κ. For T, let BT := {X ∈ AT : ˜M(T)−X 6= M(T)}, the
(in the logical sense) ”big” elements of AT . For X ⊆ML, let XddM(T) := {m− ∈ X : m− ∈M(T) ∧ m ∈M(T)}.
Thus, AT = {XddM(T) : X ∈ A}.

Define now the logic ∼| as follows in two steps:

(1) Th({m,m−}) := Th({m})

(Speaking preferentially, m ≺ m−, for all pairs m, m−, this will be the entire relation. The relation is thus
extremely simple, ≺ −paths have length at most 1, so ≺ is automatically transitive.)

We now look at (in terms of preferential models only some!) consequences:

(2) T := Th(
⋂
{ ˜M(T)−A : A ∈ BT }) = Th(

⋂
{ ˜M(T)−A : A ∈ AT }).

We note:

(a) This - with exception of the size condition - would be exactly the preferential consequence of part (1) of the
definition.

(b) (1) is a special case of (2), we have seperated them for didactic reasons.

(c) The prerequisites of Lemma 5.2.14 are satisfied for T and AT .

(d) It is crucial that we close before intersecting.

This logic is not preferential. We give the argument for the minimal case, the argument for the limit case is the
same.

Take T := ∅. Take any A ∈ AT . Then Th(ML) = Th(ML − A), as any φ, which holds in A, will have 2κ models,

so there must be a model of φ in ML−A, so we cannot separate A or any of its subsets. Thus, ˜M(∅)−A = M(∅)

for all A of size ≤ κ, so ∅ = ∅, which cannot be if ∼| is preferential, for then ∅ = p.

Suppose there were a characterization Φ of size ≤ κ. It has to say ”no” for at least one instance T (i.e. a set of size
≤ κ of theories) of the universally quantified condition Φ. We will show that we find a true preferential structure

where this instance T of Φ has the same truth value, more precisely, where all T ∈ T have the same T in the
old logic and in the preferential structure, a contradiction, as this instance evaluates to ”false” in the preferential

5.2. PREFERENTIAL STRUCTURES 201

structure, too.

Suppose T ∈ T .

If T = T , we do nothing (or set AT := ∅). When T is different from T , this is because BT 6= ∅.

By Lemma 5.2.14, for each of the ≤ κ T ∈ T , it suffices to consider a set AT of size ≤ κ of suitable models of

¬p to calculate T , i.e. T = Th(M(T)− AT), so, all in all, we work just with at most κ many such models. More
precisely, set

B :=
⋃
{AT : T = Th(M(T)−AT) 6= T , T ∈ T }.

Note that for each T with T 6= T , BddM(T) ∈ BT , as B has size ≤ κ, and B contains AT , so ˜M(T)−BddM(T) 6=

M(T). But we also have T = Th(M(T)−AT) = Th(M(T)−BddM(T)), as AT was optimal in BT .

Consider now the preferential structure where we do not make all m ≺ m−, but only the κ many of them featuring
in B, i.e. those we have used in the instance T of Φ. We have to show that the instance T of Φ still fails in the new

structure. But this is now trivial. Things like T etc. do not change, the only problem might be T . As we work in
a true preferential structure, we now have to consider not subsets of size at most κ, but all of BddM(T) at once -

which also has size ≤ κ. But, by definition of the new structure, T = Th(M(T)−BddM(T)) = Th(M(T)− AT).

On the other hand, if T = T in the old structure, the same will hold in the new structure, as BddM(T) is one of

the sets considered, and they did not change T .

Thus, the T in the new and in the old structure are the same. So the instance T of Φ fails also in a suitable
preferential structure, contradicting its supposed discriminatory power.

The limit reading of this simple structure gives the same result.

2

We turn to the ranked case. Lemma 5.2.14 will again play a central role.

When we try to adapt above proof to the ranked case, we meet a problem which we will describe shortly before
modifying the construction. We begin the construction as above, but let every p-model minimize every ¬p−model,
not only its counterpart. We then continue as above the construction of κ size sets. This works fine. The problem
is at the end. We have omitted part of the relation, but, to ensure rankedness, we have to put the ¬p−models we

did not use somewhere without changing the T . By rankedness, we cannot just take away part of the relation, we
have to add something, too. If we put them all on the upper level, we risk to run into a contradiction, as then

e.g. ∅ = p, which did not hold in the original structure, and ∅ might be one of the parameters. If we put one
¬p−model m on the lower level, then it might happen that Th(m,m′) - for m′ another ¬p−model - is one of the

parameters, and by Th(m,m′) = Th(m,m′) in the original structure, we have to put m′ down too, etc. Thus, we
have to invest a little more work.

Proposition 5.2.16

(1) There is no ”normal” characterization of any fixed size of not necessarily definability preserving ranked prefer-
ential structures.

(2) There is no ”normal” characterization of any fixed size of the general limit version of ranked preferential
structures.

Proof:

The proof follows closely the proof of Proposition 5.2.15. We omit some simple facts shown already there.

Let as above κ be any infinite cardinal. We show that there is no characterization of general (i.e. not necessarily
definability preserving) ranked preferential structures which has size ≤ κ. We suppose there were one such charac-

202 CHAPTER 5. DEFINABILITY PRESERVATION

terization Φ of size ≤ κ, and construct a counterexample. Again, we assume wlog. that the characterization works
with theories only.

We introduce again some notation:

A := {X ⊆M(¬p) : card(X) ≤ κ}.

If Con(T, p) or if (T ` ¬p and card(M(T)) > κ) define AT := {X ∈ A : X ⊆ M(T)} and BT := {X ∈ AT :
˜M(T)−X 6= M(T)}.

(If T ` ¬p and card(M(T)) ≤ κ, AT and BT are undefined.)

Note that AT is closed under subsets and under unions of size ≤ κ.

Define now the logic ∼| as follows in three steps:

(1) Th({m,m′}) := Th({m}) if m |= p, m′ |= ¬p.

This corresponds to a ranked structure with two levels, on the top level all ¬p−models, on the bottom level all
p-models.

We now look again at (in terms of preferential models only some!) consequences:

(2) For T s.t. Con(T, p) or (T ` ¬p and card(M(T)) > κ), we define

T := Th(
⋂
{ ˜M(T)−A : A ∈ AT }).

Thus, (1) is again a special case of (2), and in case (2) the prerequisites of Lemma 5.2.14 are satisfied for T and
AT .

(3) For T s.t. T ` ¬p and card(M(T)) ≤ κ, define T := T .

As in the proof of Proposition 5.2.15, we see that this logic is not preferential, neither in the minimal, nor in the
limit reading.

Suppose there were a characterization Φ of size ≤ κ. It has to say ”no” for at least one instance T of the universally
quantified condition Φ. We will again show that we find a true preferential structure where all T ∈ T evaluate to
the same value as just described, a contradiction.

By Lemma 5.2.14, for each of the ≤ κ T ∈ T of case (2), it suffices to consider a set AT of size ≤ κ of suitable
models of ¬p, so, all in all, we work just with at most κ many such models. So we set again

B :=
⋃
{AT : T = Th(M(T)−AT) 6= T , T as in case (2), T ∈ T }.

Define now B′ by induction:

B0 := B,

Bλ :=
⋃
{Bi : i < λ} for limit λ,

Bi+1 := Bi ∪
⋃
{M(T) : T ` ¬p, card(M(T)) ≤ κ, M(T) ∩ Bi 6= ∅, T ∈ T }.

B′ :=
⋃
{Bi : i < λ}, λ ≤ κ sufficiently big.

Thus, B′ still has card ≤ κ, as there were only ≤ κ many T ∈ T involved, and each M(T) has size ≤ κ.

Consider now the ranked preferential structure with two levels where we put in the top level all b ∈ B ′ (i.e. not all
¬p−models, but only ≤ κ many of them), and all other L−models on the bottom level.

We have to show that the expression Φ with our instances still fails in the new structure, or, that it has still the

same truth value. For this purpose, we show that T is the same in the first definition, and in the new structure for
all T ∈ T .

Case 1: T is s.t. Con(T, p) or (T ` ¬p and card(M(T)) > κ) : If T 6= T in the old definition, then this is

an immediate consequence of the fact that card(B ′) ≤ κ, and that the AT ⊆ B ⊆ B′ were optimal. If T = T

in the old definition, then there is no X ∈ AT s.t. ˜M(T)−X 6= M(T), so a fortiori there is no Y ⊆ B′ s.t.
˜M(T)− Y 6= M(T), as card(B′) ≤ κ.

5.2. PREFERENTIAL STRUCTURES 203

Figure 5.2.1

some ¬q ∧ ¬p-models d(m,x) = 0.6

all ¬q ∧ p-models and

most ¬q ∧ ¬p-models

d(m,x) = 0.5

m |= q

all other q-models

All other distances are 1.0 or 0

Case 2: T ` ¬p and card(M(T)) ≤ κ : Thus, T = T in the old definition, but in the new structure all x ∈ M(T)

for every such T ∈ T are either all on the top level, or they are all on the bottom level, so T = T in the new
structure, too.

Thus, the T for T ∈ T in the new and in the old structure are the same. So the instance T of Φ fails also in a
suitable preferential structure, contradicting its supposed discriminatory power.

2

We turn to revision.

We have done the main work in the ranked case, and just have to apply our result to revision. The idea is as
follows: Take a language as above, and add for simplicity one new variable q. We make almost everything trivial,
with one exception: We single out one q-model m, and look from m to the ¬q−models, which we treat as in the
ranked case. The ¬q ∧ p−models will play the role of the p-models in the ranked case, and the ¬q ∧ ¬p−models
will play the role of the ¬p−models in the ranked case. Thus, all ¬q ∧ p−models will be closer to m than some
¬q ∧¬p−models, e.g. the first distance is 0.5, the second one 0.6. All other distances will be made bigger, e.g. 1.0.
(See Figure 5.2.1.)

To avoid trivial complications, we make the distance not symmetric, but it is easy to construct a similar case with
a symmetric distance. (If m |= T ′ and T ` ¬q, then T ∗ T ′ := Th(m), else T ∗ T ′ := T ′, etc.)

We thus have:

204 CHAPTER 5. DEFINABILITY PRESERVATION

Proposition 5.2.17

(1) There is no normal characterization of not necessarily definability preserving distance defined revision. The
distance can be chosen symmetric or not.

(2) There is no normal characterization of the limit version of distance defined revision. The distance can be chosen
symmetric or not.

Proof:

Choose p, q, m as in the discussion preceding this Proposition.

The following definition is motivated by the distance defined structures as described above, see also Figure 5.2.1.

Define a revision operator as follows: Case 1, Con(T, T ′) : T ∗ T ′ := T ∪ T ′.

Case 2, ¬Con(T, T ′) :

Case 2.1, m 6∈M(T) or T ′ ` q: T ∗ T ′ := T ′.

Case 2.2, m ∈M(T) and Con(T ′,¬q):

Only the ¬q−models are interesting, as all q-models have distance 1. For this reason, we now define T ′′, and

T ∗T ′ will be T ′′ as constructed in the proof of Proposition 5.3.16, using the similarity between ranked preferential
structures and distance defined structures - ranked structures are distance defined structures with fixed left hand
point.

Let T ′′ := T ′ ∪ {¬q}. As in the proof of Proposition 5.2.16, define AT ′′ := {X ⊆ M(¬q ∧ ¬p) : card(X) ≤ κ and
X ⊆M(T ′′)}.

Case 2.2.1, T ′′ is s.t. Con(T ′′, p) or (T ′′ ` ¬p and card(M(T ′′)) > κ) :

T ∗ T ′ := Th(
⋂
{ ˜M(T ′′)−A : A ∈ AT ′′}).

Case 2.2.2, T ′′ is s.t. T ′′ ` ¬p and card(M(T ′′)) ≤ κ: T ∗ T ′ := T ′′.

Obviously, this is not distance definable - argue as in the proof of Propositions 5.3.15 or 5.3.16.

We turn to the construction of the distance, to obtain a positive case for small (size ≤ κ) subsets of the information
for the chosen set T of parameters.

We argue now just as in the proof of Proposition 5.2.16, and define a set of ¬q ∧ ¬p−models B ′ (depending, of
course, on T), which we move farther away from m than the other ¬q−models. Thus, we construct the distance
relation as follows:

d(x, x) := 0,

d(m,x) := 0.5 iff x ∈M(¬q)−B′,

d(m,x) := 0.6 iff x ∈ B′,

d(x, y) := 1.0 iff x 6= m or y |= q.

This distance gives the same revision results for the ≤ κ parameters in T (as in the proof of Proposition 5.2.16),
and we are finished.

2

5.3 Revision

Recall that we consider here only the symmetric case of Section 4.2, as the not necessarily symmetric case was
treated only in the finitary version, where definability preservation is trivially true.

5.3. REVISION 205

5.3.1 The algebraic result

The proof of the main result of this part, Proposition 5.3.2 follows the same lines as the corresponding proof for
preferential structures. The auxiliary result Proposition 5.3.1 has again verbatim the same proof as the version for
definability preserving distance based revision, Proposition 4.2.2.

Let, in this Section, U 6= ∅, Y ⊆ P(U) be closed under finite ∩ and finite ∪, ∅ ∈ Y . Recall that for all A,B ∈ Y ,
and all distances d considered A,B 6= ∅ → A |d B 6= ∅ is assumed to hold.

We consider the following conditions:

Condition 5.3.1

Let |: Y × Y → Y , |′: Y × Y → P(U), and A,B,Xi ∈ Y .

(| 0) A | B = Ã |′ B,

(| 1) A | B ⊆ B,

(| 2) A ∩ B 6= ∅ → A | B = A ∩ B,

(| 3) A,B 6= ∅ → A | B 6= ∅,

(|′ 1) A |′ B ⊆ B,

(|′ 2) A ∩ B 6= ∅ → A |′ B = A ∩B,

(|′ 3) A,B 6= ∅ → A |′ B 6= ∅,

(|′ L) (Loop): (X1 |′ (X0 ∪ X2)) ∩ X0 6= ∅, (X2 |′ (X1 ∪ X3)) ∩ X1 6= ∅, (X3 |′ (X2 ∪ X4)) ∩ X2 6= ∅,
(Xk |′ (Xk−1 ∪X0)) ∩Xk−1 6= ∅ imply (X0 |′ (Xk ∪X1)) ∩X1 6= ∅.

Proposition 5.3.1

Let |′: Y × Y → P(U). Then |′ is representable by an [identity respecting], consistency preserving symmetric
pseudo-distance d : U × U → Z if |′ satisfies (|′ 3), (|′ 1), (|′ L) [and (|′ 2)].

Note that (|′ L) corresponds to: d(X1, X0) ≤ d(X1, X2), d(X2, X1) ≤ d(X2, X3), d(X3, X2) ≤ d(X3, X4) ≤ . . .≤
d(Xk, Xk−1) ≤ d(Xk, X0) → d(X0, X1) ≤ d(X0, Xk), and, by symmetry, d(X0, X1) ≤ d(X1, X2) ≤ . . .≤ d(X0, Xk)
→ d(X0, X1) ≤ d(X0, Xk), i.e. transitivity, or to absence of loops involving < .

The proof is verbatim the same as for Proposition 4.2.2 in Section 4.2.2, and the reader is referred there for details. 2

We obtain essentially as Corollary:

Definition 5.3.1

For |: Y × Y → Y , define A |′ B := A | B - {b ∈ B : ∃B′ ∈ Y(b ∈ B′ ⊆ B and b 6∈ A | B′)}.

Proposition 5.3.2

Let U 6= ∅, Y ⊆ P(U) be closed under finite ∩ and finite ∪, ∅ ∈ Y .

(a) Let |: Y×Y → Y . If | and |′ as defined in Definition 5.3.1 satisfy (| 3), (| 0), (| 1), and (|′ L) [and (| 2)], then there

is an [identity respecting] consistency preserving symmetric pseudo-distance d : U × U → Z s.t. A | B = ˜A |d B
holds.

(b) If d is an [identity respecting] consistency preserving symmetric pseudo-distance d : U × U → Z and A | B :=
˜A |d B, A |′ B := A |d B, then |: Y × Y → Y and |′: Y × Y → P(U) satisfy (| 3), (| 0), (| 1), and (|′ L) [and (| 2)].

206 CHAPTER 5. DEFINABILITY PRESERVATION

Proof:

(a) We show that the prerequisites of Proposition 5.3.1 hold.

(|′ 1) : |′ satisfies (|′ 1) by definition and (| 1).

(|′ 3) : If A,B 6= ∅, then A | B 6= ∅ by (| 3), and as ∅ ∈ Y , A |′ B 6= ∅ by (| 0).

(|′ 2) : If (| 2) holds, then (|′ 2) holds: Let A ∩ B 6= ∅. By definition, A |′ B ⊆ A | B = A ∩ B. Suppose
b ∈ (A ∩ B) − (A |′ B). Then there is B′ ∈ Y , B′ ⊆ B s.t. b ∈ B′, b 6∈ A | B′, but by b ∈ B′ A ∩ B′ 6= ∅, so
A | B′ = A ∩ B′, contradiction.

So Proposition 5.3.1 applies, and there is d representing |′ . By (| 0), A | B = Ã |′ B = ˜A |d B.
(b) (| 3), (| 0), and (| 1) are trivial.

(| 2) : If d is identity respecting, then, if A ∩ B 6= ∅, A |d B = A ∩ B, so by A ∩ B ∈ Y A | B = A ∩ B, and (| 2)
holds.

(|′ L) : Define for two sets A,B 6= ∅ d(A,B) := d(ab, b), where b ∈ A |d B, and ab ∈ b |d A. Then d(A,B) = d(B,A)
by d(a, b) = d(b, a) for all a,b. Loop amounts thus to d(X1, X0) ≤ . . . ≤ d(Xk, X0) → d(X0, X1) ≤ d(X0, Xk),
which is now obvious. 2

5.3.2 The logical result

We turn to (propositional) logic. The conditions for representation are formulated in Conditions 5.3.2. The result,
Proposition 5.3.3 will be shown directly.

First, as we have defined |′ for | in Definition 5.3.1, we define now ∗′ for ∗ - a suitable approximation to ∗.

Definition 5.3.2

If ∗ is a revision function, we define S ∗′ T := M(S ∗ T) - {m ∈M(T) : ∃T ′(m |= T ′, T ′ ` T, m 6|= S ∗ T ′)}

We consider the following conditions for a revision function ∗ defined for arbitrary consistent theories on both sides.

Condition 5.3.2

(∗0) If |= T ↔ S, |= T ′ ↔ S′, then T ∗ T ′ = S ∗ S′,

(∗1) T ∗ T ′ is a consistent, deductively closed theory,

(∗2) T ′ ⊆ T ∗ T ′,

(∗3) If T ∪ T ′ is consistent, then T ∗ T ′ = T ∪ T ′,

(∗5) Th(T ∗′ T ′) = T ∗ T ′,

(∗′L) M(T0) ∩ (T1 ∗′ (T0 ∨ T2)) 6= ∅, M(T1) ∩ (T2 ∗′ (T1 ∨ T3)) 6= ∅, M(T2) ∩ (T3 ∗′ (T2 ∨ T4)) 6= ∅, . . .M(Tk−1) ∩
(Tk ∗

′ (Tk−1 ∨ T0)) 6= ∅ imply M(T1) ∩ (T0 ∗
′ (Tk ∨ T1)).

Proposition 5.3.3

Let L be a propositional language. A revision function ∗ is representable by a symmetric consistency preserving
[identity respecting] pseudo-distance iff ∗ satisfies (∗0)− (∗2), (∗5), (∗′L) [and (∗3)].

Proof:

T, T ′ etc. will be consistent theories, and let Y := {M(T) : T a L− theory}.
′′ ←′′:

5.3. REVISION 207

Define M(T) | M(T ′) := M(T ∗ T ′). By (∗0), this is well-defined. We show the prerequisites of Proposition 5.3.2,
(a).

(| 3) : By (∗1), M(T) |M(T ′) 6= ∅ if M(T), M(T ′) 6= ∅.

Note that by the definition of |′ from | in Proposition 5.3.2 M(S) |′ M(T) := M(S) | M(T) - {m ∈ M(T):
∃T ′(m ∈ M(T ′) ⊆ M(T), m 6∈ M(S) | M(T ′))}. By Definition 5.3.2, S ∗′ T := M(S ∗ T) - {m ∈ M(T):
∃T ′(m |= T ′, T ′ ` T, m 6|= S ∗ T ′)} = M(S) | M(T) - {m ∈ M(T): ∃T ′(m |= T ′, T ′ ` T, m 6∈ M(S) | M(T ′))}.
Thus, M(S) |′ M(T) = S ∗′ T.

(| 0) : By (∗5), Th(T ∗′ T ′) = T ∗ T ′, so M(T ∗ T ′) = ˜T ∗′ T ′. So by the above, M(T) | M(T ′) = M(T ∗ T ′) =
˜T ∗′ T ′ = ˜M(T) |′ M(T ′).

(| 1) holds by (∗2), if (∗3) holds, so will (| 2).

(|′ L) holds by (∗′L) : (Ti ∗′ (Tj ∨ Tk)) ∩M(Tj) 6= ∅ iff (M(Ti) |′ (M(Tj) ∪M(Tk))) ∩M(Tj) 6= ∅ by the above
remark, so the loop conditions (|′ L) and (∗′L) are equivalent.

By Proposition 5.3.2, (a), there is an - if (| 2) holds, identity respecting - symmetric, consistency preserving

pseudo-distance d on ML s.t. M(T) | M(T ′) = ˜M(T) |d M(T ′), so M(T ∗ T ′) = ˜M(T) |d M(T ′), and Th(M(T ∗

T ′)) = Th(˜M(T) |d M(T ′)) = Th(M(T) |d M(T ′)). As T ∗ T ′ is deductively closed, T ∗ T ′ = Th(M(T ∗ T ′)), so
T ∗ T ′ = Th(M(T) |d M(T ′)).

′′ →′′:

Let d be such a pseudo-distance on ML. Define T ∗ T ′ := Th(M(T) |d M(T ′)). We use Proposition 5.3.2, (b).

Note: if y 6∈ X |d Y, then there is Y ′ ⊆ Y finite (and thus in Y) s.t. y ∈ Y ′, y 6∈ X |d Y ′. Moreover, for finite Y

X |d Y = ˜X |d Y . Let F be the set of L−theories with finitely many models. Thus, by M(S ∗ T) = ˜M(S) |d M(T)

we have S ∗′ T := M(S ∗ T) - {m ∈M(T) : ∃T ′(m |= T ′, T ′ ` T, m 6|= S ∗ T ′)} = ˜M(S) |d M(T) − {m ∈ M(T) :

∃T ′(m |= T ′, T ′ ` T, m 6∈ ˜M(S) |d M(T ′))} = ˜M(S) |d M(T) − {m ∈ M(T) : ∃T ′ ∈ F(m |= T ′, T ′ ` T,
m 6∈M(S) |d M(T ′))} = = M(S) |d M(T), as y ∈ X |d Y iff y ∈ X |d Y ′ for all Y ′ s.t. y ∈ Y ′ ⊆ Y.

(∗5) : Th(T ∗′ T ′) = Th(M(T) |d M(T ′)) = T ∗ T ′. (∗0) and (∗1) will trivially hold. By (| 1), (∗2) holds, if (| 2)
holds, so will (∗3).

We see that (∗′L) holds by (|′ L) : By the above, the two loop conditions are again equivalent. 2

208 CHAPTER 5. DEFINABILITY PRESERVATION

Chapter 6

Sums

6.1 Introduction

In this Chapter 6, we consider minimal sums (mostly of distances).

In Chapter 4 on revision and counterfactuals, we looked at just one distance at a time, and we were interested in
the question whether it was minimal. In this Chapter 6, we will consider (finite) sums, and will be interested in
those objects, which correspond to minimal sums (of some entity), like shortest trajectories. Perhaps the easiest
way to see their importance is the example of iterated update. Given some principle of maximal inertia, we are
interested in those sequences or developments, which have smallest change, i.e. the smallest sum of individual
changes from time t to time t′.

More precisely, we look at several representation problems:

• first, the problem of update characterization as just described,

• second, the BFH Markov characterization problem - where ”BFH” stands for the three authors
Boutilier/Friedman/Halpern, or their paper [BFH95], or their approach,

• third, the problem to characterize ”between” and ”behind”.

In all cases, the solution will be given by an old algorithm which goes back to Farkas at the beginning of the 20th
century. And, in all cases, we show that it is impossible to find a finite characterization in the general case.

6.1.1 The general situation and the Farkas algorithm

In a certain way, this Chapter carries the consideration about distances one step further. Whereas we were interested
in Chapter 4 in minimal distances, we look here at something like the sum or mean of several values - not just
one value decides, but many values together, and, we can add them. In short, we are interested in minimal sums.
We will, for instance, consider developments over several steps, and will be interested in those which use the least
resources, change the least etc.

Thus, we have to compare sums, to determine whether sum S is smaller than sum S ′. Conversely, we will try to
determine whether certain choices - supposed to be achieved by minimization of certain sums - are really determined
by sums. This amounts to determine whether systems of inequalities have a solution. Suppose e.g. that sum S
consists of a and b, S′ of a′ and b′, the development corresponding to S is preferred to S ′. We know then that
a+ b < a′ + b′ has to hold, if this preference is really determined by comparing sums. If we know all preferences, we
have a complete (for this situation) system of inequalities, and we can try to see whether the system has a solution.
If so, the preferences are determined by (or at least equivalent to) minimizing sums, if not, this cannot be.

209

210 CHAPTER 6. SUMS

Thus, completeness can be determined by solving systems of inequalities: if we impose sufficiently many conditions
on preference, we can show that the resulting systems of inequalities have a solution. Our system of conditions is
then complete for being determined by minimizing sums. If this is not the case, then the system is not complete.

Basic addition seems rather difficult to characterize, especially under lack of suitable closure properties of the
domain. More abstract forms - where, e.g. the biggest element carries it all - seem better suited. This is no
surprise, as in the basic form, one big element can be compensated by many small ones, so it is plausible that
representation becomes more difficult.

Solving systems of inequalities is an ubiquous problem, and not restricted to our representation problems, so it
is not surprising that there is an old solution to the problem, an algorithm due to Farkas at the beginning of
the 20th century. (S.Koppelberg, Berlin, pointed out this algorithm to the author.) We present it now (in slight
modification).

The algorithm eliminates by induction variables, it instantiates them, and it roughly works like this:

Let wlog. all inequalitis be of the form a+ a′ + . . . ≤ b+ b′ + . . .

We eliminate variables successively:

If some variable b occurs only on the right, we can omit it. If the remaining, smaller, system has a solution, the
original one will have one too, we just choose b big enough.

The same holds if a occurs only on the left - we make it sufficiently small.

Suppose c occurs on the left and twice on the right in a simple example:

For instance, for c � x1, c � x2, x3 ≺ c, x3 +x4 � c+x5, we consider then c+x3 ≺ x1 +c, c+x3 +x4 � x1 +c+x5,
c+ x3 ≺ x2 + c, c+ x3 + x4 � x2 + c+ x5. We cancel c on both sides, solve the system of the remaining variables,
and then ”squeeze” a suitable value for c in.

In this way, we eliminate all variables down to the last one, and it will be evident whether the final system has a
solution or not.

Now, this is a funny condition: the system is representable by inequalities of sums iff the Farkas algorithm terminates
with a solution. It is natural to look for other, more natural and compact, conditions. Moreover, we see here again
a problem of domain closure: if we can observe directly the transformations of the Farkas algorithm in the domain,
it suffices to give the transformation steps as conditions. E.g., if, for the last step, we can reshuffle the variables
in the manner indicated, i.e. if we can observe whether x3 ≺ x1 etc., we can work with the new system. If, on
the other hand, such sequences are not directly observable, giving the transformation steps is not sufficient, as we
cannot observe their results.

On the other hand, under weak closure conditions, we can sometimes show that finite characterizations are not
possible. This is trivial in the BFH situation, as we have there no strong closure conditions, easy for the case of
update by minimal sums, and, in my opinion, most interesting in the case of ”between” and ”behind”. We discuss
there a class of examples which remind the author strangely of switching diagrams for independent switching of one
lightbulb by more than two switches - a problem the reader might have pondered over as a kid (like the author).
The strategy will always be the same as for revision: we show that the difference between ”good” and ”bad” cases,
i.e. those representable by inequalities of sums and those not so representable, can be made arbitrarily ”small”,
and we need arbitrarily much information to discern the cases.

We present now the three problems.

6.1.2 Update by minimal sums

The basic idea is a formalization of the principle of maximal inertia. We reason about the states of a dynamic
system at time t, t′, t′′, We have only partial information, usually partial in two ways: first, we are not
given information about all moments s, second, even when we have information about moment s, this information
usually does not allow a full determination of the state the system is in. For instance, the system’s states may be
described by the propositional language p, q, r. Then, e.g., for time t we know that p holds, at t′, we know that

6.1. INTRODUCTION 211

q ∧ ¬r holds, and we know nothing about t′′. The task is to give the best guess for t′′. Once we have a distance
between models, based on the principle of maximal inertia, or minimal change, we can calculate the sums of all
possible trajectories, i.e. starting with p-models, then going through q∧¬r−models, and undetermined for the last
step, choose those with minimal sums, and the (disjunction of the) possible endpoints give us the best guess. Such
distance based reasoning will have certain propeties, in particular, the Farkas algorithm will terminate positively
for it.

The representation problem is the converse: We are given a language, a number of incomplete descriptions together
with the best guesses, and we have to determine whether this can be a rational guess based on maximal inertia
or minimal sums of distances between models. If so, we have to present one such distance measure. We apply the
Farkas algorithm to determine whether it is distance based, and to calculate a suitable distance in the positive
case.

We have a positive result - a criterion for representability by minimal sums -, and a negative one: we cannot really
do better than giving arbitrarily long conditions.

The positive result:

We first show an abstract representation result (Proposition 6.3.1), which shows how to extend a relation ≺ to a
ranked relation <, essentially representing a choice function µ - at least up to some equivalence relation (which has
nothing to do with ≺ or <), and the same for an abstract distance (see Section 6.3.2 for the exact formulation).
The proof is more tedious than difficult. This proposition will be used later on in the proof of the main result.

We then show that knowledge of sufficiently many intermediate results allows us to completely reconstruct the best
sequences (Fact 6.3.4). Again, the argument is more tedious than really complicated.

In the conditions we use, we impose quite strong closure of the domain in order not to have just to cite the Farkas
algorithm, i.e. we make the domain sufficiently rich to be able to make the transformations in the domain itself,
without leaving it by just taking the values, and performing the transformations ”in the air”. This is a matter of
taste - or of the actual problem at hand.

An additional inconvenient is that the conditions themselves become quite complicated, as we have to put all
necessary transformations into them.

In Definition 6.3.1, we show how to define the relation ≺:

Assume now that all sets of sequences written are ”observable” sets. E.g., in (R4) below, Σ′ ∪
⋃

Σi will be some
product Σ of sets.

We will always be given some (perhaps incomplete) information at various time points, this corresponds to a
cartesian product of model sets.

For the right hand side:

(Here ≺ means that the smallest sums of distances in sequences of the left hand side are smaller than the smallest
sums of distances in sequences of the right hand side.)

(R1) Σ×B � Σ×B′ if µ(Σ× (B ∪ B′)) ∩B 6= ∅,

(R2) Σ×B ≺ Σ×B′ if µ(Σ× (B ∪ B′)) ∩B′ = ∅.

For the left hand side:

(R3) Σ×B � Σ′ ×B if Σ′ ⊆ Σ,

(R4) (for all i Σ′ ×B � Σi ×B) if µ((Σ′ ∪
⋃

Σi)×B) 6⊆
⋃
µ(Σi ×B),

(R5) (for all i Σ′ ×B ≺ Σi ×B) if
⋂
µ(Σi ×B) 6⊆ µ((Σ′ ∪

⋃
Σi)×B)

(i ranges over some I in (R4) and (R5)).

The role of 0:

(R6) If
⋂

Σ(i) 6= ∅, then µ(Σ) =
⋂

Σ(i).

212 CHAPTER 6. SUMS

Addition:

(Here, a,b etc. are sums of distances, corresponding to one sequence. When they are compared, they are of equal
length.)

(+1) a+ b ≈ b+ a,

(+2) (a+ b) + c ≈ a+ (b+ c),

(+3) a ≈ a′ → (b ≈ b′ ↔ a+ b ≈ a′ + b′),

(+4) a ≈ a′ → (b ≺ b′ ↔ a+ b ≺ a′ + b′),

(+5) a ≺ a′ ∧ b ≺ b′ → a+ b ≺ a′ + b′ (≈ stands for � and � simultaneously).

and in Condition 6.3.1 we give the necessary and sufficient conditions for update by minimal sums:

(C1) µ(Σ) ⊆ Σ(n), if Σ(n) is the last component of Σ,

(C2) Σ 6= ∅ → µ(Σ) 6= ∅,

(C3) µ((
⋃

Σi)×B) ⊆
⋃
µ(Σi ×B),

(C4) Loop: The relation defined by (R1)− (R6), (+1)− (+5) contains no loops involving ≺ .

They translate then into the Farkas algorithm, using two lemmas (Fact 6.3.6 and Fact 6.3.7), which demonstrate
the existence of suitable ”witnesses”, sequences σ ∈ Σ, for the results of µ described there.

The negative result:

Now to the negative result: There is no finite characterization in the general case.

As said already above, the domain has some closure conditions, resulting from the fact that we are always given
snapshots at different time points, so we always consider whole Cartesian products of model sets.

We will consider trajectories of length 2, e.g. from a to b to c, and the distances (e.g. from a to b, from b to c)
will be small, medium, or big. Small will be much smaller than medium, which will be much smaller than big. In
this way, if one component of the path is small, this path will always be smaller than one with two middle size
components, and a path with a big component will always be bigger than one with two middle size components.
Small and big will be constant sizes, and we fiddle with the medium ones. A suitable choice of the distances shows
that only particular products of 2-element sets A, B, C, A × B × C, give us any information about the middle
sizes - in all other cases, there will be some small distance which interferes, or, the case is trivial for some other
reason. Thus, the only information we get is from very particular products. It is now easy to give update results
which do not fit with any choice of the middle values, but it suffices to change just one of the results to have a
distance representable update - and all the other information stays the same. Thus, we have the same situation
as for revision: We can choose arbitrarily big ”bad” examples which differ from ”good” ones by just one bit of
information, and the same reasoning applies: it is impossible to find a finite characterization of the ”good” cases.

6.1.3 Comments on ”Belief revision with unreliable observations”

The problem here is that the definitions are somewhat involved. Consequently, we will describe in this overview
only the general outline in an informal way, and refer the reader immediately to Section 6.4 for all formal details.

BFH give a careful motivation for examining exactly these systems, and the present Chapters are mostly on
representation results. We therefore invite the reader interested in motivation to consult the original article,
[BFH95].

(We have not discussed this article in earlier chapters, as it is a little off from our main line of more analytical
interests. Yet, it fits fully into the rest of this formal Chapter, having a representation via Farkas, and no finite
representation. The reader is asked to be lenient with this conceptually, but not formally, somewhat isolated
iceberg.)

6.1. INTRODUCTION 213

Seen abstractly, BFH discuss systems of ”runs”, i.e. systems of sequences, with a ranking κ of the sequences, and,
by the natural extension, of sets of runs. We first give the basic definitions, show some basic results taken from
the original BFH article, and then turn to ”Markov” systems (definition of BFH, see Definition 6.4.5). Markov
systems have, essentially, no memory, or, their ranking can be calculated component-wise, by sums of values, see
Fact 6.4.3. This makes the connection to the rest of the Chapter obvious. We correct a small mistake in the
original article (Example 6.4.1), show that the conditions (O1) and (O2) given in BFH hold in Markov systems,
but give an example (Example 6.4.2) of a non-Markov system, where they also hold - the latter result goes beyond
the original article.

We then show our main results for this Section:

First, we can have a complete characterization using the Farkas algorithm, see Proposition 6.4.5, and the preparing
Fact 6.4.4. To obtain the result, we use a (harmless) closure condition - see the remarks after Fact 6.4.4. Example
6.4.3 illustrates problems when we try to extend the result for infinite runs.

Second, we show in Example 6.4.4 that there is no finite characterization. This is easy, as there are no non-trivial
closure conditions for the domain to respect.

6.1.4 ”Between” and ”behind”

Recall that we define ”b is between a and c′′, or, equivalently ”c is behind b, seen from a′′ iff d(a, c) = d(a, b)+d(b, c).
Thus, given a distance with addition, we can easily determine the elements which are in these relations. Conversely,
given a relation of ”between” or ”behind”, i.e. a set of tripels, we can ask the question again whether there is a
distance d, which determines the same relation. Using Farkas, this is easy. And, again, the question arises whether
it is possible to find an essentially simpler characterization, i.e. a finite one. The answer is negative, which might
be somewhat surprising for such a simple problem.

We follow again the same strategy, i.e. we produce arbitrarily big ”bad”, i.e. not distance representable examples
which differ from ”good” ones by just one bit of information - changing just one triple from ”yes” to ”no” transforms
the negative example to a positive one. The idea is indicated in Example 6.5.1, which shows by an easy calculation
that (where < a, b, c > stands for ”b is between a and c′′) the following situation cannot be represented by a
distance:

Take x and y as endpoints, and a1, a2, a3, b1, b2, b3 as intermediate, and < x, a1, a2 >, < x, b1, b2 >, < a1, b2, b3 >,
< b1, a2, a3 >, < a2, b3, y >, < b2, a3, y > . All other tripels are not in the ”between” relation.

This cannot correspond to a distance (see the discussion of Example 6.5.2), but we can make any proper subset
work: If we omit any of the tripels, we can find a distance which generates the relation.

The general example is the same, only with arbitrarily many points. We then show that eliminating just one of
the tripels transforms the example into a ”good” one, examining by cases a triple in the middle or a triple at the
end. The details are again a little fiddly, we have to determine the right numerical values.

6.1.5 Summary

We treat in this Chapter representation for systems, where the choice is determined by minimality of certain sums.
There is a general approach to such situations, using an old algorithm, due to Farkas, which determines whether a
system of inequalities has a solution or not. If we make sufficiently strong assumptions about domain closure (see
e.g. in the Section on update by minimal sums), we can put the Farkas transformations into the domain, so they
become observable, if not, we have to treat the algorithm as a black box which churns out ”yes” or ”no”. In all
three cases we show that we cannot do really better: there is no finite characterization possible (unless, again, we
have sufficiently strong domain closure properties). The most interesting of these last results is perhaps the one
on ”between”, as this is a seemingly very simple problem - and the example is somewhat funny.

Recommended reading

214 CHAPTER 6. SUMS

It might be best to begin with the Farkas algorithm. You might then turn immediately to the negative result about
”between” and ”behind”, as this requires no further definitions and preliminaries. Then you might read the positive
result about update defined by minimal sums, and then the negative one, or vice versa, while the ”between” result
is still fresh in your mind. At the end, you might turn to the BFH version of update.

6.2 The Farkas algorithm

The following (old) algorithm will be used in this Chapter several times in various forms. It is a modification of
an algorithm communicated by S.Koppelberg, Berlin. The original version seems to be due to Farkas, see [Far02].

We have a system of inequalities and equalities of the type

x1,1 + . . .+ x1,m ≺ x2,1 + . . .+ x2,m or

x1,1 + . . .+ x1,m � x2,1 + . . .+ x2,m or

x1,1 + . . .+ x1,m ≈ x2,1 + . . .+ x2,m,

where m can differ.

The last one can be transformed to

x1,1 + . . .+ x1,m � x2,1 + . . .+ x2,m and

x2,1 + . . .+ x2,m � x1,1 + . . .+ x1,m.

Let the system contain x1 . . . xn. We eliminate by induction all but one of the xi,k . The procedure will be successful
(by the loop condition), and tells us how to assign positive rationals to the xi,k. The procedure eliminates the xn
by induction, and the simplified system of inequalities Π′ has a solution iff the original one Π has.

In the cases which interest us, all xn will be ≥ 0. Fix now xn.

Assume without loss of generality that the left hand side is always less or equal the right hand side.

Without loss of generality, xn does not occur on both sides of the same inequality, otherwise, subtract one each on
both sides repeatedly. - See Remark (1) below.

Case 1: xn does not occur in Π - we are done.

Case 2: xn occurs only on the right hand side. Let Π′ ⊆ Π be the set of those inequalities, where xn does not
occur. If Π′ has a solution, choose xn big enough to make Π true.

Case 3: xn occurs only on the left hand side. Replace e.g. xm+xn � xk+xl by xm+0 � xk+xl , xm+xn ≺ xk+xl
by xm+0 ≺ xk+xl, let the other inequalities unchanged. Let Π′ have a solution, then the difference in the modified
inequalities is some minimum or 0, where we can put xn in.

Case 4: xn occurs on both the left and the right hand side. Let Πl be the set of inequalities, where xn occurs on
the left hand side, let Πr be the set of inequalities, where xn occurs on the right hand side.

Informally, we isolate xn and transform all δi ∈ Πl into xn � R or xn ≺ R, and all δj ∈ Πr into L � xn or L ≺ xn,
e.g. x3 + x4 � xn + x5 will become x3 + x4 − x5 � xn . We then consider all inequalities of the form L � R or
L ≺ R resulting from L � xn � R etc., and ”squeeze” xn into a solution of the system of L � R and L ≺ R. In
general, this procedure will use subtraction, which is not observable in our cases, and will not figure among the
conditions. Instead we consider the sums δi + δj where δi ∈ Πl, δj ∈ Πr, and eliminate xn from both sides. We
then solve this system, have numbers, and ”squeeze” xn into the inequalities.

Let Π′ be the set of inequalities where xn does not occur, and all sums δi + δj , δi ∈ Πl, δj ∈ Πr. See again Remark
(1) below.

For instance, for xn � x1, xn � x2, x3 ≺ xn, x3 + x4 � xn + x5, we consider xn + x3 ≺ x1 + xn, xn + x3 + x4 �
x1 + xn + x5, xn + x3 ≺ x2 + xn, xn + x3 + x4 � x2 + xn + x5.

Now we can eliminate xn on both sides, where it still occurs.

6.3. A REPRESENTATION RESULT FOR UPDATE BY MINIMAL SUMS 215

In our example, x3 ≺ x1, x3 + x4 � x1 + x5, x3 ≺ x2, x3 + x4 � x2 + x5.

Let this Π′ have a solution. Then x3 ≺ x1, x3 + x4 − x5 � x1, x3 ≺ x2, x3 + x4 − x5 � x2. We have to fit xn into
[max(x3 + x4 − x5, x3),min(x1, x2)].

In the end, we have

0 + . . .+ 0 + x1 + . . .+ x1 ≺ 0 + . . .+ 0 (sums of equal length on both sides), or

0 + . . .+ 0 + x1 + . . .+ x1 � 0 + . . .+ 0, or

0 + . . .+ 0 ≺ 0 + . . .+ 0 + x1 + . . .+ x1, or

0 + . . .+ 0 � 0 + . . .+ 0 + x1 + . . .+ x1.

By 0 � x1, the first possibility is excluded. The other three show that the final system has a solution, which can
be transformed into one for the original system as indicated.

Remark 6.2.1

(1) The less we can observe, the more we have to impose closure conditions on the values. For instance, usually we
will not have differences, therefore we have avoided them in above algorithm. Whenever we can determine whether
some xi = 0, we will add this to the system. Whenever we can observe the results of the transformations (e.g. by
concatenation), we can put this into the conditions, otherwise, we will have to impose it directly on the values:
that the operations on the values, and not on the universe, preserves freedom from loop.

For example, if we have commutativity and adding the same value built in, we can code the elimination of the same
xn on both sides into the system: S ⊆ S ′ iff T ⊆ T ′, where T and T ′ result from S and S′ by adding xn - expressed
in conditions about the systems, e.g.: S corresponds to a sequence preferred to the sequence corresponding to S ′

iff the same applies to the T- and T ′−sequences. Similarly for Case 4, addition of inequalities.

(2) The algorithm will usually result in a finite system of rationals ≥ 0, which we can transform by suitable
multiplication into a system of positive integers, by finiteness.

(3) We do not see how to extend the algorithm for infinite sets of inequalities.

6.3 A representation result for update by minimal sums

6.3.1 Introduction

Reasoning about developments or changing situations is an important problem in Artificial Intelligence (AI), as
has been recognized very early. Much of human reasoning about these problems is based on the assumption that
the world is relatively static. We will, for instance, hesitate to accept an explanation as plausible which involves
many and unmotivated changes. This assumption of inertia is part of the AI folklore.

More formally, we can describe a possible development of the world as a sequence of models, a situation as a theory
(or set of models), and say that the development σ =< σ(0) . . . σ(n) > explains the change from situation S to
situation S′ iff σ(0) ∈ S and σ(n) ∈ S′. Usually, several different developments can explain the change from S
to S′, and the criterion of inertia may permit to choose a subset of these developments as containing the most
plausible ones. A natural way to use this criterion is the following: We assume a measure of difference or distance
d between the models to be given, and consider those developments as most plausible whose sum of differences
δ(σ) := d(σ(0), σ(1)) + . . . + d(σ(n − 1), σ(n)) is minimal among those which explain the change from S to S ′.
Conversely, given a preference relation between possible explanations, it is an interesting question whether there
exists a measure of difference d between the models s.t. δ(σ) < δ(σ′) iff σ is preferred over σ′. The aim of this
Section 6.3 is to solve this question, i.e. to characterize those preference relations which can be generated by such
a distance, in other words, to give a representation result. We use (an adaptation of) the Farkas algorithm, given
in Section 6.2.

We now describe precisely the situation we work in, and the assumptions we make.

216 CHAPTER 6. SUMS

We assume discrete time, and that we have (incomplete) information about the state of affairs at time t0 . . . tn.
This information is given by a sequence of sets of models, Σ =< Σ(0), . . . ,Σ(n) >, or, equivalently, by the product
Σ(0)× . . .×Σ(n). We further assume that our (fixed) propositional language L is finite, and that we consider only
sequences of finite length. Σ(ML) will denote the set of finite products of sets of models of L.

If there is a distance d defined on ML, we can determine the set of those sequences σ with σ(i) ∈ Σ(i) for which
δ(σ) (as defined above) is minimal. We call such sequences (d-) preferred sequences and denote by νd(Σ) the set
of d-preferred sequences in σ. We can then determine the set µd(Σ) ⊆ Σ(n), the set of endpoints of d-preferred
sequences in σ. Formally, we have defined a function Fd : Σ(ML) → P(ML) by Fd(Σ) := µd(Σ). This function Fd
has certain properties, like Fd(Σ) ⊆ Σ(n), if Σ(n) is the last element of Σ. We look for a complete list of properties,
which characterize such Fd , i.e. if some F : Σ(ML)→ P(ML) satisfies these properties, then there is some distance
d on ML s.t. F = Fd.

Note that, in general, the scarcity of information we dispose of - we know only µ(Σ(n)), and nothing about the
intermediate νi(Σ) ⊆ Σ(i) through which the preferred sequences pass - will not allow us to reconstruct ν(Σ), the
set of the (d-) preferred sequences. Knowledge of these νi(Σ), on the other hand, allows to reconstruct completely
ν(Σ), as Fact 6.3.4 will show.

We assume that we have the information µ(Σ) only about products Σ of sets of models, but not about arbitrary
sets of sequences. Thus, µ({a, a′} × {b, b′}) will be given, but, if a 6= a′ and b 6= b′, not µ({< a, b >,< a′, b′ >})
- the sequences < a, b′ >, < a′, b > are missing. On the other hand, we assume that we can reason about
unions of sets of sequences, in particular say that a union of products of sets is itself a product of sets, like
{a, a′}× {b, b′} = ({a}× {b})∪ ({a}× {b′})∪ ({a′}× {b})∪ ({a′}× {b′}). We will call products of sets ”legal” sets
of sequences. Thus, we can reason about arbitrary sets of sequences, but ”the world” does not give us information
about arbitrary, only about legal sets of sequences. It seems a natural hypothesis that the language of reasoning
may be stronger that the language of observation.

Obviously, the Σ(n) are in a stronger position than the other Σ(i), by definition of µ(Σ). This corresponds to
the fact that, considering a development into the future, we are probably most interested in the final outcome.
Conversely, given a development from the past to the present, we might have most information about the present.

There are, however, other directions of interest possible, and the reader will see how to adapt our conditions and
proofs to the case which interests him. We have examined the two extremes - all νi(Σ) are known, and, only one
νi is known - it should not be too difficult to modify our results and techniques accordingly.

We start our formal exposition with a ”higher abstract nonsense” result in Section 6.3.2, which has proved useful
in many situations. The result itself, Proposition 6.3.1, is neither conceptually nor technically deep, but it serves
very well as a guideline to prove representation theorems (in the finite case) for operations based on distances: it
shows that, essentially, it suffices to show the properties (µ1) and (µ2). These two properties are sufficiently close
to the operation considered to give an idea how to build the proof (or to see which properties one still has to add
for completeness).

6.3.2 An abstract result

As announced, we start the development with a very abstract result, which will be useful later. The conditions
and statements might seem rather obscure, but they will be exactly what we need later.

The general prerequisite is that we have witnesses in some abstract equivalence classes, demonstrating the cooper-
ation between an operation µ and a relation ≺ . Part (a) says (very roughly) that, if ≺ is free from cycles, we can
extend ≺ to a ranked relation <, s.t. the resulting minimality function µ< is the same as µ. Part (b) says, again
very roughly, that the same holds for a distance function.

The reader should note that in part (a), ≺ is an arbitrary relation between elements of Z, whereas in part (b),
≺ is also a relation on Z, but this time Z is a set of abstract distances between elements of a set W, so we have
statements like (a, b) ≺ (c, d), where a, b, c, d ∈W, and (a, b), (c, d) ∈ Z are abstract distances between a and b etc.

The proof of this abstract result is a little tedious, but not difficult. In a first reading, the reader might skip the

6.3. A REPRESENTATION RESULT FOR UPDATE BY MINIMAL SUMS 217

result and its proof, and come back to it later when it is needed.

We work in a universe Z, with a function µ : P(Z)→ P(Z), and two relations ≺ and � on Z, with ≺⊆�, for which
the conditions (µ0)− (µ2) below hold. �∗ will denote the transitive closure of �, we will also write ≺∗, if at least
once ≺ is involved.

Moreover, we have an equivalence relation ≡ on Z, (which has nothing to do with � or the relation to be con-
structed). Let [[a]] be the equivalence class under ≡ of a.

In the first part, we construct a ranked relation < on Z by extending the relation ≺ (and �), and show that
(essentially) µ = µ< - where µ< is the minimality operation defined as usual by the relation <, i.e. µ<(X) := {x ∈
X : ∃x′ ∈ X.x′ < x}. In the second part, we show essentially the same for a suitably defined distance function.

Proposition 6.3.1

Let [[a]] be finite for all a.

Let the following conditions hold for µ and ≺ / �:

(µ0) µ(A) ⊆ A, and A 6= ∅ → µ(A) 6= ∅,

(µ1) if a ∈ A, [[a]] ∩ µ(A) = ∅, [[b]] ∩ µ(A) 6= ∅, then there is b′ ∈ [[b]] ∩ A, b′ ≺∗ a,

(µ2) if a ∈ A, [[a]] ∩ µ(A) 6= ∅, [[b]] ∩ µ(A) 6= ∅, then there is b′ ∈ [[b]] ∩ A, b′ �∗ a.

(1) If the relation � is free from cycles containing ≺, then ≺ / � can be extended to a ranked order < s.t. for all
A ⊆ Z, a ∈ A [[a]] ∩ µ(A) = ∅ iff [[a]] ∩ µ<(A) = ∅.

(2) If Z is a set of abstract distances over some space W (written (x,y) for x, y ∈W) s.t., in addition

(d1) ∀x, y ∈W x 6= y → (x, x) ≺ (x, y),

(d2) ∀x, y ∈W (x, x) � (y, y)

hold, and the relation � is free from cycles containing ≺,

then there is a distance function d : W ×W → Z and a total order < on Z s.t.

(α) 0 = d(x, x) for any x ∈ W,

(β) (u, v) ≺ (x, y) → d(u, v) < d(x, y), (u, v) � (x, y) → d(u, v) ≤ d(x, y),

(γ) for all A ⊆ Z, a ∈ A [[a]] ∩ µ(A) = ∅ iff [[a]] ∩ µ<(A) = ∅.

Proof:

The proofs of (1) and (2) are very close, and have a common beginning.

Let ≺+ and �+ be the closures of � and ≺ under reflexivity and transitivity of ≺ or �, more precisely:

a �+ a,

a � b implies a �+ b, and a ≺ b implies a ≺+ b,

a �+ b �+ c imply a �+ c,

(a �+ b ≺+ c or a ≺+ b �+ c or a ≺+ b ≺+ c) implies (a ≺+ c and a �+ c).

Define a ≈ b iff a �+ b and b �+ a. This is an equivalence relation. Let � a � denote the ≈ −equivalence class
of a, and Z := {� a�: a ∈ Z}.

Define ≺ on Z by � a�≺� b� iff a �+ b, but � a�6=� b� (thus b 6�+ a). This is well-defined, and ≺ on Z
is transitive and free of cycles too. (For the latter, e.g. � a�≺� b�≺� a� implies � a�=� b� .)

Extend ≺ on Z to a strict total order < on Z .

We turn to the proof of the first part.

(1) Define a < b iff � a �<� b � . < is a ranked order on Z, e.g. a⊥b < c implies � a �=� b �<� c �, so
a < c.

218 CHAPTER 6. SUMS

Fact 6.3.2

Let a, b ∈ Z. (a) a ≺∗ b → a < b,

(b) a �∗ b → a < b or a⊥b or a = b.

Proof:

(a) a ≺∗ b→ a �+ b, but not b �+ a (otherwise there is a cycle involving≺), so� a�≺� b�, so� a�<� b�,
so a < b.

(b) a �∗ b→ a �+ b. If b �+ a too, then a ≈ b, and a⊥b or a = b.Otherwise� a�<� b�, so a < b.2 (Fact 6.3.2)

We now show [[a]] ∩ µ(A) = ∅ iff [[a]] ∩ µ<(A) = ∅.

Let a ∈ A.

(a) Let [[a]] ∩ µ(A) = ∅. By (µ0), ∃b ∈ A.[[b]] ∩ µ(A) 6= ∅ →(µ1) ∃b
′ ∈ [[b]] ∩A, b′ ≺∗ a → (by Fact 6.3.2) b′ < a and

a 6∈ µ<(A), so [[a]] ∩ µ<(A) = ∅.

(b) Suppose [[a]] ∩ µ<(A) = ∅, but [[a]] ∩ µ(A) 6= ∅. Choose a′ ∈ [[a]] ∩ A < −minimal in [[a]] ∩ A (i.e. there is no
a′′ ∈ [[a]] ∩ A a′′ < a′). This is possible, as [[a]] ∩ A is finite and < is free from cycles. As [[a]] ∩ µ<(A) = ∅, there
is b ∈ A, b < a′. If [[b]] ∩ µ(A) = ∅, then by (µ1) there is a′′ ∈ [[a]] ∩ A, a′′ ≺∗ b, so by Fact 6.3.2 a′′ < b < a′,
contradiction. If [[b]] ∩ µ(A) 6= ∅, then by (µ2) there is a′′ ∈ [[a]] ∩ A, a′′ �∗ b. By Fact 6.3.2, a′′ < b or a′′⊥b or
a′′ = b. If a′′⊥b, then by rankedness a′′ < a′. If a′′ < b, then a′′ < a′ by transitivity, contradiction.

We turn to the proof of the second part.

(2) Define d(x, y) :=� (x, y)� .

Fact 6.3.3

(a) a ≺∗ b → d(a) < d(b),

(b) a �∗ b → d(a) ≤ d(b),

(c) 0 := d(x, x) for any x ∈W is well defined, and 0 ≤ d(x, y) for any x, y ∈W, and 0 < d(x, y) iff x 6= y ∈ W.

Proof:

(a) a ≺∗ b→ a �+ b, but not b �+ a (otherwise there is a cycle involving≺), so� a�≺� b�, so� a�<� b�,
so d(a) < d(b).

(b) a �∗ b → a �+ b. If b �+ a too, then a ≈ b, and d(a) = d(b). Otherwise � a�<� b�, so d(a) < d(b).

(c) 0 is well defined by (d2) and (b). 0 ≤ d(x, y) holds by (d1), (d2), (a), (b). 0 < d(x, y) iff x 6= y holds for the
same reasons. 2 (Fact 6.3.3)

The rest of the proof for (2) is almost verbatim the same as the one for (1):

It remains to show [[a]] ∩ µ(A) = ∅ iff [[a]] ∩ µ<(A) = ∅.

Let a ∈ A.

(a) Let [[a]]∩µ(A) = ∅. By (µ0), ∃b ∈ A.[[b]]∩µ(A) 6= ∅ →(µ1) ∃b
′ ∈ [[b]]∩A, b′ ≺∗ a→ d(b′) < d(a) and a 6∈ µ<(A),

so [[a]] ∩ µ<(A) = ∅.

(b) Suppose [[a]] ∩ µ<(A) = ∅, but [[a]] ∩ µ(A) 6= ∅. Choose a′ ∈ [[a]] ∩ A < −minimal in [[a]] ∩ A (i.e. there is no
a′′ ∈ [[a]] ∩ A d(a′′) < d(a′)). This is possible, as [[a]] ∩ A is finite and < is free from cycles. As [[a]] ∩ µ<(A) = ∅,
there is b ∈ A, d(b) < d(a′). If [[b]] ∩µ(A) = ∅, then by (µ1) there is a′′ ∈ [[a]] ∩A, a′′ ≺∗ b, so d(a′′) < d(b) < d(a′),

6.3. A REPRESENTATION RESULT FOR UPDATE BY MINIMAL SUMS 219

contradiction. If [[b]] ∩ µ(A) 6= ∅, then by (µ2) there is a′′ ∈ [[a]] ∩ A, a′′ �∗ b. So by Fact 6.3.3, (b) d(a′′) ≤ d(b),
contradiction. 2 (Proposition 6.3.1)

Note that we use in both cases for the representation result essentially Fact 6.3.2 or Fact 6.3.3 respectively,
independent of the details of the construction of the orders ≤ or < from � and ≺ .

6.3.3 Representation

6.3.3.1 Introduction

We will work here with (finite) sequences σ of points. In this introduction, we present some notation, and show
(in Fact 6.3.4) how to reconstruct the set of ν−minimal sequences from its coordinates.

Notation 6.3.1

We will work in the finite case, and with models.

σ etc. will denote sequences of models, or, more generally, of arbitrary points. Σ etc. will denote products of sets
of points, thus special sets of sequences. We call such sets of sequences legal sets of sequences. a etc. will denote
points, A etc. sets of points. If σ is a sequence, a a point, σa will be the concatenation of σ with a. σ × A will
denote the set of all sequences σa, a ∈ A. Σ × A will denote the set of all sequences σa, σ ∈ Σ, a ∈ A, likewise
Σ× a by abuse of notation. µ(Σ) will denote the set of endpoints through which preferred sequences in Σ pass.

σ(i) will be the i-th element of the sequence σ, Σ(i) the i-th component of the product.

If σ, σ′ have same length, then [σ, σ′] := {σ′′ : σ′′(i) ∈ {σ(i), σ′(i)} for all i}. Note that [σ, σ′] is thus a (legal)
product of sets (of size ≤ 2). Likewise, if Σ is a legal set of sequences, and σ a sequence, both of same length, then
[Σ, σ] := { σ′ : σ′(i) ∈ Σ(i) ∪ {σ(i)} }.

If Σ is a set of sequences, σ a sequence, both of the same length, then the Hamming distance h(Σ, σ) will be the
minimum of the Hamming distances h(σ′, σ), σ′ ∈ Σ.

Define σ ≡ σ′ iff σ and σ′ have the same endpoint (≡ is the relation of Section 6.3.2).

Recall the definition δ(σ) := Σ{d(σ(i), σ(i + 1)) : 0 ≤ i < n} (Σ is here the sum), d a distance between models of
a language L, σ a sequence of models σ :=< σ(0), σ(1), . . . , σ(n) > .

Given a product of sets Σ(0)× . . .× Σ(n), ν(Σ) shall be the set of sequences σ ∈ Σ s.t. δ(σ) is minimal in Σ (the
”lazy” sequences with minimal changes). µ(Σ) shall be the set of endpoints of sequences in ν(Σ), νi(Σ) shall be
the i-th projection of ν(Σ). Thus, if Σ(n) is the last component of Σ, then µ(Σ) = νn(Σ).

If σ, σ′ are two sequences with σ(n) = σ′(0), then σσ′ will be their concatenation< σ(0), . . . , σ(n), σ′(1), . . . , σ′(n′) >
. If Σ(n) = Σ′(0), let ΣΣ′ := Σ(0)× . . .× Σ(n)× Σ′(1)× . . .× Σ′(n′).

We look for conditions on µ which guarantee that we can find a distance with suitable order and addition on the
values, which singles out exactly µ(Σ) for all legal Σ.

Remark: Note that, in general, we cannot ”observe” sums: if x = d(a, b), y = d(c, e), we cannot be sure to see a
sequence σ s.t. δ(σ) = x+ y. It is e.g. not certain that there is f s.t. d(b, f) = y. This is the reason that we pack
the conditions (+i) into the relation and Loop, and do not use conditions like (for Σ(n) = Σ′(0), σ(n) = σ′(0)) :

• If σ ∈ µ(Σ), σ′ ∈ µ(Σ′), then σσ′ ∈ µ(ΣΣ′), and, if σ ∈ µ(Σ), σ′ 6∈ µ(Σ′), then σσ′ 6∈ µ(ΣΣ′),

• if σ 6∈ µ(Σ), σ′ ∈ µ(Σ′), then σσ′ 6∈ µ(ΣΣ′), and, if σ 6∈ µ(Σ), σ′ 6∈ µ(Σ′), then σσ′ 6∈ µ(ΣΣ′).

Such conditions are much weaker, because they apply only to those sums which are really observable. We could, of
course, stipulate a general condition of homogenousness of the space: That we can perform sufficient translations
to guarantee concatenability. This, however, would impose a restriction on the models we consider.

220 CHAPTER 6. SUMS

We have only very limited information, the endpoints of preferred sequences. The following Fact 6.3.4 is a side
remark. It illustrates that, if we also know the intermediate points of preferred sequences, we can determine the
preferred sequences much better:

Fact 6.3.4

Assume ν(Σ) given by a distance d. Then ν(Σ) is reconstructible from the νi(Σ
′) for suitable Σ′ with Σ′(i) ⊆ Σ(i).

Proof:

Fix i.

Case 1: νi(Σ) = {ai}. Then for all x ∈ νi−1(Σ) there is a preferred sequence containing < x, ai > as a subsequence.
Likewise for y ∈ νi+1(Σ).

Case 2: Card(νi(Σ)) > 1. If e.g. card(νi−1(Σ)) = 1, we apply Case 1 to i-1. So suppose card(νi−1(Σ)) > 1,
card(νi+1(Σ)) > 1. Fix ai ∈ νi(Σ), and consider Σai

, where Σ(i) has been replaced by {ai}, i.e. Σai
:= Σ(0)× . . .×

{ai} × . . .× Σ(n).

If ai−1 6∈ νi−1(Σai
), then there is no preferred sequence through < ai−1, ai > in Σ : Any such sequence σ′ through

< ai−1, ai > is already in Σai
⊆ Σ, and there is a better one in Σai

⊆ Σ.

Suppose ai−1 ∈ νi−1(Σai
). As ai ∈ νi(Σ), there is a preferred sequence in Σ through ai. It is already in Σai

. But
in Σai

, there is one through all ai−1 ∈ νi−1(Σai
). By rankedness, all are preferred in Σ. So there is a preferred

sequence in Σ through < ai−1, ai > for all ai−1 ∈ νi−1(Σai
). The same argument applies to i+ 1.

Suppose now σ, σ′ ∈ ν(Σ), and σ(i) = σ′(i). Let σ = σ0σ1, where σ0 = σ(0) . . . σ(i), σ1 = σ(i + 1) . . . σ(n),
likewise σ′ = σ′

0σ
′
1. Then also σ0σ

′
1 and σ′

0σ1 ∈ ν(Σ). For if not, then e.g. δ(σ0) > δ(σ′
0), as σ′ ∈ ν(Σ), but then

δ(σ0) + δ(σ1) > δ(σ′
0) + δ(σ1), contradicting σ ∈ ν(Σ).

Thus, any sequence constructed as follows:

ai ∈ νi(Σ), ai−1 ∈ νi−1(Σai
), ai+1 ∈ νi+1(Σai

) belongs to ν(Σ), and no others. 2

6.3.3.2 The result

We recall that we put some of the Farkas machinery into the conditions and the domain properties. Thus, they
are quite complicated. On the other hand, this avoids a black box use of the Farkas algorithm. Depending on the
case, the reader might prefer or need the opposite: a small set of conditions, especially for the domain, and a more
nasty completeness check, which, by the way, can be easy for an automatic demonstration.

Definition 6.3.1 will give the construction of the relations ≺ and � . Condition 6.3.1 will give the conditions for
representability, using a loop condition for the relation just defined. Facts 6.3.5 - 6.3.7 are auxiliary lemmas, the
latter two show the essential prerequisites of the abstract representation result of Section 6.3.2. Proposition 6.3.8
states the representation result, the only thing still to show is the treatment of sums, this is done in its proof.

In the following, we assume that all sets of sequences written are legal sets. E.g., in (R4) of Definition 6.3.1,
Σ′ ∪

⋃
Σi will be some product Σ of sets.

Definition 6.3.1

For the right hand side:

(Here ≺ means that the smallest sums of distances in sequences of the left hand side are smaller than the smallest
sums of distances in sequences of the right hand side.)

(R1) Σ×B � Σ×B′ if µ(Σ× (B ∪ B′)) ∩B 6= ∅,

(R2) Σ×B ≺ Σ×B′ if µ(Σ× (B ∪ B′)) ∩B′ = ∅.

6.3. A REPRESENTATION RESULT FOR UPDATE BY MINIMAL SUMS 221

For the left hand side:

(R3) Σ×B � Σ′ ×B if Σ′ ⊆ Σ,

(R4) (for all i Σ′ ×B � Σi ×B) if µ((Σ′ ∪
⋃

Σi)×B) 6⊆
⋃
µ(Σi ×B),

(R5) (for all i Σ′ ×B ≺ Σi ×B) if
⋂
µ(Σi ×B) 6⊆ µ((Σ′ ∪

⋃
Σi)×B)

(i ranges over some I in (R4) and (R5)).

The role of 0:

(R6) If
⋂

Σ(i) 6= ∅, then µ(Σ) =
⋂

Σ(i).

Addition:

(Here, a,b etc. are sums of distances, corresponding to one sequence. When they are compared, they are of equal
length.)

(+1) a+ b ≈ b+ a,

(+2) (a+ b) + c ≈ a+ (b+ c),

(+3) a ≈ a′ → (b ≈ b′ ↔ a+ b ≈ a′ + b′),

(+4) a ≈ a′ → (b ≺ b′ ↔ a+ b ≺ a′ + b′),

(+5) a ≺ a′ ∧ b ≺ b′ → a+ b ≺ a′ + b′

(≈ stands for � and � simultaneously).

Condition 6.3.1

(The conditions)

(C1) µ(Σ) ⊆ Σ(n), if Σ(n) is the last component of Σ,

(C2) Σ 6= ∅ → µ(Σ) 6= ∅,

(C3) µ((
⋃

Σi)×B) ⊆
⋃
µ(Σi ×B),

(C4) Loop: The relation defined by (R1)− (R6), (+1)− (+5) contains no loops involving ≺ .

Fact 6.3.5

(1) B′ ⊆ B → Σ×B � Σ×B′,

(2) b ∈ µ(Σ×B) → Σ× b � Σ×B,

(3) b ∈ B, b 6∈ µ(Σ×B) → (Σ×B) ≺ (Σ× b),

(4) If b ∈ B, b 6∈ µ(Σ×B), then there is σ′ ∈ Σ s.t. ∀Σ′ ⊆ Σ (Σ′ legal, σ′ ∈ Σ′ → b 6∈ µ(Σ′ ×B)),

(5) If b ∈ µ(Σ× B), then there is σ′ ∈ Σ s.t. ∀Σ′ ⊆ Σ (Σ′ legal, σ′ ∈ Σ′ → b ∈ µ(Σ′ ×B)).

Proof:

(1) trivial by (R1), (C1), (C2).

(2) trivial by (R1).

(3) trivial by (R2).

(4) If not, then ∀σ′ ∈ Σ∃Σ′ ⊆ Σ (Σ′ legal, σ′ ∈ Σ′, b ∈ µ(Σ′ × B)). Let then σ ∈ Σ. For σ′ 6= σ, σ′ ∈ Σ,
there is Σ′

σ′ with σ′ ∈ Σ′
σ′ ⊆ Σ, b ∈ µ(Σ′

σ′ × B). Then Σ = {σ} ∪
⋃
{Σ′

σ′ : σ′ 6= σ}, but b 6∈ µ(Σ × B). Thus
σ ×B ≺(R5) Σ′

σ′ ×B �(R3) σ
′ ×B for all σ′ 6= σ. Using the argument twice shows that ≺ contains a cycle.

(5) If not, then ∀σ′ ∈ Σ∃Σ′
σ′ ⊆ Σ (Σ′

σ′ legal, σ′ ∈ Σ′
σ′ , b 6∈ µ(Σ′

σ′ ×B)), but

Σ =
⋃

Σ′
σ′ , so this contradicts (C3).

222 CHAPTER 6. SUMS

2

Fact 6.3.6

b, b′ ∈ µ(Σ×B), σ′ ∈ Σ imply ∃σ ∈ Σ.σb �∗ σ′b′.

Proof:

If b ∈ µ(σ′ × B), then σ′b �Fact 6.3.5,(2) σ
′ ×B �Fact 6.3.5,(1) σ

′b′.

Suppose b 6∈ µ(σ′ × B). By Fact 6.3.5, (5), there is σ s.t. σ ∈ Σ′ ⊆ Σ → b ∈ µ(Σ′ × B). Thus the set
of σ s.t. b ∈ µ([σ′, σ] × B) is not empty. Choose such σ with minimal Hamming distance from σ′. Then
[σ′, σ] =

⋃
{[σ′, σ′′] : σ′′ ∈ [σ′, σ], σ′′ 6= σ} ∪ {σ}. Moreover, for each σ′′ ∈ [σ′, σ], σ′′ 6= σ b 6∈ µ([σ′, σ′′] × B).

Thus, σ ×B �(R4) [σ′, σ′]×B = σ′ ×B �Fact 6.3.5,(1) σ
′b′. As b ∈ µ([σ′, σ]×B), there must be by Fact 6.3.5, (5)

σ′′ ∈ [σ′, σ] s.t. ∀Σ′′ ⊆ [σ′, σ] (σ′′ ∈ Σ′′ → b ∈ µ(Σ′′ ×B)). Choice of σ shows that this σ′′ can only be σ. Thus, in
particular, b ∈ µ(σ ×B). Thus (σ, b) �Fact 6.3.5,(2) (σ ×B). 2

Fact 6.3.7

b ∈ µ(Σ×B), b′ 6∈ µ(Σ×B), σ′ ∈ Σ imply ∃σ ∈ Σ.σb ≺∗ σ′b′.

Proof:

(a) If b ∈ µ(σ′ ×B), b′ 6∈ µ(σ′ ×B), then σ′b �Fact 6.3.5,(2) σ
′ ×B ≺Fact 6.3.5,(3) σ

′b′.

(b) If b′ ∈ µ(σ′×B), then there is by Fact 6.3.5, (4) σ ∈ Σ s.t. σ ∈ Σ′ ⊆ Σ→ b′ 6∈ µ(Σ′×B). Thus, the set of σ ∈ Σ
s.t. b′ 6∈ µ([σ′, σ]×B) is not empty, let σ be such with minimal Hamming distance from σ′. Then, as in the proof of
Fact 6.3.6, σ×B ≺ [σ′, σ′′]×B by (R5) for any σ′′ ∈ [σ′, σ], σ′′ 6= σ, so σ×B ≺ [σ′, σ′]×B = σ′×B �Fact 6.3.5,(1)

σ′b′. If b ∈ µ(σ×B), then σb �Fact 6.3.5,(2) σ×B, and we are done. If b 6∈ µ(σ×B), then by an argument as above,
using Fact 6.3.5, (5), we find σ+ with minimal Hamming distance from σ s.t. b ∈ µ([σ, σ+]×B). As above, we see
that σ+×B � [σ, σ]×B, and as in the proof of Fact 6.3.6, we see that b ∈ µ(σ+×B), so σ+b �Fact 6.3.5,(2) σ

+×B.
Thus, we have σ+b � σ+ ×B � σ × B ≺ σ′ × B � σ′b′.

(c) If b, b′ 6∈ µ(σ′ × B), then σ′ × B ≺Fact 6.3.5,(3) σ
′b′. Choose as above σ with least Hamming distance from σ′

s.t. b ∈ µ([σ′, σ]×B). As above, we see b ∈ µ(σ ×B), and σb �Fact 6.3.5,(2) σ ×B � σ
′ ×B ≺ σ′b′. 2

Proposition 6.3.8

The properties of Condition 6.3.1 hold iff there is a distance with values in an ordered abelian group (which can
be assumed to be Q), and best sequences are those with minimal sums of distances between their elements.

Proof:

Outline: Consider the relations � / ≺ restricted to σ′s, i.e. neglect the Σ′s. The algorithm below shows, by loop,
that the resulting system of inequalities has a solution, and constructs this solution, with all d(m,m′) and thus all
δ(σ) in Q. In particular, the original � / ≺ between σ′s are respected by the assignment of values. It remains to
show that µ(Σ) = µ<(Σ), where < is defined from the natural order on Q. We use Fact 6.3.6 and Fact 6.3.7 and
the strategy of the proof of Proposition 6.3.1.

Note that by (R6) the system of inequalities contains 0 ≺ d(a, b) for all a 6= b.

6.3. A REPRESENTATION RESULT FOR UPDATE BY MINIMAL SUMS 223

We use now the adapted Farkas algorithm, and note the following comments:

(1) As we can determine when xi,k is 0 (xi,k = d(a, a) for some a in some sequence σ), we can note 0 as 0.

Without loss of generality, xn does not occur on both sides of the same inequality.

(2) Subtraction of xn on both sides is justified by (+3) and (+4)).

(3) We consider the sums δi + δj where δi ∈ Πl, δj ∈ Πr, and eliminate xn from both sides. These are ”legal”
operations covered by the (+i).

(4) As the transformations we did from Π to Π′ were legal, covered by the conditions (+i) in Definition 6.3.1, and
thus preserved freedom from loop, and by 0 ≺ x1, the first two possibilities lead to a cycle - which was excluded.
The latter two show that the final system has a solution, which can be transformed into one for the original system
as indicated.

So the algorithm defines a distance compatibel with +. 0 does what it should. It remains to show that the distance
represents µ, i.e. that µ(Σ) = µ<(Σ). For better readability, we separate the last component from Σ.

Let b ∈ µ(Σ×B) → (by Fact 6.3.6) ∀σ′b′∃σ.σb � σ′b′ → ∀σ′b′∃σ.δ(σb) ≤ δ(σ′b′) → (by finiteness) b ∈ µ<(Σ×B).

Let b 6∈ µ(Σ× B), σ ∈ Σ. So there are (by µ(Σ × B) 6= ∅ and Fact 6.3.7) b′ ∈ µ(Σ × B), σ′ ∈ Σ s.t. σ′b′ ≺ σb, so
δ(σ′b′) < δ(σb), so b 6∈ µ<(Σ×B). 2

6.3.4 There is no finite representation for our type of update possible

6.3.4.1 Outline

In Section 4.2.4 on Theory Revision, we showed that there is no finite characterization of distance generated
revision. It was essential in the example that the ”good” and the ”bad” variant differed only marginally, and in
a well controlled way. For this purpose, we took care that most revision results are trivial, and do not depend on
the critical values - so it was impossible to conclude on good or bad by indirect means. We follow here the same
strategy. We will choose distances in a way that results will change only in a carefully controlled way, when we
change the relevant values.

We start by giving certain conditions on possible distances between points, which determine to a large degree the
outcome of the updates - only a small set of particular updates, involving non-trivial sums, will not be fixed. We
then give update structures which are not distance representable, but which agree on all update results but the
non-trivial sums with the distance defined update structures as just defined. Moreover, changing just one update
result involving the non-trivial sums, will make them again distance definable, respecting above conditions on the
sums. We will thus generate update systems, which are distance compatibel on all results but non-trivial sums,
and we need to know all non-trivial sums to see that they are not fully distance compatibel.

Again, as in the case of revision, we will construct the examples such that most results are the same in the
representable and the not representable case, and the cases where the results differ involve only small sets (again
of size 2 each). Much effort goes into avoiding too many changes at a time, in other words, we thus need to see the
full picture to determine whether it is a good or a bad example, i.e. distance representable or not.

Finally, there are several ways to interpret our results. We can look at update as finding shortest paths, or as
looking at the projections (e.g. on the end point) of shortest paths. We will choose the latter, and show that there
is no finite characterization in a suitable language.

6.3.4.2 The details

Definition 6.3.2

Call a path a− a′ − a′′ through the points a, a′, a′′, a 2-step path, etc.

224 CHAPTER 6. SUMS

Example 6.3.1

We will define for given n a set of n pairs of paths with 2 steps, i.e. of the form a −−− > a′ − −− > a′′, which
essentially compare among themselves but not to anything else in a non-trivial way. Recall that we consider here
products of sets, so, usually, we have to consider many paths at the same time to find the shortest ones, so we will
carefully isolate the ones we are interested in from the rest. Part of the solution is to make, within those pairs,
cross-overs between the sequences of one pair very long, so they do not interfere. The other part is ta make, outside
of those pairs, paths very short, so we do not see the pairs any more - cross-overs between sequences of different
pairs will be all that is visible. The distances which interest us will have medium size. To give an example:

Consider the two-step paths a0 − a1 − a2, b0 − b1 − b2, a1 − a2 − a3, b1 − b2 − b3. The first and the second form
a pair, so do the third and the fourth. We will then have the distances: d(a0, b1) = d(b0, a1) = b (for big),
d(a1, b1) = d(b0, a2) = s (for small), d(a0, a1) and d(b0, b1) etc. variable medium size m, where b is constant big, s
constant small, and m a variable medium size. The details will be made clear in a moment.

To have a structure which is not distance representable, we will make a kind of circular comparison, taking care
that all comparisons of single distances are ok, and addition really plays an important role.

We will choose distances s,b,m short, big, medium (many mediums, one short, one big) s.t. m > s+b
2 , in this way,

if one of the 2 distances in a path of length 2 is short, it will win over any path composed of 2 medium distances.
Moreover, if m,m′,m′′ are medium size, then m + m′ < m′′ + b, so cross-overs do not interfere in neighbouring
paths.

s and b are suitable, fixed values.

We can e.g. choose: s := 1, b := 2, 1.51 ≤ m ≤ 1.6, then (s+ b)/2 = 1.5, and m+m′ ≤ 3.2 < 1.5 + 2 = 3.5.

Distances will not necessarily be symmetric.

Choose wlog. n even, sufficiently big. We describe now the distances, first the crucial medium ones, then the big
and small ones. The medium ones will be fixed here only up to some inequalities, which will already determine
most of the update results, the precise values will only be given below when we construct a legal, i.e. distance
representable, update formalism from an illegal one, which would contain cycles.

The medium distances:

We consider a ”channel” which we will chop up again into 2-step pieces. The set U consists of the points ai and
bi, 1 ≤ i ≤ n. The interesting distances are shown in the diagram:

formally, xi := d(ai, ai+1), xn := d(an, a1), yi := d(bi, bi+1), yn := d(bn, b1), with 1.51 < y1 < x2 < y3 < . . . <
y2i+1 < x2i+2 < y2i+3 < . . . < xn < 1.55, 1.56 < x1 < y2 < x3 < . . . < x2i+1 < y2i+2 < x2i+3 < . . . < yn < 1.60.

Thus, for i uneven 1.51 < yi < xi+1 < yi+2 < 1.55 and for i even 1.56 < xi < yi+1 < xi+2 < 1.6.

The exact sizes of the xi and yi will be left open for the moment, we will see that, in many cases, they do not
matter.

The big distances:

Choose furthermore d(ai, bi+1) = d(bi, ai+1) = d(an, b1) = d(bn, a1) = b, we call them cross-overs.

The small distances:

All other distances are chosen as s (also the other directions), or 0 for d(z, z).

We consider now 3 layers of U and look at all update results for 2 step paths through the set. We will show that
almost all update results (those where we do not consider a comparison of two sums of the type m1 +m2/m3 +m4)
are determined for all choices of the xi and yi which obey above conditions, and the complicated comparisons only
arise in very specific circumstances.

It is important to note the following: We will compare sums of the type e+f and g+h. We have chosen the values
such that 0 < s < m < b < s+ s, s+ b < m+m. Thus, anytime a sum contains 0 or s, it will be smaller than any
sum composed of two medium values. By above inequalities, for any element z, there is exactly one element z ′ s.t.
d(z′, z) is 0 (z′ = z), is m (e.g. z′ = ai−1 and z = ai), is b (e.g. z′ = bi−1, z = ai), and, likewise, there is exactly

6.3. A REPRESENTATION RESULT FOR UPDATE BY MINIMAL SUMS 225

Example 6.3.1

a1 -
x1

a2 -
x2

a3 -
x3

a4 -
x4

. . . an -
xn

a1

b1 -
y1

b2 -
y2

b3 -
y3

b4 -
y4

. . . bn -
yn

b1

one element z′ s.t. d(z, z′) is 0, m, or b. All other distances are s. Thus, in many cases, one of the sums to consider
will be of the form 0 + e or s+ e, where e is any value, which is smaller than any sum of the form m+m′. Thus, in
many cases, we might have to compare e.g. s+m with s+m′, i.e. m with m′, but not sums of the form m1 +m2

with m3 +m4. But all comparisons of the first type are already decided by the inequalities we gave above.

Suppose then that we consider the set product A×B ×C, where A,B,C ⊆ U, and we examine the shortest paths
of the product.

Properties:

We distinguish several cases, in all but the last one the exact choice of the values for the m will not matter, as
long as all values respect above inequalities. Again, the interesting cases will involve small sets (of cardinality 2),
the situation is thus quite parallel to the one in revision.

Case 1, one of the 3 sets A,B,C has just 1 element: Suppose e.g. that A = {a}. The other cases are similar. As
there is only one element with d(a, b) = m, we will never have to compare m1 +m2 with m3 +m4 for m1 6= m3.
Consequently, all comparisons are already decided by the inequalities we already know.

In subsequent Cases 2 and part of 3, one of the distances will be s or even 0, and sums of type m + m′ are no
match: paths containing 0 or s will always win.

Case 2, one of the 3 sets A,B,C has at least 3 elements: Suppose again e.g. this set is A. Then for any b ∈ B there
is a ∈ A s.t. d(a, b) = 0 or d(a, b) = s. Consequently, one of the sums is of type 0+ e or s+ e, which is smaller than
any m+m′, so the latter are unimportant for the outcome, and again the known inequalities decide already.

Case 3, all 3 sets A,B,C have 2 elements: Assume we have to compare two sums m1 + m2 and m3 + m4, with
m1 6= m3, m2 6= m4. Consider A = {r, s}, B = {t, u}. Say d(r, t) and d(s, u) are medium size (as discussed above,
it cannot be that d(r, t) and d(s, t) are medium size, etc.). Then e.g. r = ai, and t = ai+1. But, if u 6= bi+1, then

226 CHAPTER 6. SUMS

d(r, u) = 0 or d(r, u) = s, and then the sums m1 +m2 and m3 +m4 cannot be minimal, and the inequalities known
so far decide already again.

Consequently, the only cases perhaps not yet decided are of the following form: {ai, bi}×{ai+1, bi+1}×{ai+2, bi+2}.

On the other hand, as d(ai, bi+1) = b etc., the sums m1 +m2 and m3 + m4 with four medium size values really
decide the outcome.

We construct now a not distance representable update structure as follows:

For all trivial updates of 2-step length, choose the results as they are determined by the individual relations between
the m-values and s and b, as already decided by above inequalities.

Consider now the following n update results:

For i uneven, choose the path < ai, ai+1, ai+2 > over the path < bi, bi+1, bi+2 >, by the result µ({ai, bi} ×
{ai+1, bi+1}× {ai+2, bi+2}) = {ai+2} - recall that we look only at the last coordinate. By above analysis, we know
that then xi + xi+1 < yi + yi+1.

For i even, choose the path < bi, bi+1, bi+2 > over the path < ai, ai+1, ai+2 >, i.e. yi + yi+1 < xi + xi+1.

(We calculate modulo n.)

If this situation were distance representable, we would have for i uneven xi+xi+1 < yi+yi+1, for i even yi+yi+1 <
xi + xi+1, a contradiction, as all distances occur exactly once on each side of < .

But we can transform the structure into one which is distance representable by changing just one of the non-trivial
update results, e.g. by preferring the path < an, a1, a2 > over the path < bn, b1, b2 >, i.e. xn + x1 < yn + y1. We
show now how to achieve this result by choosing appropriate values for the xi and yi.

Choose c small enough, e.g. 2n ∗ c < 0.04.

We increase the ”right” values so the balance in favour of x or y will change from one side to the other. As
x1 +x2 < y1 +y2, we choose y1 := 1.51+ c, x1 := 1.56+ c, y2 := 1.56+3∗ c, x2 := 1.51+2∗ c As x2 +x3 > y2 +y3,
we choose y3 := 1.51 + 3 ∗ c, x3 := 1.56 + 5 ∗ c, etc., formally:

For i uneven, yi := 1.51 + i ∗ c, xi := 1.56 + (2i− 1) ∗ c, for i even, xi := 1.51 + i ∗ c, yi := 1.56 + (2i− 1) ∗ c.

It is easily seen that the inequalities for i uneven 1.51 < yi < xi+1 < yi+2 < 1.55 and for i even 1.56 < xi < yi+1 <
xi+2 < 1.6 hold.

Then, for i uneven: xi + xi+1 = 1.56 + (2i − 1) ∗ c + 1.51 + (i + 1) ∗ c = 3.07 + 3i ∗ c, yi + yi+1 = 1.51 + i ∗ c +
1.56 + (2(i+ 1)− 1) ∗ c = 3.07 + (3i+ 1) ∗ c,

for i even: xi+xi+1 = 1.51+i∗c+1.56+(2(i+1)−1)∗c= 3.07+(3i+1)∗c, yi+yi+1 = 1.56+(2i−1)∗c+1.51+(i+1)∗c
= 3.07 + 3i ∗ c,

finally: xn + x1 = 1.51 +n ∗ c+ 1.56 + c = 3.07 + (n+ 1) ∗ c yn + y1 = 1.56 + (2n− 1) ∗ c+ 1.51 + c = 3.07+ 2n ∗ c

We preserve thus the original inequalities, while modifying the increases, thus all trivial sums are unchanged, and
so are the trivial update results, but not the non-trivial ones.

Now, any characterization of distance generated update has to fail for the illegal example somewhere. As all but the
non-trivial sums are distance compatibel - they were generated by a distance, respecting the original inequalities
- any true subset of above non-trivial update results is also distance compatible, so this characterization has to
speak about all the above n update results.

We give an example.

Example 6.3.2

(Construction for n = 4)

Recall that d(ai, bi+1) = d(bi, ai+1) = b and all other distances are 0 or s.

This does not work, as then x1 + x2 + y2 + y3 + x3 + x4 + y4 + y1 < y1 + y2 + x2 + x3 + y3 + y4 + x4 + x1.

6.3. A REPRESENTATION RESULT FOR UPDATE BY MINIMAL SUMS 227

Example 6.3.2

a1 -
x1

a2 -
x2

a3

b1 -
y1

b2 -
y2

b3
x1 + x2 < y1 + y2 update 1

a2 -
x2

a3 -
x3

a4

b2 -
y2

b3 -
y3

b4
x2 + x3 < y2 + y3 update 2

a3 -
x3

a4 -
x4

a1

b3 -
y3

b4 -
y4

b1
x3 + x4 < y3 + y4 update 3

a4 -
x4

a1 -
x1

a2

b4 -
y4

b1 -
y1

b2
x4 + x1 < y4 + y1 update 4

The choice of the xi and yi :

y1 = 1.511 x1 = 1.561

y2 = 1.563 x2 = 1.512 y2 has to win over the rest for update 1

y3 = 1.513 x3 = 1.565 x3 has to win over the rest for update 2

y4 = 1.567 x4 = 1.514 y4 has to win over the rest for update 3

Changing x4 to 1.516 will turn the decision for update 3 the other way, while preserving the relations between
singletons.

Summary:

For all n, we can create a 2-step update structure A which:

(1) is not distance representable,

(2) there are distance-representable update structures which agree on all trivial sums (i.e. of type a + b < a + c
with fixed a) with A, and which agree for all fragments of size n-1 with A - we have to look at arbitrarily many
non-trivial sums to see that the structure is not distance representable.

(3) The example shows how we can achieve arbitrary consistent update results, by manipulating the increases,
while respecting the conditions for the xi and yi.

We turn to interpretation.

We consider as base operator a ternary one on sets: < A,B,C > is the set of elements of C through which
paths of minimal length go. Suppose there is a characterization of distance representable structures by a formula
φ = ∀x1, . . . , xkφ

′(x1, . . . , xk), where φ′ is quantifier free, and contains only set operators and relations, and above

228 CHAPTER 6. SUMS

update operator < ., ., . > . Let φ′ contain n update operators, and look at structures with more than 6∗n elements.
φ has to fail in a counterexample, say C |= ¬φ′[a1, . . . , ak]. As in the case of revision, we determine the set of relevant
elements, there are at most 2∗n many, as all sets of size 1 or ≥ 3 evaluate to the same in the representable and the
non representable cases. Choose now in L(C), the set of of ”legal” structures almost equivalent to C, one T which
agrees with C on all relevant elements (and on the irrelevant ones, too, as all S ∈ L(C) agree on the irrelevant
ones), then T |= ¬φ′[a1, . . . , ak], so T |= ¬φ, a contradiction.

(If we had worked directly with shortest sequences, and not with their projections, we would have introduced
suitable operators on set tripels into the language.)

6.4 Comments on ”Belief revision with unreliable observations”

6.4.1 Introduction

We discuss the article ”Belief Revision with Unreliable Observations” by C.Boutilier, N.Friedman, and J.Halpern,
[BFH95], and give a characterization of (a finite variant) of Markov systems, using again the Farkas algorithm.
Moreover, we also show that the problem has no finite representation.

In this introduction, we present the basic definitions and results, so the reader can understand the subsequent main
results. Unfortunately, the definitions are a little complicated, so the reader will need some patience.

Most of the results in this Introduction 6.4.1 are trivial and/or contained already in [BFH95]. Definitions and
intuition are due to [BFH95], for motivation, the reader is referred to the original article.

6.4.1.1 The situation

We shall work in propositional logic, in some fixed propositional language L, which we identify with its formulas.

We have an evolving scenario of an environment ei and an agent who has information φi (about the environment),
where φi is an L−formula. We assume discrete time, starting at 1. A development, also called a run, has now the
form {< ei, φi >: i ∈ ω}.We assume that the agent has perfect recall, which we may express by φi+1 = φi•φ′, where
• denotes appending an element to a sequence. φ′ is the new information arriving at moment i + 1. We simplify
a little: As we are interested here in theory revision in contrast to theory update, we assume the environment
to be constant over a run. To avoid excessive notation, we write down only the new information arriving at the
individual moments. In our above example, φi+1 will then just be φ′. Runs have now the form < e, σ >, where
σ =< φ1, φ2, . . . >, without any a priori connections between the different φ′

is. The environment e will now be a
classical L−model. Such runs will also be called runs over L, as e and the φi are L−models (-formulas).

6.4.1.2 Basic definitions and results

Definition 6.4.1

If r =< e, σ > is a run, then re := e, rσ := σ, rn := σn, rdm := σdm :=< σ1, . . . , σm−1 > . All this will be used
unambigously.

R will be a set of runs over L - no closure properties are required for the moment.

Given a set X, a function κ : X → ω + 1 is called a ranking on X. κ(x) < κ(x′) means intuitively that x is
more plausible than x′. We set κ(∅) := ω, and for ∅ 6= U ⊆ X κ(U) := min{κ(x) : x ∈ U}. If U, V ⊆ X, then
κ(V | U) := κ(V ∩ U)− κ(U), where ω − ω will be undefined, and ω − n := ω for n ∈ ω.

A pair I =< R, κ > with R a set of runs over L, and κ a ranking on R will be called a ranked or interpreted
system.

I :=< R, κ > will now be a fixed interpreted system over L.

6.4. COMMENTS ON ”BELIEF REVISION WITH UNRELIABLE OBSERVATIONS” 229

The rest of this subsection will be elementary, but for the comprehension necessary definitions, and some simple
facts.

Definition 6.4.2

(1) For w ∈ML, set [[w]] := {r ∈ R : re = w}.

(2) For φ ∈ L, set [[φ]] := {r ∈ R : re |= φ}.

(3) For φi ∈ L, set [[Obs = φ1, . . . , φn]] := {r ∈ R : rdn+ 1 =< φ1, . . . , φn >}.

(4) For φ ∈ L, set [[Obsn = φ]] := {r ∈ R : rn = φ}.

(5) For w ∈ML, φi ∈ L, set [[w,Obs = φ1, . . . , φn]] := [[w]] ∩ [[Obs = φ1, . . . , φn]] .

(6) For U ⊆ R, set µ(U) := {r ∈ U : ∀r′ ∈ U.κ(r) ≤ κ(r′)}.

Condition 6.4.1

If r ∈ R and n < ω, then κ([[Obs = r1, . . . , rn]]) < ω, i.e. for any r ∈ R and n ∈ ω there is r′ ∈ R s.t. rdn = r′dn
and κ(r′) < ω.

Definition 6.4.3

(1) For r ∈ R, m ∈ ω, U ⊆ R we define inductively

κr,0 := κ,

κr,m+1(U) := κr,m(U | [[Obs = r1, . . . , rm+1]]).

(2) κφ1,...,φn := κr,n for any r ∈ R s.t. rdn+ 1 =< φ1, . . . , φn > (and undefined if there is no such r).

Fact 6.4.1

(1) κr,m(U) = κ(U ∩ [[Obs = r1, . . . , rm]]) - κ([[Obs = r1, . . . , rm]]) for all U ⊆ R and for m > 0.

(2) κr,m(U ∩ [[Obsm+1 = rm+1]]) = κr,m(U ∩ [[Obs = r1, . . . , rm+1]]) for all U ⊆ R.

(3) κr,m(U | [[Obsm+1 = rm+1]]) = κr,m(U | [[Obs = r1, . . . , rm+1]]) for all U ⊆ R.

(4) κr,m(r′) = 0 iff r′ ∈ µ([[Obs = r1, . . . , rm]]) and κ(r′) <∞, for m > 0.

Proof:

(1) (By induction.)

m = 1 : κr,1(U) := κr,0(U | [[Obs = r1]]) := κ(U ∩ [[Obs = r1]])− κ([[Obs = r1]]).

m → m + 1 : κr,m+1(U) := κr,m(U | [[Obs = r1, . . . , rm+1]]) = κr,m(U ∩ [[Obs = r1, . . . , rm+1]]) - κr,m([[Obs =
r1, . . . , rm+1]]) = (by induction hyp.) [κ(U ∩ [[Obs = r1, . . . , rm+1]] ∩ [[Obs = r1, . . . , rm]]) - κ([[Obs = r1, . . . , rm]])]
- [κ([[Obs = r1, . . . , rm+1]] ∩ [[Obs = r1, . . . , rm]]) - κ([[Obs = r1, . . . , rm]])] = κ(U ∩ [[Obs = r1, . . . , rm+1]]) -
κ([[Obs = r1, . . . , rm+1]]).

(2) m = 0 : trivial. m > 0 : straightforward, e.g. by (1).

(3) Trivial by (2).

(4) κr,m(r′) = 0 iff (by (1)) κ({r′}∩[[Obs = r1, . . . , rm]]) = κ([[Obs = r1, . . . , rm]]), and κ([[Obs = r1, . . . , rm]]) <∞
iff r′dm+1 = rdm+1 and κ(r′) is minimal among the κ(r′′) with r′′dm+1 = rdm+1 and κ([[Obs = r1, . . . , rm]]) <
∞. 2

Definition 6.4.4

230 CHAPTER 6. SUMS

(1) Bel(I, r, n) := {w : ∃r′ ∈ µ([[Obs = r1, . . . , rn]]).r
′
e = w} for r ∈ R.

(2) BI(φ1, . . . , φn) :=
{
{w : ∃r′ ∈ µ([[Obs = φ1, . . . , φn]]).r

′
e = w} iff κ([[Obs = φ1, . . . , φn]]) 6= ω

∅ iff κ([[Obs = φ1, . . . , φn]]) = ω.

Condition 6.4.2

(O1): For φ1, . . . , φn there is P (φ1, . . . , φn) ⊆ L s.t. BI(φ1, . . . , φn) =
⋃
{BI(φ1, . . . , φn, ψ) : ψ ∈ P (φ1, . . . , φn)}.

(O2): If ρ is a permutation of {1, . . . , n}, then BI(φ1, . . . , φn) = BI(φρ(1), . . . , φρ(n)).

Fact 6.4.2

(1) w ∈ BI(φ1, . . . , φn) iff κ([[w,Obs = φ1, . . . , φn]]) ≤ κ([[w′, Obs = φ1, . . . , φn]]) for all w′ ∈ ML (and κ([[Obs =
φ1, . . . , φn]]) 6= ω).

(2) (O1) holds in all ranked systems.

Proof:

(1) is trivial.

(2) Define P (φ1, . . . , φn) := {ψ : ∃r ∈ µ([[Obs = φ1, . . . , φn]]).rn+1 = ψ}.

Case 1: BI(φ1, . . . , φn) = ∅ : Then κ([[Obs = φ1, . . . , φn]]) = ω, so for all ψ κ([[Obs = φ1, . . . , φn, ψ]]) = ω.

Case 2: BI(φ1, . . . , φn) 6= ∅ : Let w ∈ BI(φ1, . . . , φn), so there is r ∈ µ([[Obs = φ1, . . . , φn]]).re = w.
Thus ψ := rn+1 ∈ P (φ1, . . . , φn) and w ∈ BI(φ1, . . . , φn, ψ). Conversely, let w ∈ BI(φ1, . . . , φn, ψ) with
ψ ∈ P (φ1, . . . , φn). Thus there is r ∈ µ([[Obs = φ1, . . . , φn, ψ]]).re = w. By definition of P (φ1, . . . , φn),
∃r′ ∈ µ([[Obs = φ1, . . . , φn]]).r′n+1 = ψ. By choice of r, κ(r′) ≥ κ(r), so r ∈ µ([[Obs = φ1, . . . , φn]]) and
w ∈ BI(φ1, . . . , φn). 2

Definition 6.4.5

I is called a Markov system iff the following hold:

(a) κ({r ∈ R : rm+1 = φ} | {r ∈ R : rdm + 1 = φ1, . . . , φm and re = w}) = κ({r ∈ R : rm+1 = φ} | {r ∈ R : re =
w}) for all m,

and

(b) κ({r ∈ R : rm = φ} | {r ∈ R : re = w}) = κ({r ∈ R : rm′ = φ} | {r ∈ R : re = w}) for any m,m’.

Thus, in Markov systems κ([[Obsi = φ]] | [[w]]) = κ([[Obsj = φ]] | [[w]]) for all i, j ∈ ω, and we define λ(φ,w) :=
κ([[Obs∗ = φ]] | [[w]]), where ∗ is any i.

Moreover, we set λ(w) := κ([[w]]).

Fact 6.4.3

(1) Let I be Markov. Then κ([[w,Obs = φ1, . . . , φn]]) = λ(w) + Σ{λ(φi, w) : 1 ≤ i ≤ n}.

(2) If r =< w,< φ1, φ2, . . . >>, then λ(w) + Σ{λ(φi, w) : 1 ≤ i < ω} ≤ κ(r).

(3) (O2) holds in Markov systems.

Proof:

(1) Case 1: λ(w) < ω and all λ(φi, w) < ω. λ(φi, w) =Markov κ([[Obsi = φi]] | [[w]]) =Markov κ([[Obsi = φi]] |
[[w,Obs = φ1, . . . , φi−1]]) := κ([[w,Obs = φ1, . . . , φi]]) - κ([[w,Obs = φ1, . . . , φi−1]]). (If i = 1, then κ([[Obsi =

6.4. COMMENTS ON ”BELIEF REVISION WITH UNRELIABLE OBSERVATIONS” 231

φi]] | [[w]]) = κ([[w,Obs = φ1]]) - λ(w).) Thus, λ(w) + Σ{λ(φi, w) : 1 ≤ i ≤ n} = λ(w) + Σ{[κ([[w,Obs =
φ1, . . . , φi]])− κ([[w,Obs = φ1, . . . , φi−1]])] : 1 ≤ i ≤ n} = κ([[w,Obs = φ1, . . . , φn]]).

Case 2: λ(w) = ω, then κ([[w,Obs = φ1, . . . , φn]]) = ω, as [[w,Obs = φ1, . . . , φn]] ⊆ [[w]] .

Case 3: λ(w) < ω, but one of the λ(φi, w) = ω : Then κ([[w,Obsi = φi]]) − λ(w) = ω, so κ([[w,Obsi = φi]]) = ω,
but [[w,Obs = φ1, . . . , φn]] ⊆ [[w,Obsi = φi]] .

(2) For all n < ω κ(r) ≥ κ([[w,Obs = φ1, . . . , φn]]) =(1) λ(w) + Σ{λ(φi, w) : 1 ≤ i ≤ n}.

(3) Trivial, e.g. by Facts 6.4.2, (1) and 6.4.3, (1). 2

Example 6.4.1

λ(w) + Σ{λ(φi, w) : 1 ≤ i < ω} = κ(r) is in general wrong in Markov systems (and thus, Lemma 4.2 in [BFH95]
is wrong).

Proof:

Take any language, and let R be the set of all possible runs, fix any r ∈ R. Define κ(r) := 1, and κ(r′) := 0 for
any r′ 6= r.

Obviously, Condition 6.4.1 is satisfied, and κ is Markov, as for any w, φi λ(w) = κ([[Obs = φ1, . . . , φn]]) =
κ([[Obsn = φ]]) = κ([[w,Obs = φ1, . . . , φn]]) = 0, so (a) and (b) of the Markov Definition will trivially hold. If the
statement were correct, then κ(r) = 0, contradiction. 2

Example 6.4.2

There are systems where (O1) and (O2) hold, but which are not Markov.

Proof:

Let L be the language with one propositional variable, p.

Let R be the set of all runs over L, define κ by: κ(< w, σ >) = 0 if p does not occur in σ, κ(< w, σ >) = 2 if p
does occur in σ, κ(< w′, σ >) = 1 if p occurs at most once in σ, κ(< w′, σ >) = 3 if p occurs at least twice in σ.

Then BI(φ1, . . . , φn) = w′ iff p occurs exactly once in φ1, . . . , φn, and BI(φ1, . . . , φn) = w otherwise.

Thus, (O2) holds.

But I is not Markov: λ(w) = 0, λ(p, w) = 2, κ([[w,Obs = p, p]]) = 2, contradicting Fact 6.4.3, (1). 2

6.4.2 A characterization of Markov systems (in the finite case)

6.4.2.1 Outline and introduction

We first present some weak restrictions. We then connect the Markov property to systems of inequalities formally
in Fact 6.4.4, show in Example 6.4.3 that an extension to the infinite case has some difficulties, and summarize
representation in Proposition 6.4.5.

We will work in the finite case (this will be made precise below).

232 CHAPTER 6. SUMS

Given a Markov system I =< R, κ >, we have defined BI and λ. We first show that in Markov systems, there
is a connection between BI and λ. More precisely, an element w belongs to BI(φ1, . . . , φn) iff certain inequalities
hold between sums of λ(v)′s and λ(φ, v)′s. (This is trivial.) Conversely, given (R and) B, we can write a system
of inequalities between sums of λ(v)′s and λ(φ, v)′s. If this system has a solution, we can define κ s.t. B = BI for
I =< R, κ >, and the λ for this κ corresponds to the solution of the system of inequalities. This is again trivial.
We have thus transformed the question whether B is the B of a Markov system to the question whether a certain
system of inequalities has a solution. This can be decided by the (adapted) Farkas algorithm. The complexity of
the question whether such a system of inequalities has a solution made it somewhat doubtful whether there is a
much simpler characterization of Markov systems, e.g. in the spirit of the conditions (O1) and (O2), so Example
6.4.2 came as no surprise. And, subsequently, we see that indeed, there is no finite characterization possible - see
Section 6.4.3 below.

The restrictions (finiteness and others):

We will assume the following conditions for finiteness:

1. the number of propositional variables of the language is finite,

2. the length of the sequences rσ is some finite, fixed N,

3. λ(φ,w) = λ(φ′, w) for all w, φ, φ′ s.t. |= φ↔ φ′.

Moreover, we assume that for all w there is φ s.t. λ(φ,w) = 0. This is motivated by the following: If κ satisfies
Condition 6.4.1, and I is Markov, and there is r ∈ R, then there is φ s.t. λ(φ,w) = 0 for some w. (Proof: Let
r′ ∈ R be s.t. rd1 = r′d1 and κ(r′) < ω. Let r′ =< w,< φ1, φ2, . . . >> . Thus λ(w) + Σ{λ(φi, w) : 1 ≤ i < ω} ≤
κ(r) < ω, but as λ(φi, w) ∈ ω, only finitely many λ(φi, w) can be > 0, so some λ(φi, w) = 0.)

Note that Condition 6.4.1 only guarantees that for some w λ(φ,w) = 0, we assume that for all w there is such φ.
Now, ”true” seems the least surprising fact about the world, so we will assume that for all w λ(T , w) = 0.

Moreover, we will assume that any initial segment of a sequence in R can be continued by ”true”, i.e. if r =< w,<
φ1, . . . , φN >>∈ R, and 1 ≤ i ≤ N, then r′ =< w,< φ1, . . . , φi−1, true, . . . , true >>∈ R.

A consequence of our finiteness assumption is, that Fact 6.4.3, (1) suffices to construct κ(r) from λ, as [[w,Obs =
φ1, . . . , φN]] is a singleton or empty, if N is the length of the sequences.

Before we explain why the existence of φ s.t. λ(φ,w) = 0 is desirable, we show the connection between the belief
system B and systems of inequalities for Markov systems.

Fact 6.4.4

Let, for simplicity, R be the set of all runs over L of length N.

(1) Let I =< R, κ > be Markov, then

(1.1) w,w′ ∈ BI(φ1, . . . , φN) iff λ(w) + λ(φ1, w) + . . .+ λ(φN , w) = λ(w′) + λ(φ1, w
′) + . . .+ λ(φN , w

′) <∞,

(1.2) w ∈ BI(φ1, . . . , φN), w′ 6∈ BI(φ1, . . . , φN) iff λ(w) + λ(φ1, w) + . . . + λ(φN , w) < λ(w′) + λ(φ1, w
′) + . . . +

λ(φN , w
′).

(2) Let B(φ1, . . . , φN) ⊆ML for all φi.

Let λ : ML ∪ (ML ×L)→ ω + 1 s.t. for all φ1, . . . , φN , w, w
′

(2.1) w,w′ ∈ BI(φ1, . . . , φN) iff λ(w) + λ(φ1, w) + . . .+ λ(φN , w) = λ(w′) + λ(φ1, w
′) + . . .+ λ(φN , w

′) <∞,

(2.2) w ∈ BI(φ1, . . . , φN), w′ 6∈ BI(φ1, . . . , φN) iff λ(w) + λ(φ1, w) + . . . + λ(φN , w) < λ(w′) + λ(φ1, w
′) + . . . +

λ(φN , w
′).

Then there is κ : R → ω + 1 s.t. κ(r) = λ(w) + Σ{λ(φi, w) : 1 ≤ i ≤ N} for r =< w,< φ1, . . . , φN >> and for
I :=< R, κ > B(φ1, . . . , φN) = BI(φ1, . . . , φN), and I is Markov.

Proof:

6.4. COMMENTS ON ”BELIEF REVISION WITH UNRELIABLE OBSERVATIONS” 233

(1) Trivial by Facts 6.4.2 (1) and 6.4.3 (1).

(2) Define κ(r) := λ(w) + Σ{λ(φi, w) : 1 ≤ i ≤ N} for r =< w,< φ1, . . . φN >> . 2

We now argue why it is desirable to have for all w some φ s.t. λ(φ,w) = 0. Consider the information we get. Let
N again be the length of the runs. For n < N, e.g. for n := 1 with N > 1, BI(φ1) gives us only information of
the type λ(w) + λ(φ1, w) + a < λ(w′) + λ(φ1, w

′) + b etc., as we do not know how the best (comparing between
different w′s) sequences behave. For this reason, it is very desirable to know that the best sequences continue by
0 = λ(true, w), and a,b will be 0. For the same reason, we will assume that any sequence can be continued by
”true”.

We use now the Farkas algorithm.

Comments:

We see that the algorithm works - as it is - only for finite sets of inequalities. In particular, it does not seem
trivial how to extend the result to infinitely long sequences, as the following example shows. The described belief
sets can be belief sets for a Markov system of sequences of any fixed finite length, but cannot be belief sets for a
Markov system with infinite sequences. (We will make the assumption that R is the set of all runs over L, and
that λ(T , w) = 0 for all w ∈ML.)

Example 6.4.3

Take as L the language with one propositional variable, p. Let R be the set of all runs over L, and let λ(T , w) = 0
for all w ∈ML.

Let φ := p, ψ := ¬p. Set

(1) B(<>) = {w,w′},

(2) B(< φ,ψ >) = {w′},

(3) B(< φm, ψm+1 >) = {w} for all m ≥ 1 - where < φm, ψn > is the sequence of m times φ, followed by n times
ψ.

Assume now B to be defined by a Markov system. We conclude:

By (1), λ(w) = λ(w′). Set now x := λ(φ,w), x′ := λ(φ,w′), y := λ(ψ,w), y′ := λ(ψ,w′), and u := x−x′, v := y′−y.
By (2) x′ + y′ < x + y, so y′ − y < x − x′, and v < u. Setting m := 1 in (3), we see x + y + y < x′ + y′ + y′,
so x − x′ < 2 ∗ (y′ − y), i.e. u < 2 ∗ v. As v < u, we see 0 < v. In general, we have m ∗ x + (m + 1) ∗ y <
m ∗ x′ + (m+ 1) ∗ y′, thus m ∗ (x− x′) < (m+ 1) ∗ (y′ − y), i.e. u ∗m < v ∗ (m+ 1).

We note:

(a) If u,v are integers, u > v > 0, u∗ v < v ∗ (m+1), then v > m. Proof: u > v → u ≥ v+1. v ∗ (m+1) = v ∗m+ v
> u ∗m ≥ (v + 1) ∗m = v ∗m+m → v > m.

(b) v ≥ m + 1, u = v + 1 are solutions for the conditions: m ≥ 1, u,v integers, u > v > 0, u ∗m < v ∗ (m + 1).
Proof: u ∗m = v ∗m+m < v ∗m+ v = v ∗ (m+ 1).

Consequences:

1. (1) + (2) + (3) for all m ≥ 1 has no solution. Proof: By (a), v = y′−y = λ(ψ,w′)−λ(ψ,w) has to be arbitrarily
big, so λ(ψ,w′) has to be arbitrarily big.

2. (1) + (2) + (3) for all m0 ≥ m ≥ 1 has a solution. Proof: Set v := m0 +1, u := m0 +2. By (b), this is a solution
for all m ≤ m0. 2

234 CHAPTER 6. SUMS

6.4.2.2 The representation result for the finite case

We summarize:

Proposition 6.4.5

Let the number of propositional variables of the language be finite, the length of the sequences rσ be some finite,
fixed N, and λ(φ,w) = λ(φ′, w) for all w, φ, φ′ s.t. |= φ↔ φ′.

(1) Let I =< R, κ > be Markov, then

(1.1) w,w′ ∈ BI(φ1, . . . , φN) iff λ(w) + λ(φ1, w) + . . .+ λ(φN , w) = λ(w′) + λ(φ1, w
′) + . . .+ λ(φN , w

′) <∞,

(1.2) w ∈ BI(φ1, . . . , φN), w′ 6∈ BI(φ1, . . . , φN) iff λ(w) + λ(φ1, w) + . . . + λ(φN , w) < λ(w′) + λ(φ1, w
′) + . . . +

λ(φN , w
′).

(2) Let R be a set of runs, such that any initial segment of a sequence in R can be continued by ”true”, i.e.
if r =< w,< φ1, . . . , φN >>∈ R, and 1 ≤ i ≤ N, then r′ =< w,< φ1, . . . , φi−1, true, . . . , true >>∈ R. Let
B(φ1, . . . , φn) ⊆ML for all φi (n ≤ N). Let λ : ML ∪ (ML ×L)→ ω+ 1 s.t. for all φ1, . . . , φN , w, w

′ λ(T , w) = 0,
and the system of inequalities generated as follows:

(2.1) w,w′ ∈ BI(φ1, . . . , φN) iff λ(w) + λ(φ1, w) + . . .+ λ(φN , w) = λ(w′) + λ(φ1, w
′) + . . .+ λ(φN , w

′) <∞,

(2.2) w ∈ BI(φ1, . . . , φN), w′ 6∈ BI(φ1, . . . , φN) iff λ(w) + λ(φ1, w) + . . . + λ(φN , w) < λ(w′) + λ(φ1, w
′) + . . . +

λ(φN , w
′)

have a solution (by the Farkas algorithm).

Then there is κ : R → ω + 1 s.t. κ(r) = λ(w) + Σ{λ(φi, w) : 1 ≤ i ≤ N} for r =< w,< φ1, . . . , φN >> and for
I :=< R, κ > B(φ1, . . . , φN) = BI(φ1, . . . , φN), and I is Markov. 2

6.4.3 There is no finite representation possible

We show here that there is no finite characterization of Markov developments. The technique is the same as in the
other cases, and facilitated by the fact that we have no real closure conditions.

We present again an example of an arbitrarily complicated situation, where ”good” and ”bad” cases differ by just
one bit of information. It will be evident how to generalize this example.

Example 6.4.4

We work with 4 points, w1, w2, w3, w4, and two formulas, φ1, φ2. We give the impossible conditions in two groups.

Group 1 (see Fact 6.4.2 and 6.4.3):

Information Consequence
B(φ1, φ2) = w1 λ(w1) + λ(φ1, w1) + λ(φ2, w1) < λ(w2) + λ(φ1, w2) + λ(φ2, w2)
B(φ2, φ3) = w2 λ(w2) + λ(φ2, w2) + λ(φ3, w2) < λ(w3) + λ(φ2, w3) + λ(φ3, w3)
B(φ3, φ4) = w3 λ(w3) + λ(φ3, w3) + λ(φ4, w3) < λ(w4) + λ(φ3, w4) + λ(φ4, w4)
B(φ4, φ1) = w4 λ(w4) + λ(φ4, w4) + λ(φ1, w4) < λ(w1) + λ(φ4, w1) + λ(φ1, w1)

and

Group 2 (see Proposition 6.4.5):

Information Consequence
w2 ∈ B(φ1), w4 6∈ B(φ1) λ(w2) + λ(φ1, w2) < λ(w4) + λ(φ1, w4)
w3 ∈ B(φ2), w1 6∈ B(φ2) λ(w3) + λ(φ2, w3) < λ(w1) + λ(φ2, w1)
w4 ∈ B(φ3), w2 6∈ B(φ3) λ(w4) + λ(φ3, w4) < λ(w2) + λ(φ3, w2)
w1 ∈ B(φ4), w3 6∈ B(φ4) λ(w1) + λ(φ4, w1) < λ(w3) + λ(φ4, w3)

By adding all inequalities, we see that this is contradictory.

6.5. ”BETWEEN” AND ”BEHIND” 235

We can generalize the example as follows: Lines 1,2,3,4 in group 2 correspond to the following in group 1. ′′∗′′ will
stand for any expression, ”1l” for the left hand side of line 1 in group 2 etc.

∗ 2r < 1l ∗

∗ 3r < 2l ∗

∗ 4r < 3l ∗

∗ 1r < 4l ∗

To simplify further, we may assume all λ(wi) = 0.

It remains to create a full example:

1. We do not assume any domain closure, this simplifies the construction considerably.

2. To achieve runs of length ω, we append T = true.

3. We take κ(< wi,T ,T , . . . >) = 0, thus λ(wi) = 0 and λ(wi,T) = 0, so we have to put < wi,T ,T , . . . > into R.

4. The set of runs, R, is now:

(a) all < wi,T ,T , . . . >

(b) all completions with T of above initial segments, i.e. < w1, φ1, φ2,T ,T , . . . > etc. of group 1, and
< w2, φ1,T ,T , . . . > etc. of group 2.

We thus have a set of runs R, and B(φi), B(φi, φj) as information. But we need the complete information to
see that it is not Markov, as any true subset has a Markov solution. This case is simpler than the revision case
discussed above, as we have no completions of the domain - again an illustration of the importance of closure
conditions of the domain.

We conclude with a word on the language. Condition (O1) above seems complicated, as a matter of fact, it is not,
as we can speak about arbitrary points instead of formulas, taking the usual characterization for ranked structures.
(Note that the only way we can cut up a domain is by considering longer segments.)

We can simplify further by setting almost everywhere 0, this was not possible in the other cases.

We leave it to the reader to fill in the details.

6.5 ”Between” and ”Behind”

We introduce the (trivial) notation, and go immediately to the (class of) example(s) which show that there is no
finite characterization possible. This case is particularly interesting by the simplicity of the situation.

In the case of ”between” and ”behind” we have information of the type < a, b, c > or − < a, b, c >, which mean
that b is (is not) between a and c, or that c is (is not) behind b, as seen from a. As said in the introduction, b is
between a and c iff d(a, c) = d(a, b) + d(b, c) for some fixed distance d. A (finite) amount of such information can
be solved using the Farkas algorithm. We shall also see below that there is no finite representation of the problem.

Considering problems like B is between A and C, where A,B,C are sets of points is probably very complicated, we
have not looked into the question.

There are, however, easy properties for between, like: < a, b, c >, < a, x, b >, < x, b, c > imply < a, x, c >:
d(a, x) + d(x, c) = d(a, x) + d(x, b) + d(b, c) = d(a, b) + d(b, c) = d(a, c).

The solution with the Farkas algorithm is evident.

6.5.1 There is no finite representation for ”between” and ”behind”

Definition 6.5.1

Given a distance d, we define ”x is between a and b′′, in symbols < a, x, b >, iff d(a, b) = d(a, x) + d(x, b) (and

236 CHAPTER 6. SUMS

Example 6.5.1

x

�
�

�

@
@

@

�
�

�
�

��

@
@

@
@

@@

�
�

�
�

��

@
@

@
@

@@

@
@

@

�
�

�

a1

a2

a3

b1

b2

b3

y

consequently ¬ < a, x, b > iff d(a, b) < d(a, x) + d(x, b), by the triangle inequality). For simplicity, we assume the
distance to be symmetrical.

It is then an interesting question to characterize the relation ”between” thus defined, i.e. to give sound and sufficient
conditions for ”between” so it can be generated by a distance.

The following class of examples shows that for any such characterization, we need arbitrarily much information.

Before we consider the general picture, we give one example.

Example 6.5.1

Take x and y as endpoints, and a1, a2, a3, b1, b2, b3 as intermediate, and < x, a1, a2 >, < x, b1, b2 >, < a1, b2, b3 >,
< b1, a2, a3 >, < a2, b3, y >, < b2, a3, y > . All other tripels are not in the ”between” relation.

This cannot correspond to a distance (see the discussion of Example 6.5.2 below), but we can make any proper
subset work: If we omit any one of the < > −tripels, we can find a distance which generates the relation. If,
e.g. we omit < a1, b2, b3 >, we have an upper part < x, a1, a2 >, < x, b1, b2 >, and a lower part < a2, b3, y >,
< b2, a3, y >, and in the middle just < b1, a2, a3 >, with a2 a ”hinge” connecting the upper and the lower part.

(The situation reminds me strangely of ”cross switches” for independent switching of electric current.)

2

Example 6.5.2

A systematic construction:

6.5. ”BETWEEN” AND ”BEHIND” 237

The points: x, a1, . . . , an, b1, . . . , bn, y.

The full diagram consists of the ”between” relations:

< x, a1, a2 >, < x, b1, b2 >, < ai, bi+1, bi+2 >, < bi, ai+1, ai+2 >, for 1 ≤ i ≤ n−2, < an−1, bn, y >, < bn−1, an, y >,
and cannot be represented by a distance.

This is easy to see: We have

d(x, a1) + d(a1, a2) < d(x, b1) + d(b1, a2),

d(x, b1) + d(b1, b2) < d(x, a1) + d(a1, b2),

d(ai, bi+1) + d(bi+1, bi+2) < d(ai, ai+1) + d(ai+1, bi+2), for 1 ≤ i ≤ n− 2,

d(bi, ai+1) + d(ai+1, ai+2) < d(bi, bi+1) + d(bi+1, ai+2), for 1 ≤ i ≤ n− 2,

d(an−1, bn) + d(bn, y) < d(an−1, an) + d(an, y),

d(bn−1, an) + d(an, y) < d(bn−1, bn) + d(bn, y),

but any d(s, t) occurs exactly once on the left and on the right of <, so adding all inequalities results in A < A.

We now give for any one missing tripel a symmetrical distance which generates exactly the remaining tripels.
Thus, as in the case of distance representable revision, a minimal change transforms again an ”illegal” into a
”legal” situation.

Case 1:

The missing tripel is in the middle.

Say wlog. that < am−1, bm, bm+1 > is missing (but < bm−1, am, am+1 > is present).

The upper part consists of all points and tripels involving only x and ai, bi with 1 ≤ i ≤ m, the lower part consists
of all points and tripels involving only y and ai, bi with m + 1 ≤ i ≤ n, the tripel < bm−1, am, am+1 > is the
”connecting rod”, and am the ”hinge”.

The distances between am and am+1, am and bm+1, bm and bm+1, bm and am+1 will have a special treatment, we
determine the other distances now.

We construct from the endpoints x and y, downwards in the upper part, upwards in the lower part. Attention:
in the upper part, the interior (in the diagram) distances increase when going downwards, in the lower part, the
exterior distances increase when going upward.

Let c := 1/(8 ∗ n). In all tripels of both parts, let the second distance be 1. Let d(x, a1) = d(x, b1) = d(y, an) =
d(y, bn) := 1. In all tripels of both parts, we increase the first distances each time by c, e.g. d(a1, b2) = d(b1, a2)
= d(an, an−1) = d(bn, bn−1) = 1 + c, d(a2, b3) = d(b2, a3) = d(an−1, an−2) = d(bn−1, bn−2) = 1 + 2 ∗ c, etc. In
detail: for 1 ≤ i ≤ m − 1 d(ai, ai+1) = d(bi, bi+1) = 1, d(ai, bi+1) = d(bi, ai+1) = 1 + i ∗ c, for m + 1 ≤ i ≤ n − 1
d(ai, bi+1) = d(bi, ai+1) = 1, d(ai, ai+1) = d(bi, bi+1) = 1 + (n− i) ∗ c.

We still have to connect the two parts, and define d(um, vm+1), where u,v are a or b. d(bm+1, am) := 1 will be as
usual for a second part of a triple, d(am+1, am) will be as usual for a first part from below, i.e. 1+ (n−m) ∗ c, this
makes the length of the ”connecting rod” 1+(m−1)∗c+1+(n−m)∗c = 2+(n−1)∗c. As bm−1−bm−am+1 has to
be a detour, and d(bm−1, bm) = 1, we choose d(bm, am+1) := 1+nc. As < am+2, am+1, bm > and am+2− bm+1− bm
is a detour, and d(am+2, am+1) = 1 + (n−m− 1) ∗ c, we choose d(bm+1, bm) := 1 + (2n−m) ∗ c.

All the distances defined so far are between 1 and 1 + 2n ∗ c = 1.25.

Let now the distances between the endpoints of the tripels in the upper and lower part be as ”between” dictates:
the sum of the first and the second distance. Note that increasing by c assures that ”detours are detours”, e.g.
d(x, a2) = 2 < d(x, b1) + d(b1, a2) = 1 + 1 + c. But also around the center, detours are respected:

d(am+2, bm) = d(am+2, am+1)+d(am+1, bm) = 2+(2n−m−1)∗c < d(am+2, bm+1)+d(bm+1, bm) = 2+(2n−m)∗c,

d(bm+2, am) = d(bm+2, bm+1)+d(bm+1, am) = 2+(n−m−1)∗ c < d(bm+2, am+1)+d(am+1, am) = 2+(n−m)∗ c,

238 CHAPTER 6. SUMS

d(am+1, bm−1) = d(am+1, am) + d(am, bm−1) = 2 + (n− 1) ∗ c < d(am+1, bm) + d(bm, bm−1) = 2 + n ∗ c.

Choose all other distances as 1.9. This cannot introduce new triples, as we will show now. Suppose < u, v, w >
holds, i.e. d(u,w) = d(u, v) + d(v, w). d(u,w) = 1.9 is impossible, as all distances are ≥ 1. The same holds for all
individual distances defined above like d(ai, bi+1), so u and w can only be endpoints of tripels, as those distances
were between 2 and 2.5. v cannot have distance 1.9 from u or w, so v must be on the direct or indirect path from
u to w, but we took care that only the desired tripels satisfy this condition.

It remains to check the triangle inequality. The only problem can again be with distances d(u,w) between 2 and
2.5. But again for any v with d(u, v) = 1.9 or d(v, w) = 1.9, there is no problem. The remaining cases are precisely
the sequences we looked at in detail, and they present no problem.

Case 2:

The missing tripel is at the end.

Say wlog. that < an−1, bn, y > is missing (but < bn−1, an, y > is present).

Construct everything as above (from above) down to an, bn. Then d(an−1, an) = d(bn−1, bn) = 1, d(an−1, bn) =
d(bn−1, an) = 1 + (n− 1) ∗ c. Let d(an, y) := 1, and choose d(bn, y) := 1 + nc. Finish as above.

We show the absence of a finite characterization.

Let now φ = ∀x1, . . . , xkφ
′(x1, . . . , xn) be a universally quantified formula containing just the ternary relations

< ., ., . > described above. Suppose it characterizes the distance representable structures. Let n be the number of
triples in φ.

Take a sufficiently big counterexample C, so for some a1, . . . , ak φ has to fail: C |= ¬φ′[a1, . . . , an]. But, there is a
legal structure S which gives exactly the same information on the n triples involved, so S |= ¬φ′[a1, . . . , an], and
S |= ¬φ, contradiction.

2

Discussion:

When we look at the ”illegal” cases, which cannot be represented by a distance, we note the following:

Each distance d(x, y) occurs on one side as part of a direct path, and on the other side, as part of an indirect path.
But this cannot be: Each inequality A < B is a strict one, so if we add them all up, this results in one big strict
inequality. So, if each d(x, y) occurs as part of a direct and of an indirect path (and, more precisely, the same
number of times), we have a contradiction.

Thus, we can describe the situation by the following (a little sloppily): It must not be possible to recombine all
d(x, y) which form part of direct paths in a way that they all form part of indirect paths. If we can, we have exactly
the same terms on the left and on the right of a strict inequality.

Chapter 7

Size

7.1 Introduction

In this Chapter 7, we will

• give an interpretation of ”almost all” or ”big subsets” in first order logic (FOL) by a generalized quantifier,
for which we give a sound and complete axiomatisation,

• compare coherent systems of filters with certain order relations,

• show how to construct epistemic entrenchment relations, and thus revision functions from model size.

In the first part, we assume no coherence conditions, we just give a bare bones system based semantically on weak
filters. It is straightforward to add full filter or coherence conditions as we like - it suffices to write them down,
the corresponding semantical conditions are obvious. This Section 7.2 is, if you wish, just a formal version of basic
intuitions about abstract size in a first oder setting. It shows that what you think to be right is really so: the
straightforward axiomatisation works.

In the second part, on the contrary, the emphasis is on coherence. We compare the coherent filter systems of
S.Ben-David and R.Ben-Eliyahu with that of the author and the order relation of Friedman and J.Halpern. The
latter correspondence is not exact, but the systems are very very close. In a certain way, such orders as the one by
Friedman/Halpern are already implicit in completeness proofs in [KLM90] and [LM92]. What appears there as an
auxiliary notion is put into the foreground here. This approach has the advantage of being very general, abstract,
and thus free from the technicalities of the completeness proofs in [KLM90] and similar approaches. Note that
the completeness proofs by the author (see Chapter 3) are quite different, they concentrate more on the algebraic
side and the minimal constructions needed. Consequently, they are more technical, more specific to preferential
structures, but also more general within this framework.

In the third part, we show a construction of epistemic entrenchment relations from model size, published by the
author quite long ago. In hindsight, this is exactly the construction of stable sets from point size described in
Chapter 2. So, this construction seems quite natural, as well from an abstract as from a more concrete viewpoint.
The idea is to assign weight to models, and to prefer those formulas which - better whose models - have more
weight. This very simple idea does already half of the work. But, as epistemic entrenchment relations are stable
under finite intersection (α∧β ≤ α or α∧β ≤ β), we have to take care to make this construction sufficiently robust.
This is done via the construction of ”stable” sets, where, roughly, each single element in the set is stronger than
all elements outside the set together. Stable sets make really big leaps in the size of elements. We go quite into
detail for the construction of such sets and the relation. - The size of formulas resulting from the size of models
can be read as well on the formula side as on the side of model sets, there is no difference. Conceptually, this part

239

240 CHAPTER 7. SIZE

is perhaps the most interesting of the present Chapter 7, as it shows how to go from size of points in a quite robust
way essentially to a ranked order of sets.

7.1.1 The details

Defaults as generalized quantifiers (Section 7.2):

In Section 7.2 on defaults as generalized quantifiers in a FOL setting, we use weak filters on the semantical side,
and add the following axioms on the syntactical side to a FOL axiomatisation:

1. ∇xφ(x) ∧ ∀x(φ(x) → ψ(x)) → ∇xψ(x),

2. ∇xφ(x) → ¬∇x¬φ(x),

3. ∀xφ(x) → ∇xφ(x) and ∇xφ(x) → ∃xφ(x).

A model is now a pair, consisting of a classical FOL model M, and a weak filter over its universe. Both sides are
connected by the following definition, where N (M) is the weak filter on the universe of the classical model M :

< M,N (M) > |= ∇xφ(x) iff there is A ∈ N (M) s.th. ∀a ∈ A (< M,N (M) > |= φ[a]).

To show soundness and completeness, we prove the central Lemma 7.2.4:

Let T be a ∇−L−theory. Then T is consistent under our axioms iff T has a model as defined above.

The main formal work is to prove this Lemma.

The extension to defaults with prerequisites by restricted quantifiers is straightforward.

Three abstract coherent systems (Section 7.3):

We present and compare in this Section the abstract systems of Ben-David/Ben-Eliyahu, the author, and of
Friedman/Halpern. The fact that they are very close, though in different disguise, can be seen as an argument for
their naturalness.

They work either with filter systems, or with abstract ordering relations.

(1) The system of S. Ben-David and R. Ben-Eliyahu (see Proposition 7.3.2):

Let N ′ := {N ′(A) : A ⊆ U} be a system of filters for P(U), i.e. each N ′(A) is a filter over A. The conditions are
(in slight modification):

UC’: B ∈ N ′(A) → N ′(B) ⊆ N ′(A),

DC’: B ∈ N ′(A) → N ′(A) ∩ P(B) ⊆ N ′(B),

RBC’: X ∈ N ′(A), Y ∈ N ′(B) → X ∪ Y ∈ N ′(A ∪ B),

SRM’: X ∈ N ′(A), Y ⊆ A → A− Y ∈ N ′(A) ∨ X ∩ Y ∈ N ′(Y),

GTS’: C ∈ N ′(A), B ⊆ A → C ∩ B ∈ N ′(B).

(2) The system of the author (see Definition 7.3.4, and Definition 2.3.6) :

We consider a system of ideals over P(U), i.e. let for A ⊆ U an ideal I(A) ⊆ P(A) be given.

(∅) If A 6= ∅, then ∅ ∈ I(A),

(Coh0) if B ⊆ C ⊆ D, B ∈ I(C), then B ∈ I(D),

(CohCum) if A,C ∈ I(B), then A− C ∈ I(B − C),

(CohRM) if A ∈ I(B), C ⊆ B, B − C 6∈ I(B), then A− C ∈ I(B − C).

(3) The system of N. Friedman and J. Halpern (see Definition 7.3.5):

Let U be a set, < a strict partial order on P(U), (i.e. < is transitive, and contains no cycles). Consider the
following conditions for <:

7.1. INTRODUCTION 241

(B1) A′ ⊆ A < B ⊆ B′ → A′ < B′,

(B2) if A,B,C are pairwise disjoint, then C < A ∪ B, B < A ∪ C → B ∪ C < A,

(B3) ∅ < X for all X 6= ∅,

(B4) A < B → A < B−A,

(B5) Let X,Y ⊆ A. If A−X < X, then Y < A− Y or Y −X < X ∩ Y.

We then show the following equivalences:

(1) Equivalence of the first two systems (see Proposition 7.3.9):

N ′ satisfies UC’, DC’, RBC’, SRM’, iff the corresponding system of ideals I defined by I(A) := {X : A−X ∈ N ′(A)}
satisfies (∅)− (CohRM).

(2) Equivalence of the first and third system (see Proposition 7.3.11):

Let, on the one hand, < on P(U) satisfy (B1)− (B4), and, on the other hand, N ′ be a coherent system of proper
filters on U (i.e. for A ⊆ U N ′(A) 6= P(A)), satisfying UC’, DC’, RBC’.

Define forX 6= ∅ N ′
<(X) := {B ⊆ X :X−B < B}, and A <N ′ B :↔ ∃X,Y (A ⊆ X−Y, Y ⊆ B, Y ∈ N ′(X), Y 6= ∅).

Then:

(1) Setting N ′(X) := N ′
<(X), N ′(X) is a proper filter, and UC’, DC’, RBC’, hold for N ′.

(2) Setting <:=<N ′ , < will be transitive, cycle-free, and satisfy (B1)− (B4).

(3) The operations are inverse: N ′(X) = N ′
<N′

(X) and < = <N ′
<
.

(4) If (B5) holds for <, then SRM’ holds for N ′
<. Conversely, if SRM’ holds for N ′, then (B5) holds for <N ′ .

The details and proofs are more complicated than difficult.

Theory Revision based on model size (Section 7.4):

We base here Theory Revision a la AGM on model size. The main reason to repeat this old construction of the
author in this context is, that it illustrates well the use of individual (model) size to obtain a ranking of the models,
which is quite robust, and thus supports the strong property of EE relations that A ∩B has the same size as A or
as B.

As discussed already in Section 2.3.3.1, the main idea is to group elements by size, so that new groups contain really
much bigger elements: Any element in the stronger group has to be bigger than all elements of the weaker groups
together. This procedure is, of course, highly context dependent. The more we have elements, the more weaker
elements can form ”coalitions” to beat stronger elements, and pull them into their group of weaker elements. This
is asymmetrical, as stronger elements cannot from coalitions, they have to stand on their own. If you wish, this
is the opposite of preferential structures, where we may need many stronger elements to beat one weaker element,
but then we can beat as many weak elements of the same kind as we like, our forces do not get used up.

This procedure reflects well the strong property of epistemic entrenchment - and thus of revision - that A or B has
the same size as A∩B. Speaking in terms of distance, if C is somewhat excentric around X, the farthest elements
do not interest us, only the closest ones, so, in a way, we can form intersections until we have the (Grove-) sphere
around X. Below this sphere begins something new, and we slide down to the next sphere. This is not exactly the
same, but to some degree, and may help the intuition.

We first introduce pre-EE relations (Definition 7.4.1) on the powerset of some set U, which are (essentially) just
total orders compatibel with the subset relation. We then give, and this is the central idea of this Section 7.4, a
method to construct epistemic entrenchment relations relative to some fixed, arbitrary set X ⊆ U (Definition 7.4.2
and Proposition 7.4.2). This construction allows to recover all epistemic entrenchment relations - see Proposition
7.4.3. Note that we did not speak about X before, so pre-EE relations are - in Theory Revision terms - universal
for all K, K intervenes only when we make the full epistemic entrenchment relation conrete. We then look at the
special case where the pre-EE relation is constructed in a natural way from size.

242 CHAPTER 7. SIZE

To summarize:

We have three essays on size in this Chapter 7. The first one translates abstract size (weak filters) to a generalized
quantifier in FOL, the second compares three largely equivalent systems of abstract size and coherence, and the
third shows how to group elements by size in a robust and useful way, leading to a size based semantics for Theory
Revision.

Recommended reading:

The Sections are independent. Section 7.3 is the longest, most abstract, but perhaps the most straigthforward one.
Section 7.2 is one of the few moments where we go into FOL in this book. Section 7.4 has close ties with other
Sections on Theory Revision, so readers interested in this subject should perhaps read this Section first.

Technically, none of the Sections here is very involved.

7.2 Generalized quantifiers

7.2.1 Introduction

We have discussed weak filters in Chapter 2, and also said that a reasonable abstract notion of size without the
properties of weak filters seems difficult to imagine. The full set seems the best candidate for a ”big” subset, ”big”
should cooperate with inclusion, and, finally, no set should be big and small at the same time.

If defaults have something to do with ”big” subsets - however we measure them - then weak filters should give
some kind of minimal semantics to defaults. This is what we do in this Section for FOL. We introduce a new,
generalized, quantifier to which we give exactly the desired properties: it should express that a property holds
almost everywhere. In particular, the property should hold somewhere if it does so almost everwhere, and, if it
holds everywhere, then it holds almost everywhere (so read it, if you like, better: at least almost everywhere), and
it cannot be that φ and ¬φ hold almost everywhere at the same time. The latter gives a notion of consistency,
we cannot write down just anything any more and pretend that it is still a reasonable default theory. Note that
the new quantifier is fully in the object language, so we can negate it, nest it, mix it with classical quantifiers,
everything we can do in usual FOL. We will recover the same advantage again in Chapter 8, where we put (almost)
everything together in a generalized modal logic.

The essential axioms are now

1. ∇xφ(x) ∧ ∀x(φ(x) → ψ(x)) → ∇xψ(x),

2. ∇xφ(x) → ¬∇x¬φ(x),

3. ∀xφ(x) → ∇xφ(x) and ∇xφ(x) → ∃xφ(x).

We show here formally that these axioms correspond exactly to weak filters, i.e. we prove a soundness and
completeness theorem for weak filter models, where the essential supplementary definition of validity for ∇ and the
weak filter N (M) is (with M a classical FOL model):

< M,N (M) > |= ∇xφ(x) iff there is A ∈ N (M) s.th. ∀a ∈ A (< M,N (M) > |= φ[a]).

The main definitions are Definitions 7.2.1, 7.2.2, 7.2.3.

The proof shows that in our axiomatization consistent theories have a model, and uses a normal form to construct
the structure. For this, we need a dual of ∇, noted ♣, to be able to pass negation through. This is done in
Definition 7.2.4 and Lemma 7.2.3. The construction of the structure, i.e. the main result, is in Lemma 7.2.4, and
the result summarized in Theorem 7.2.5.

We then extend the approach to restricted quantifiers - corresponding to defaults with prerequisites - this is
straightforward, and done at the end of this Section 7.2.

Recall that this is a bare bones system - weak filters instead of filters, and no coherence whatsoever. Such very

7.2. GENERALIZED QUANTIFIERS 243

weak systems have the advantage to allow easily multiple extensions, we just have to add on both sides (semantics
and proof theory) what we think desirable, no need to start more or less difficult completeness proofs anew, the
correspondence will be obvious.

7.2.2 Results

Definition 7.2.1

We augment the language of first order logic by the new quantifiers: If φ and ψ are formulas, then so are ∇xφ(x),
♣xφ(x), ∇xφ(x) : ψ(x), ♣xφ(x) : ψ(x) for any variable x. Intuitively, ♣ means: ”for at least a medium size set”,
and the:-versions are the restricted variants. We call any formula of L, possibly containing∇ or ♣ a ∇−L−formula.

Definition 7.2.2

(N−Model)

Let L be a first order language, and M be a L−structure. Let N (M) be a weak filter, or N−system - N for normal
- over M. Define < M,N (M) > |= φ for any ∇− L−formula inductively as usual, with two additional induction
steps: < M,N (M) > |= ∇xφ(x) iff there is A ∈ N (M) s.th. ∀a ∈ A (< M,N (M) > |= φ[a]) < M,N (M) > |=
♣xφ(x) iff {a ∈M : < M,N (M) > |= ¬φ[a]} 6∈ N (M).

Lemma 7.2.1

< M,N (M) > |= ♣xφ(x) iff ∀A ∈ N (M)∃a ∈ A(< M,N (M) >|= φ[a]). 2

Proof Theory:

Definition 7.2.3

Let any axiomatization of predicate calculus be given. Augment this with the axiom schemata

(1) ∇xφ(x) ∧ ∀x(φ(x) → ψ(x)) → ∇xψ(x),

(2) ∇xφ(x) → ¬∇x¬φ(x),

(3) ∀xφ(x) → ∇xφ(x) and ∇xφ(x) → ∃xφ(x),

(4) ♣xφ(x) :↔ ¬∇x¬φ(x),

(5) ∇xφ(x) ↔ ∇yφ(y) if x does not occur free in φ(y) and y does not occur free in φ(x).

(for all φ, ψ).

We also denote the corresponding notion of derivability by `∇.

Lemma 7.2.2

The following formulae are derivable:

(1) ∇xφ(x) ∧ ∇xψ(x) → ∃x(φ ∧ ψ)(x),

(2) ∇xφ(x) ∧ ¬∇xψ(x) → ∃x(φ ∧ ¬ψ)(x),

(3) ¬∇x¬φ(x) → ∃xφ(x),

(4) ♣xφ(x) → ∃xφ(x),

(5) ∇xφ(x) ∧ ♣xψ(x) → ∃x(φ ∧ ψ)(x),

(6) ∀x(φ(x) ↔ ψ(x)) → (∇xφ(x) ↔ ∇xψ(x)) ∧ (♣xφ(x) ↔ ♣xψ(x)),

244 CHAPTER 7. SIZE

(7) ∀xφ(x) → ♣xφ(x).

It is usually not derivable: ♣xφ(x) ∧ ♣xψ(x) → ∃x(φ ∧ ψ)(x). (To see this, use Theorem 7.2.5 below and argue
semantically.) 2

Soundness and Completeness:

To prepare the proof of completeness, we introduce ∇−normal forms (∇−NF).

Definition 7.2.4

φ is in ∇−normal form (∇−NF) iff

1. φ contains only ¬, ∧, ∨ as propositional operators

2. only atomic FOL formulas are in the scope of ¬.

Lemma 7.2.3

For every φ there is φ′ in ∇−NF s.th. `∇ φ↔ φ′.

Proof:

By induction on the depth of ∇+♣ - nesting.

Case 1: depth = 0: This is a classical result, take e.g. disjunctive prenex normal form (PNF).

Case 2: Let the depth of φ be n+1, and the result be proven up to depth n. We take an `∇ −equivalent φ′′ in e.g.
disjunctive PNF, treating the subformulas within the outmost ∇ and ♣ quantifiers like classical atomic formulas, so
φ′′ is of the form Q1 . . . Qn[φ1∨ . . .∨φm], the Qi classical quantifiers, the φi of the form φi1∧ . . .∧φiki

, where the
φij are either classical (negated) atomic formulas, or of the form ∇xψ(x, y), ¬∇xψ(x, y), ♣xψ(x, y), or ¬♣xψ(x, y).
The negation can be passed through by `∇ ¬∇xψ(x, y) ↔ ♣x¬ψ(x, y) and `∇ ¬♣xψ(x, y) ↔ ∇x¬ψ(x, y). By
induction hypothesis, the (¬)ψ(x, y) can be transformed into an `∇ −equivalent ψ′(x, y) in ∇−NF. Axioms 1 and
5 in Definition 7.2.3 give the result. 2

We come to the central result of this Section: every consistent theory has a model, which we construct now.

Lemma 7.2.4

Let T be a ∇−L−theory. Then T is consistent under the axioms of Definition 7.2.3 iff T has a model as defined
in Definition 7.2.2.

Proof:

The consistency of T when it has a model is trivial.

Let T be a `∇ −consistent ∇ − L−theory. We have to show that it has a model. Throughout the proof, let
′′ `∇ −consistent′′ be abbreviated by ”consistent”. We give a constructive proof, to make the reader comfortable
with the new logic. By the above, assume wlog. that all φ ∈ T are in ∇−NF.

We first construct a consistent T ′ ⊇ T.

We add cα : α < κ new constants to L, where κ is the size of L, and inductively construct T ′ =
⋃
{Tγ : γ < β} (Tγ

ascending, β large enough) with T0 := T , by adding new formulas to T, preserving consistency. (For simplicity, we
omit the exact enumeration process - it does not matter anyway.) Let φ ∈ Tγ , depending on the topmost operator,
we add 0, 1, or several new formulas. It should be noted that all added formulas are in ∇−NF too.

7.2. GENERALIZED QUANTIFIERS 245

Case 1: φ = ¬ψ: We do nothing, by ∇−NF, ψ is a classical atomic formula

Case 2: φ = ψ ∧ ψ′: We add ψ, ψ′, obviously preserving consistency.

Case 3: φ = ψ ∨ ψ′: Both Tγ + ψ and Tγ + ψ′ cannot be inconsistent, as φ ∈ Tγ , so add one (or both) which
preserves consistency.

Case 4: φ = ∀xψ(x): Add all ψ(cα), α < κ

Case 5: φ = ∃xψ(x): Add some ψ(cα) which preserves consistency

Case 6: φ = ∇xψ(x): Add ∃xψ(x), and for each ∇yψ′(y) ∈ Tγ ∃x(ψ ∧ ψ′)(x) and for each ♣yψ′(y) ∈ Tγ
∃x(ψ ∧ ψ′)(x). (after suitable renaming, preserving consistency by Lemma 7.2.2)

Case 7: φ = ♣xψ(x): Add ∃xψ(x), and for each ∇yψ′(y) ∈ Tγ ∃x(ψ ∧ ψ′)(x) (after suitable renaming, preserving
consistency by Lemma 7.2.2)

In case 6 and 7, we mark all new ∃xψ(x) / ∃x(ψ∧ψ′)(x) as children of φ = ∇xψ(x) / φ = ∇xψ(x) and φ = ∇xψ′(x)
etc.

Let T ′ :=
⋃
{Tγ : γ < β}, β large enough, and T ′′ ⊆ T ′ be the set of FOL-formulas of

T ′. By FOL-completeness, T ′ has a model M with universe U, where each u ∈ U is denoted by some cα.

Next, we define the weak filter N (U) over U.

Case 1: T ′ contains no ∇xψ(x): Set N (U) := {U}.

Case 2: Otherwise. Let ∇xψ(x) be in T ′, and its children be ∃xψ(x), ∃x(ψ∧ψi)(x), i ∈ I (with ∇yψi(y) / ♣yψi(y)
∈ T ′), so there are ψ(cα), (ψ ∧ ψi)(cαi

) ∈ T ′. Let X∇xψ(x) := {cα} ∪ {cαi
: i ∈ I} (we identify the cα with their

interpretation), and set N (U) := {V ⊆ U : X∇xψ(x) ⊆ V for some ∇xψ(x) ∈ T ′} Obviously, for ∇xψ(x), ∇xψ′(x)
∈ T ′, X∇xψ(x) ∩X∇xψ′(x) 6= ∅, as they have the common child ∃x(ψ ∧ ψ′)(x), so N (U) is a N−system.

It remains to show that T holds in M :=< M,N (U) > . We show by induction on the complexity of φ that all
φ ∈ T ′ hold in M.

The atomic case is trivial, so are the cases ¬, ∧, ∨, ∀, ∃. Consider now ∇xψ(x). Note that for each cα ∈ X∇xψ(x),
M |= ψ(cα) by induction hypothesis. But X∇xψ(x) ∈ N (U), soM |= ∇xψ(x). Finally, consider ♣xψ(x).

Case 1: N (U) = {U}. ♣xψ(x) has the child ∃xψ(x), soM |= ψ(cα) for some cα, soM |= ♣xψ(x) by Lemma 7.2.1.

Case 2: N (U) 6= {U}. Let V ∈ N (U), so there is some X∇xψ′(x) ⊆ V, ∇xψ′(x) ∈ T ′. ♣xψ(x) and ∇xψ′(x) have
the common child ∃x(ψ ∧ ψ′)(x), so there is some cα ∈ X∇xψ′(x) with M |= (ψ ∧ ψ′)(cα) by induction hypothesis.
As this holds for all such V,M |= ♣xψ(x) by Lemma 7.2.1 again. 2

Theorem 7.2.5

The axioms given in Definition 7.2.3 are sound and complete for the semantics of Definition 7.2.2.

Proof:

Let T 6|= φ. Then there is a model M, s.th. M |= T ∧ ¬φ. Thus, Con(T ∧ ¬φ), so T 6` φ. The other direction is
analogous. 2

Extension to Normal Defaults with Prerequisites

Definition 7.2.5

246 CHAPTER 7. SIZE

Call N+(M) =< N (N) : N ⊆M > a N+ − system or system of weak filters over M iff for each N ⊆M N (N) is
a weak filter or N−system over N. (It suffices to consider the definable subsets of M.)

Definition 7.2.6

Extend the logic of first order predicate calculus by adding the axiom schemata

(1) a. ∇xφ(x) ↔ ∇x(x = x) : φ(x),

b. ∀x(σ(x) ↔ τ(x)) ∧ ∇xσ(x) : φ(x) → ∇xτ(x) : φ(x),

(2) ∇xφ(x) : ψ(x) ∧ ∀x(φ(x) ∧ ψ(x)→ ϑ(x)) → ∇xφ(x) : ϑ(x),

(3) ∃xφ(x) ∧ ∇xφ(x) : ψ(x) → ¬∇xφ(x) : ¬ψ(x),

(4) ∀x(φ(x) → ψ(x)) → ∇xφ(x) : ψ(x) and ∇xφ(x) : ψ(x) → [∃xφ(x) → ∃x(φ(x) ∧ ψ(x))],

(5) ♣xφ(x) : ψ(x) ↔ ¬∇xφ(x) : ¬ψ(x),

(6) ∇xφ(x) : ψ(x) ↔ ∇yφ(y) : ψ(y) (under the usual caveat for substitution).

(for all φ, ψ, ϑ, σ, τ).

Lemma 7.2.6

The following are derivable:

a) the axioms of Definition 7.2.3, and the formulae of Lemma 7.2.2 (via Definition 7.2.6 (1) and the corresponding
relativized versions).

b) the relativized versions of Lemma 7.2.2, where the existential statements have to be weakened by an existential
assumption as in Definition 7.2.6 (4).

2

Definition 7.2.7

Let L be a first order language, and M a L−structure. Let N+(M) be a N+ − system over M.

Define < M,N+(M) > |= φ for any formula inductively as usual, with the additional induction steps:

1. < M,N+(M) > |= ∇xφ(x) iff there is A ∈ N (M) s.th. ∀a ∈ A (< M,N+(M) > |= φ[a]),

2. < M,N+(M) > |= ♣xφ(x) iff {a ∈M : < M,N+(M) > |= ¬φ[a]} 6∈ N (M),

3. < M,N+(M) > |=∇xφ(x) : ψ(x) iff there isA ∈ N ({x :< M,N+(M) >|= φ(x)}) s.th. ∀a ∈ A (< M,N+(M) >
|= ψ[a]),

4. < M,N+(M) > |= ♣xφ(x) : ψ(x) iff {a ∈ M : < M,N+(M) > |= φ[a] ∧ ¬ψ[a]} 6∈ N ({x :< M,N+(M) >|=
φ(x)}).

Theorem 7.2.7

The axioms of Definition 7.2.6 are sound and complete for the N+− semantics of ∇ as defined in Definition 7.2.7.

Proof:

Fix any φ(x). The proof of Lemma 7.2.4 shows how to construct a model for all ∇xφ(x) : ψi(x). Axiom 7.2.6
(1) shows that equivalent φ will give the same construction of normal subsets of {x: M |= φ(x)}. The additional
assumption ∃xφ(x) in Definition 7.2.6 (4) was not needed in Definition 7.2.3 (3), because the domain of a classical
model is always non-empty. 2

7.3. COMPARISON OF THREE ABSTRACT COHERENT SYSTEMS BASED ON SIZE 247

7.3 Comparison of three abstract coherent systems based on size

7.3.1 Introduction

We compare here three abstract coherent systems based on size:

• The system of S. Ben-David and R. Ben-Eliyahu (see [BB94]),

• the system of the author, see also Section 2.3.3 for a discussion,

• the system of N. Friedman and J. Halpern (see [FH98]).

Our main interest is on the semantic side, so we will only compare this part of the articles [BB94] and [FH98]
in detail. It would, however, do injustice to these articles to cite them without their essential parts of the proof
theoretical side, so we will at least mention the main definitions and results of the logical side, too.

Now, we present first in some modification (for details see below) the three coherent systems:

(1) The system of S. Ben-David and R. Ben-Eliyahu (reformulated in Proposition 7.3.2 below, and called henceforth
BB for brevity):

Let N ′ := {N ′(A) : A ⊆ U} be a system of filters for P(U), i.e. each N ′(A) is a filter over A. The conditions are
(in slight modification):

UC’: B ∈ N ′(A) → N ′(B) ⊆ N ′(A),

DC’: B ∈ N ′(A) → N ′(A) ∩ P(B) ⊆ N ′(B),

RBC’: X ∈ N ′(A), Y ∈ N ′(B) → X ∪ Y ∈ N ′(A ∪ B),

SRM’: X ∈ N ′(A), Y ⊆ A → A− Y ∈ N ′(A) ∨ X ∩ Y ∈ N ′(Y),

GTS’: C ∈ N ′(A), B ⊆ A → C ∩ B ∈ N ′(B).

(2) The system of the author (see Definition 7.3.4 below, and Definition 2.3.6, called KS from now on for brevity):

We consider a system of ideals over P(U), i.e. let for A ⊆ U an ideal I(A) ⊆ P(A) be given.

(∅) If A 6= ∅, then ∅ ∈ I(A),

(Coh0) if B ⊆ C ⊆ D, B ∈ I(C), then B ∈ I(D),

(CohCum) if A,C ∈ I(B), then A− C ∈ I(B − C),

(CohRM) if A ∈ I(B), C ⊆ B, B − C 6∈ I(B), then A− C ∈ I(B − C).

(3) The system of N. Friedman and J. Halpern (see Definition 7.3.5 below, called FH in future):

Let U be a set, < a strict partial order on P(U), (i.e. < is transitive, and contains no cycles). Consider the
following conditions for <:

(B1) A′ ⊆ A < B ⊆ B′ → A′ < B′,

(B2) if A,B,C are pairwise disjoint, then C < A ∪ B, B < A ∪ C → B ∪ C < A,

(B3) ∅ < X for all X 6= ∅,

(B4) A < B → A < B−A,

(B5) Let X,Y ⊆ A. If A−X < X, then Y < A− Y or Y −X < X ∩ Y.

Our main results in this Section are:

(1) Equivalence of the systems BB and KS (see Proposition 7.3.9 below):

N ′ satisfies UC’, DC’, RBC’, SRM’, iff the corresponding system of ideals I defined by I(A) := {X : A−X ∈ N ′(A)}
satisfies (∅)− (CohRM).

(2) Equivalence of the systems BB and FH (see Proposition 7.3.11 below):

248 CHAPTER 7. SIZE

Let, on the one hand, < on P(U) satisfy (B1)− (B4), and, on the other hand, N ′ be a coherent system of proper
filters on U (i.e. for A ⊆ U N ′(A) 6= P(A)), satisfying UC’, DC’, RBC’.

Define forX 6= ∅ N ′
<(X) := {B ⊆ X :X−B < B}, and A <N ′ B :↔ ∃X,Y (A ⊆ X−Y, Y ⊆ B, Y ∈ N ′(X), Y 6= ∅).

Then:

(1) Setting N ′(X) := N ′
<(X), N ′(X) is a proper filter, and UC’, DC’, RBC’, hold for N ′.

(2) Setting <:=<N ′ , < will be transitive, cycle-free, and satisfy (B1)− (B4).

(3) The operations are inverse: N ′(X) = N ′
<N′

(X) and < = <N ′
<
.

(4) If (B5) holds for <, then SRM’ holds for N ′
<. Conversely, if SRM’ holds for N ′, then (B5) holds for <N ′ .

There is another variant of this equivalence, stated in Proposition 7.3.12 below, which, however, is in the same
spirit as the last one, so the reader is referred there.

As usual in such cases, the proofs are elementary, though a little long, so there seems no need for further comments.

The fact that we find essentially the same systems in several, at first sight quite different, dialects can probably be
seen as an argument for the validity of the underlying intuition. Recall also that such systems are already implicit
to a certain degree in the completeness proofs of [KLM90] and [LM92]. This intuition, is, of course, that filters are
good - perhaps too idealistic - abstractions of size, but that this does not suffice, that we need a more abstract
notion of size, which allows us to change the reference set, too.

If the reader is not interested in the accompanying logical systems, and just wants to see the correspondences on
the semantical side, she or he might just skip them. In some cases, we have also modified the original systems, the
reader who wants to see the common traits, might thus go directly to the modified systems (see Definition 7.3.9
for BB, and Definition 7.3.10 for FH) to see the main lines, and, perhaps, only later return to the original versions.

7.3.2 Presentation of the three systems

We now present the systems of Ben-David/Ben-Eliyahu, of the author and of Friedman/Halpern, and some of their
main results. We have concentrated on those parts essential to understand our comparisons in Sections 7.3.3 and
7.3.4. For details, the reader is referred to the original papers.

7.3.2.1 The system of Ben-David/Ben-Eliyahu

Ben-David/Ben-Eliyahu consider a conditional language with a binary operator ⇒, and their structures are as
usual in the conditionals framework, i.e. relativized to all points in the structure. We will drop this relativization
in the later development, as we are mainly interested in the nonmonotonic framework. Their language is the usual
one for propositional conditionals, and admits full nestedness etc. of ⇒ . (→ will continue to denote classical
implication.)

Definition 7.3.1

(Ben-David/Ben-Eliyahu)

M =< U, l,N > is a filter based model (FBM) for a set V of propositional variables

iff

(1) U (the universe) is a set (of worlds),

(2) l : U → P(V) is a labeling function, which assigns as usual to each w ∈ U the set of variables which hold in w,

(3) N : UxP(U)→ P(P(U)) is a function s.t. Nw(A) := N (w,A) is a filter over U with A ∈ Nw(A).

(We shall later modify equivalently so that Nw(A) will be a filter over A.)

7.3. COMPARISON OF THREE ABSTRACT COHERENT SYSTEMS BASED ON SIZE 249

Definition 7.3.2

(Ben-David/Ben-Eliyahu)

Given M =< U, l,N >, define validity of an arbitrary ⇒ −formula in M at a world w and the set ‖ φ ‖ of worlds
in M where a formula φ holds by simultaneous induction:

(1) for φ ∈ V M |=w φ iff φ ∈ l(w),

(2) classical propositional connectives are treated as usual, i.e. M |=w ¬φ iff M 6|=w φ etc.,

(3) M |=w φ⇒ ψ iff ‖ ψ ‖∈ Nw(‖ φ ‖).

The authors then turn to proof theory, first consider a basic system of axioms and rules, called F (for filter), and
various extensions.

We have seen some of the conditions already before, with ∼| instead of ⇒ . For instance, Reflexivity reads now
α⇒ α.

Definition 7.3.3

The system F consists of of the following two axioms and four rules:

all instances of classical tautologies and Reflexivity,

Modus ponens: α→β,α
β

, and the rules (LLE), (RW), (AND).

Proposition 7.3.1

(Ben-David/Ben-Eliyahu)

The system F is sound and complete for the family of filter based models.

Ben-David/Ben-Eliyahu obtain among other results the following representation theorem:

Proposition 7.3.2

(Ben-David/Ben-Eliyahu)

Consider the following coherence properties for N :

UC: B ∈ Nw(A) → Nw(A ∩ B) ⊆ Nw(A),

DC: B ∈ Nw(A) → Nw(A) ⊆ Nw(A ∩ B),

RBC: Nw(A) ∩Nw(B) ⊆ Nw(A ∪ B),

SRM: (re-written) X ∈ Nw(A) → X ∈ Nw(A ∩ Y) ∨ C(Y) ∈ Nw(A),

GTS: Nw(A ∪ B) ⊆ Nw(A) ∩ Nw(B).

(Remark to our version of SRM: By F∗(‖ α ‖, ‖ β ‖) = {w : w |= α ⇒ β} and Nw(α) := {‖ β ‖: w |= α ⇒ β},
Nw(α) = {‖ β ‖: w ∈ F∗(‖ α ‖, ‖ β ‖)}. So, essentially, Nw(A) = {B : w ∈ F∗(A,B)}. Then F∗(A,B) ⊆
F∗(A ∩ Y,B) ∪ F∗(A,U − Y) is equivalent with X ∈ Nw(A) → X ∈ Nw(A ∩ Y) ∨ C(Y) ∈ Nw(A).)

Then:

F + (CUT) is sound and complete for FBM’s satisfying UC,

F + (CM) is sound and complete for FBM’s satisfying DC,

P is sound and complete for FBM’s satisfying UC,DC,RBC,

F + (RM) is sound and complete for FBM’s satisfying SRM,

F +Monotony is sound and complete for FBM’s satisfying GTS.

250 CHAPTER 7. SIZE

7.3.2.2 The system of the author

We repeat Definition 2.3.6:

Definition 7.3.4

We consider a system of ideals over P(U), i.e. let for A ⊆ U an ideal I(A) ⊆ P(A) be given.

(∅) If A 6= ∅, then ∅ ∈ I(A),

(Coh0) if B ⊆ C ⊆ D, B ∈ I(C), then B ∈ I(D),

(CohCum) if A,C ∈ I(B), then A− C ∈ I(B − C),

(CohRM) if A ∈ I(B), C ⊆ B, B − C 6∈ I(B), then A− C ∈ I(B − C).

7.3.2.3 The system of Friedman/Halpern

Definition 7.3.5

(Friedman/Halpern)

Let U be a set, ≤ a partial order on some set D (i.e. ≤ is reflexive, transitive, anti-symmetric). Let ⊥,T ∈ D with
⊥ ≤ d ≤ T for all d ∈ D. (Thus, ⊥ and T have here a non-standard meaning compared to the rest of this book,
as we follow their notation.) Let P l : P(U)→ D s.t. P l(U) = T , P l(∅) = ⊥, and the following conditions hold:

(A1) A ⊆ B → P l(A) ≤ P l(B),

(A2) If A,B,C are pairwise disjoint, then P l(C) < Pl(A ∪ B), P l(B) < Pl(A ∪ C) → P l(B ∪ C) < Pl(A),

(A2′) P l(A−B) < Pl(A ∩ B), P l(A−B′) < Pl(A ∩B′) → P l((A−B) ∪ (A−B′)) < Pl(A ∩ B ∩ B′),

(A3) P l(A) = P l(B) = ⊥ → P l(A ∪B) = ⊥.

Then Pl is called a qualitative plausibility measure, and (U,Pl) a qualitative plausibility space.

Fact 7.3.3

(Friedman/Halpern)

In the presence of (A1), (A2) and (A2′) are equivalent.

Definition 7.3.6

(Friedman/Halpern) Given a qualitative plausibility space (U,Pl), a propositional language L with set of variables
v(L), and a truth assignment function π : U → P(v(L)), (U, P l, π) is called a qualitative plausibility structure. For
a classical formula φ, [[φ]] is the set of w ∈ U, where φ holds - the latter defined as usual.

Given a flat conditional φ⇒ ψ, we define (U, P l, π) |=Pl φ⇒ ψ iff P l([[φ]]) = ⊥ or P l([[φ ∧ ψ]]) > Pl([[φ ∧ ¬ψ]])

Given a set P of qualitative plausibility structures, a set ∆ of flat conditionals, and a flat conditional φ ⇒ ψ, we
define ∆ |=P φ⇒ ψ iff for all (U, P l, π) ∈ P (∀δ ∈ ∆((U, P l, π) |=Pl δ) implies (U, P l, π) |=Pl φ⇒ ψ).

Definition 7.3.7

(Friedman/Halpern)

A set P of qualitative plausibility structures is called rich iff for all sets {φ1 . . . φn} of mutually exclusive classical
formulas, there is a plausibility structure (U, P l, π) ∈ P s.t. ⊥ = P l([[φ1]]) < Pl([[φ2]]) < . . . < P l([[φn]]).

Proposition 7.3.4

(Friedman/Halpern)

7.3. COMPARISON OF THREE ABSTRACT COHERENT SYSTEMS BASED ON SIZE 251

Let ∆ be a set of flat conditionals, φ ⇒ ψ a flat conditional. Let further ∆ `P φ ⇒ ψ denote that φ ⇒ ψ follows
from ∆ in the system P (see Definition 1.6.5).

If P is a set of qualitative plausibility structures, and ∆ `P φ⇒ ψ, then ∆ `P φ⇒ ψ.

Conversely, a set of qualitative plausibility structures P is rich, iff for all sets ∆ of flat conditionals, and all flat
conditionals φ⇒ ψ, ∆ `P φ⇒ ψ implies ∆ `P φ⇒ ψ.

Friedman/Halpern then show that a number of well-known systems, e.g. (essentially) that of preferential reasoning,
give rise to equivalent sets of qualitative plausibility structures, which satisfy the richness condition. Consequently,
they are all characterized by the system P - despite their other differences.

We have modified Definition 7.3.5 slightly - see Definition 7.3.10 and Fact 7.3.10 - and obtain with this modi-
fied version a very close connection between the systems of Ben-David/Ben-Eliyahu and Friedman/Halpern (see
Proposition 7.3.11). The connection between the former and the original version of the latter is a bit looser (see
Proposition 7.3.12).

7.3.3 Comparison of the systems of Ben-David/Ben-Eliyahu and the author

We remind the reader that we shall henceforth drop the indices w of the filter systems. We collect the modified
conditions of Proposition 7.3.2 in the following

Definition 7.3.8

(Ben-David/Ben-Eliyahu)

Let N := {N (A) : A ⊆ U}, where each N (A) is a filter over U. We define the conditions:

UC: B ∈ N (A) → N (A ∩ B) ⊆ N (A),

DC: B ∈ N (A) → N (A) ⊆ N (A ∩ B),

RBC: N (A) ∩ N (B) ⊆ N (A ∪ B),

SRM: (re-written) X ∈ N (A) → X ∈ N (A ∩ Y) ∨ A− Y ∈ N (A),

GTS: N (A ∪ B) ⊆ N (A) ∩ N (B).

We modify the system of Ben-David/Ben-Eliyahu slightly and obtain conditions, which are less elegant, but perhaps
more intuitive. Their equivalence with the original version is shown in Proposition 7.3.6.

Fact 7.3.5

Let A ⊆ U, and N (A) be a filter over U, with A ∈ N (A). Then

(1) N ′(A) := {A ∩ B : B ∈ N (A)} is a filter over A,

(2) N ′(A) = N (A) ∩ P(A),

(3) N (A) = {C ⊆ U : ∃B ∈ N ′(A).B ⊆ C}.

Proof:

(1) A ∈ N ′(A) by prerequisite. If A ∩ B ⊆ C ⊆ A, B ∈ N (A), then by A ∈ N (A) A ∩ B ∈ N (A), so C ∈ N (A),
and C ∈ N ′(A). A ∩ B, A ∩ B′ ∈ N ′(A) → A ∩B ∩ B′ ∈ N ′(A), as B ∩ B′ ∈ N (A).

(2) A ∩ B ∈ N ′(A) → A ∩ B ∈ N (A). B ∈ N (A), B ⊆ A → A ∩ B = B ∈ N ′(A).

(3) ′′ ⊆′′: Let C ∈ N (A), then C ∩ A ∈ N ′(A) by definition. ′′ ⊇′′: Let C ⊆ U, ∃B ∈ N ′(A).B ⊆ C. As
N ′(A) ⊆ N (A) by (2), B ∈ N (A), so C ∈ N (A). 2

252 CHAPTER 7. SIZE

Definition 7.3.9

We define the coherence conditions for a modified system N ′ := {N ′(A) : A ⊆ U}, each N ′(A) a filter over A :

UC’: B ∈ N ′(A) → N ′(B) ⊆ N ′(A),

DC’: B ∈ N ′(A) → N ′(A) ∩ P(B) ⊆ N ′(B),

RBC’: X ∈ N ′(A), Y ∈ N ′(B) → X ∪ Y ∈ N ′(A ∪ B),

SRM’: X ∈ N ′(A), Y ⊆ A → A− Y ∈ N ′(A) ∨ X ∩ Y ∈ N ′(Y),

GTS’: C ∈ N ′(A), B ⊆ A → C ∩ B ∈ N ′(B).

Proposition 7.3.6

If N and N ′ are interdefinable as in Fact 7.3.5, i.e. for given N , N ′ is as defined by (1) or (2), for given N ′, N is
defined by (3), then:

(1) UC for N ↔ UC’ for N ′,

(2) DC for N ↔ DC’ for N ′,

(3) RBC for N ↔ RBC’ for N ′,

(4) SRM for N ↔ SRM’ for N ′,

(5) GTS for N ↔ GTS’ for N ′.

Proof:

We use Fact 7.3.5.

(1)

′′ →′′: Let B ∈ N ′(A) → B ∈ N (A) → N (A ∩ B) ⊆ N (A) → N ′(B) = N ′(A ∩ B) = N (A ∩ B) ∩ P(A ∩ B) ⊆
N (A ∩B) ∩ P(A) ⊆ N (A) ∩ P(A) = N ′(A). ′′ ←′′: Let B ∈ N (A) → B ∩A ∈ N ′(A) → N ′(A ∩B) ⊆ N ′(A). Let
now C ∈ N (A ∩ B). Then C ∩ A ∩ B ∈ N ′(A ∩ B) ⊆ N ′(A) ⊆ N (A), so C ∈ N (A).

(2)

′′ →′′: B ∈ N ′(A) ⊆ N (A) → N (A) ⊆ N (A∩B) → N ′(A)∩P(B) =B⊆A N (A)∩P(B) ⊆ N (A∩B)∩P(B) =B⊆A

N (A∩B)∩P(A∩B) =N ′(A∩B) = N ′(B). ′′ ←′′: Let B ∈ N (A)→ B∩A ∈ N ′(A)→N ′(A)∩P(A∩B) ⊆ N ′(A∩B).
Let C ∈ N (A), then C ∩ B ∩A ∈ N ′(A) ∩ P(A ∩ B) ⊆ N ′(A ∩ B) → C ∈ N (A ∩B).

(3)

′′ →′′: X ∈ N ′(A), Y ∈ N ′(B) → X ∈ N (A), Y ∈ N (B) → X ∪ Y ∈ N (A) ∩ N (B) → X ∪ Y ∈ N (A ∪ B)
→X⊆A,Y⊆B X ∪ Y ∈ N ′(A ∪ B). ′′ ←′′: C ∈ N (A) ∩ N (B) → C ∩ A ∈ N ′(A), C ∩ B ∈ N ′(B) → C ∩ (A ∪ B) ∈
N ′(A ∪B) ⊆ N (A ∪ B) → C ∈ N (A ∪B).

(4)

′′ →′′: Let X ∈ N ′(A), Y ⊆ A. Then X ∈ N (A), so X ∈ N (Y) or C(Y) ∈ N (A), so X ∩ Y ∈ N ′(Y) or A − Y ∈
N ′(A). ′′ ←′′: Let X ∈ N (A), Y arbitrary. Then X ∩A ∈ N ′(A), and by Y ∩A ⊆ A A− (Y ∩A) = A−Y ∈ N ′(A),
so C(Y) ∈ N (A), or X ∩ Y ∩ A ∈ N ′(Y ∩ A), so X ∈ N (A ∩ Y).

(5)

′′ →′′: Let C ∈ N ′(A), B ⊆ A. Then C ∈ N (B ∪ (A − B)) = N (A) → C ∈ N (B) → C ∩ B ∈ N ′(B). ′′ ←′′:
C ∈ N (A ∪ B) → (C ∩A) ∪ (C ∩ B) ∈ N ′(A ∪B) → C ∩ A ∈ N ′(A), C ∩ B ∈ N ′(B) → C ∈ N (A) ∩ N (B). 2

GTS/GTS’ express monotony (see Ben-David/Ben-Eliyahu), and will not be considered any further.

From now on, we work with N ′. Furthermore, we restrict our attention to those N ′(A), where A 6= ∅.

7.3. COMPARISON OF THREE ABSTRACT COHERENT SYSTEMS BASED ON SIZE 253

Fact 7.3.7

(a) DC’ and RBC’ entail: Z ∈ N ′(Y), Z ⊆ B, X −B ⊆ Y − Z → B ∈ N ′(X ∪ B),

(b) RBC’ → UC’.

Proof:

(a) Z ∈ N ′(Y) → Z ⊆ B ∩ Y ∈ N ′(Y). B ∩ Y ∈ N ′(Y), B ∈ N ′(B) →RBC′ B = (B ∩ Y) ∪B ∈ N ′(B ∪ Y). Thus
B ⊆ B ∪ (X −B) ∈ N ′(B ∪ Y), and N ′(B ∪ Y) ∩ P(B ∪ (X −B)) ⊆ N ′(B ∪ (X −B)) = N ′(X ∪ B) by DC’.

(b) Let B ∈ N ′(A), X ∈ N ′(B). X ∈ N ′(B) →RBC′ X ∪ (A−B) ∈ N ′(B ∪ (A−B)) = N ′(A). So by B ∈ N ′(A),
and X ⊆ B ⊆ A, X = (X ∪ (A−B)) ∩ B ∈ N ′(A). 2

Fact 7.3.8

UC’, DC’, RBC’ entail: A,B ∈ N ′(A ∪ B), X ⊆ (A ∪ C) ∩ (B ∪ C) → (X ∈ N ′(A ∪ C) ↔ X ∈ N ′(B ∪ C))

Proof:

A,B ∈ N ′(A ∪ B) → A ∩ B ∈ N ′(A ∪ B) →A∈N ′(A∪B),DC′ A ∩ B ∈ N ′(A) →RBC′ C ∪ (A ∩ B) ∈ N ′(A ∪ C)
→UC′,DC′ (X ∈ N ′(A ∪ C) ↔ X ∈ N ′(C ∪ (A ∩ B))). Likewise, by A ∩ B ∈ N ′(B), (A ∩ B) ∪ C ∈ N ′(B ∪ C)
and X ∈ N ′(B ∪ C) ↔ X ∈ N ′(C ∪ (A ∩B)) 2

7.3.3.1 Equivalence of both systems

Proposition 7.3.9

N ′ satisfies UC’, DC’, RBC’, SRM’, iff the corresponding system of ideals I defined by I(A) := {X : A−X ∈ N ′(A)}
satisfies (∅)− (CohRM).

Proof:

′′ →′′:

(∅) by A ∈ N ′(A)

(Coh0) A ⊆ B ⊆ C, B small in C → A small in C by the filter properties. B ⊆ C ⊆ D, B small in C →
C −B ∈ N ′(C), D − C ∈ N ′(D−C) →RBC′ D-B = (C −B) ∪ (D − C) ∈ N ′(D).

(CohCum) Let A,C ⊆ B, A ∩ C = ∅. B − A,B − C ∈ N ′(B) → (B − C) − A = (B − A) ∩ (B − C) ∈ N ′(B),
(B − C)−A ∈ N ′(B−C) by DC’.

(CohRM) B −A ∈ N ′(B), C 6∈ N ′(B), (B − C)−A = (B −A) ∩ (B − C) ∈ N ′(B−C) by SRM’.

′′ ←′′:

N ′(A) is a filter: ∅ ⊆ A is small by (∅), so A ∈ N ′(A). If B ⊆ C ⊆ A, B ∈ N ′(A), then by (Coh0), A-C is small in
A, so C ∈ N ′(A). If B,C ∈ N ′(A), then B ∩ C ∈ N ′(A) by the filter or ideal properties.

DC’: Let B,C ∈ N ′(A), C ⊆ B, then A-B, A-C are small in A, then B-C is small in A, then B-C is small in B by
(CohCum), so C ∈ N ′(B).

RBC’: X ∈ N ′(A), Y ∈ N ′(B), so A-X is small in A, thus in A ∪ B, likewise, B-Y is small in A ∪ B, so by the
filter or ideal properties (A ∪ B)− (X ∪ Y) ⊆ (A−X) ∪ (B−Y) is small in A ∪B, so X ∪ Y ∈ N ′(A ∪B).

254 CHAPTER 7. SIZE

SRM’: Let X ∈ N ′(A), Y ⊆ A. Then A-X is small in A, so (A −X) ∩ Y is small in A. If A − Y 6∈ N ′(A), then
(A−X) ∩ Y is small in Y by (CohRM), so X ∩ Y = Y − ((A −X) ∩ Y) ∈ N ′(Y). 2

7.3.4 Comparison of the systems of Ben-David/Ben-Eliyahu and of Fried-
man/Halpern

Definition 7.3.10

(Friedman/Halpern, modified)

Let U be a set, < a strict partial order on P(U), (i.e. < is transitive, and contains no cycles). Consider the
following conditions for <:

(B1) A′ ⊆ A < B ⊆ B′ → A′ < B′,

(B2′) A−B < A ∩ B, A−B′ < A ∩B′ → (A−B) ∪ (A−B′) < A ∩ B ∩ B′,

(B2) if A,B,C are pairwise disjoint, then C < A ∪ B, B < A ∪ C → B ∪ C < A,

(B3) ∅ < X for all X 6= ∅,

(B4) A < B → A < B−A,

(B5) Let X,Y ⊆ A. If A−X < X, then Y < A− Y or Y −X < X ∩ Y.

Fact 7.3.10

(essentially Friedman/Halpern)

In the presence of (B1), (B2) and (B2′) are equivalent.

Proof:

(B2)→ (B2′) : Assume without loss of generality B,B′ ⊆ A. Set A′′ := B∩B′, B′′ := (A−B)∩B′, C ′′ := A−B′.
A′′, B′′, C ′′ are pairwise disjoint. We have B′′ = (A−B)∩B′ ⊆ A-B < A∩B = B = (B ∩B′)∪ (B ∩ (A−B′)) ⊆
(B ∩B′)∪ (A−B′) = A′′ ∪C ′′. C ′′ = A-B’ < A∩B′ = B′ = A′′ ∪B′′. So by (B2), (A−B)∪ (A−B′) = B′′ ∪C ′′

< A′′ = B ∩ B′.

(B2′) → (B2) : Let A,B,C be pairwise disjoint, C < A ∪ B, B < A ∪ C. Set A′′ := A ∪ B ∪ C, B′′ := A ∪ B,
C ′′ := A∪C. Then A′′−B′′ = C < A∪B = B′′, A′′−C ′′ = B < A∪C = C ′′. Thus B∪C = (A′′−B′′)∪ (A′′−C ′′)
< B′′ ∩ C ′′ = A. 2

Proposition 7.3.11

Let < on P(U) satisfy (B1) − (B4), and N ′ be a coherent system of proper filters on U (i.e. for A ⊆ U N ′(A) 6=
P(A)), satisfying UC’, DC’, RBC’.

Define forX 6= ∅ N ′
<(X) := {B ⊆ X :X−B < B}, and A <N ′ B :↔ ∃X,Y (A ⊆ X−Y, Y ⊆ B, Y ∈ N ′(X), Y 6= ∅).

(Consequently, A <N ′ B → B 6= ∅.)

Then:

(1) Setting N ′(X) := N ′
<(X), N ′(X) is a proper filter, and UC’, DC’, RBC’, hold for N ′.

(2) Setting <:=<N ′ , < will be transitive, cycle-free, and satisfy (B1)− (B4).

(3) The operations are inverse: N ′(X) = N ′
<N′

(X) and < = <N ′
<
.

(4) If (B5) holds for <, then SRM’ holds for N ′
<. Conversely, if SRM’ holds for N ′, then (B5) holds for <N ′ .

7.3. COMPARISON OF THREE ABSTRACT COHERENT SYSTEMS BASED ON SIZE 255

Proof:

Note:

(a) If A ∩ B = ∅, and A <N ′ B, then B ∈ N ′(A ∪B).

(b) B′ ⊆ A, B ⊆ A′, B ∈ N ′(A), B′ ∈ N ′(A′) → B ∩ B′ 6= ∅.

Proof:

(a) By prerequisite, ∃X,Y (A ⊆ X −Y, Y ⊆ B, Y ∈ N ′(X)). Y ∈ N ′(X) → Y ∪A ∈ N ′(X) →DC′ Y ∈ N ′(Y ∪A).
Y ∈ N ′(Y ∪ A), B − Y ∈ N ′(B−Y) →RBC′ B ∈ N ′(B ∪ A).

(b) B ∈ N ′(A), B ⊆ A′ → A∩A′ ∈ N ′(A)→DC′ B ∈ N ′(A∩A′), likewise B′ ∈ N ′(A∩A′), so B∩B′ ∈ N ′(A∩A′),
thus B ∩ B′ 6= ∅.

(1)

For X 6= ∅, N ′(X) is a proper filter: 1. X ∈ N ′(X) by (B3). 2. Let B ∈ N ′(X), B ⊆ B′ ⊆ X, then
X −B′ ⊆ X − B < B ⊆ B′, the result follows from (B1). 3. Let B,B′ ∈ N ′(X), then X −B < B, X −B′ < B′,
so X − (B ∩ B′) < B ∩ B′ by (B2′). 4. If ∅ ∈ N ′(X), then X < ∅, but ∅ < X by (B3), a contradiction.

UC’ follows from RBC’.

DC’:

Let B ∈ N ′(A), C ⊆ B, C ∈ N ′(A), so A−B < B, and A− C < C, so by C ⊆ B ⊆ A B − C ⊆ A− C < C, thus
C ∈ N ′(B).

RBC’:

Let X ∈ N ′(A), Y ∈ N ′(B), we have to show X∪Y ∈ N ′(A∪B). By prerequisite, A−X < X, B−Y < Y, we have
to show (A∪B)− (X ∪Y) < X ∪Y. X ∪Y, A− (X ∪Y), B− (Y ∪A) are pairwise disjoint, and (A∪B)− (X ∪Y)
= (A− (X ∪ Y)) ∪ (B − (Y ∪A)). By prerequisite, A− (X ∪ Y) < X ∪ Y and B − (Y ∪A) < X ∪ Y. But if C,D,E
are pairwise disjoint, and C < E, D < E, then C ∪D < E : C < E ⊆ E ∪D, D < E ⊆ E ∪ C → C ∪D < E by
(B1) and (B2). Thus, (A ∪ B)− (X ∪ Y) < X ∪ Y.

(2)

Transitivity:

Let A < B, B < C, so ∃X,Y (A ⊆ X−Y, Y ⊆ B, Y ∈ N ′(X), Y 6= ∅), ∃X ′, Y ′ (B ⊆ X ′ − Y ′, Y ′ ⊆ C,
Y ′ ∈ N ′(X ′), Y ′ 6= ∅). We will show Y ′− (X−Y) ∈ N ′(X ′∪ (X−Y)) and Y ′− (X−Y) 6= ∅, which proves A < C,
as A ⊆ (X ′∪(X−Y))−(Y ′−(X−Y)), and Y ′−(X−Y) ⊆ C. Note that, by Y ⊆ X ′,N ′(X ′∪(X−Y)) = N ′(X ′∪X).
First, Y ∈ N ′(X) →RBC′ Y ∪ (Y ′ − X) ∈ N ′(X ∪ (Y ′ − X)) = N ′(X ∪ Y ′). Second, if Z ∈ N ′(X ∪ Y ′), then
Z ∈ N ′(X∪X ′) : By RBC’ and Y ′ ∈ N ′(X ′), X∪Y ′ ∈ N ′(X∪X ′). Thus, if Z ∈ N ′(X∪Y ′), then Z ∈ N ′(X∪X ′)
by UC’. Consequently, Y ∪ (Y ′ −X) ∈ N ′(X ∪X ′). Third, Y ′ ∈ N ′(X ∪X ′) : Y ∈ N ′(X), X ′ ∈ N ′(X ′) →RBC′

X ′ = X ′∪Y ∈ N ′(X∪X ′). Thus, by Y ′ ∈ N ′(X ′) and UC’, Y ′ ∈ N ′(X∪X ′). Finally, Y ∪(Y ′−X), Y ′ ∈ N ′(X∪X ′),
so Y ′ ∩ (Y ∪ (Y ′ −X)) ∈ N ′(X ∪X ′), but, as Y ∩ Y ′ = ∅, Y ′ ∩ (Y ∪ (Y ′ −X)) = Y ′ −X = Y ′ − (X − Y). Finally,
suppose Y ′ − X = ∅, i.e. Y ′ ⊆ X. We thus have Y ∩ Y ′ = ∅, Y ′ ⊆ X, Y ⊆ X ′, Y ∈ N ′(X), Y ′ ∈ N ′(X ′), a
contradiction to (b) above.

Acyclicity: By transitivity, it suffices to show that A < A is impossible. A < A → ∃X,Y (A ⊆ X−Y, Y ⊆ A,
Y ∈ N ′(X), Y 6= ∅) → Y = ∅, contradiction.

(B1′) holds by definition of < .

(B2): Let A,B,C be disjoint. If C < A ∪ B, B < A ∪ C, then by (a) above, A ∪ B,A ∪ C ∈ N ′(A ∪ B ∪ C) →
A = (A ∪B) ∩ (A ∪ C) ∈ N ′(A ∪B ∪ C), so B ∪ C < A. (Note that A 6= ∅ : A = ∅ → C < B < C, a contradiction
to acyclicity.)

(B3): trivial, as X ∈ N ′(X).

(B4): A < B → ∃X,Y (A ⊆ X−Y, Y ⊆ B, Y ∈ N ′(X)). The same X,Y will show A < B−A.

(3)

256 CHAPTER 7. SIZE

Let X 6= ∅. B ∈ N ′(X) → B ∈ N ′
<N′

(X): B ∈ N ′(X) → X −B <N ′ B (note that B 6= ∅) → B ∈ N ′
<N′

(X).

B ∈ N ′
<N′

(X) → B ∈ N ′(X): B ∈ N ′
<N′

(X) → B ⊆ X and X − B <N ′ B → (by (a) above) B ∈ N ′(X).

A < B → A <N ′
<
B: A < B → B 6= ∅ by (B3) and acyclicity, and by (B4) (A ∪ B) − (B − A) = A < B − A →

B −A ∈ N ′
<(A ∪ B), thus B −A 6= ∅, and A = (A ∪ B)− (B −A) <N ′

<
B.

A <N ′
<
B → A < B: A <N ′

<
B → ∃X,Y (A ⊆ X−Y, Y ⊆ B, Y ∈ N ′

<(X), Y 6= ∅). Thus Y ⊆ X, X − Y < Y.
Thus A ⊆ X − Y < Y ⊆ B → A < B by (B1).

(4)

Let X ∈ N ′
<(A), Y ⊆ A. Then A − X < X. If Y < A−Y, then A − Y ∈ N ′

<(A). If Y − X < X ∩ Y, then
Y −X = Y − (X ∩ Y) < X ∩ Y, and X ∩ Y ∈ N ′

<(Y). Let A−X <N ′ X, X, Y ⊆ A. Then, by (a), X ∈ N ′(A), so
by SRM’, A− Y ∈ N ′(A), thus Y <N ′ A−Y, or X ∩ Y ∈ N ′(Y), thus Y − (X ∩ Y) = Y −X <N ′ X ∩ Y. 2

We work now with the original plausibility spaces as defined in Definition 7.3.5.

Proposition 7.3.12

(Friedman/Halpern/Schlechta)

To represent P l′s, where P l(X) = ⊥ for some X 6= ∅, we need now degenerate filters, where N ′(X) = P(X).

(1) Let D and Pl, and ≤ be as in Definition 7.3.5. Define N ′
≤(X) := {B ⊆ X : P l(X−B) < Pl(B)} if P l(X) 6= ⊥,

and N ′
≤(X) := P(X) if P l(X) = ⊥. Then N ′(X) := N ′

≤(X) is a filter, and UC’, DC’, RBC’, hold for N ′.

(2) Let N ′ be a coherent system of filters, satisfying UC’, DC’, RBC’. Then there is a Plausibility space D, ordered
by some ≤N ′ , and P l : P(U)→ D, satisfying (A1)− (A3) s.t. P l(A) ≤N ′ P l(B) :↔ B ∈ N ′(A ∪B)

Proof:

(a)

We first note: If A ⊆ B, then B−A ∈ N ′(B) iff ((P l(A) <N ′ P l(B−A) orN ′(B) = P(B))). For, if B−A ∈ N ′(B),
then P l(A) ≤N ′ P l(B −A). If P l(B −A) ≤N ′ P l(A) holds too, then A ∈ N ′(B), so N ′(B) = P(B). The converse
is trivial.

(1)

If P l(X) 6= ⊥, N ′(X) is a proper filter:

1. X ∈ N ′(X) by P l(∅) = ⊥ < Pl(X).

2. Let B ∈ N ′(X), B ⊆ B′ ⊆ X, then PL(X −B′) ≤ PL(X −B) < PL(B) ≤ P l(B′).

3. Let B,B′ ∈ N ′(X), then PL(X − B) < PL(B), PL(X − B′) < PL(B′), so PL(X − (B ∩ B′)) < PL(B ∩ B′)
by (A2′).

4. ∅ 6∈ N ′(X) : ∅ ∈ N ′(X) → P l(X) < Pl(∅), contradiction.

UC’ follows from RBC’.

DC’:

If P l(A) 6= ⊥ : Let B ∈ N ′(A), C ⊆ B, C ∈ N ′(A), so PL(A − B) < PL(B), and PL(A − C) < PL(C), so by
C ⊆ B ⊆ A PL(B − C) ≤ PL(A− C) < PL(C), thus C ∈ N ′(B). If P l(A) = ⊥, then by B ⊆ A Pl(B) = ⊥, too.

RBC’:

Let X ∈ N ′(A), Y ∈ N ′(B), we have to show X ∪ Y ∈ N ′(A ∪ B). If P l(A), P l(B) 6= ⊥ : By prerequisite,
P l(A − X) < Pl(X), P l(B − Y) < Pl(Y), we have to show P l((A ∪ B) − (X ∪ Y)) < Pl(X ∪ Y). X ∪ Y,
A − (X ∪ Y), B − (Y ∪ A) are pairwise disjoint, and (A ∪ B) − (X ∪ Y) = (A − (X ∪ Y)) ∪ (B − (Y ∪ A)).
By prerequisite, P l(A − (X ∪ Y)) < Pl(X ∪ Y) and P l(B − (Y ∪ A)) < Pl(X ∪ Y). But if C,D,E are pairwise

7.3. COMPARISON OF THREE ABSTRACT COHERENT SYSTEMS BASED ON SIZE 257

disjoint, and P l(C) < Pl(E), P l(D) < Pl(E), then P l(C ∪D) < Pl(E) : P l(C) < Pl(E) ≤ P l(E ∪D), P l(D) <
Pl(E) ≤ P l(E ∪ C) → P l(C ∪ D) < Pl(E) by (A1) and (A2). Thus, P l((A ∪ B) − (X ∪ Y)) < Pl(X ∪ Y). If
P l(A) = ⊥, P l(B) 6= ⊥, then P l(Y) 6= ⊥, and ⊥ = P l((A − X) − Y) < Pl(Y), P l((B − Y) − A) < Pl(Y), so
by (A2) P l((A ∪ B) − (X ∪ Y)) < Pl(Y), so P l((A ∪ B) − (X ∪ Y)) < Pl(X ∪ Y), and X ∪ Y ∈ N ′(A ∪ B). If
P l(A) = P l(B) = ⊥, then by (A3) P l(A ∪ B) = ⊥, and N ′(A ∪B) = P(A ∪ B).

(2)

We have to define the partial order, check that it is transitive, reflexive, and antisymmetric, and verify (A1), (A2),
(A3). Let A ≈ B :↔ A,B ∈ N ′(A∪B). Note that A ≈ ∅ iff N ′(A) = P(A) : A ≈ ∅ ↔ ∅ ∈ N ′(A)↔N ′(A) = P(A).
We show that ≈ is an equivalence relation. Obviously, A ≈ A, A ≈ B → B ≈ A. Moreover, if A ≈ B, B ≈ C, then
B,C ∈ N ′(B ∪C), so A ∈ N ′(A∪B) ↔ A ∈ N ′(A∪C) by Fact 7.3.8, so A ∈ N ′(A∪C). Likewise, C ∈ N ′(A∪C)
↔ C ∈ N ′(B ∪ C), so C ∈ N ′(A ∪ C).

Take now D := the set of ≈ −equivalence classes [A] for A ⊆ U.

Define [A] <N ′ [B] iff B ∈ N ′(A ∪ B), but not A ∈ N ′(A ∪ B). This is well defined: Suppose A ≈ A′, B ≈ B′. If
B ∈ N ′(A ∪ B), then B ≈ B′ → B ∩ B′ ∈ N ′(B ∪ B′) → (by Fact 7.3.8) B ∩ B′ ∈ N ′(B ∪ B) = N ′(B) → (by
B ∈ N ′(A ∪ B)) B ∩ B′ ∈ N ′(A ∪ B) → (by Fact 7.3.8) B ∩ B′ ∈ N ′(A′ ∪ B′), so B′ ∈ N ′(A′ ∪ B′).

We check the conditions on ≤: (with [A] ≤ [B] iff [A] < [B] or [A] = [B], i.e. iff B ∈ N ′(A ∪ B)) Reflexivity:
[A] ≤ [A] is trivial. Antisymmetry: [A] ≤ [B] ≤ [A] → A ≈ B → [A] = [B]. Transitivity: [A] < [B] < [C] →
B ∈ N ′(A ∪ B), C ∈ N ′(B ∪ C) → B ∪ C ∈ N ′(A ∪ B ∪ C) → C ∈ N ′(A ∪ B ∪ C) → C ∈ N ′(A ∪ C). On the
other hand, A 6∈ N ′(A∪C). For A ∈ N ′(A∪C), C ∈ N ′(B ∪C) → A∪C ∈ N ′(A∪B ∪C) → A ∈ N ′(A∪B ∪C)
→ A ∈ N ′(A ∪ B), contradiction.

Finally, define P l(A) := [A]. Take ⊥ := [∅], T := [U]. Then [∅] ≤N ′ [A] ≤N ′ [U], as A ∈ N ′(A), U ∈ N ′(U).

It remains to show (A1), (A2), (A3).

(A1) Let A ⊆ B. Then P l(A) ≤N ′ P l(B), by B ∈ N ′(A ∪ B) = N ′(B).

(A2′) We have to show P l(A∩B) > Pl(A−B), P l(A∩B′) > Pl(A−B′) → P l(A∩B ∩B′) > Pl(A− (B ∩B′)). If
B,B 6⊆ A, consider B∗ := A∩B, B′∗ := A∩B′, so without loss of generality B,B′ ⊆ A. Then P l(B) > Pl(A−B),
P l(B′) > Pl(A−B′), so B,B′ ∈ N ′(A), and N ′(A) 6= P(A), so B∩B′ ∈ N ′(A), so P l(B∩B′) ≥ P l(A− (B∩B′)),
and by N ′(A) 6= P(A) P l(B ∩ B′) > Pl(A− (B ∩ B′)).

(A3) P l(A) = P l(B) = ⊥ → ∅ ∈ N ′(A), ∅ ∈ N ′(B) → ∅ ∈ N ′(A ∪ B) by RBC’ → N ′(A ∪ B) = P(A ∪ B) →
P l(A ∪ B) = ⊥.

2

Remark 7.3.13

We conclude with a short remark on the central property of (minimal) preferential structures (µPR). This property
corresponds to the coherence property

(F ′) A ⊆ B, Y ∈ N ′(A) → (B −A) ∪ Y ∈ N ′(B).

(F ′) is a consequence of RBC’, and corresponds to the following < −property: A ⊆ B, A − Y < Y →
A− Y < (B −A) ∪ Y. 2

258 CHAPTER 7. SIZE

7.4 Theory revision based on model size

7.4.1 Introduction

As already said, the main idea (and part) of this Section was published a long time ago, but, at that time, the
author did not really understand what was going on, so he had just pushed on and plowed through. We realized
only later, looking at the proof again, with the notions of size, distance, etc. in the back of our mind, that this,
at that time ad hoc, construction has a more interesting, more general aspect. Consequently, we do not only
summarize the old construction, to see how to base theory revision on model size, but analyse the construction
more closely to see the central idea.

The main idea is to group elements by size, so that new groups contain really much bigger elements: Any element
in the stronger group has to be bigger than all elements of the weaker groups together. This procedure is, of course,
highly context dependent. The more we have elements, the more weaker elements can form ”coalitions” to beat
stronger elements, and pull them into their group of weaker elements. This is asymmetrical, as stronger elements
cannot from coalitions, they have to stand on their own. If you wish, this is the opposite of preferential structures,
where we may need many stronger elements to beat one weaker element, but then we can beat as many weak
elements of the same kind as we like, our forces do not get used up.

This procedure reflects well the strong property of epistemic entrenchment - and thus of revision - that A or B has
the same size as A∩B. Speaking in terms of distance, if C is somewhat excentric around X, the farthest elements
do not interest us, only the closest ones, so, in a way, we can form intersections until we have the (Grove-) sphere
around X. Below this sphere begins something new, and we slide down to the next sphere. This is not exactly the
same, but to some degree, and may help the intuition.

Now to the more technical aspects.

We first introduce pre-EE relations (Definition 7.4.1) on the powerset of some set U, which are (essentially) just
total orders compatibel with the subset relation. We then give, and this is the central idea of this Section, a method
to construct epistemic entrenchment relations relative to some fixed, arbitrary set X ⊆ U (Definition 7.4.2 and
Proposition 7.4.2). This construction allows to recover all epistemic entrenchment relations - see Proposition 7.4.3.
Note that we did not speak about X before, so pre-EE relations are - in Theory Revision terms - universal for all K,
K intervenes only when we make the full epistemic entrenchment relation conrete. The analysis of the construction
(Fact 7.4.1, Definition 7.4.3, Fact 7.4.4) shows that there is just one interesting case in the construction of the full
epistemic entrenchment relation. We then look at the special case where the pre-EE relation is constructed in a
natural way from size, and how this translates into the interesting case just mentioned (Definition 7.4.4, Fact 7.4.5,
Definition 7.4.5, Fact 7.4.6): by grouping elements by very different levels of size.

We then develop the logics side, which, however, can be read equivalently on the semantical or simply the algebraic
side as well, there is a 1-1 correspondence.

To summarize:

We use a quite general technique to go from elements and their size to a robust ranking of sets by size, and
apply this to construct a ranking (epistemic entrenchment) from model size, and thus a revision function. The
construction works uniformly for all sets K, and gives thus a semantics to iterated revision, too.

7.4.2 Results

7.4.2.1 Pre-EE relations and epistemic entrenchment relations

We first introduce pre-EE relations, and show how to construct full epistemic entrenchment relations from from pre-
EE relations, relative to a given set X (or theory K). We also show that we can recover in this way all entrenchment
relations, so pre-EE relations are not more special than entrenchment relations. This part goes up to Proposition
7.4.3.

7.4. THEORY REVISION BASED ON MODEL SIZE 259

Definition 7.4.1

Definition of a pre-EE relation for sets:

≤ is called a pre-EE relation on P(U) iff:

(Pre1) A ⊆ B → A ≤ B,

(Pre2) ≤ is transitive,

(Pre3) ≤ is total,

(Pre4) ∀B.B ≤ A → A = U.

Note that, in the presence of (Pre1), we can replace (Pre4) by (Pre4′) U ≤ A → A = U.

Definition of a epistemic entrenchment relation for sets from a pre-EE relation for sets:

Definition 7.4.2

Define � := �X on P(U) relative to fixed X ⊆ U on P(U) from a pre-EE relation ≤ on P(U) by A� B iff

(Def1) A ⊆ B or

(Def2) X 6⊆ A or

(Def3) B = A ∩ C, A ≤ C, X ⊆ A ∩ C.

Finally, let �=�X be the transitive closure of �.

Fact 7.4.1

There is a standard way of establishing A � B: Let X ⊆ A,C, then there is B such that A�A∩B by (Def3), and
A ∩B � C by (Def1) iff A ≤ (U −A) ∪ C

Proof:

′′ ←′′: As X ⊆ A,C, X ⊆ A ∩ C = A ∩ ((U −A) ∪ C), so A�(Def3) A ∩ ((U −A) ∪ C) = A ∩ C �(Def1) C.

′′ →′′: As A ∩B �C by (Def1), A ∩B ⊆ C, so B ⊆ (U −A) ∪ C, and B ≤ (U −A) ∪ C. As A�A ∩ B by (Def3),
A ≤ B. So by (Pre2) A ≤ (U −A) ∪ C. 2

Proposition 7.4.2

If ≤ is a pre-EE relation for L, and � defined as in Definition 7.4.2 for some fixedX, then � satisfies (EE1)−(EE5),
of an epistemic entrenchment relation (see Definition 2.2.3).

Thus, given one global pre-EE relation for L, we can easily obtain epistemic entrenchment relations for all X ⊆ U.

Proof:

We first show two claims, the proof will then be trivial.

Claim 1: For no X ⊆ A, X 6⊆ B we have A � B

Proof: Suppose the contrary. Let A = A1 � A2� . . . �An = B. We have to ”leave” X somewhere: There is
Ai � Ai+1 s.th. X ⊆ Ai, X 6⊆ Ai+1. Examine the cases of the construction of �. (Def1) cannot be, as X ⊆ Ai,
Ai ⊆ Ai+1 implies X ⊆ Ai+1 (Def2) cannot be, as X ⊆ Ai (Def3) cannot be, as X 6⊆ Ai+1. Contradiction. 2

(Claim 1)

260 CHAPTER 7. SIZE

Claim 2: ∀B.B � A → U = A

Proof: (Induction on the length of the �−chain) Then in particular U � A. U �(Def1) A → U = A U �(Def2) A
cannot be, as X ⊆ U U �(Def3) A = U ∩ C → U ≤ C → U = C by (Pre4′). 2 (Claim 2)

We prove the proposition:

(EE1) is trivial by definition.

(EE2) by (Def1).

(EE3) We have to prove A � A ∩ B or B � A ∩ B By (Pre3), A ≤ B or B ≤ A Case 1: X ⊆ A ∩ B. If A ≤ B,
then A � A ∩ B by (Def3). B ≤ A analogously. Case 2: X 6⊆ A ∩ B. Then X 6⊆ A or X 6⊆ B, so A � A ∩ B or
B � A ∩ B by (Def2).

(EE4) ′′ →′′: X 6⊆ A → A�B by (Def2) for all B ′′ ←′′: Let X 6= ∅, A � B for all B. Suppose X ⊆ A. By X 6= ∅,
there is B, X 6⊆ B, and by prerequisite A � B, contradicting Claim 1.

(EE5) By Claim 2.

2 (Proposition 7.4.2)

Proposition 7.4.3

Let ≤X be an epistemic entrenchment relation for a knowledge set X. Then, by definition, ≤X is a pre-EE relation,
and � defined for this ≤X and X as in Definition 7.4.2 is equal to ≤X .

Proof:

(In a simplification due to D. Makinson.)

′′ � ⊆ ≤′′
X : It suffices to prove � ⊆ ≤X . The cases (Def1) and (Def2) are trivial. (Def3): Let A � A ∩ B by

A ≤X B. If B ≤X A ∩ B, then A ≤X B ≤X A ∩ B, and we are finished by (EE3). ′′ ≤X ⊆ �′′: Let A ≤X B.
If X 6⊆ A, then A�B by (Def2). If X ⊆ A, then X ⊆ B by (EE4), so X ⊆ A∩B, thus A�(Def3)A∩B�(Def1)B. 2

7.4.2.2 Stable sets

We take now a closer look at the construction of an epistemic entrenchment relation from a pre-EE relation as
done in Definition 7.4.2. We introduce the notion of a stable set, ⊆ −minimal under the epistemic entrenchment
relation. Stable sets mark ”thresholds”, and this will become particularly clear in the natural construction of a
pre-EE relation from point size, starting with Definition 7.4.4. This part ends with Fact 7.4.6 and the subsequent
discussion.

Definition 7.4.3

A is stable wrt. the epistemic entrenchment relation � iff there is no A′
⊂
6= A s.t. A � A′.

Fact 7.4.4

Consider the construction in Definition 7.4.2.

Suppose X 6= ∅.

(1) If X 6⊆ A, then A � A′ for all A′ ⊆ A, so the only stable set A with X 6⊆ A is A = ∅.

7.4. THEORY REVISION BASED ON MODEL SIZE 261

(2) Let X ⊆ A, A′ ⊆ A. Then A � A′ iff X ⊆ A′ and there is a sequence Ci with X ⊆ Ci s.t. A ≤ C1, A∩C1 ≤ C2,
A ∩ C1 ∩ C2 ≤ C3, etc., and A′ = A ∩ C1 ∩ C2 ∩ . . . ∩ Cm.

Proof:

(1) trivial.

(2) ′′ ←′′: trivial by (Def3). ′′ →′′: Wlog., A′
⊂
6= A. By construction, there is a sequence A = A1�A2�. . .�An = A′.

Let i be the first s.t. A ⊆ Ai, A 6⊆ Ai+1, then Ai � Ai+1 by (Def3), i.e. there is C s.t. Ai+1 = Ai ∩ C, X ⊆ C,
Ai ≤ C. By A ⊆ Ai ≤ C, A ≤ C, so we can re-write the beginning of the sequence by X ⊆ A, X ⊆ C (we have
A � A ∩ C) : A �(Def3) A ∩ C �(Def1) Ai ∩ C = Ai+1. Note that by A 6⊆ Ai ∩ C and A ⊆ Ai A 6⊆ A ∩ C, i.e.

A ∩ C
⊂
6= A.

Let C1 := C.

If A ∩ C1 ⊆ A′, we can take C ′ := C1 ∪ A′, then X ⊆ C ′, A ∩ C ′ = A ∩ (C1 ∪ A′) = (A ∩ C1) ∪ A′ = A′, and
A ≤ Ai ≤ C1 ≤ C

′, so A ≤ C ′, and we are done, as then A � A ∩ C ′ = A′ with A ≤ C ′.

Suppose not, so A ∩ C1 6⊆ A′. We repeat the procedure for A ∩ C1. Let j be the first i s.t. A ∩ C1 ⊆ Aj , but
A∩C1 6⊆ Aj+1, so Aj 6⊆ Aj+1. As A � Aj and X ⊆ A, X ⊆ Aj . Aj �Aj+1 has to be by (Def3), and there is C ′ s.t.
Aj+1 = Aj ∩ C ′, X ⊆ C ′, Aj ≤ C ′. As A ∩ C1 ⊆ Aj , A ∩ C1 ≤ Aj ≤ C ′, and A ∩ C1 �A ∩ C1 ∩ C ′, so we re-write
A�(Def3) A ∩ C1 �(Def3) A ∩ C1 ∩ C ′ �(Def1) Aj ∩ C

′ = Aj+1

Let C2 := C ′.

If A ∩ C1 ∩ C
′ ⊆ A′, we take C ′′ as above, and consider C ′′ := C ′ ∪ A′.

By induction, we can thus re-write A � A′ by A �(Def3) A ∩ C1 �(Def3) A ∩ C1 ∩ C2 �(Def3) . . .�(Def3) A
′, with

A′ = A ∩ C1 ∩ C2 ∩ . . . ∩ Cm s.t. X ⊆ Ci and A ∩ C1 ∩ . . . ∩ Ci ≤ Ci+1. 2

Definition 7.4.4

(Construction of epistemic entrenchment relations from a size σ of elements in the finite case.)

Let U be finite, σ : U → <+, i.e. ∀x ∈ U.σ(x) > 0. Define σ(A) := Σ{σ(x) : x ∈ A} for A ⊆ U. Define A ≤ B
iff σ(A) ≤ σ(B). By σ(x) > 0 for all x ∈ U, ≤ is a pre-EE relation. Define the epistemic entrenchment relation
�=�X as in Definition 7.4.2 from ≤ as just defined, for fixed X.

Fact 7.4.5

A is stable wrt. �X iff

(1) A = ∅ or

(2) X ⊆ A and ∀x ∈ A−X.(σ(x) > σ(U −A))

Proof:

(1) trivial.

(2)

′′ →′′: Suppose X ⊆ A, and ∃x ∈ A −X.(σ(x) ≤ σ(U − A)). Consider C := (A − {x}) ∪ (U − A). Then σ(A) =
σ(A−{x}) + σ(x) ≤ σ(A−{x}) + σ(U−A) = σ(C), so A ≤ C and X ⊆ C and A ∩C = A−{x}, so A � A−{x}
by (Def3), and A is not stable.

′′ ←′′: Suppose that X ⊆ A, ∀x ∈ A−X.(σ(x) > σ(U −A)), but A is not stable. Then there is A′
⊂
6= A s.t. A � A′,

X ⊆ A. A look at the proof of Fact 7.4.4 shows that there is a first A �(Def3) A ∩ C with A ∩ C
⊂
6= A. Take wlog.

262 CHAPTER 7. SIZE

as A′ this A ∩ C, so there is C s.t. A ≤ C, X ⊆ C, A ∩ C
⊂

6= A. Thus σ(A − C) + σ(A ∩ C) = σ(A) ≤ σ(C) =

σ(A∩C)+σ(C−A), thus σ(A−C) ≤ σ(C−A) ≤ σ(U−A). As A∩C
⊂

6= A, and X∩ (A−C) = ∅, there is x ∈ A−C,
x 6∈ X, but ∀x ∈ A−X.(σ(x) > σ(U −A)), contradiction. 2

Definition 7.4.5

nA := min{σ(x) : x ∈ A−X} for A s.t. X ⊆ A.

Fact 7.4.6

(1) If A is stable, then there is nA s.t. A = X ∪ {x : σ(x) ≥ nA}.

(2) n is the nA of some stable A iff Σ{σ(x) : x ∈ U −X, σ(x) < n} < n.

Proof:

(1) Set nA := min{σ(x) : x ∈ A−X}. Then A ⊆ X ∪ {x : σ(x) ≥ nA}. If there were x ∈ {y : σ(y) ≥ nA}−A, this
would contradict Fact 7.4.5.

(2) Let A be stable and nA = min{σ(x) : x ∈ A−X}. Then A = X ∪ {x : σ(x) ≥ nA} by (1), and σ(U −A) < nA
by Fact 7.4.5, thus U-A = {x ∈ U − X : σ(x) < nA}, and Σ{σ(x) : x ∈ U − X, σ(x) < nA} = σ(U−A) < nA.
Conversely, let n be s.t. Σ{σ(x) : x ∈ U − X, σ(x) < n} < n. Set A := X ∪ {x : σ(x) ≥ n}. Then X ⊆ A and
∀x ∈ A−X.σ(x) ≥ n > Σ{σ(x) : x ∈ U −X, σ(x) < n} = σ(U −A). Thus, A is stable by Fact 7.4.5.

Intuition:

The top layer has one element, U, the bottom layer consists of all set A s.t. X 6⊆ A. Directly above the bottom
is X. The second from top has all elements, except the smallest ones, but they can form alliances to knock still
other elements off. All elements in the third layer are bigger than all those together which were thrown out in the
2. layer. All elements in the forth layer are bigger than all those together which were thrown out in the 2. and 3.
layer, and so on. So there is a ”qualitative” leap between the elements thrown out in successive layers, they are
really much smaller. The layers correspond of course to a ranked order, but if we repeat the same construction in
subsets, we will usually get a finer distinction, as the possible alliances are smaller, so it is more difficult for small
elements to throw out bigger ones. E.g., in the set {1, 2, 3}, {3} is not stable, as 1 + 2 = 3. But in {2, 3} it is, as
2 < 3. Smaller sets allow finer distinction than coarser ones - see the remarks on clusters below. Consequently,
such distinctions cannot be generated by ranked structures (once the ranking is made, as above, then it is a ranked
structure, but it cannot be generated by minimizing elements). We can, however, imitate this coalition forming
with copies of models: bigger elements can be knocked off by coalitions of smaller ones, they have to destroy all
copies of the bigger one.

7.4.2.3 Revision based on model size

We return now to logic. You can, however, read the rest of this section as purely algabraic - there is no difference,
apart from notation.

We define a total order (pre-EE relation) on the formulae of L, and show then how to assign probability values to
formulae in a natural way.

Let, in the following, D be the Lindenbaum-Tarski algebra for the language L and the empty theory. (Thus,
elements of D have the form [φ], where φ is a formula of L, and [φ] = [ψ] iff ` φ↔ ψ. Moreover, [φ]∧ [ψ] := [φ∧ψ],
−[φ] := [¬φ], and [φ] ≤ [ψ] :↔ [φ] ∧ [ψ] = [φ].)

We have a first constructive result:

7.4. THEORY REVISION BASED ON MODEL SIZE 263

Lemma 7.4.7

Extending the natural ordering on the formulae of L given by D to a total order, preserving [True] as the only
maximal element, will give a pre-EE relation for L, and thus, by Proposition 7.4.2, epistemic entrenchment relations
≤K for all knowledge sets K of L. 2

Next, we assign probability values to formulae of L, i.e. each φ ∈ L will have a real value ν(φ), and the natural
order of the real numbers will order the formulae too. Of course, logically equivalent formulae should be given
the same probability. We proceed indirectly, assigning first probabilities to models, and defining the probability
of a formula as the sum of the probabilities of its models. The above equivalence condition will then be trivially
true. It is easily seen (Proposition 7.4.10), that our construction will give a pre-EE relation ≤ for L as needed
to define the epistemic entrenchment relations ≤K . We can improve our result and the equivalence condition to
obtain (φ ≤ ψ and ψ ≤ φ) iff ` φ↔ ψ (Proposition 7.4.13). For this end, we use algebraic closure properties of the
reals (Fact 7.4.12). We can thus construct in a natural way a total (and natural) extension of the natural order
of the Lindenbaum-Tarski algebra D, such that ([φ] ≤ [ψ] and [ψ] ≤ [φ]) is equivalent to [φ] = [ψ]. In conclusion,
we remark that the whole process can be easily relativized to a fixed theory, by considering only models of that
theory.

But first, we need some constructions:

Let A be the σ−Algebra (i.e. the ℵ1−complete Boolean algebra) of Lebesgue-measurable sets restricted to subsets
of the unit interval [0, 1). Let µ be the usual Lebesgue measure. (The reader unfamiliar with these notions will find
definitions and properties in any book on measure and integration theory.)

Definition 7.4.6

Let < xi : i ∈ ω > be a sequence of reals in the open interval (0,1).

Define by induction:

a0 := [0, x0), b0 := {0, x0, 1}

Let an, bn be defined (n ∈ ω). bn will be a set of 2n+1 + 1 elements, an a disjoint union of 2n non-empty intervals.
Let bn = {yj : j < 2n+1 + 2}, the yj in increasing order. Define an+1 :=

⋃
{ [yj , yj + (yj+1 − yj) ∗ xn+1) :

j < 2n+1 +1 } and bn+1 := bn ∪ {yj +(yj+1− yj) ∗xn+1: j < 2n+1 +1} Finally, set an := [0, 1) - an. (See Diagram
7.4.1 below.)

Let B be the ℵ1−complete subalgebra of A generated by {ai : i ∈ ω}

Fact 7.4.8

For the ai thus defined we have:

1) µ(an) = xn,

2) µ(an) = 1− µ(an) (trivial),

3) µ(
⋂
{cn : n ∈ X}) = Π{µ(cn) : n ∈ X} where cn is either an or an for X ⊆ ω finite, by the ”independence” of

the construction. This property is essential to all that follows. 2

Let, in the rest of this Section, L = {pi : i ∈ ω} be a countable language of propositional calculus.

Definition 7.4.7

a) Define f : L → {ai : i ∈ ω} by f(pi) := ai, i.e. µ(f(pi)) = xi.

264 CHAPTER 7. SIZE

Diagram 7.4.1

0
x0 ∗ x1

x0
x0 + (1− x0) ∗ x1

1

a0

a1 a1

g(t)

g(t′)

b) Let M be the set of assignments of truth values to finite subsets of L, t ∈M , t defined on L′ ⊆ L. (It suffices
to consider finite subsets, as standard propositional calculus admits only finite formulae.) Define g(t) :=

⋂
{ai:

pi ∈ L′, t(pi) = true} ∩
⋂
{ai: pi ∈ L′, t(pi) = false}.

Thus, µ(g(t)) = µ(
⋂
{ai: pi ∈ L′, t(pi) = true} ∩

⋂
{ai: pi ∈ L′, t(pi) = false}) = Π{xi: pi ∈ L′, t(pi) = true}

∗ Π{1− xi: pi ∈ L′, t(pi) = false}, and we have defined for every assignment t ∈M a real value µ(g(t)). There is
a natural way to extend this function to formulae:

Definition 7.4.8

Let φ be a formula with propositional variables pi ∈ Lφ ⊆ L finite. a) Let V al(φ) := {t ∈ M : dom(t) = Lφ,
t(φ) = true, i.e. φ is true under t}. b) So we can define ν(φ) := Σ {µ(g(t)): t ∈ V al(φ)}. (See Diagram 7.4.1.)

Let L = {p, q}, t(p) = true, t(q) = false, t′(p) = false, t′(q) = true, φ = p↔ ¬q

Thus, µ(a0) = x0, µ(a1) = x1, ν(φ) = µ(g(t)) + µ(g(t′)) = x0 ∗ (1− x1) + (1− x0) ∗ x1.

Our construction has the following properties:

Lemma 7.4.9

1) ν(φ) is independent of dom(t) in the following sense: Let Lφ ⊆ L′ ⊆ L finite. Then ν(φ) := Σ {µ(g(t)):
t ∈ V al(φ)} = Σ {µ(g(t)): t ∈M , dom(t) = L′, t(φ) = true}

2) By definition of Val and ν, logically equivalent formulae will have the same real value ν(φ).

3) ` φ → ψ implies ν(φ) ≤ ν(ψ). (To see this, consider L′ = Lφ ∪ Lψ, use 1) and the fact, that every assignment
which makes φ true, will make ψ true too.)

7.4. THEORY REVISION BASED ON MODEL SIZE 265

4) ν(¬φ) = 1− ν(φ). (Use ν(true) = Σ {µ(g(t)): t ∈M , dom(t) = L′ finite} = 1, t(φ) = true ↔ t(¬φ) = false,
and for t, t′ ∈M with the same domain t 6= t′ → g(t) ∩ g(t′) = ∅.)

5) Exactly the valid formulae will have real value ν(φ) = 1. (g: D → B (extended suitably to formulae) is an
injective homomorphism of Boolean algebras, and use the above arguments.)

6) ν(φ) ≤ ν(ψ) ↔ ν(¬ψ) ≤ ν(¬φ) (by 4)

7) ν(φ∨ψ) ≤ ν(φ)↔ ` ψ → φ ′′ ←′′ by 3) ′′ →′′: Suppose 6` ψ → φ. Thus M ′ := {t : t |= φ} ⊂M := {t : t |= φ∨ψ},
let t ∈M −M ′. As xi ∈ (0, 1), µg(t) 6= 0, thus ν(φ) := Σ{µg(t) : t ∈M ′} < Σ{µg(t) : t ∈M} =: ν(φ ∨ ψ).

8) We cannot expect ν(φ ∧ ψ) = ν(φ) ∗ ν(ψ) or ν(φ ∨ ψ) = ν(φ) + ν(ψ), just think of φ = ψ. These equations can
only be valid if φ and ψ are independent. For this reason, we gave first a value to models, which are independent,
and then to formulae. 2

We have thus proved our main constructive result:

Proposition 7.4.10

Let pi : i ∈ ω be given a probability xi ∈ (0, 1), then this gives rise naturally to probabilities ν(φ) for any formula
in L, such that 1) - 6) of Lemma 7.4.9 are valid, and thus to a pre-EE relation ≤ for L, i.e. satisfying (Pre1) -
(Pre4) of ≤ in Definition 7.4.1, and thus the prerequisites of Propositions 7.4.2. 2

Fact 7.4.11

Let 0 ≤ a ≤ b < 1. Augment the natural order of the reals by setting x ≤+ y for all a ≤ x, y ≤ b, i.e. ”identify” all
elements of the interval [a, b]. Let ν be defined as in the construction leading to Proposition 7.4.10 and set φ ≤ ψ
iff ν(φ) ≤ ν(ψ) or ν(ψ) ≤+ ν(φ). Then ≤ is still a pre-EE relation on L.

Proof:

In Definition 7.4.1, (Pre1) and (Pre3) are trivial, (Pre4) holds by b < 1. But (Pre2) is simple too: consider e.g.
x ≤ y ≤+ z. If x > z, then a ≤ z ≤ x ≤ y ≤ b, and x ≤+ z. 2

Example 7.4.1

Consider now L := {A,B,C}, and set µf(A) := 1/2, µf(B) := 1/3, µf(C) := 1/5, a := 5/30, b := 10/30, and
identify in the interval [a, b] as described in the above Fact. Then ν(A) = 15/30, ν(B) = 10/30, ν(A ∧B) = 5/30,
ν(A∨C) = 18/30, ν(B ∨C) = 14/30, ν((A∧B)∨C) = 10/30. By identification, (A∧B)∨C ≤ A∧B, but neither
A ∨ C ≤ A nor B ∨ C ≤ B. Thus, this order is a counterexample as promised above. 2

So far, it is quite possible that ν(φ) = ν(ψ), but 6` φ↔ ψ. We now make ν injective (modulo↔). Thus, we improve
our result such that (φ ≤ ψ and ψ ≤ φ) iff ` φ ↔ ψ. Choosing the xi of Definition 7.4.6 above according to the
following fact on the reals will do the trick:

Fact 7.4.12

Let X := {xi : i ∈ ω} ⊂ I ⊆ <, I uncountable be given. Then there is x′ ∈ I s.th. x′ is not equal to
any real that can be obtained by finite addition, subtraction, multiplication, division from elements of Q ∪ X.

266 CHAPTER 7. SIZE

(Card(I) > card(Q ∪X) = ℵ0 suffices for the proof.) 2

We choose the xi for the above construction of the ai in Definition 7.4.6 according to this fact.

Suppose that φ, ψ are not equivalent, but ν(φ) = ν(ψ). Thus, there is an assignment t s.th. t(φ) 6= t(ψ). So
⋃
{g(t):

t ∈ V al(φ)} 6=
⋃
{g(t): t ∈ V al(ψ)} (w.l.o.g. all t with the same domain p0 . . . pn, and n chosen least s.th. the

assumption is valid), but ν(φ) = ν(ψ). Thus, ν(φ) = Σ{Π{yi,j : j = 0, n}: i = 0,m}, ν(ψ) = Σ{Π{y′i,j : j = 0, n}:
i = 0,m′}, where the yi,j , y

′
i,j are either xj or 1−xj . After multiplication, the equation looks like this: s1 + . . .+sk

= t1 + . . . + tl, the su and tu are of the form: 1 or +/− xr1∗ . . . ∗ xrh
, and each xj occurs at most once in each

summand. After cancelling summands of the same form that occur on both sides of the equation, xn will still occur
in at least one of the summands, as n was chosen least. So, we can solve the equation (linear in xn) for xn and
have xn = f(x0 . . . xn−1), where f is composed of addition, subtraction, multiplication, division - contradicting
Fact 7.4.12. As the xi can be chosen within any distance > 0 from a desired value, choosing xi according to this
fact is no real restriction. We have thus obtained our injectivity result and shown

Proposition 7.4.13

Let pi : i ∈ ω be given a probability xi ∈ (0, 1), chosen according to Fact 7.4.12, then this gives rise naturally to
probabilities ν(φ) for any formula in L, such that 1) - 6) of Lemma 7.4.9 are valid, and (φ ≤ ψ and ψ ≤ φ) iff
` φ↔ ψ. In other words, this defines a total (and natural) extension of the natural order of the Lindenbaum-Tarski
algebra D, and, in addition, ([φ] ≤ [ψ] and [ψ] ≤ [φ]) iff [φ] = [ψ]. 2

Chapter 8

Integration

8.1 Introduction

Four questions need an answer when we want to integrate several logical formalisms:

• what do we want to integrate?

• in what form do we want to integrate things?

• on what levels do we want to integrate things?

• how do we do it?

First, we have presented in Chapter 2 a number of types of common sense reasoning, which we could mostly describe
as some kind of generalized modal logic approach, i.e. based on some kind of model choice, with perhaps some pre-
or post-processing. It is thus natural to try to integrate several such generalized modal logics. The choice of the
reasoning types depends on the problem at hand, there cannot be an universal answer to this question.

Second, we can either choose to take those logics as they are mostly presented, often by some inference relation ∼| ,
or we can try to put model choice into the language as a true modal operator. We will take the second approach,
and will give below reasons why.

Third, we saw that we can look e.g. at preferential reasoning on several levels: we can work with ”normal” sets, or
we can put the relation directly into the language. So, whereas the ”usual” level is the abstract one of reasoning
with normality, the finer level is the one where we look directly at the relation. On the other side, we can also,
higher up, reason about our reasoning, and, as we saw, we need not do much more: Once we code arguments by
trees or sequences of formulas, with ”gaps” noted as sets or, more abstractly, sizes, we are not very far from the
object level reasoning - just trees, whose nodes are formulas, and whose edges are labelled with formulas, with
perhaps some size annotated. Thus, we may have the ”usual” level of normality, a finer level of the generating
structure, and a higher level of reasoning itself.

Fourth, we will see that integration presents some quite subtle problems, but is, once we are aware of these problems,
in principle quite straightforward. We will also discuss here some problems with and properties of pure classical
and of classical modal logic which present themselves naturally in this context. These questions will be addressed
in Section 8.3.

More precisely, we first discuss there some pecularities of classical modal logic, and show also that ”empty” modal
logic is nothing else than pure propositional logic (Fact 8.3.1). We then show that considering classical operators
as modal operators reveals a funny property: usual axiomatisations do not suffice for a unique characterization of
the corresponding set operators of models (Example 8.3.1). Finally, we show that composing operators in an overly

267

268 CHAPTER 8. INTEGRATION

careless way can lead to exactly the same problems as we saw when neglecting definability preservation: we might
work with different things on the level of description and the level of the underlying structure (see Section 8.3.3).
Once we take a little care, however, the problem of composition becomes trivial, the result is given in Lemma 8.3.4.

We give a summarizing ”answer” to the first question in Section 8.2, where we recall, in the form of a table, the
types and and basic concepts as discussed in Chapter 2.

We turn to a discussion of ”rules vs. object language”, i.e. the second of above questions. We feel free to change
from formulas to model sets without saying - it should always be clear what is meant.

8.1.1 Rules or object language?

We think there is a number of reasons to put many things into object language. First, an example: We can either
introduce a rule α ∼| β for ”normally, if α, then β′′, or, we can put a modal operator ∇ into the object language,
which singles out the normal cases (in the simple variant of a principal filter), and α ∼| β becomes ` ∇α→ β. The
object language variant has several advantages:

(1) We have to make the ”grammatical role” precise: are the normal cases a subset of all cases, is it a set of subsets
(a non-principal filter), is it a function, which not only assigns to α a subset of α, but also to (all?) subsets α′ of
α a subset α′′ of α′ etc.

(2) The language is more expressive, we can have negated formulas, nested formulas, boolean combinations etc.,
we can say a lot more than in ”flatland”.

(3) We obtain contraposition, which seems a sign of quality of a logic: If something goes wrong, we have an
indication what happened, it puts things onto the table. If α ∼| β and ¬β, then we cannot conclude ¬α, and we
do not really know what to do. The formula ∇α → β tells us exactly, what went wrong: Either ¬α was the case,
or α, but not ∇α.

Contraposition seems all the more important for defeasible reasoning, as, per definitionem, we can be wrong, so,
we will often have to revise, and contraposition is a simple form of revision. We can develop this further: defeasible
reasoning formalisms should carry with them their own revision processes - we need a fall back strategy if the bold
reasoning fails. We think adequate defeasible reasoning should at least have contraposition.

Of course, we have to ask for the price to pay. As a matter of fact, it is very small. The basic algebraic representation
results are almost all we need, we can screw them into a representation result for arbitrary object language formulas
with a uniform higher abstract nonsense triviality - provided we take some precautions.

We turn to question three.

8.1.2 Various levels of reasoning

Let us carry this reflection one step further. Suppose we put normality into the language, but also the preference
relation which generates it. We have then the possibility of two level reasoning: If a more abstract level suffices,
we reason with normality, if we need more detail, we can argue with the relation. This is then a kind of complexity
hiding, so useful in other domains, e.g. computer network organization. The relation explains normality, and this
can be used as an argument. If the opponent does not accept normality, we can explain to him our reasons, and he
can challenge or acquiesce on the more elementary level. This is like the programming language C, one of whose
advantages is, if we understood correctly, that we can as well do high level programming, as well as handling single
bits and registers. Normality hides the underlying complexity of the preference relation, we enter into it only when
needed. The double layers give us the finesse when we need it, without drowning us in details when they are not
needed, it makes us more flexible.

We see an argument as a concatenation of implications in one or more logics of perhaps differing strengths, ”glued”
together by perhaps some ad hoc bridges over gaps in the reasoning. The strength of the argument is the width
of the gaps and the strengths of the individual implications (which can be stronger than classical logic, to allow
for revision). For instance, we read the inheritance diagram A → B → C as: normal A’s are B ′s, and normal

8.1. INTRODUCTION 269

B’s are C ′s, and, by default, normal A’s behave like normal B′s, so they are C ′s, too. The problem is, of course,
the default reasoning. The default reasoning has to be weaker than normality in above example: If N expresses
normality, and N ′ the default, then the diagram A → B → C says: N(A) ⊆ B, N(B) ⊆ C, N ′(N(A) ⊆ B →
N(A) ⊆ N(B)) - we prefer situations where normal A’s are normal B’s in the language of preference. Thus, we
may have different situations: On the one hand, ad hoc bridges over gaps, on the other hand, a pricipled treatment
of such gaps. In the first, we will try to fill in better reasoning, on the second, this may stay all we have at our
disposal.

We have already seen in Section 2.2.8 that it seems very difficult to find a definitive theory of argumentation.
Consequently, we will not treat the theory of argumentation as a constant, but will allow reasoning about argu-
mentation. This is, of course, a form of metareasoning, just as reasoning about normality has also been a form of
metareasoning. This is a further step into the same direction: we gain flexibility by putting more things into our
language, the structure of several levels will keep things relatively simple, as we will use the additional complexity
only when we need it.

We can summarize: The coarsest argument is the result of the argument. This is explained by the argument(s)
which support it - a finer level, and the underlying theory of argumentation, which compares arguments and
defines their strength. The implications are explained by their logic and the finer structure underlying them, like
the preference relation underlying the notion of normality.

Beyond revision and argumentation, having two or more levels of argumentation gives us also a form of ”quick
and dirty” reasoning. We can do first high level reasoning, and verify later on the more detailed level whether it
was justified. Thus, it opens a way for dynamic reasoning. At the same time, contradiction at a lower level might
not be felt at a higher level: The (perhaps contradictory) information a < b < a may have no consequences for a
particular α ∼| β in preferential reasoning.

In general, the more things we put into the language instead of coding them into a fixed formalism, the more we
gain flexibility.

Connection between base and higher concepts

If we put the base concept, like a preference relation, itself into the language, we can define the higher concept
from it, as we can define N(X) from <, in the style of usual representation constructions. At most, we will have to
put in some rudimentary set theory or primitive FOL over a fixed finite universe, to have some quantification. The
laws about N will follow automatically from the laws about < . Usually, we will have more than the laws needed
for representation, as we work with a special <, which will normally have additional properties.

When more than one higher concept are founded on the same base concept, we may have redundant information,
and have to be careful that the two sources of information about the base concept do not contradict each other.
Take e.g. revision and counterfactuals. Both are based on distance, and if the distance is to be the same (this is not
necessary, but may be the case), then they cannot be constructed independently. If we have the base concept in the
language, the construction is trivial. In the other case, one concept will often allow several different constructions
of the base concept (several distances), which generate the same higher concept. Only one of those has to be
compatibel with the second higher concept.

The extension towards meta-reasoning

To speak about reasoning, we need the reasons for our inferences, their certainty, and the gaps between them.
The reasons e.g. for normality reasoning are size or a relation between models, this can be noted in a simple way,
certainty is a set and its size, utility somewhat more complicated, but also within our framework. The gaps are
described again by size, or distance. So, we have everything ready.

We work just as in set theory, where a hierarchy is constructed. At each level, we speak about the lower levels.
Thus, the construction is uniform, but open for upward development. We are arbitrarily flexible, without the
problems of reflexive reasoning, as levels are kept separate. We reason first about objects, then reason about our
reasoning about objects etc. In higher levels, we can repair problems of the lower level, by showing weaknesses of

270 CHAPTER 8. INTEGRATION

the lower argumentation. For example, if an argumentation is attacked, and the attack seems justified, we can try
to find a reason: an under- or overestimated distance, or size. Or, on the contrary, we can defend it. Thus, we do
not need perfect low level reasoning, instead, we do repairs on the fly. As such, this is dynamic reasoning.

8.2 Reasoning types and concepts

We summarize now the different reasoning types and the concepts we have based them on. This is mostly a
summary of Chapter 2, more or less in form of a table.

1. (1) Classical modal logic

• Semantics: A binary relation between individual models read backwards

• Keywords: Binary relation between models.

• The grammatical role: 2(X) is a set, going backwards.

2. (2) Theory revision

• Semantics:

(a) (2.0) A relation between formulas (epistemic entrenchment relation).

(b) (2.1) A distance between models or model sets read globally. This defines in a natural way an
epistemic entrenchment relation.

(c) (2.2) A notion of size of individual models or model sets.

• Keywords: Binary relation between formulas (= model sets), distance between models, size of models.

• The grammatical role: A | B ⊆ B, in the algebraic limit case A | B ⊆ P(B), this can sometimes be
reduced again to A | B ⊆ B. It might be indexed, expressing the viewpoint.

3. (3) Counterfactuals

• Semantics:

(a) (3.1) A distance between models read individually. The distance may be chosen differently from
each viewpoint, it can be unified by admitting copies of models.

(b) (3.2) A variant is to neglect only those elements which are ”behind” a closer one, where ”behind”
and ”between” are defined from a given distance.

• Keywords: Distance between models.

• The grammatical role: As for revision: A ↑ B ⊆ B, in the algebraic limit case A ↑ B ⊆ P(B), this can
sometimes be reduced again to A ↑ B ⊆ B. It might be indexed, expressing the viewpoint.

4. (4) Normality

• Semantics:

(a) (4.1) A binary relation of preference between models, resulting in coherent filter systems of various
strengths.
Questions:

i. (4.1.1) Properties of the relation.

ii. (4.1.2) Strengths of the coherence properties.

(b) (4.2) A variant is to consider the center of sets, defined by (sums of) distances. A typical element
is then an element which is not marginal. A slight modification is to cut the whole set into clusters
and to consider centers of the individual clusters. Clustering might depend on the viewpoint, from
farther away, we may put more things together.

8.2. REASONING TYPES AND CONCEPTS 271

(c) (4.3) A notion of size of model sets, coded by filters.
Questions:

i. (4.3.1) Relativity of size (′′from afar, distinctions blurr′′).

ii. (4.3.2) Comparison: ”how much bigger than small is big?” etc.

• Keywords: Binary relation between models, distance between models, clusters, size of subsets (perhaps
relativized), (weak) filters, reasoning about size.

• The grammatical role: N(X) ⊆ X, in the case of non-principal filters N(X) ⊆ P(X). X < B or X B
expressing size relation. Rules like X < Y, X ′ < Y → X ∪X ′ < Y.

5. (5) Update

• Semantics: The concept of natural inertia is coded by a distance between states, and evaluated individ-
ually. If necessary, sums of distances (and other entities) are considered.

• Keywords: Distance between models, sums.

• The grammatical role: Depending on situation, e.g. < A ↑ B ↑ C >⊆ C.

6. (6) Certainty of information

• Semantics:

(a) (6.1) Certainty can be measured by an epistemic entrenchment relation, which is definable via a
distance. This works (by definition of epistemic entrenchment relations) only for information beyond
classical certainty.

(b) (6.2) As for normality, we can measure the deviant cases by a relation or an abstract notion of size.

(c) (6.3) For information transfer, we can take the distance of transfer, e.g. in analogical reasoning, we
can consider the distance between source and destination, or, when both sets are almost the same,
the similarity of the two sets, measured by the relative size of the symmetric difference.

• Keywords: Binary relation between model sets, size of model sets, distance between model sets, similarity
of model sets.

• The grammatical role: Certainty can be a set (of cases neglected), a distance of information transfer
d(X,Y), a ranking wrt. a base set (epistemic entrenchment relations).

7. (7) Utility of information (and quality of an answer)

• Semantics: Utility will be a product of the size of the model set and individual utility. For each model,
we have for (some or all) formulas a utility value for thinking the model satisfies the formula. The utility
of φ wrt. the question ψ is then the sum of the individual utilities for ψ of all φ−models. Sums and
products are calculated in some more or less rough way.

• Keywords: Size of model sets, values of formulas for individual models, sums, products.

• The grammatical role: (X,Y) is e.g. a size, the benefit/prize for thinking that X ⊆ Y.

8. (8) Approximation (of sets)

• Semantics:

(a) (8.1) Simple sets. They are either singled out as such by some predicate, or e.g. as convex sets wrt.
some distance (or composed by a small number of convex sets), e.g. the Hamming distance. Simple
sets can be used to approximate an other set from the inside, the outside, or mixed, the difference
can be measured, one can take the best candidate if this exists, etc.

• Keywords: Simple sets, distance, size of sets.

• The grammatical role: Y ⊆ P(U) is the set of simple sets. Grading can be achieved by counting the
simple components of a set.

272 CHAPTER 8. INTEGRATION

9. (9) Reasoning by interpolation

• Semantics: We take extreme cases (measured by a distance) of a set, reason with them (i.e. with
complete theories), and interpolate the result to the rest. This is the dual to considering centers. It
is a somewhat more cautious approach than that working with centers, as we consider perhaps more
elements than in the former case.

• Keywords: Distance between models.

• The grammatical role: Like N(X) above.

10. (10) Defaults

• Semantics: Defaults of the type : φ do not only say that as many elements as possible satisfy φ, but also
that for any ψ, as many elements satisfy ψ ∧ φ as possible. Thus, a default is an operator working on a
whole family of sets. We can exclude artificial sets, or, admit only admissible ones as destination of the
information transfer. Defaults make as many as possible true, we may have subideal cases, where not
all defaults hold, but as many as possible.

• Keywords: Admissible sets, operator on family of sets, subideal cases.

• The grammatical role: A single default (or a set of defaults, if several defaults are treated simultaneously)
generates a partial order on admissible sets, where the order is determined by the number of defaults
which hold for each element of the set. The result is the disjunction of the best candidates.

11. (11) Analogy and induction (and general transfer of information)

• Semantics: We have a more general information transfer, and weakening in the confidence or certainty
over longer distances of transfer should be possible. Cumulativity gives a natural limit to the transfer,
this need not always exist. Transfer may only be authorized from and to admissible sets (reference
classes for the origin). Perhaps not all information will be transferred (e.g. information about location
may be irrelevant). If we suspect a common mechanism (e.g. birds have developed in a way so they can
fly), this should influence our reasoning: The common mechanism causes in principle some property,
but other influences may interfere in its manifestation. So, in the background, we may have a theory of
causation or update.

• Keywords: Certainty, distance between sets, admissible sets, admissible information, limits of transfer,
theory of causation.

• The grammatical role: In a complicated case, we have the following structure: For an initial set X, we
have a set Y of information that can be transferred from X, a set X ′ of possible destinations, and for
each pair < Y,X ′ > a certainty C (which may be a distance between X and X ′ etc.).

12. (12) Inheritance and Argumentation

• Semantics: The steps of argumentation are done in one or several logics. The gaps are bridged by more
or less ad hoc reasoning (e.g. inference fromN(X) to X), which determines the strength of the argument.
The choice of the reference classes can be done by - among other things - specificity (closeness or size
of set difference), which can in turn be determined by other arguments. A fully satisfactory theory of
argumentation seems difficult to obtain, and is better put into object language itself, to permit reasoning
about it. Dynamic reasoning can be seen as argumentation with progressively finer or more reliable
information. The starting point of reasoning should not be important, as the measure of reliability or
graduation should automatically lead to the best information we have.

• Keywords: Choice of reference class, admissible sets, specificity, distance between sets, independence of
arguments.

• The grammatical role: This does not apply here, but only individually.

8.3. FORMAL ASPECTS 273

Summary of the main keywords we found:

1. (1) binary relations between

(a) (1.1) individual models

(b) (1.1) model sets e.g. similarity, questions of transitivity etc.

2. (2) (sometimes relativized: seen from far away, distances may shrink) distances between

(a) (2.1) individual models resulting e.g. in: clusters, simple sets

(b) (2.2) model sets

3. (3) (sometimes relativized: seen from far away, differences may shrink) size of

(a) (3.1) individual models

(b) (3.2) model sets and subsets e.g. concepts of (weak) filters

(c) (3.3) reasoning about size e.g. sums and products, e.g. sums may defined via unions or sequences

4. (4) values of formulas for individual models

5. (5) admissible sets and choice of reference class

(a) (5.1) admissible information for transfer

6. (6) operators on families of sets

(a) (6.1) subideal cases

And, somewhat apart:

7. (7) theory of causation.

8.3 Formal aspects

8.3.1 Classical modal logic

Classical modal logics goes backwards

Traditional modal logic looks backwards: The operator 2 associates to φ the formula 2φ, which describes all
models m, s.t. in all m′ reachable from m, φ holds. We go backwards, against the sense of the relation, from
φ to 2φ. In preferential logic, we go forward, from φ to N(φ). Intuitively, we think it is more natural to go in
the sense of the relation. But there is still another point: If we write ψ → 2φ, then this is implicitly quantified
universally, and thus individually: in all models m, where ψ holds, 2φ holds. This is NOT some global property of
2φ, but defined by validity for every m s.t. m |= 2φ - consequently, 2 will be monotone, in the sense: If ψ → ψ ′,
and ψ′ → 2φ, then ψ → 2φ, too. (The dual operator 3 does the same, only existentially.) Thus, the difference
between individual (local) and global evaluation is somewhat swept under the carpet, and decided inplicitly - which
is unfortunate. These are, of course, trivialities, but one should perhaps write them down nonetheless.

(When we try to do e.g. preferential models backwards, as for traditional modal logic, we will usually have an
operator P(ML) → PP(ML), as many different φ′ may have the same N(φ).)

When we look now at the basic laws of modal logic:
φ

2φ

and

274 CHAPTER 8. INTEGRATION

2φ ∧ 2(φ→ ψ) → 2ψ

we see that the first says that 2 describes a subset of the model set - if something holds everywhere, it will hold
in the subset described by 2 - and that the second essentially expresses closure under logical consequence (as will
hold for any logic defined by model sets). As a matter of fact, it also expresses an important property, which we
may call monotony, and which reads in set terms: 2(A ∪ B) ⊇ (2A) ∪ (2B). Note that this corresponds more to
local distances as in counterfactuals, than to global ones as in revision.

As classical modal logic is not in the center of our interest, we just briefly mention here a property which is
connected to our main interests.

Coding propositional logic by modal operators

To show that pure classical modal logic without any additional conditions is nothing more than propositional logic,
we show how to code additional propositional variables by modal structures.

Fact 8.3.1

We can code arbitrarily many new propositional variables in modal structures.

Proof:

(Sketch) We work with one propositional variable p and construct a binary tree of p- and ¬p−models by induction.
xRy will hold iff x is a successor of y.

The root, level 0: We take a p-model (this is arbitrary).

Construction of level n+1 from level n : For every point y on level n, we make two successors, a p- and a ¬p−model.

We stop the construction at some height k, which depends on the number of propositional variables we want to
code. Level n will code n propositional variables.

Properties:

(1) At level n (n > 0) 3 . . .3p (n times 3) holds. This will not hold at lower levels.

(2) Each node has different modal properties. Those from different levels can be distinguished by property (1).
Consider now two nodes, x and y on the same level n. They are on different paths from the root. But two different
paths correspond to different modal formulas. Suppose the first difference of the two paths is on level m. Say,
the path to x goes through a p-model, the path to y through a ¬p−model. If m = n, then x |= p, y |= ¬p. Let
l := n−m > 0. Then x |= 3 . . .3p, and y |= 3 . . .3¬p, with l many 3 in both cases.

(3) Consequently, in this structure, each node on the interesting level has different logical properties, which cannot
be equivalent, as our structure is a legal modal structure, and equivalences in pure modal logic would have to hold
in our structure, too. So, each node corresponds to a different propositional model in a classical propositional
language with k variables. A natural correspondence is e.g.: x |= pi iff x |= 3 . . .3p, with k-i 3. I.e., if the path
to x goes at level 1 through a p-model, then x |= p1, if it goes through a ¬p−model, then x |= ¬p1, etc. More
generally, pi is translated by 3 . . .3p, with k-i 3, and ¬pi by 3 . . .3¬p.

2

8.3.2 Classical propositional operators have no unique interpretation

In our view, the propositional operators ¬, ∨ etc. are modal operators. It is therefore natural to try two things:
First, to make a completeness proof for classical propositional logic along the same lines as we do for other logics.
Second, to try to show that the axioms of classical propositional calculus characterize the model set operators -,
∩, ∪ etc. in a unique way.

8.3. FORMAL ASPECTS 275

Both are not true. The first fails because we use in the logical parts of the proofs for other logics precisely soundness
and completeness for classical logic - which we would try to demonstrate here. The second fails, as -, ∩ etc. clearly
obey these laws, but, as we shall see now, they are not the only ones.

First, we make the idea precise, then prove a few facts, and give a counterexample, which shows that we have some
freedom with ¬ and ∨.

The idea: A propositional formula is interpreted semantically as a set expression with operators ∩, ∪ etc. An axiom
is interpreted as saying that the corresponding set expression describes the whole universe, i.e. it holds everywhere,
and the rule Modus Ponens φ, (φ → ψ) ⇒ ψ as saying that φ ∩ φ → ψ ⊆ ψ in shorthand. This interpretation
seems natural.

We now show some facts we can deduce from the axioms and rules of propositional calculus so interpreted, i.e.
where axioms describe the universe, and Modus Ponens is monotone wrt. set inclusion. Thus, we make free use
of all theorems of propositional calculus. We do not distinguish between an expression and its interpretation, this
should not cause any problems.

We use the following axiomatization of propositional calculus:

Definition 8.3.1

(A1) φ→ (ψ → φ),

(A2) (φ→ (ψ → σ)) → ((φ→ ψ)→ (φ→ σ)),

(A3) (¬φ→ ¬ψ) → (ψ → φ),

(∧) φ ∧ ψ ↔ ¬(φ→ ¬ψ),

(∨) φ ∨ ψ ↔ ¬φ→ ψ,

Modus Ponens.

Fact 8.3.2

From these axioms we conclude:

(1) φ ∩ (φ→ ψ) ⊆ ψ,

(2) T ` φ ⇒
⋂
T ⊆ φ,

(3) T ` φ→ ψ ⇒
⋂
T ∩ φ ⊆ ψ,

(4) ` φ↔ ψ ⇒ φ = ψ,

(5) φ ∧ ψ = φ ∩ ψ,

(6) φ ∪ ψ ⊆ φ ∨ ψ (but not the converse, as we will see!),

(7) ¬¬φ = φ (but not that ¬ has to be interpreted as the set-complement, as we will see!).

Proof:

(1) By Modus Ponens.

(2) By induction on the complexity of the proof.

(3) By the deduction theorem.

(4) By (3).

(5) φ, ψ ` φ ∧ ψ, so φ ∩ ψ ⊆ φ ∧ ψ by (2). By ` φ ∧ ψ → φ and (3) φ ∧ ψ ⊆ φ, likewise for φ ∧ ψ ⊆ ψ.

(6) By φ ` φ ∨ ψ, ψ ` φ ∨ ψ, and (2).

(7) By ` ¬¬φ↔ φ and (4).

2

276 CHAPTER 8. INTEGRATION

Now for the counterexample.

Example 8.3.1

Let U := U ′ ∪ {∗}, X := (P(U ′) ∪ {U})− {U ′}. Thus, X is ”almost” P(U ′), only U ′ is replaced by U := U ′ ∪ {∗},
so U is the only element of X to contain ∗.

Define for X ∈ X : ¬X :=



U if X = ∅
∅ if X = U

U ′ −X if ∅
⊂
6= X

⊂
6= U ′

Note that X is closed under ∩ and ¬, and that ¬ is not always the complement.

Define X ∧ Y := X ∩ Y (as we are obliged by Fact 8.3.2, (5)),

X ∨ Y := ¬(¬X ∧ ¬Y) - thus, ∨ can be more than ∪,

X → Y := ¬X ∨ Y,

X ↔ Y := (X → Y) ∧ (Y → X).

As X is closed under ¬ and ∧, it is closed under the other operators, too.

We now show that the operators so defined satisfy the axioms and rule of classical propositional calculus. The
proofs are tedious, but straightforward.

Fact 8.3.3

In Example 8.3.1, the following hold:

(1) ¬¬X = X,

(2) (X ∨ Y) ∨ Z = X ∨ (Y ∨ Z),

(3) X ∧ Y = ¬(¬X ∨ ¬Y),

(4) X ∧ Y → Z = X → (Y → Z),

(5) X ∨ Y :=




X ∪ Y if X ∪ Y
⊂
6= U ′

and
U if U ′ ⊆ X ∪ Y

(5a) X ∨ Y = U iff U ′ ⊆ X ∪ Y,

(6) X → Y = U iff U ′ ⊆ ¬X ∪ Y,

(7) X ∨ ¬X = U,

(8) X ∧ (Y ∨ Z) = (X ∧ Y) ∨ (X ∧ Z),

(9) ∅ ∨X = X,

(10) X ∩ (X → Y) ⊆ Y (Modus Ponens),

(11) X ∧ Y → X = U,

(12) X → (Y → X) = U (Axiom 1),

(13) X → Y = U iff X ⊆ Y,

(14) (¬X → ¬Y) = Y → X,

8.3. FORMAL ASPECTS 277

(15) (¬X → ¬Y)→ (Y → X) = U (Axiom 3),

(16) X ∨ (Y ∧ Z) = (X ∨ Y) ∧ (X ∨ Z),

(17) ¬X ∨ (X ∧ ¬Y) = ¬X ∨ ¬Y,

(18) (X → Y)→ (X → Z) = X ∧ Y → Z,

(19) Axiom 2 holds,

(20) X ∧ Y = ¬(X → ¬Y) (Axioms for ∧),

(21) X ∨ Y = ¬X → Y (Axioms for ∨).

Proof:

(1) trivial by examining the cases.

(2) (X ∨ Y)∨Z = ¬(¬(X ∨ Y)∩¬Z) = ¬(¬¬(¬X ∩¬Y)∩¬Z) =(1) ¬(¬X ∩¬Y ∩¬Z). The other part works the
same way.

(3) ¬(¬X ∨ ¬Y) = ¬¬(¬¬X ∧ ¬¬Y) = X ∧ Y

(4) X ∧ Y → Z = ¬(X ∧ Y) ∨ Z =(3) ¬¬(¬X ∨ ¬Y) ∨ Z = ¬X ∨ ¬Y ∨ Z. X → (Y → Z) = ¬X ∨ (Y → Z) =
¬X ∨ (¬Y ∨ Z), finish with (2).

(5) No other cases are possible, as ∗ ∈ X ∪ Y implies X ∪ Y = U, and thus X = U or Y = U, as U is the only
A ∈ X with ∗ ∈ A.

Case 1: U ′ ⊆ X ∪ Y : If X = U, ¬X ∩ ¬Y = ∅ → X ∨ Y = U. If Y = U, the same way. If X = ∅, then Y = U,

if Y = ∅, then X = U. If ∅
⊂
6= X,Y

⊂
6= U ′, then ¬X = U ′−X, ¬Y = U ′−Y, and, as U ′ ⊆ X ∪ Y, ¬X ∩ ¬Y = ∅, so

X ∨ Y = U.

Case 2: X ∪ Y
⊂

6= U ′ : If X = ∅, then ¬X = U, and X ∨ Y = ¬¬Y = Y = X ∪ Y, likewise for Y = ∅. Suppose now
X,Y 6= ∅. Then ¬X = U ′−X, ¬Y = U ′−Y, so ¬X ∩ ¬Y 6= ∅, so ¬(¬X ∩ ¬Y) = U ′ − (¬X ∩ ¬Y) = X ∪ Y.

(5a) X ∪ Y
⊂
6= U ′ → X ∨ Y = X ∪ Y ⊆ U ′ 6= U.

(6) By (5a).

(7) U ′ ⊆ X ∪ ¬X and (5).

(8) Case 1: U ′ ⊆ Y ∪ Z, so Y ∨ Z = U.

Case 1.1: X
⊂
6= U ′ : The left hand side = X, the right hand side = (X ∩ Y) ∪ (X ∩ Z) = X ∩ (Y ∪ Z) = X. Case

1.2: X = U : Trivial.

Case 2: Y ∪ Z
⊂

6= U ′, so Y ∨ Z = Y ∪ Z. Thus (X ∩ Y) ∪ (X ∩ Z)
⊂

6= U ′, and on the left X ∩ (Y ∪ Z), on the right
(X ∩ Y) ∪ (X ∩ Z).

(9) ∅ ∨X = ¬(¬∅ ∩ ¬X) = ¬(U ∩ ¬X) = ¬¬X = X.

(10) X ∩ (X → Y) = X ∩ (¬X ∨ Y) =(8) (X ∩ ¬X) ∨ (X ∩ Y) = ∅ ∨ (X ∩ Y) =(9) X ∩ Y ⊆ Y.

(11) X ∧ Y → X = ¬(X ∧ Y) ∨X = ¬X ∨ ¬Y ∨X = U.

(12) X → (Y → X) =(4) X ∧ Y → X = U.

(13) We use (6), and show X ⊆ Y iff U ′ ⊆ ¬X ∪ Y. The following four cases are trivial: Y = U, Y = ∅, X = ∅,

X = U. In the other cases, ∅
⊂
6= X,Y

⊂
6= U ′, and ¬ for X and Y behaves like the usual complement.

(14) ¬X → ¬Y = ¬¬X ∨ ¬Y = ¬Y ∨X = Y → X.

(15) By (13) and (14).

(16) Case 1: X ∨ Y = U, so U ′ ⊆ X ∪ Y. Case 1.1: X ∨ Z = U, so U ′ ⊆ X ∪ Z, so U ′ ⊆ X ∪ (Y ∩ Z). Case

278 CHAPTER 8. INTEGRATION

1.2: X ∨ Z 6= U, so X ∪ Z
⊂

6= U ′, X ∨ Z = X ∪ Z, and X ∪ (Y ∩ Z)
⊂

6= U ′, so X ∨ (Y ∩ Z) = X ∪ (Y ∩ Z) =

(X ∪ Y) ∩ (X ∪Z). But U ′ ⊆ X ∪ Y, and X ∪ Z
⊂

6= U ′, so (X ∪ Y) ∩ (X ∪Z) = X ∪Z = X ∨Z = (X ∨Z) ∩U =
(X ∨ Z) ∧ (X ∨ Y).

Case 2: X ∨ Y 6= U, X ∨ Z 6= U, so X ∪ Y
⊂
6= U ′, X ∪ Z

⊂
6= U ′, so X ∪ (Y ∩ Z)

⊂
6= U ′, and X ∨ Y = X ∪ Y,

X ∨ Z = X ∪ Z, and X ∨ (Y ∧ Z) = X ∪ (Y ∩ Z), and usual distributivity shows the rest.

(17) ¬X ∨ (X ∧ ¬Y) = (¬X ∨X) ∧ (¬X ∨ ¬Y) = U ∩ (¬X ∨ ¬Y) = ¬X ∨ ¬Y.

(18) X ∧ Y → Z = ¬X ∨ ¬Y ∨ Z. (X → Y) → (X → Z) = ¬(X → Y) ∨ ¬X ∨ Z = ¬(¬X ∨ Y) ∨ ¬X ∨ Z =
(X ∧ ¬Y) ∨ ¬X ∨ Z =(17) ¬X ∨ ¬Y ∨ Z.

(19) By (18) and (4).

(20) ¬(X → ¬Y) = ¬(¬X ∨ ¬Y) = X ∧ Y.

(21) ¬X → Y = ¬¬X ∨ Y = X ∨ Y.

2

8.3.3 Combining individual completeness results

We would like to assemble now one big completeness result from individual completeness results.

Before we give sufficient - but often too strong - conditions for the procedure to work, we describe the problem, and
difficulties which can arise in some situations. The situation is a little complicated, as we will try to integrate two
translations with nested operators - different or not - and boolean combinations thereof, to end up in a homogenous
language and characterization.

Suppose we have separate completeness proofs perhaps for ”flat” situations only. Now, we want to combine them to
a completeness result for arbitrary combinations of new operators. Let e.g. for preferential structures an algebraic
characterization be given: µ(X) ⊆ X, X ⊆ Y → µ(Y) ∩ X ⊆ µ(X). We have translated this into logic by the
conditions (SC), (PR) etc. - under the caveat of definability preservation.

It is important to note that this translation is a two-step process. First, we establish a correspondence between a
relation and a resulting choice function. Second, we establish a correspondence between a choice function and a
logic.

In the second step, we had encountered the problem of definability preservation, which was due to the fact that
things seemed logically the same, but were not so algebraically. We will see in a moment that there is a similar
problem already in the first step of the combination.

Before we address this problem, we return to our general framework.

Our aim was to create a language of ”generalized modal logics”. For instance, φ ∼| ψ is to be translated into
` N(φ) → ψ, where N(.) is the central part. Look now at the basic condition X ⊆ Y → µ(Y) ∩X ⊆ µ(X). It is
tempting, but insufficient, to translate this into the formula (φ → ψ) → (N(ψ) ∧ φ → N(φ)). Here is an example
why such translations are in general insufficient: Let m be a fixed model, let 6` φ→ ψ, but ”by chance”m |= φ→ ψ.
Then m |= N(ψ)∧ φ→ N(φ) would have to hold, too, which, of course, can be wrong in the intended translation -
N(φ) and N(ψ) need not have anything to do with each other. We need to express that the prerequisite φ→ ψ has
to hold everywhere for the conclusion to hold, too (and everywhere, but this will be automatically true). For this,
we introduce a new modal operator ∇− to tie local to global evaluation, with the meaning ` (or, everywhere):
m |= ∇− φ iff for all m′ in the structure m′ |= φ, equivalently, iff T ` φ.

The algebraic conditions we consider are simple set theoretical properties, they are boolean combinations of inclu-

8.3. FORMAL ASPECTS 279

sions, A ⊆ B etc., see Section 1.6.2. The translation is now done as follows:

A ⊆ B ∇− (φ→ ψ)
∩ ∧
∪ ∨
C ¬

etc.

We have then solved this problem, and turn to the next.

We want to treat boolean combinations, and nested formulas. For instance, N(N(φ) ∧ ¬ψ) should be defined.
Thus, we impose the following conditions on the domain Y ⊆ P(X) - where X is intended to be the set of models
of some language L :

The algebraic operators O, e.g. µ, go from Y to Y , O : Y → Y - otherwise, we could not apply one to the result of
the other. Moreover, Y has to be closed under the finite boolean operators -, ∩, ∪.

As algebraic operators do not care about syntactic reformulations, we add for each new modal symbol a corre-
sponding statement, e.g. ∇− (φ↔ ψ)→ ∇− (N(φ) ↔ N(ψ)).

We now have solved (part of) the nestedness problem. The result of applying one modal operator to one or more
formulas is again equivalent to a formula, and applying any modal operator to equivalent formulas gives equivalent
results, it does not matter whether we work with level 1 formulas, or nested ones (counting the new operators), so
results from ”flatland” carry over to arbitrarily nested and mixed formulas.

We come now to the perhaps most subtle part of the translation - which we will solve with some overkill, just as
we solved problems concerning the second translation by imposing (the overkill of) definability preservation.

E.g. in preferential structures, we had worked with copies. µ was defined by the condition that there is at least
one copy which is minimal. So, there is a problem: µ(X) was won by looking at all copies of x ∈ X, but y ∈ µ(X)
was won by looking at only some copies of y. So the algebraic µ and the relation operator differ. Y as argument
and as result are not the same when looking at the relation, they are so when looking at the µ−operator. When
we worked with one operator, we had taken this implicitly into account, e.g. for the transitive case, we had worked
with this property. It is not obvious what will happen when we combine several different operators. Consider the
following example: We want to apply revision after normality, i.e. express φ∗N(ψ), in algebraic terms, we consider
X | µ(Y). If µ(Y) = Z, this should give the same result as X | Z. Let now µ be defined by a preference relation
<, and | by distance d. Suppose z ∈ Z has an infinite descending chain of ever closer copies, seen from X. Suppose
that z ∈ µ(Y), but there is just one minimal copy of z. Then combining d with < gives a result different from
working directly with d and Z, the latter might e.g. result in X | Z = ∅, the former in X | µ(Y) = {z}. Thus,
the underlying structures might have a finer discernation than the resulting set operators, just as the set operators
might have a finer discernation than the logical operator. We solved the latter problem by imposing definability
preservation (or admitting a small number of exceptions), we solve the former in a similar fashion: we impose that
we work with one copy only in all representation constructions.

We summarize now the procedure and the result:

Lemma 8.3.4

Let S1, . . . ,Sn be structures which result in operators O1, . . . ,On, each individually characterized by the conditions
C1, . . . , Cn, and let C1, . . . ,Cn be their translations into logic as described above (⊆ becomes ∇− (.→ .) etc., the
algebraic Oi become the logical Oi) with ∇− (φ ↔ φ′) → ∇− (Oi(φ) ↔ Oi(φ

′)) added for all Oi (which are for
simplicity here unary).

Let D be the set of formula definable sets of (propositional) models for a fixed language L, let Oi : Dn →D, and
let the structures work with one copy each. Then the conditions C i characterize the modal operators Oi based on
the structures Si in the full object language, i.e. with nestedness and all finite boolean combinations.

(Of course, the structures have to be independent here, if e.g. the same distance defines revision and update, they
cannot be chosen independently.)

Proof:

280 CHAPTER 8. INTEGRATION

(Trivial.)

Soundness:

Let the algebraic operators Oi be determined by the structures Si, and translated into the modal operators Oi.
Let, by prerequisite, the algebraic condition C hold for Oi, and let C be its logical translation. We have to show
that C holds. Let φ1, . . . , φn be its arguments, and [φ] := {m : m |= φ}. By definability preservation, each φj can
be replaced by some classical (base) φ′

j , with [φj] = [φ′j] and C(φ1, . . . , φn) holds iff C(φ′1, . . . , φ
′
n) does, as we have

added the corresponding conditions ∇− (φ ↔ φ′) → ∇− (Oi(φ) ↔ Oi(φ
′)). Moreover, C([φ′1], . . . , [φ

′
n]) holds iff

C(φ′1, . . . , φ
′
n) does. By prerequisite, C([φ′

1], . . . , [φ
′
n]) holds, as the φ′i are base formulas. By the 1-copy property

(applied perhaps repeatedly) [φj] as result of the algebraic operators is the same as it is as result of the structural
operators.

Completeness:

Let the logical conditions hold. Then they hold in particular for base formulas. So the corresponding algebraic
conditions hold, and, by the individual characterizations, there are 1-copy structures, which correspond and are
definability preserving. As they are 1-copy and definability preserving, they give exactly the same results for
arbitrary formulas, too, as they correspond to base formulas.

2

Chapter 9

Conclusion and outlook

The, in the author’s opinion, most important systematic problems we have encountered are perhaps:

(1) Domain closure problems and their relation to possible characterization.

• Sometimes, simplifications are possible for formulas, but not for full theories, e.g. in

– the KLM counterexample,

– the limit versions of preferential structures,

– the limit versions of distance based structures.

• Domain closure can allow simplified descriptions, impossible in poorer domains.

– Closure under union allows to express the semi-transitivity of smooth structures in one step, without
union, we need more complicated conditions.

– Sufficiently rich domains may allow ”reflection” of situations otherwise hidden by closer cases. This can
allow finite characterizations, otherwise impossible.

(2) The importance of definability preservation for characterizations.

• Lack of definability preservation necessitates ”small amounts of exceptions”, or approximate solutions. This,
however, is not always expressible by standard ways of characterization.

• ”Too much” definability preservation can trivialize the limit versions.

• Similar problems can arise when composing several different structures (see Chapter 8), but are hidden in
traditional modal logics.

These subjects should be treated in a more systematic way in future research. We have only scratched the surface,
and did not see a general and precise pattern.

Despite all these shortcomings and problems left open, there are some techniques the author thinks are useful, and
merit attention. Among these are:

• to split representation into an algebraic and a logics part,

• to use choice functions for preferential structures, and trees to encode transitivity, to use suitable hulls H(U)
- sets to be to be avoided - in the construction of smooth structures,

• to use topological constructions to obtain positive and negative results for preferential (and similar) structures,

281

282 CHAPTER 9. CONCLUSION AND OUTLOOK

• to use approximations to solve definability preservation problems, even if we have to sacrify standard ways
of characterization,

• to reduce the more complicated limit version to the much more simple minimal version,

• to use incompleteness of observability of behaviour to show lack of finite representation.

On the conceptual side, the reduction of several types of common sense reasoning to a small number of underlying
semantical notions seems promising, also in order to obtain versatile and not too complicated integrated systems.

Bibliography

[AGM85] C.Alchourron, P.Ga̋rdenfors, D.Makinson, ”On the Logic of Theory Change: partial meet contraction
and revision functions”, Journal of Symbolic Logic, Vol. 50, pp. 510-530, 1985

[ALS99] L.Audibert, C.Lhoussaine, K.Schlechta: ”Distance based revision of preferential logics”, Logic Journal of
the Interest Group in Pure and Applied Logics, Vol. 7, No. 4, pp. 429-446, 1999

[BB94] Shai Ben-David, R.Ben-Eliyahu: ”A modal logic for subjective default reasoning”, Proceedings LICS-94,
1994

[BFH95] C.Boutilier, N.Friedman, J.Halpern: ”Belief Revision with Unreliable Observations”, AAAI 98, pp. 127-
134

[BLS99] S.Berger, D.Lehmann, K.Schlechta: ”Preferred History Semantics for Iterated Updates”, Journal of Logic
and Computation, Vol.9, No.6, pp.817-833, 1999,

[Bra87] M.E.Bratman, ”Intentions, plans, and practical reason”, Harvard Univ. Press, Cambridge, 1987

[BS85] G.Bossu, P.Siegel, ”Saturation, Nonmonotonic Reasoning and the Closed- World Assumption”, Artificial
Intelligence 25 (1985) 13-63

[CP00] S.Chopra, R.Parikh, ”Relevance sensitive belief structures”, Annals of Mathematics and Artificial Intel-
ligence, vol. 28, No. 1-4, pp. 259-285, 2000

[DS99] J.Dix, K.Schlechta: Explaining updates by minimal sums, 19th. Intern. Conf. on Foundations of Software
Technology and Theoretical Computer Science, 13-15 Dec. 1999, IIT Campus, Chennai, India

[Far02] J.Farkas, ”Theorie der einfachen Ungleichungen”, Crelles Journal fűr die Reine und Angewandte Mathe-
matik, 124 (1902), pp.1-27

[FH98] N.Friedman, J.Halpern: ”Plausibility measures and default reasoning”, IBM Almaden Research Center
Tech.Rept. 1995, to appear in Journal of the ACM

[FL94] M.Freund, D.Lehmann: ”Nonmonotonic reasoning: from finitary relations to infinitary inference opera-
tions”, Studia Logica 53:161-201, 1994

[FLM90] M.Freund, D.Lehmann, D.Makinson, ”Canonical Extensions to the Infinite Case of Finitary Nonmono-
tonic Inference Relations”. In: G.Brewka, H.Freitag (eds.), ”Proceedings of the Workshop on Nonmono-
tonic Reasoning, GMD, 1989”, Gesellschaft fűr Mathematik und Datenverarbeitung, D-5205 Sankt Au-
gustin, Germany, p.133-138

[Fre93] M.Freund, ”Injective Models and Disjunctive Relations”, Journal of Logic and Computation, Vol. 3, No.
3, pp. 231-247, 1993

[FRS01] L.Forget, V.Risch, P.Siegel, ”Preferential Logics are X-logics”, Journal of Logic and Computation, Vol.11,
No.1, 71-83, 2001

283

284 BIBLIOGRAPHY

[Han69] B.Hansson, ”An analysis of some deontic logics”, Nous 3, 373-398. Reprinted in R.Hilpinen ed. ”Deontic
Logic: Introductory and Systematic Readings”. Reidel, Dordrecht 1971, 121-147

[Imi87] T.Imielinski, ”Results on Translating Defaults to Circumscription”, Artificial Intelligence 32 (1987),
p.131-146

[KLM90] S.Kraus, D.Lehmann, M.Magidor, ”Nonmonotonic reasoning, preferential models and cumulative logics”,
Artificial Intelligence, 44 (1-2), p.167-207, July 1990

[KM90] H.Katsuno, A.O.Mendelzon, ”On the Difference Between Updating a Knowledge Base and Revising It”,
Univ. of Toronto Tech. Rept., KRR-TR-90-6

[Leh92a] D.Lehmann, ”Plausibility Logic”, Proceedings CSL91

[Leh92b] D.Lehmann, ”Plausibility Logic”, Tech.Rept. TR-92-3, Feb. 1992, Hebrew University, Jerusalem 91904,
Israel

[Lew73] D.Lewis: ”Counterfactuals”, Blackwell, Oxford, 1973

[LM92] D.Lehmann, M.Magidor, ”What does a conditional knowledge base entail?”, Artificial Intelligence, 55(1),
p. 1-60, May 1992

[LMS01] D.Lehmann, M.Magidor, K.Schlechta: ”Distance Semantics for Belief Revision”, Journal of Symbolic
Logic, Vol.66, No. 1, March 2001, p. 295-317

[Mak94] D.Makinson: ”General patterns in nonmonotonic reasoning”, in D.Gabbay, C.Hogger, Robinson (eds.),
”Handbook of logic in artificial intelligence and logic programming”, vol. III: ”Nonmonotonic and uncer-
tain reasoning”, Oxford University Press, 1994, p. 35-110

[Mak03] D.Makinson: ”Bridges between Classical and Nonmonotonic Logic”, Logic Journal of the IGPL, 11(1) :
69− 96 (2003)

[Sch91-1] K.Schlechta: ”Theory Revision and Probability”, Notre Dame Journal of Formal Logic 32, No.2 (1991),
p. 307-319

[Sch91-2] K.Schlechta, ”Results on Infinite Extensions”, Journal of Applied Non-Classical Logics, Vol.1, No. 1,
p.65-72, Paris 1991.

[Sch91-3] K.Schlechta, ”Some Results on Theory Revision”, in: A.Fuhrmann, M.Morreau (eds.), ”The Logic of
Theory Change”, Springer, Berlin, 1991, p.72-92

[Sch92] K.Schlechta: ”Some results on classical preferential models”, Journal of Logic and Computation, Oxford,
Vol.2, No.6 (1992), p. 675-686

[Sch95-1] K.Schlechta: ”Defaults as generalized quantifiers”, Journal of Logic and Computation, Oxford, Vol.5,
No.4, p.473-494, 1995

[Sch95-2] K.Schlechta: ”Logic, Topology, and Integration”, Journal of Automated Reasoning, 14:353-381, 1995,
Kluwer

[Sch96-1] K.Schlechta: ”Some completeness results for stoppered and ranked classical preferential models”, Journal
of Logic and Computation, Oxford, Vol. 6, No. 4, pp. 599-622, 1996

[Sch96-2] K.Schlechta: ”A Two-Stage Approach to First Order Default Reasoning”, Fundamenta Informaticae,
Vol. 28, No. 3-4, pp. 377-402, 1996

[Sch96-3] K.Schlechta: ”Completeness and incompleteness for plausibility logic”, Journal of Logic, Language and
Information, 5:2, 1996, p.177-192, Kluwer, Dordrecht

BIBLIOGRAPHY 285

[Sch97-2] K.Schlechta: ”Nonmonotonic logics - Basic Concepts, Results, and Techniques” Springer Lecture Notes
series, LNAI 1187, Jan. 1997, 243pp

[Sch97-4] K.Schlechta: ”Filters and partial orders”, Journal of the Interest Group in Pure and Applied Logics, Vol.
5, No. 5, p. 753-772, 1997

[Sch99] K.Schlechta: ”A topological construction of a non-smooth model of cumulativity” Journal of Logic and
Computation, Vol.9, No.4, pp.457-462, 1999

[Sch00-1] K.Schlechta: ”New techniques and completeness results for preferential structures”, Journal of Symbolic
Logic, Vol.65, No.2, pp.719-746, 2000

[Sch00-2] K.Schlechta: ”Unrestricted preferential structures”, Journal of Logic and Computation, Vol.10, No.4,
pp.573-581, 2000

[SD01] K.Schlechta, J.Dix: ”Explaining updates by minimal sums”, Theoretical Computer Science, 266 (2001),
pp. 819-838

[SFBMS00] Karl Schlechta, Enrico Formenti, Jean-Marc Batty, Jean Francois Marsillo, Sophie Sadok: Comments
on ”Belief revision with unreliable observations”, LIM Research Report 2000-362

[SGMRT00] K.Schlechta, L.Gourmelen, S.Motre, O.Rolland, B.Tahar: ”A new approach to preferential struc-
tures”, Fundamenta Informaticae, Vol. 42, No. 3-4, pp. 391-410, 2000

[Sho87b] Yoav Shoham: ”A semantical approach to nonmonotonic logics”. In Proc. Logics in Computer Science,
p.275-279, Ithaca, N.Y., 1987, and In Proceed. IJCAI 87, p.388-392

[SLM96] K.Schlechta, D.Lehmann, M.Magidor: ”Distance Semantics for Belief Revision”, in Proceedings of: The-
oretical Aspects of Rationality and Knowledge, Tark VI, 1996, ed. Y.Shoham, Morgan Kaufmann, San
Francisco, 1996, p. 137-145

[SM94] K.Schlechta, D.Makinson: ”Local and Global Metrics for the Semantics of Counterfactual Conditionals”,
Journal of Applied Non-Classical Logics, Vol.4, No.2, pp.129-140, Hermes, Paris, 1994, also LIM Research
Report RR 37, 09/94

